JP2017009196A - 蒸発器及び冷凍サイクル装置 - Google Patents

蒸発器及び冷凍サイクル装置 Download PDF

Info

Publication number
JP2017009196A
JP2017009196A JP2015125491A JP2015125491A JP2017009196A JP 2017009196 A JP2017009196 A JP 2017009196A JP 2015125491 A JP2015125491 A JP 2015125491A JP 2015125491 A JP2015125491 A JP 2015125491A JP 2017009196 A JP2017009196 A JP 2017009196A
Authority
JP
Japan
Prior art keywords
evaporator
space
refrigerant
refrigerant liquid
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015125491A
Other languages
English (en)
Inventor
良美 林
Yoshimi Hayashi
良美 林
道美 日下
Michimi Kusaka
道美 日下
伊織 丸橋
Iori Maruhashi
伊織 丸橋
朋一郎 田村
Tomoichiro Tamura
朋一郎 田村
文紀 河野
Fuminori Kono
文紀 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015125491A priority Critical patent/JP2017009196A/ja
Publication of JP2017009196A publication Critical patent/JP2017009196A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

【課題】冷凍サイクル装置の成績係数を向上させるための技術を提供する。【解決手段】蒸発器(21)は、容器(40)、流入口(45)、流出口(46)、障壁(41)、及び充填材(43)を備えている。障壁(41)は、容器(40)の内部に配置され、容器(40)の内部空間を流入口(45)を含む第1空間(51)と流出口(46)を含む第2空間(52)とに仕切っている。充填材(43)は、第1空間(51)に配置され、冷媒液の流れを阻害しつつ冷媒液の透過を許容する。【選択図】図2

Description

本開示は、蒸発器及び冷凍サイクル装置に関する。
従来、冷凍サイクル装置の冷媒として代替フロンが使用されている。しかし、代替フロンの地球温暖化効果は大きく、環境負荷が小さい他の冷媒への転換が急務となっている。フロン系冷媒に代わる新たな冷媒として、水、二酸化炭素などのノンフロン系冷媒(自然冷媒)が提案されている。特許文献1には、冷媒として水を用いた冷凍サイクル装置が開示されている。
図7に示すように、特許文献1に記載の冷凍サイクル装置100は、蒸発器110、凝縮器120、連結配管130及び連結配管150を備えている。蒸発器110の上部は、連結配管130によって凝縮器120の上部に接続されている。連結配管130には、圧縮機140が設けられている。蒸発器110の下部は、連結配管150によって凝縮器120の下部に接続されている。冷凍サイクル装置100には、膨張弁が設けられていない。凝縮器120から蒸発器110へと戻される水の量は、凝縮器120の凝縮圧力と蒸発器110の蒸発圧力との差圧によって決まる。
特開2006−97989号公報
特許文献1に記載された冷凍サイクル装置は、膨張弁を必要としないので、コスト、信頼性などの面で有利である。しかし、膨張弁を省略することは、冷凍サイクル装置の成績係数(COP)の大幅な低下を招く可能性がある。
本開示は、冷凍サイクル装置の成績係数を向上させるための技術を提供することを目的とする。
すなわち、本開示は、
常温における飽和蒸気圧が負圧である冷媒を循環させる冷凍サイクルに用いられ、冷媒液を蒸発させて冷媒蒸気を生成する蒸発器であって、
前記冷媒液を貯留するための内部空間を有する容器と、
前記冷媒液を前記容器に流入させるための流入口と、
前記冷媒液を前記容器の外部へ流出させるための流出口と、
前記容器の内部に配置され、前記容器の前記内部空間を前記流入口を含む第1空間と前記流出口を含む第2空間とに仕切る障壁と、
前記冷媒液が前記第1空間と前記第2空間との間で移動することを許容する構造と、
前記第1空間に配置され、前記冷媒液の流れを阻害しつつ前記冷媒液の透過を許容する充填材と、
を備えた、蒸発器を提供する。
上記の技術によれば、冷凍サイクル装置の成績係数を向上させることができる。
図1は、実施形態1にかかる冷凍サイクル装置の構成図である。 図2は、図1に示す冷凍サイクル装置に使用された蒸発器の構成図である。 図3は、実施形態2にかかる蒸発器の構成図である。 図4は、実施形態3にかかる蒸発器の構成図である。 図5は、実施形態4にかかる蒸発器の構成図である。 図6は、実施形態5にかかる蒸発器の構成図である。 図7は、従来の冷凍サイクル装置の構成図である。
特許文献1に記載された冷凍サイクル装置に関して、本発明者らは、膨張弁を省略することが成績係数の低下を招く原因を調べた。その結果、以下の現象が原因の1つであることを突き止めた。すなわち、連結配管を通じて凝縮器から蒸発器へと送られる冷媒液の温度は、蒸発器に貯留された冷媒液の温度よりも高い。そのため、連結配管を通じて蒸発器に流入した冷媒液(以下、「凝縮液」とも称する)は、蒸発器に貯留された冷媒液の液面に向かって進む。その過程において、凝縮液は、周囲の冷媒液の飽和温度を超えて急激に沸騰(突沸)することがある。沸騰によって蒸気(気泡)が発生すると、圧縮機に吸入される冷媒蒸気の量が急増して圧縮機の仕事が増大し、ひいてはシステムの成績係数が低下する。システムの成績係数の大幅な低下を防止するためには、凝縮液の沸騰を抑制するための技術が必要である。
本開示の第1態様にかかる蒸発器は、
常温における飽和蒸気圧が負圧である冷媒を循環させる冷凍サイクルに用いられ、冷媒液を蒸発させて冷媒蒸気を生成する蒸発器であって、
前記冷媒液を貯留するための内部空間を有する容器と、
前記冷媒液を前記容器に流入させるための流入口と、
前記冷媒液を前記容器の外部へ流出させるための流出口と、
前記容器の内部に配置され、前記容器の前記内部空間を前記流入口を含む第1空間と前記流出口を含む第2空間とに仕切る障壁と、
前記冷媒液が前記第1空間と前記第2空間との間で移動することを許容する構造と、
前記第1空間に配置され、前記冷媒液の流れを阻害しつつ前記冷媒液の透過を許容する充填材と、
を備えたものである。
蒸発器の内部における飽和温度は、水頭圧の低下のため、冷媒液の液面に近づくにつれて低下する。そのため、液面に近づけば近づくほど凝縮液の沸騰が起こりやすい。第1態様の蒸発器によれば、流入口と冷媒液の液面との間に充填材が存在する。つまり、凝縮液の流路に流れを妨げる充填材が配置されている。そのため、凝縮液が充填材に衝突しながら液面に向かって進む。これにより、第1空間での凝縮液の滞留時間を増やすことができる。したがって、凝縮液は、周囲の冷媒液と均一に混ざりながら冷却され、蒸発器の内部における飽和温度を超えることなく液面に到達しうる。その結果、蒸発器に貯留された冷媒液中で急激な沸騰が起こることを防止できる。蒸気(気泡)の発生が防止されるため、圧縮機の仕事を減らすことができる。その結果、システムのCOPも向上する。
本開示の第2態様において、例えば、第1態様にかかる蒸発器の前記構造は、前記障壁に形成された貫通孔を含む。貫通孔の位置、大きさ、数などが最適化されるように障壁を設計することによって、流入口を通じて導入された凝縮液の突沸をより効果的に防ぐことができる。
本開示の第3態様において、例えば、第1又は第2態様にかかる蒸発器の前記構造は、鉛直方向における前記障壁の上端と前記容器の内面との間に形成された空間を含む。このような構造は、第2空間に貯留された冷媒液の温度を低温に保つのに有利である。
本開示の第4態様において、例えば、第1〜第3態様のいずれか1つにかかる蒸発器の前記第1空間には、複数の前記充填材が配置されている。第4態様によれば、凝縮液は、複数の充填材の隙間をぬって液面に向かって進む。複数の充填材が凝縮液の流路に存在するので、凝縮液は鉛直方向だけでなく、水平方向にも流れやすい。水平方向に関する流動距離の増加によって、第1空間における凝縮液の滞留時間も増加する。したがって、凝縮液と周囲の冷媒液との間の熱交換が促進される。
本開示の第5態様において、例えば、第1〜第4態様のいずれか1つにかかる蒸発器は、前記第1空間に配置され、前記蒸発器に貯留された前記冷媒液の液面に向かう方向に前記充填材が移動することを妨げる障害部材をさらに備える。第5態様によれば、凝縮液の流れによって充填材が動いて第1空間で偏ることを防止できる。また、凝縮液が障害物に衝突することなく液面に到達できる経路が第1空間に形成されることを防止できる。
本開示の第6態様において、例えば、第1〜第5態様のいずれか1つにかかる蒸発器の前記充填材は、前記流入口から前記構造への前記冷媒液の流路上に配置されている。第5実施形態によれば、充填材による効果をより十分に得ることができる。
本開示の第7態様にかかる冷凍サイクル装置は、第1〜第6態様のいずれか1つの蒸発器を備えたものである。
本開示の第8態様において、例えば、第7態様にかかる冷凍サイクル装置は、前記蒸発器で生成された前記冷媒蒸気を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒蒸気を凝縮させる凝縮器と、前記凝縮器と前記蒸発器とを接続している連結配管と、をさらに備え、前記連結配管の一端が前記蒸発器の前記流入口に接続されている。
本開示の第9態様において、例えば、第7又は第8態様にかかる冷凍サイクル装置は、熱交換器を有し、前記蒸発器に貯留された前記冷媒液を前記熱交換器を経由して循環させる吸熱回路をさらに備え、前記吸熱回路の上流端が前記流出口に接続されている。
第7〜第9態様によれば、改良された蒸発器を使用することに基づいて、冷凍サイクル装置のCOPを向上させる効果が得られる。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(実施形態1)
図1に示すように、本実施形態の冷凍サイクル装置1は、蒸発器21、圧縮機31、凝縮器11、蒸気経路32及び連結配管33を備えている。凝縮器11及び蒸発器21には、それぞれ、放熱回路10及び吸熱回路20が接続されている。蒸発器21で生成した冷媒蒸気(気相の冷媒)が圧縮機31に送られて圧縮されたのち、蒸気経路32を経由して凝縮器11に供給される。
冷凍サイクル装置1には、常温(日本工業規格:20℃±15℃/JIS Z8703)における飽和蒸気圧が負圧(絶対圧で大気圧よりも低い圧力)である冷媒が循環している。そのような特徴を有する冷媒としては、水、アルコール又はエーテルを主成分として含む冷媒が挙げられる。冷凍サイクル装置1の運転時において、冷凍サイクル装置1の内部の圧力は大気圧よりも低い。例えば、冷媒として水を用いて冷房運転を行う場合、凝縮器11における冷媒の温度及び凝縮器11の内部の圧力は37℃で6.28kPaAであり、蒸発器21における冷媒の温度及び蒸発器21の内部の圧力は5℃で0.87kPaAである。「主成分」は、質量比で最も多く含まれた成分を意味する。
放熱回路10は、凝縮側冷媒循環ポンプ12、放熱用熱交換器13及び凝縮側冷媒循環配管14a〜14cを備えている。放熱回路10の上流端(凝縮側冷媒循環配管14aの一端)が凝縮器11の底部に接続されている。放熱回路10の下流端(凝縮側冷媒循環配管14cの一端)が凝縮器11の上部に接続されている。凝縮器11、凝縮側冷媒循環ポンプ12及び放熱用熱交換器13は、凝縮側冷媒循環配管14a〜14cによって、この順番で接続されている。
凝縮器11において、圧縮機31で圧縮された冷媒蒸気(気相の冷媒)が冷却され、冷媒液(液相の冷媒)が生成される。冷媒液は、凝縮器11に凝縮液として貯留される。凝縮器11は、例えば、断熱性を有する耐圧容器によって形成されている。凝縮側冷媒循環ポンプ12は、凝縮器11の出口と放熱用熱交換器13の入口との間において放熱回路10に設けられている。凝縮側冷媒循環ポンプ12によって、凝縮器11に貯留された冷媒液が放熱用熱交換器13に圧送される。
放熱用熱交換器13は、シェルアンドチューブ熱交換器、フィンチューブ熱交換器などの熱交換器によって形成されている。冷凍サイクル装置1が室内の冷房を行う空気調和装置である場合、放熱用熱交換器13は室外に設置される。放熱用熱交換器13において、冷媒は、室外の空気に放熱する。
吸熱回路20は、蒸発側冷媒循環ポンプ22、吸熱用熱交換器23及び蒸発側冷媒循環配管24a〜24cを備えている。吸熱回路20の上流端(蒸発側冷媒循環配管24aの一端)が蒸発器21の底部に接続されている。吸熱回路20の下流端(蒸発側冷媒循環配管24cの一端)が蒸発器21の中間部に接続されている。蒸発器21、蒸発側冷媒循環ポンプ22及び吸熱用熱交換器23が、蒸発側冷媒循環配管24a〜24cによって、この順番で接続されている。
蒸発器21には、冷媒液が貯留されている。冷媒液を蒸発器21で蒸発させることによって、圧縮機31で圧縮するべき冷媒蒸気が生成される。蒸発器21は、例えば、断熱性を有する耐圧容器によって形成されている。蒸発側冷媒循環ポンプ22は、蒸発器21の冷媒液流出口(後述する第1流出口46)と吸熱用熱交換器23の入口との間において吸熱回路20に設けられている。蒸発側冷媒循環ポンプ22によって、蒸発器21に貯留された冷媒液が吸熱用熱交換器23に圧送される。
吸熱用熱交換器23は、シェルアンドチューブ熱交換器、フィンチューブ熱交換器などの熱交換器によって形成されている。冷凍サイクル装置1が室内の冷房を行う空気調和装置である場合、吸熱用熱交換器23は室内に設置される。吸熱用熱交換器23において、冷媒は、室内の空気から吸熱する。
本実施形態において、蒸発器21は、吸熱用熱交換器23で加熱された冷媒液を内部で直接的に蒸発させる熱交換器である。蒸発器21に貯留された冷媒液は、吸熱回路20を循環して蒸発器21に戻された冷媒液と直接接触する。蒸発側冷媒循環配管24cの下流端は、蒸発器21に貯留された冷媒液の液面よりも鉛直方向の下方の位置において蒸発器21に接続されている。
蒸気経路32には圧縮機31が配置されている。蒸気経路32の上流部分32aによって、蒸発器21の上部が圧縮機31の吸入口に接続されている。蒸気経路32の下流部分32bによって、圧縮機31の吐出口が凝縮器11の上部に接続されている。圧縮機31は、ターボ圧縮機又は容積式圧縮機である。蒸気経路32には、複数の圧縮機が設けられていてもよい。圧縮機31は、蒸気経路32の上流部分32aを通じて蒸発器21から冷媒蒸気を吸い込み、圧縮する。圧縮機31において圧縮された冷媒蒸気は、蒸気経路32の下流部分32bを通じて凝縮器11に供給される。
連結配管33(液戻し経路)は、凝縮器11の下部と蒸発器21の下部とを接続している。凝縮器11で凝縮した冷媒(凝縮液)は、連結配管33を経由して蒸発器21に送られる。本実施形態において、連結配管33には流量調整弁が配置されていない。流量調整弁を省略すると、高精度の制御のために必要な計測器類及び制御機器を省略できるので、コストを大幅に削減できる。また、機器の故障の頻度を低減できるので、冷凍サイクル装置1の信頼性も高まる。連結配管33における冷媒液の流量は、凝縮器11の内部の凝縮圧力と蒸発器21の内部の蒸発圧力との差圧に相当する水位差が確保されるように調節される。「水位差」は、基準面から蒸発器21に貯留された冷媒液の液面までの高さと、基準面から凝縮器11に貯留された冷媒液の液面までの高さとの間の差を意味する。
例えば、冷媒として水を用いて冷房運転を行う場合、凝縮器11における冷媒の温度及び凝縮器11の内部の圧力は37℃で6.28kPaAであり、蒸発器21における冷媒の温度及び蒸発器21の内部の圧力は5℃で0.87kPaAである。凝縮器11と蒸発器21との差圧は5.41kPaAである。この差圧を水位差に換算すると約54.1cmである。凝縮器11の容器の仕様及び蒸発器21の容器の仕様(例えば、容積)は、運転時の水位差及び運転停止時の均圧下における冷媒液の液面の位置を考慮に入れて決定されうる。
次に、蒸発器21の構造を詳細に説明する。
図2に示すように、蒸発器21は、容器40(蒸発器本体)、障壁41及び充填材43を備えている。容器40には、第1流入口45、第2流入口47、第1流出口46及び第2流出口48が設けられている。第1流入口45に連結配管33が接続されている。第2流入口47に蒸発側冷媒循環配管24cが接続されている。第1流出口46に蒸発側冷媒循環配管24aが接続されている。第2流出口48に蒸気経路32の上流部分32a(配管)が接続されている。
容器40は、冷媒液を貯留するための内部空間を有する。第1流入口45及び第1流出口46は、それぞれ、容器40の底部に設けられている。第1流入口45は、例えば、液面までの距離を最大限に確保できる位置(例えば、容器40の底面)において容器40の内部空間に向かって開口している。第1流出口46は、例えば、液面までの距離を最大限に確保できる位置(例えば、容器40の底面)において容器40の内部空間に向かって開口している。第1流入口45は、冷媒液を容器40に流入させるための開口部である。詳細には、第1流入口45は、連結配管33を通じて凝縮器11から供給された相対的に高温の冷媒液(凝縮液)を容器40に流入させるための開口部である。第1流出口46は、冷媒液を容器40の外部へ流出させるための開口部である。詳細には、第1流出口46は、容器40に貯留された冷媒液を吸熱回路20に循環させるための開口部である。
第1流入口45は、望ましくは、容器40の最も低い位置に設けられている。この場合、凝縮液により十分な水頭圧が加わるとともに、第1流入口45から液面までの距離を最大限に稼ぐことができる。
第2流入口47は、容器40の中間部に設けられている。第2流入口47も冷媒液を容器40に流入させるための開口部である。詳細には、第2流入口47は、吸熱回路20から容器40に冷媒液を流入させるための開口部である。第2流入口47の位置は、例えば、蒸発器21に貯留された冷媒液の液面よりも鉛直方向の下方に位置するように定められている。ただし、第2流入口47が液面よりも上方に位置していてもよい。第2流出口48は、容器40の上部に設けられている。言い換えれば、第2流出口48は、液面よりも上方の部分に設けられている。第2流出口48は、冷媒蒸気を容器40の外部へ流出させるための開口部である。詳細には、第2流出口48は、容器40の内部空間で発生した冷媒蒸気を圧縮機31に供給するための開口部である。
本実施形態によれば、第1流入口45が容器40の底部に設けられているので、凝縮液が液面の下方に戻される。これにより、フラッシュガスの発生を防止できる。同様に、第2流入口47が容器40の中間部に設けられているので、吸熱回路20で加熱された冷媒液が液面の下方に戻される。これにより、フラッシュガスの発生を防止できる。このことは、圧縮機31がターボ圧縮機であるときに特に重要である。微細な液滴を含むフラッシュガスがターボ圧縮機に直接吸い込まれないようにすると、ターボ圧縮機のインペラのエロージョンを防止することができる。
障壁41は、容器40の内部に配置されている。障壁41は、容器40の内部空間を第1流入口45を含む第1空間51と第1流出口46を含む第2空間52とに仕切る部分である。言い換えれば、第1流入口45は第1空間51に面している。第1流出口46は第2空間52に面している。第1流入口45と第1流出口46とが障壁41で隔てられている。第2流入口47は第1空間51に面している。第2流出口48は第1空間51に面していてもよいし、第2空間52に面していてもよい。障壁41は、容器40と分離できない部分であってもよいし、容器40から分離できる部分であってもよい。また、障壁41は、冷媒液が第1空間51と第2空間52との間で移動することを許容する構造を有する。本実施形態において、障壁41は、容器40の底部から上部に向かって延びている。障壁41の下端は容器40に接している。障壁41の上端は、容器40から離れている。障壁41の上端よりも上方において、第1空間51と第2空間52とが連通している。冷媒液の液面よりも上部の空間には冷媒蒸気が貯留される。
障壁41は、例えば、板状の部材で形成されている。鉛直方向における障壁41の高さは、例えば、蒸発器21に貯留された冷媒液の液面よりも鉛直方向の下方に位置するように定められている。つまり、蒸発器21は、冷媒液が第1空間51と第2空間52との間で移動することを許容する構造を有している。そのような構造は、鉛直方向における障壁41の上端と容器40の内面との間に確保された空間を含む。冷媒液は、障壁41を乗り越えて、第1空間51から第2空間52に向かう方向(又はその逆方向)に移動できる。このような構造は、第2空間52に貯留された冷媒液の温度を低温に保つのに有利である。
障壁41には、冷媒液が第1空間51と第2空間52との間で移動することを許容する構造として、1又は複数の貫通孔41hが形成されていてもよい。この場合、貫通孔41hを通じて、冷媒液が第1空間51と第2空間52との間で移動できるので、障壁41の上端は、蒸発器21に貯留された冷媒液の液面よりも鉛直方向の上方に位置していてもよいし、下方に位置していてもよい。貫通孔41hの位置、大きさ、数などが最適化されるように障壁41を設計することによって、第1流入口45を通じて導入された凝縮液の突沸をより効果的に防ぐことができる。貫通孔41hを有する障壁41として、パンチング材、スリットを有する板材などを使用できる。
蒸発器21は、障壁41を乗り越えた冷媒液のみが第1空間51と第2空間52との間で移動できるように構成されていてもよい。障壁41に1又は複数の貫通孔41hが形成されている場合、蒸発器21は、貫通孔41hのみを通じて第1空間51と第2空間52との間で冷媒液が移動できるように構成されていてもよい。もちろん、これらの構成が組み合わされていてもよい。
充填材43は、容器40の内部に配置されている。詳細には、充填材43は、第1空間51に配置されている。障壁41によって、充填材43が第1空間51から第2空間52へと移動することが禁止されている。本実施形態では、充填材43は、第1空間51のみに配置されている。充填材43は、冷媒液の流れを阻害しつつ冷媒液の透過を許容する。詳細には、充填材43は、第1流入口45から障壁41の上方の空間(冷媒液が第1空間51と第2空間52との間で移動することを許容する構造)への冷媒液の流路上に配置されている。あるいは、充填材43は、第1流入口45から貫通孔41hへの冷媒液の流路上に配置されている。つまり、充填材43は、第1空間51から第2空間52への冷媒液の流れを阻害する。
一例において、充填材43は、網、パンチング構造を有する多孔質部材などで形成されている。充填材43の材料は特に限定されない。充填材43は、金属、樹脂、セラミック、ガラスなどで作られている。特に、空隙率が小さく比表面積が大きい多孔質部材で充填材43が形成されていると、凝縮液に対する伝熱面積が増大するため、充填材43と凝縮液との間で効率的な熱交換を行うことが可能である。その結果、第1流入口45を通じて蒸発器21に供給された凝縮液の温度を効率的に下げることができる。
本実施形態の蒸発器21によれば、連結配管33及び第1流入口45を通じて、凝縮液が凝縮器11から蒸発器21の第1空間51に流入する。凝縮液は、比重差に基づき、第1空間51を液面に向かって進み、周囲の冷媒液と均一に混ざりながら冷却される。凝縮液は、蒸発器21の内部における冷媒液の飽和温度を超えることなく液面に達する。蒸発器21に貯留された冷媒液は単一の液相であり、沸騰は起こりにくい。したがって、吸熱用熱交換器23において伝熱に寄与しない蒸気(気泡)の発生が防止される。その結果、圧縮機31の仕事を減らすことができ、冷凍サイクル装置1のCOPも向上する。
また、障壁41の働きにより、比較的高温の冷媒液が吸熱回路20に直接流れ込むことを防止できるので、吸熱用熱交換器23の伝熱効率が向上する。仮に、第1空間51で気泡がわずかに発生したとしても、気泡が吸熱回路20に直接流れ込みにくいので、蒸発側冷媒循環ポンプ22が気泡を吸い込むことも防止される。さらに、第1流入口45と冷媒液の液面との間に充填材43が存在する、つまり、凝縮液の流路に凝縮液の流れを妨げる充填材43が配置されている。そのため、凝縮液が充填材43に衝突しながら液面に向かって進む。凝縮液の第1空間51での滞留時間を増やすことができるので、凝縮液と周囲の冷媒液との均一な混合が促進されうる。
以下、蒸発器の他のいくつかの実施形態について説明する。技術的な矛盾が生じない限り、各実施形態の蒸発器の構成は、他の実施形態の蒸発器に組み合わせることができる。各実施形態の蒸発器に関する説明は、他の実施形態の蒸発器にも適用されうる。
(実施形態2)
図3に示すように、本実施形態の蒸発器21Bは、第1空間51に配置された複数の充填材43を有する。
本実施形態によれば、凝縮液は、複数の充填材43の隙間をぬって液面に向かって進む。複数の充填材43が凝縮液の流路に存在するので、凝縮液は鉛直方向だけでなく、水平方向にも流れやすい。水平方向に関する流動距離の増加によって、第1空間51における凝縮液の滞留時間も増加する。したがって、凝縮液と周囲の冷媒液との間の熱交換が促進される。本実施形態によれば、凝縮液の伝熱性能を高める必要がある運転条件、例えば圧力比が高く蒸発温度と凝縮温度との差が大きい暖房条件においても、上記の熱交換を効率的に生じさせることができる。したがって、冷房条件だけでなく暖房条件においても冷凍サイクル装置1のCOPを十分に向上させることができる。
複数の充填材43は、第1空間51に層状に配置されうる。複数の充填材43として、材料及び比表面積が互いに異なる複数種類の充填材が使用されてもよい。例えば、相対的に比重の小さい材料で作られた1又は複数の第1の充填材が容器40の底部に配置され、相対的に比重の大きい材料で作られた1又は複数の第2の充填材が第1の充填材の上に配置されていてもよい。このような構成によれば、第1の充填材を容器40の底部に確実に留まらせることができ、凝縮液と周囲の冷媒液との間の熱交換を促進することができる。一例において、第1の充填材が樹脂で作られ、第2の充填材が金属で作られている。
(実施形態3)
図4に示すように、本実施形態の蒸発器21Cは、第1空間51に配置された障害部材44をさらに備えている。障害部材44は、蒸発器21Cに貯留された冷媒液の液面に向かう方向に充填材43が移動することを妨げる。
本実施形態において、障害部材44は、充填材43と冷媒液の液面との間に位置している。障害部材44は、第1空間51から充填材43が逸脱することを防ぐ蓋の役割を担っている。障害部材44として、板材、網などの部材を使用できる。そのような部材は、例えば、樹脂、金属などの汎用の材料で作られている。障害部材44には、鉛直方向への凝縮液の移動を許容する構造が設けられている。そのような構造は、障害部材44に形成された1又は複数の貫通孔44aである。障害部材44は、例えば、障壁41及び/又は容器40に固定されている。
本実施形態によれば、障害部材44を有する一体型の充填材43が形成されうる。水平方向に関する充填材43の動きは、容器40及び障壁41によって抑制されている。鉛直方向に関する充填材43の動きは、障害部材44によって抑制されている。そのため、凝縮液の流れによって充填材43が動いて第1空間51で偏ることを防止できる。また、凝縮液が障害物に衝突することなく液面に到達できる経路が第1空間51に形成されることを防止できる。第1空間51における充填材43の密度、空隙率、比表面積などを変動させることなく、凝縮液を安定して冷却することができる。過負荷条件で凝縮液の流量が多い場合でも、凝縮液は必ず充填材43を通過する。常に同じ条件にて、凝縮液と充填材43との間の熱交換、及び、凝縮液と周囲の冷媒液との間の熱交換が行われるので、冷凍サイクル装置1のCOPを安定して向上させることができる。
(実施形態4)
図5に示すように、本実施形態の蒸発器21Dは、複数の障害部材44を備えている。障害部材44の構造及び機構は、図4を参照して実施形態3で説明した通りである。第1空間51において、複数の障害部材44は、鉛直方向の上側に配置された障害部材44と下側に配置された障害部材44とを含む。容器40の底部と下側の障害部材44との間の空間に充填材43が配置されている。上側の障害部材44と下側の障害部材44との間の空間にも充填材43が配置されている。
本実施形態によれば、液面に向かう方向だけでなく、凝縮液の対流による下方向への充填材43の移動も防ぐことができる。水平方向への移動を防ぐように充填材43を拘束することに加え、鉛直方向への充填材43の移動も防止されるので、凝縮液の流れによって充填材43が第1空間51で偏ることをより確実に防止できる。
(実施形態5)
図6に示すように、本実施形態の蒸発器21Eは、蒸発器21Eに貯留された冷媒液の液面に向かう方向に充填材43が移動することを妨げる障害部材として、網状の障害部材50を備えている。充填材43は、網状の障害部材50によって囲まれている。本実施形態においても、先の実施形態で説明した効果と同じ効果が得られる。
本明細書に開示された技術は、家庭用エアコン、業務用エアコンなどに適用される冷凍サイクル装置に有用である。
1 冷凍サイクル装置
10 放熱回路
11 凝縮器
12 凝縮側冷媒循環ポンプ
13 放熱用熱交換器
14a〜14c 凝縮側冷媒循環配管
20 吸熱回路
21,21B,21C,21D,21E 蒸発器
22 蒸発側冷媒循環ポンプ
23 吸熱用熱交換器
24a〜24c 蒸発側冷媒循環配管
31 圧縮機
32a,32b 蒸気経路
33 連結配管
40 容器
41 障壁
41 貫通孔
43 充填材
44 障害部材
45 流入口(第1流入口)
46 流出口(第1流出口)
51 第1空間
52 第2空間

Claims (9)

  1. 常温における飽和蒸気圧が負圧である冷媒を循環させる冷凍サイクルに用いられ、冷媒液を蒸発させて冷媒蒸気を生成する蒸発器であって、
    前記冷媒液を貯留するための内部空間を有する容器と、
    前記冷媒液を前記容器に流入させるための流入口と、
    前記冷媒液を前記容器の外部へ流出させるための流出口と、
    前記容器の内部に配置され、前記容器の前記内部空間を前記流入口を含む第1空間と前記流出口を含む第2空間とに仕切る障壁と、
    前記冷媒液が前記第1空間と前記第2空間との間で移動することを許容する構造と、
    前記第1空間に配置され、前記冷媒液の流れを阻害しつつ前記冷媒液の透過を許容する充填材と、
    を備えた、蒸発器。
  2. 前記構造は、前記障壁に形成された貫通孔を含む、請求項1に記載の蒸発器。
  3. 前記構造は、鉛直方向における前記障壁の上端と前記容器の内面との間に確保された空間を含む、請求項1又は2に記載の蒸発器。
  4. 前記第1空間には、複数の前記充填材が配置されている、請求項1〜3のいずれか1項に記載の蒸発器。
  5. 前記第1空間に配置され、前記蒸発器に貯留された前記冷媒液の液面に向かう方向に前記充填材が移動することを妨げる障害部材をさらに備えた、請求項1〜4のいずれか1項に記載の蒸発器。
  6. 前記充填材は、前記流入口から前記構造への前記冷媒液の流路上に配置されている、請求項1〜5のいずれか1項に記載の蒸発器。
  7. 請求項1〜6のいずれか1項に記載の蒸発器を備えた、冷凍サイクル装置。
  8. 前記蒸発器で生成された前記冷媒蒸気を圧縮する圧縮機と、
    前記圧縮機で圧縮された前記冷媒蒸気を凝縮させる凝縮器と、
    前記凝縮器と前記蒸発器とを接続している連結配管と、
    をさらに備え、
    前記連結配管の一端が前記蒸発器の前記流入口に接続されている、請求項7に記載の冷凍サイクル装置。
  9. 熱交換器を有し、前記蒸発器に貯留された前記冷媒液を前記熱交換器を経由して循環させる吸熱回路をさらに備え、
    前記吸熱回路の上流端が前記流出口に接続されている、請求項7又は8に記載の冷凍サイクル装置。
JP2015125491A 2015-06-23 2015-06-23 蒸発器及び冷凍サイクル装置 Withdrawn JP2017009196A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125491A JP2017009196A (ja) 2015-06-23 2015-06-23 蒸発器及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125491A JP2017009196A (ja) 2015-06-23 2015-06-23 蒸発器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2017009196A true JP2017009196A (ja) 2017-01-12

Family

ID=57763086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125491A Withdrawn JP2017009196A (ja) 2015-06-23 2015-06-23 蒸発器及び冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2017009196A (ja)

Similar Documents

Publication Publication Date Title
JP7137555B2 (ja) アクティブ/パッシブ冷却システム
US9557080B2 (en) Refrigeration cycle apparatus
JP6150140B2 (ja) 熱交換装置及びヒートポンプ装置
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
JP6064259B2 (ja) 冷凍サイクル装置
JP2015144247A (ja) 冷却部品及び電子機器
JP6888102B2 (ja) 熱交換器ユニットおよび冷凍サイクル装置
JP3445941B2 (ja) 多段蒸発吸収型の吸収冷温水機及びそれを備えた大温度差空調システム
JP2010010204A (ja) 沸騰冷却装置
JP6464502B2 (ja) 冷凍サイクル装置
JP3906830B2 (ja) 自然循環型冷却装置及び自然循環型冷却装置を用いた熱交換方法
JP6596986B2 (ja) 冷却部品及び電子機器
TWI311187B (ja)
JP2017009196A (ja) 蒸発器及び冷凍サイクル装置
JP2018059655A (ja) 冷凍サイクル装置
JP2019135418A (ja) シェルアンドチューブ熱交換器
CN215864290U (zh) 一种大型发热设备的冷却装置
JP2012167912A (ja) 空気調和機
JP6544784B1 (ja) 冷却装置
JP5793715B2 (ja) 空気調和装置
JP2004232986A (ja) 冷凍装置
CN107182188A (zh) 户外密闭柜及其散热装置
JP2013228176A (ja) 冷凍サイクル装置
JP2023538331A (ja) 中間チャンバを有する冷却システム
JP2002333236A (ja) 蒸発器及びこれを有する冷凍機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315