JP2017008772A - Denitrification and desulfurization device and internal combustion engine for land and marine industry using the same - Google Patents

Denitrification and desulfurization device and internal combustion engine for land and marine industry using the same Download PDF

Info

Publication number
JP2017008772A
JP2017008772A JP2015123720A JP2015123720A JP2017008772A JP 2017008772 A JP2017008772 A JP 2017008772A JP 2015123720 A JP2015123720 A JP 2015123720A JP 2015123720 A JP2015123720 A JP 2015123720A JP 2017008772 A JP2017008772 A JP 2017008772A
Authority
JP
Japan
Prior art keywords
denitration
exhaust gas
denitration catalyst
desulfurization apparatus
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123720A
Other languages
Japanese (ja)
Other versions
JP6655241B2 (en
Inventor
武行 岸
Takeyuki Kishi
武行 岸
澄人 西尾
Sumito Nishio
澄人 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2015123720A priority Critical patent/JP6655241B2/en
Publication of JP2017008772A publication Critical patent/JP2017008772A/en
Application granted granted Critical
Publication of JP6655241B2 publication Critical patent/JP6655241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a single denitrification catalyst to simultaneously perform both denitrification and desulfurization of exhaust gas from an internal combustion engine which burns heavy oil.SOLUTION: A denitrification and desulfurization device comprises: a supercharger 104 which supplies air to an internal combustion engine 102 using energy of exhaust gas; reducing agent supply means 12 which injects a reducing agent to treat nitrogen oxide; and a denitrification catalyst 10 which reacts the nitrogen oxide with the reducing agent. The denitrification catalyst 10: is arranged in a passage at a downstream side of the supercharger 104; keeps a temperature of the exhaust gas passing through the denitrification catalyst 10 within a temperature range not less than 150°C and not more than 280°C; and simultaneously performs denitrification of the exhaust gas and absorption of acidic ammonium sulfate produced by the reaction of sulfur oxide with the reducing agent onto the denitrification catalyst 10 under a condition that a space velocity obtained by diving an amount of the exhaust gas passing through the denitrification catalyst 10 by a volume of the denitrification catalyst 10 is kept in a range not less than 500hand not more than 2700h.SELECTED DRAWING: Figure 1

Description

本発明は、脱硝脱硫装置及びそれを用いた陸舶産業用内燃機関に関する。   The present invention relates to a denitration desulfurization apparatus and an internal combustion engine for land and marine industries using the same.

重油を燃焼させるディーゼル機関等の内燃機関では、そこから排出される排気ガスに含まれる窒素酸化物(NOx)の低減と共に、硫黄酸化物(SOx)の低減も求められている。窒素酸化物(NOx)と硫黄酸化物(SOx)を同時に低減するには、選択触媒還元装置(SCR)等の窒素酸化物(NOx)の低減装置とスクラバー等の硫黄酸化物(SOx)の低減装置をそれぞれ排気ガスの流路に設置する構成が採用されている。   In an internal combustion engine such as a diesel engine that burns heavy oil, a reduction in sulfur oxide (SOx) is required in addition to a reduction in nitrogen oxide (NOx) contained in exhaust gas discharged from the engine. In order to reduce nitrogen oxide (NOx) and sulfur oxide (SOx) at the same time, reduction device for nitrogen oxide (NOx) such as selective catalytic reduction device (SCR) and reduction of sulfur oxide (SOx) such as scrubber A configuration is adopted in which the devices are respectively installed in the exhaust gas flow paths.

また、ボイラの排気ガス処理システムにおいて、脱硝装置にて排気ガスに含まれる窒素酸化物(NOx)を除去する処理を行った後、石灰石石膏法の脱硫装置にて硫黄酸化物(SOx)を吸収除去する構成が開示されている(特許文献1)。また、脱硝反応装置にて排気ガスに含まれる硫黄酸化物(SOx)を除去する処理を行った後、脱硝反応装置にて窒素酸化物(NOx)を除去する構成が開示されている(特許文献2)。   In the exhaust gas treatment system of a boiler, after removing nitrogen oxides (NOx) contained in exhaust gas with a denitration device, sulfur oxides (SOx) are absorbed with a limestone gypsum desulfurization device. A configuration to be removed is disclosed (Patent Document 1). In addition, a configuration is disclosed in which nitrogen oxide (NOx) is removed by a denitration reactor after performing a treatment for removing sulfur oxide (SOx) contained in exhaust gas by a denitration reactor (Patent Document). 2).

一方、内燃機関や石油精製プラントからの排気ガスの処理において、脱硝触媒を用いて320℃以下の温度域で還元剤を用いて脱硝処理を行う低温脱硝工程と、当該工程で脱硝触媒に蓄積した被毒物質である硫黄含有化合物を除去して再生する触媒再生工程と、を繰り返す方法が開示されている(特許文献3)。   On the other hand, in the treatment of exhaust gas from internal combustion engines and oil refining plants, a low-temperature denitration process in which denitration treatment is performed using a reducing agent in a temperature range of 320 ° C. or less using a denitration catalyst, and accumulated in the denitration catalyst in this process A method of repeating a catalyst regeneration step in which a sulfur-containing compound that is a poisoning substance is removed and regenerated is disclosed (Patent Document 3).

特開2002−179411号公報JP 2002-179411 A 特開平11−165043号公報JP-A-11-165043 特開2005−87815号公報JP 2005-87815 A

ところで、SCR等の脱硝装置は構造が比較的簡単であり、メンテナンスも容易である。一方、スクラバー等の脱硫装置は構造が複雑であり、メンテナンスも煩雑となる。したがって、脱硝装置に加えて脱硫装置も設けた場合、排気ガス処理のシステム全体としてのメンテナンスも煩雑となり、その費用も高コスト化する。   By the way, a denitration apparatus such as an SCR has a relatively simple structure and is easy to maintain. On the other hand, a desulfurization apparatus such as a scrubber has a complicated structure and complicated maintenance. Therefore, when a desulfurization apparatus is provided in addition to the denitration apparatus, the maintenance of the exhaust gas treatment system as a whole becomes complicated, and the cost increases.

本発明は、重油を燃焼させる内燃機関の排気ガスの脱硝処理と脱硫処理を1つの脱硝触媒によって同時に行うことを可能にする。   The present invention makes it possible to simultaneously perform denitration treatment and desulfurization treatment of exhaust gas of an internal combustion engine that burns heavy oil using a single denitration catalyst.

本発明の請求項1に係る脱硝脱硫装置は、重油を燃焼させる内燃機関の排気ガスの窒素酸化物と硫黄酸化物を同時に処理する脱硝脱硫装置であって、前記排気ガスのエネルギーを用いて前記内燃機関に空気を供給する過給機と、前記窒素酸化物を処理するための還元剤を注入する還元剤供給手段と、前記窒素酸化物と前記還元剤とを反応させる脱硝触媒を備え、前記脱硝触媒は、前記過給機より下流側の経路に配置され、前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲とすると共に、前記脱硝触媒を通過する前記排気ガスの量を前記脱硝触媒の体積で除した空間速度を500h−1以上2700h−1以下の範囲とした条件下で、前記排気ガスを脱硝すると同時に前記硫黄酸化物と前記還元剤の反応で生じる酸性硫安を前記脱硝触媒に吸着させる。当該脱硝脱硫装置は、陸舶産業用内燃機関に搭載して脱硝脱硫装置を用いた陸舶産業用内燃機関とすることができる。 A denitration desulfurization apparatus according to claim 1 of the present invention is a denitration desulfurization apparatus that simultaneously processes nitrogen oxides and sulfur oxides of exhaust gas of an internal combustion engine that burns heavy oil, and uses the energy of the exhaust gas to A supercharger for supplying air to the internal combustion engine, a reducing agent supply means for injecting a reducing agent for treating the nitrogen oxide, and a denitration catalyst for reacting the nitrogen oxide and the reducing agent, The denitration catalyst is disposed in a path downstream from the supercharger, and the exhaust gas passing through the denitration catalyst has a temperature range of 150 ° C. or higher and 280 ° C. or lower, and the exhaust gas passing through the denitration catalyst. the space velocity of the quantity of gas divided by the volume of the denitration catalyst under conditions in the range of 500h -1 or 2700H -1 or less, in the reaction of the denitration of the exhaust gas at the same time as the sulfur oxides the reducing agent Jill acidic ammonium sulfate is adsorbed to the denitration catalyst. The denitration desulfurization apparatus can be an internal combustion engine for land and marine industry that is mounted on an internal combustion engine for land and marine industry and uses the denitration desulfurization apparatus.

ここで、前記脱硝触媒を通過する前記排気ガスの温度を変更する排気ガス温度変更手段を備え、前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲に変更することが好適である。   The exhaust gas temperature changing means for changing the temperature of the exhaust gas passing through the denitration catalyst is provided, and the temperature of the exhaust gas passing through the denitration catalyst is changed to a temperature range of 150 ° C. or higher and 280 ° C. or lower. Is preferred.

また、前記排気ガス温度変更手段は、運転初期に前記排気ガスの温度を150℃以上225℃未満の温度範囲に変更し、その後、前記排気ガスの温度を225℃以上280℃以下に変更することが好適である。   Further, the exhaust gas temperature changing means changes the temperature of the exhaust gas to a temperature range of 150 ° C. or higher and lower than 225 ° C. at the beginning of operation, and then changes the temperature of the exhaust gas to 225 ° C. or higher and 280 ° C. or lower. Is preferred.

また、前記内燃機関は、4ストロークディーゼル機関であることが好適である。また、前記内燃機関は、2ストロークディーゼル機関であることが好適である。   The internal combustion engine is preferably a 4-stroke diesel engine. The internal combustion engine is preferably a two-stroke diesel engine.

また、前記脱硝触媒は、複数段に分割されて設けられ、少なくとも1つの段の前記脱硝触媒の単位断面積あたりのセルの数が他の段の前記脱硝触媒の単位断面積あたりのセルの数と異なっていることが好適である。   The denitration catalyst is provided divided into a plurality of stages, and the number of cells per unit cross-sectional area of the denitration catalyst in at least one stage is the number of cells per unit cross-sectional area of the denitration catalyst in another stage. Is preferably different from

また、並列に配置された複数の前記脱硝触媒と、それぞれの前記脱硝触媒を通る前記経路に前記脱硝触媒に流す気体を切り替える切替弁を備え、前記切替弁を切り替えることにより、前記脱硝触媒の運転時は前記脱硝触媒に前記排気ガスを流し、前記脱硝触媒の再生時は前記脱硝触媒に再生温度以上の温度の高温気体を流し、前記内燃機関の運転中に複数の前記脱硝触媒の運転と再生を切り替えることが好適である。   In addition, a plurality of the denitration catalysts arranged in parallel, and a switching valve that switches a gas that flows to the denitration catalyst to the path that passes through each of the denitration catalysts, and the operation of the denitration catalyst by switching the switching valve The exhaust gas is allowed to flow through the denitration catalyst, and when the denitration catalyst is regenerated, a high-temperature gas having a temperature equal to or higher than the regeneration temperature is caused to flow through the denitration catalyst. Is preferably switched.

また、前記経路の前記脱硝触媒の下流側に前記脱硝触媒の被毒物質を除去する被毒物質除去装置を備えることが好適である。   In addition, it is preferable that a poisoning substance removing device for removing a poisoning substance of the denitration catalyst is provided downstream of the denitration catalyst in the path.

また、前記脱硝触媒の下流の前記窒素酸化物の濃度を計測する窒素酸化物濃度計測手段、前記脱硝触媒の下流の前記硫黄酸化物の濃度を計測する硫黄酸化物濃度計測手段、及び前記脱硝触媒の前後の前記排気ガスの差圧を計測する差圧計測手段の少なくとも1つを備え、備えられた計測手段による計測結果の少なくとも1つに基づいて前記脱硝触媒の運転と再生を切り替えることが好適である。   Also, a nitrogen oxide concentration measuring means for measuring the concentration of the nitrogen oxide downstream of the denitration catalyst, a sulfur oxide concentration measuring means for measuring the concentration of the sulfur oxide downstream of the denitration catalyst, and the denitration catalyst It is preferable that at least one of differential pressure measuring means for measuring the differential pressure of the exhaust gas before and after the operation is switched, and the operation and regeneration of the denitration catalyst are switched based on at least one of the measurement results by the provided measuring means. It is.

本発明の請求項1に係る脱硝脱硫装置によれば、重油を燃焼させる内燃機関の排気ガスの窒素酸化物と硫黄酸化物を同時に処理する脱硝脱硫装置であって、前記排気ガスのエネルギーを用いて前記内燃機関に空気を供給する過給機と、前記窒素酸化物を処理するための還元剤を注入する還元剤供給手段と、前記窒素酸化物と前記還元剤とを反応させる脱硝触媒を備え、前記脱硝触媒は、前記過給機より下流側の経路に配置され、前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲とすると共に、前記脱硝触媒を通過する前記排気ガスの量を前記脱硝触媒の体積で除した空間速度を500h−1以上2700h−1以下の範囲とした条件下で、前記排気ガスを脱硝すると同時に前記硫黄酸化物と前記還元剤の反応で生じる酸性硫安を前記脱硝触媒に吸着させることによって、重油を燃焼させることにより必要となる脱硝処理と脱硫処理を1つの脱硝触媒によって同時に行うことができる。これによって、構造が簡易であり、メンテナンスのコストを抑制した脱硝脱硫装置を提供することができる。 The denitration desulfurization apparatus according to claim 1 of the present invention is a denitration desulfurization apparatus that simultaneously processes nitrogen oxides and sulfur oxides of exhaust gas of an internal combustion engine that burns heavy oil, using the energy of the exhaust gas. A supercharger for supplying air to the internal combustion engine, a reducing agent supply means for injecting a reducing agent for treating the nitrogen oxide, and a denitration catalyst for reacting the nitrogen oxide and the reducing agent. The denitration catalyst is disposed in a path downstream from the supercharger, and the temperature of the exhaust gas passing through the denitration catalyst is set to a temperature range of 150 ° C. or higher and 280 ° C. or lower and passes through the denitration catalyst. under conditions that the amount of the exhaust gas to a volume by dividing the space velocity 500h -1 or more 2700H -1 or less in the range of the denitration catalyst, when the denitration of the exhaust gas at the same time as the sulfur oxides of the reducing agent By acidic ammonium sulfate can be adsorbed onto the denitration catalyst caused by the response can be performed simultaneously denitration and desulfurization processing required by the combustion of heavy oil by one of the denitration catalyst. Thereby, a denitration desulfurization apparatus having a simple structure and suppressing maintenance costs can be provided.

脱硝脱硫装置を陸舶産業用内燃機関に用いた場合は、自動車用等とは異なり周囲スペースが大きくとれるため、脱硝触媒の体積を大きくして空間速度を500h−1以上2700h−1以下の範囲とすることが容易にできる。 When using the denitration desulfurization apparatus in an internal combustion engine for land舶産industry, since the surrounding space, it can be increased unlike the automobile or the like, the range of space velocity 500h -1 or 2700H -1 or less by increasing the volume of the denitration catalyst Can be easily done.

また、前記脱硝触媒を通過する前記排気ガスの温度を変更する排気ガス温度変更手段を備え、前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲に変更することによって、前記排気ガス中の硫黄酸化物(SOx)を酸性硫安として前記脱硝触媒に効果的に吸着させて除去することができる。   In addition, exhaust gas temperature changing means for changing the temperature of the exhaust gas passing through the denitration catalyst is provided, and the temperature of the exhaust gas passing through the denitration catalyst is changed to a temperature range of 150 ° C. or higher and 280 ° C. or lower. The sulfur oxide (SOx) in the exhaust gas can be effectively adsorbed and removed by the denitration catalyst as acidic ammonium sulfate.

また、前記排気ガス温度変更手段は、運転初期に前記排気ガスの温度を150℃以上225℃未満の温度範囲に変更し、その後、前記排気ガスの温度を225℃以上280℃以下に変更することによって、前記脱硝触媒における前記排気ガスの処理の運転初期に酸性硫安をより効果的に吸着させ、その酸性硫安をバインダとしてスート(煤)をより効果的に除去する状態とすることができる。その後、通常の排気ガスの処理温度範囲に戻すことにより、前記排気ガス中の硫黄酸化物(SOx)とスート(煤)を安定的に除去することができる。   Further, the exhaust gas temperature changing means changes the temperature of the exhaust gas to a temperature range of 150 ° C. or higher and lower than 225 ° C. at the beginning of operation, and then changes the temperature of the exhaust gas to 225 ° C. or higher and 280 ° C. or lower. Thus, acidic ammonium sulfate can be more effectively adsorbed in the initial stage of the exhaust gas treatment in the denitration catalyst, and soot (soot) can be more effectively removed using the acidic ammonium sulfate as a binder. Thereafter, by returning to the normal exhaust gas processing temperature range, sulfur oxide (SOx) and soot (soot) in the exhaust gas can be stably removed.

また、前記内燃機関は、4ストロークディーゼル機関であることによって、前記排気ガス温度変更手段によって前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲に変更して効果的に前記排気ガス中の硫黄酸化物(SOx)を除去することができる。また、前記内燃機関は、2ストロークディーゼル機関であることによって、前記排気ガス温度変更手段によって又はそれによらず前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲として効果的に前記排気ガス中の硫黄酸化物(SOx)を除去することができる。   Further, since the internal combustion engine is a four-stroke diesel engine, the exhaust gas temperature changing means effectively changes the temperature of the exhaust gas passing through the denitration catalyst to a temperature range of 150 ° C. or higher and 280 ° C. or lower. In addition, sulfur oxide (SOx) in the exhaust gas can be removed. Further, since the internal combustion engine is a two-stroke diesel engine, the temperature of the exhaust gas passing through the denitration catalyst by the exhaust gas temperature changing means or not depends on the temperature range of 150 ° C. or higher and 280 ° C. or lower. In particular, sulfur oxide (SOx) in the exhaust gas can be removed.

また、前記脱硝触媒は、複数段に分割されて設けられ、少なくとも1つの段の前記脱硝触媒の単位断面積あたりのセルの数が他の段の前記脱硝触媒の単位断面積あたりのセルの数と異なっていることによって、前記排気ガスに含まれるスート(煤)を効果的に除去することができる。   The denitration catalyst is provided divided into a plurality of stages, and the number of cells per unit cross-sectional area of the denitration catalyst in at least one stage is the number of cells per unit cross-sectional area of the denitration catalyst in another stage. The soot (soot) contained in the exhaust gas can be effectively removed.

また、並列に配置された複数の前記脱硝触媒と、それぞれの前記脱硝触媒を通る前記経路に前記脱硝触媒に流す気体を切り替える切替弁を備え、前記切替弁を切り替えることにより、前記脱硝触媒の運転時は前記脱硝触媒に前記排気ガスを流し、前記脱硝触媒の再生時は前記脱硝触媒に再生温度以上の温度の高温気体を流し、前記内燃機関の運転中に複数の前記脱硝触媒の運転と再生を切り替えることによって、複数の前記脱硝触媒を切り替えながら連続的に前記排気ガスの脱硝及び脱硫処理を行うことができる。   In addition, a plurality of the denitration catalysts arranged in parallel, and a switching valve that switches a gas that flows to the denitration catalyst to the path that passes through each of the denitration catalysts, and the operation of the denitration catalyst by switching the switching valve The exhaust gas is allowed to flow through the denitration catalyst, and when the denitration catalyst is regenerated, a high-temperature gas having a temperature equal to or higher than the regeneration temperature is caused to flow through the denitration catalyst. By switching the above, denitration and desulfurization treatment of the exhaust gas can be performed continuously while switching a plurality of the denitration catalysts.

また、前記経路の前記脱硝触媒の下流側に前記脱硝触媒の被毒物質を除去する被毒物質除去装置を備えることによって、前記脱硝触媒を再生した際に離脱した被毒物質を前記被毒物質除去装置により回収及び除去することができる。   Further, by providing a poisoning substance removing device that removes a poisoning substance of the denitration catalyst on the downstream side of the denitration catalyst in the path, the poisoning substance released when the denitration catalyst is regenerated is removed by the poisoning substance. It can be recovered and removed by a removal device.

また、前記脱硝触媒の下流の前記窒素酸化物の濃度を計測する窒素酸化物濃度計測手段、前記脱硝触媒の下流の前記硫黄酸化物の濃度を計測する硫黄酸化物濃度計測手段、及び前記脱硝触媒の前後の前記排気ガスの差圧を計測する差圧計測手段の少なくとも1つを備え、備えられた計測手段による計測結果の少なくとも1つに基づいて前記脱硝触媒の運転と再生を切り替えることによって、前記計測結果に基づいて前記脱硝触媒の劣化状況に応じて運転と再生を切り替えることができる。   Also, a nitrogen oxide concentration measuring means for measuring the concentration of the nitrogen oxide downstream of the denitration catalyst, a sulfur oxide concentration measuring means for measuring the concentration of the sulfur oxide downstream of the denitration catalyst, and the denitration catalyst Comprising at least one of differential pressure measuring means for measuring the differential pressure of the exhaust gas before and after, and switching between operation and regeneration of the denitration catalyst based on at least one of measurement results by the provided measuring means, Based on the measurement result, operation and regeneration can be switched according to the deterioration state of the denitration catalyst.

本発明の実施の形態における脱硝脱硫装置の構成を示す図である。It is a figure which shows the structure of the denitration desulfurization apparatus in embodiment of this invention. 本発明の実施の形態における被毒物質除去手段を示す図である。It is a figure which shows the poisoning substance removal means in embodiment of this invention. 本発明の実施の形態における脱硝脱硫装置の構成を示す図である。It is a figure which shows the structure of the denitration desulfurization apparatus in embodiment of this invention. 本発明の実施の形態における脱硝触媒の構成を示す図である。It is a figure which shows the structure of the denitration catalyst in embodiment of this invention. 本発明の実施の形態における脱硝脱硫装置の構成を示す図である。It is a figure which shows the structure of the denitration desulfurization apparatus in embodiment of this invention. 本発明の実施の形態における脱硝脱硫装置の構成を示す図である。It is a figure which shows the structure of the denitration desulfurization apparatus in embodiment of this invention. 本発明の実施の形態における脱硝触媒の経時的な性能劣化を示す図である。It is a figure which shows the performance deterioration with time of the denitration catalyst in embodiment of this invention.

本発明の実施の形態における脱硝脱硫装置100は、図1に示すように、脱硝触媒10(10a,10b)、還元剤供給手段12、空気供給手段14、ヒータ16及び被毒物質除去手段18を含んで構成される。   As shown in FIG. 1, a denitration desulfurization apparatus 100 according to an embodiment of the present invention includes a denitration catalyst 10 (10a, 10b), a reducing agent supply means 12, an air supply means 14, a heater 16, and a poisonous substance removal means 18. Consists of including.

脱硝脱硫装置100は、重油を燃焼させる内燃機関102から排出される排気ガスの流路に配置され、排気ガスに含まれる窒素酸化物(NOx)及び硫黄酸化物(SOx)を除去する。内燃機関102には、排気ガスのエネルギーを用いて内燃機関102に空気を供給するための過給機104が設けられ、過給機104の下流側の経路に脱硝脱硫装置100が設けられる。   The denitration desulfurization apparatus 100 is disposed in a flow path of exhaust gas discharged from the internal combustion engine 102 that burns heavy oil, and removes nitrogen oxide (NOx) and sulfur oxide (SOx) contained in the exhaust gas. The internal combustion engine 102 is provided with a supercharger 104 for supplying air to the internal combustion engine 102 using the energy of the exhaust gas, and a denitration desulfurization device 100 is provided in a downstream path of the supercharger 104.

脱硝触媒10は、選択触媒還元装置(SCR)における触媒である。脱硝触媒10は、内燃機関102から排出された排気ガスに含まれる窒素酸化物(NOx)を除去する。脱硝触媒10は、チタン・バナジウム系の触媒とすることが好適である。例えば、脱硝触媒10は、バナジウム(V)、モリブデン(Mo)又はタングステン(W)を活性成分にした酸化チタンTiO系触媒が使用される。脱硝触媒10に還元剤となるアンモニアを供給することによって窒素酸化物(NOx)と反応させ、化学式(1)のように、水と窒素に分解する。また、排気ガスの流路に尿素を噴射し、化学式(2)のように尿素を分解することによってアンモニアを触媒へ供給する方法が採られている。 The denitration catalyst 10 is a catalyst in a selective catalyst reduction device (SCR). The denitration catalyst 10 removes nitrogen oxides (NOx) contained in the exhaust gas discharged from the internal combustion engine 102. The denitration catalyst 10 is preferably a titanium / vanadium catalyst. For example, the denitration catalyst 10 is a titanium oxide TiO 2 -based catalyst containing vanadium (V), molybdenum (Mo), or tungsten (W) as an active component. By supplying ammonia as a reducing agent to the denitration catalyst 10, it is reacted with nitrogen oxides (NOx), and decomposed into water and nitrogen as in chemical formula (1). Also, a method is adopted in which urea is injected into the exhaust gas flow path and ammonia is supplied to the catalyst by decomposing urea as in chemical formula (2).

<化学式(1)>
4NO+4NH+O→4N+6H
6NO+8NH→7N+12H
<Chemical formula (1)>
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O

<化学式(2)>
(NHCO+HO→2NH+CO
<Chemical formula (2)>
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2

脱硝触媒10は、排気ガスの経路に接続された筐体内に充填される。脱硝触媒10をチタン・バナジウム系の触媒とした場合、その反応面積を広くするために平板や触媒の細管であるセルを複数束ねた構造とすることが好ましい。脱硝触媒10は、例えば、ハニカム構造とすることが好適である。   The denitration catalyst 10 is filled in a casing connected to the exhaust gas path. When the denitration catalyst 10 is a titanium / vanadium catalyst, it is preferable to have a structure in which a plurality of cells, which are flat plates or thin tubes of catalyst, are bundled in order to increase the reaction area. For example, the denitration catalyst 10 preferably has a honeycomb structure.

還元剤供給手段12は、尿素タンク、ポンプ、尿素バルブ、コンプレッサ及び空気バルブを含んで構成することができる。還元剤供給手段12は、噴射ノズルを介して尿素(尿素水)と空気とを脱硝触媒10より上流の経路へ供給するために設けられる。例えば、尿素(尿素水((NHCO+HO))を還元剤として排気経路内へ噴射し、化学式(2)で表される分解反応により生ずるアンモニアを脱硝触媒10の表面に供給する構成とすることが好適である。ただし、還元剤は尿素(尿素水)に限定されるものではなく、例えば、アンモニアを直接用いてもよい。 The reducing agent supply means 12 can include a urea tank, a pump, a urea valve, a compressor, and an air valve. The reducing agent supply means 12 is provided to supply urea (urea water) and air to the upstream path from the denitration catalyst 10 via the injection nozzle. For example, urea (urea water ((NH 2 ) 2 CO + H 2 O)) is injected into the exhaust passage as a reducing agent, and ammonia generated by the decomposition reaction represented by the chemical formula (2) is supplied to the surface of the denitration catalyst 10. A configuration is preferable. However, the reducing agent is not limited to urea (urea water), and for example, ammonia may be used directly.

ところで、内燃機関102から排出される排気ガス中に二酸化硫黄(SO)等の硫黄酸化物(SOx)が含まれている重油の場合、化学式(3),(4)に示すように、還元剤供給手段12から供給される還元剤との反応により酸性硫安(硫酸水素アンモニウム)等の被毒物質が生成される。 By the way, in the case of heavy oil containing sulfur oxides (SOx) such as sulfur dioxide (SO 2 ) in the exhaust gas discharged from the internal combustion engine 102, as shown in chemical formulas (3) and (4), reduction A poisoning substance such as acidic ammonium sulfate (ammonium hydrogen sulfate) is generated by the reaction with the reducing agent supplied from the agent supply means 12.

<化学式(3)>
SO+(1/2)O→SO
<Chemical formula (3)>
SO 2 + (1/2) O 2 → SO 3

<化学式(4)>
NH+SO+HO←→NHHSO
<Chemical formula (4)>
NH 3 + SO 3 + H 2 O ← → NH 4 HSO 4

脱硝脱硫装置100では、生成された酸性硫安等の被毒物質を脱硝触媒10に吸着させて回収し、内燃機関102から排出される排気ガスから硫黄酸化物(SOx)を除去する。すなわち、被毒物質の吸着(一次被毒)を積極的に硫黄酸化物(SOx)の除去に利用し、脱硝触媒10において窒素酸化物(NOx)の除去と同時に硫黄酸化物(SOx)を除去する。   In the denitration desulfurization apparatus 100, the produced poisonous substance such as acidic ammonium sulfate is adsorbed and recovered by the denitration catalyst 10, and sulfur oxide (SOx) is removed from the exhaust gas discharged from the internal combustion engine 102. That is, adsorption of poisoning substances (primary poisoning) is actively used for removing sulfur oxides (SOx), and in the denitration catalyst 10, nitrogen oxides (NOx) and sulfur oxides (SOx) are removed at the same time. To do.

ここで、排気ガスから硫黄酸化物(SOx)を十分に除去するためには、脱硝触媒10を通過する排気ガス量に対して十分な体積の脱硝触媒10を設けることが必要である。そこで、脱硝触媒10を通過する排気ガス量を脱硝触媒10の体積で除した空間速度を2700h−1以下、より好ましくは1350h−1以下とすることが好適である。このような条件を満たす脱硝触媒10を適用することによって、排気ガスに含まれる硫黄酸化物(SOx)を十分に除去することができる。特に、硫黄成分が0.1%以上、さらに0.5%以上の重油を燃焼させたときの排気ガスから硫黄酸化物(SOx)を除去することができる。一方、現実的に実装できる体積を考慮すると、脱硝触媒10を通過する排気ガス量を脱硝触媒10の体積で除した空間速度を500h−1以上、より好ましくは1000h−1以上とすることが好適である。 Here, in order to sufficiently remove sulfur oxide (SOx) from the exhaust gas, it is necessary to provide the denitration catalyst 10 having a sufficient volume with respect to the amount of exhaust gas passing through the denitration catalyst 10. Therefore, a space velocity obtained by dividing the amount of exhaust gas that passes through the denitration catalyst 10 by volume of the denitration catalyst 10 2700H -1 or less, more preferably preferably set to 1350H -1 or less. By applying the denitration catalyst 10 that satisfies such conditions, sulfur oxide (SOx) contained in the exhaust gas can be sufficiently removed. In particular, it is possible to remove sulfur oxide (SOx) from exhaust gas when burning heavy oil having a sulfur component of 0.1% or more, and further 0.5% or more. On the other hand, considering the volume that can be realistically implemented, the space velocity obtained by dividing the amount of exhaust gas that passes through the denitration catalyst 10 by volume of the denitration catalyst 10 500h -1 or more, more preferably preferably set to 1000h -1 or It is.

なお、脱硝脱硫装置100を陸舶産業用内燃機関に用いた場合は、自動車用等とは異なり周囲スペースが大きくとれるため、脱硝触媒10の体積を大きくして空間速度を500h−1以上2700h−1以下の範囲とすることが容易にできる。また、後述する第1の状態と第2の状態の切り替えの頻度を減らすために空間速度を1350h−1以下とすることが好適であり、例えば舶用にあっては船体や甲板に支障なく収納する上で500h−1以上、より好ましくは1000h−1以上とすることが好適である。 When the denitration desulfurization apparatus 100 is used for an internal combustion engine for the land and marine industry, the surrounding space can be increased unlike an automobile or the like. Therefore, the volume of the denitration catalyst 10 is increased and the space velocity is 500 h −1 or more and 2700 h A range of 1 or less can be easily achieved. Further, in order to reduce the frequency of switching between a first state and a second state, which will be described later, it is preferable to set the space velocity to 1350h −1 or less. For example, in the case of marine vessels, the space velocity can be stored without hindrance. above in 500h -1 or more, more preferably preferably set to 1000h -1 or more.

このように窒素酸化物(NOx)及び硫黄酸化物(SOx)が除去されるが、脱硝触媒10に吸着した被毒物質を除去して脱硝触媒10を再生するために空気供給手段14、ヒータ16及び被毒物質除去手段18が設けられる。   Thus, nitrogen oxide (NOx) and sulfur oxide (SOx) are removed. In order to regenerate the denitration catalyst 10 by removing poisoning substances adsorbed on the denitration catalyst 10, the air supply means 14 and the heater 16 are used. And poisoning substance removing means 18 are provided.

空気供給手段14は、コンプレッサ等の空気供給装置を備え、脱硝触媒10に対して空気を供給する。ヒータ16は、空気供給手段14により供給される空気を脱硝触媒10の再生温度以上に加熱して脱硝触媒10に供給する。具体的には、ヒータ16は、空気を350℃以上に加熱できることが好適である。なお、本実施の形態では、脱硝触媒10の再生のために空気を供給するものとしたが、他の気体を供給する構成としてもよい。このように再生温度以上に加熱された空気を脱硝触媒10に供給することによって、脱硝触媒10に吸着している被毒物質を気化させて脱硝触媒10から脱離させることができる。   The air supply means 14 includes an air supply device such as a compressor, and supplies air to the denitration catalyst 10. The heater 16 heats the air supplied by the air supply means 14 to a temperature equal to or higher than the regeneration temperature of the denitration catalyst 10 and supplies it to the denitration catalyst 10. Specifically, the heater 16 is preferably capable of heating air to 350 ° C. or higher. In the present embodiment, air is supplied for the regeneration of the denitration catalyst 10, but another gas may be supplied. By supplying air heated to the regeneration temperature or higher to the denitration catalyst 10 in this way, poisonous substances adsorbed on the denitration catalyst 10 can be vaporized and desorbed from the denitration catalyst 10.

被毒物質除去手段18は、脱硝触媒10から脱離した被毒物質を再吸着させて回収する手段である。被毒物質除去手段18は、例えば、図2に示すように、中空の楔状部材18a、楔状部材18aが差し込まれる切り欠きが設けられた掻き落とし板18b及び楔状部材18aが差し込まれた壁面18cを組み合わせて構成することができる。楔状部材18aには、海水等の冷却液を循環させ、楔状部材18aの表面に脱硝触媒10から気化して脱離した被毒物質ガスが触れることにより凝固して吸着する。その後、楔状部材18aの表面に押し付けられる方向(図2(b)の正面図下向き)に掻き落とし板18bを付勢し、掻き落とし板18bに対して楔状部材18aを引き抜くことによって、楔状部材18aの表面に付着した被毒物質を掻き落とし板18bによって掻き落として被毒物質保管タンク等に回収する。   The poisoning substance removing unit 18 is a unit for resorbing and collecting the poisoning substance desorbed from the denitration catalyst 10. For example, as shown in FIG. 2, the poisoning substance removing means 18 includes a hollow wedge-shaped member 18a, a scraping plate 18b provided with a notch into which the wedge-shaped member 18a is inserted, and a wall surface 18c into which the wedge-shaped member 18a is inserted. They can be combined. A cooling liquid such as seawater is circulated through the wedge-shaped member 18a, and the poisonous substance gas evaporated and desorbed from the denitration catalyst 10 contacts the surface of the wedge-shaped member 18a to be solidified and adsorbed. Thereafter, the scraping plate 18b is urged in a direction in which it is pressed against the surface of the wedge-shaped member 18a (downward in the front view of FIG. 2B), and the wedge-shaped member 18a is pulled out of the scraping plate 18b, whereby the wedge-shaped member 18a The poisoning substance adhering to the surface is scraped off by the scraping plate 18b and collected in a poisoning substance storage tank or the like.

なお、脱硝脱硫装置100では、2つの脱硝触媒10a,10bを並列に設けることによって、一方において脱硝処理及び脱硫処理の運転を行っている間に他方を再生できる構成とすることが好適である。   In addition, it is preferable that the denitration desulfurization apparatus 100 has a configuration in which two denitration catalysts 10a and 10b are provided in parallel so that the other can be regenerated while the denitration process and the desulfurization process are performed.

本実施の形態では、切替弁20a〜20eを設け、脱硝触媒10aにおいて内燃機関102からの排気ガスの脱硝及び脱硫の処理が行われ、脱硝触媒10bにおいて再生処理が行われる第1の状態と、脱硝触媒10bにおいて内燃機関102からの排気ガスの脱硝及び脱硫の処理が行われ、脱硝触媒10aにおいて再生処理が行われる第2の状態と、を切り替える構成としている。   In the present embodiment, switching valves 20a to 20e are provided, a denitration catalyst 10a performs a denitration and desulfurization process of exhaust gas from the internal combustion engine 102, and a denitration catalyst 10b performs a regeneration process; The denitration catalyst 10b is configured to switch between a second state in which denitration and desulfurization processing of exhaust gas from the internal combustion engine 102 is performed and regeneration processing is performed in the denitration catalyst 10a.

第1の状態では、内燃機関102からの排気ガスが脱硝触媒10aに流入し、脱硝触媒10bには流入しないように切替弁20aを切り替える。また、空気供給手段14から供給される気体が脱硝触媒10bに流入し、脱硝触媒10aには流入しないように切替弁20bを切り替える。また、脱硝触媒10aに流入する排気ガスに還元剤が噴射され、脱硝触媒10bに流入する気体には還元剤が噴射されないように切替弁20cを切り替える。また、脱硝触媒10bから排出される気体が被毒物質除去手段18に流入し、脱硝触媒10aから排出される排気ガスが被毒物質除去手段18に流入しないように切替弁20dを切り替える。また、脱硝触媒10aから排出される排気ガスが煙突に流入し、脱硝触媒10bから排出される気体が煙突に流入しないように切替弁20eを切り替える。   In the first state, the switching valve 20a is switched so that the exhaust gas from the internal combustion engine 102 flows into the denitration catalyst 10a and does not flow into the denitration catalyst 10b. Further, the switching valve 20b is switched so that the gas supplied from the air supply means 14 flows into the denitration catalyst 10b and does not flow into the denitration catalyst 10a. Further, the switching valve 20c is switched so that the reducing agent is injected into the exhaust gas flowing into the denitration catalyst 10a and the reducing agent is not injected into the gas flowing into the denitration catalyst 10b. Further, the switching valve 20d is switched so that the gas discharged from the denitration catalyst 10b flows into the poisoning substance removing unit 18 and the exhaust gas discharged from the denitration catalyst 10a does not flow into the poisoning substance removing unit 18. Further, the switching valve 20e is switched so that the exhaust gas discharged from the denitration catalyst 10a flows into the chimney and the gas discharged from the denitration catalyst 10b does not flow into the chimney.

第2の状態では、切替弁20a〜20eを逆の状態となるように切り替える。また、第1の状態と第2の状態の切り替えに当っては、内燃機関102からの排気ガスが滞らないように、運転に支障がないように切替弁20a〜20eを連携して切り替える。   In the second state, the switching valves 20a to 20e are switched so as to be in the opposite state. Further, when switching between the first state and the second state, the switching valves 20a to 20e are switched in cooperation so that the exhaust gas from the internal combustion engine 102 does not stagnate so as not to hinder the operation.

このような構成を採用することによって、一方の脱硝触媒を再生しつつ、他方の脱硝触媒により排気ガスの処理を行うことができる。したがって、排気ガスからの窒素酸化物(NOx)及び硫黄酸化物(SOx)の除去を中断することなく、連続的に行うことが可能となる。   By adopting such a configuration, it is possible to treat the exhaust gas with the other denitration catalyst while regenerating one denitration catalyst. Therefore, the removal of nitrogen oxides (NOx) and sulfur oxides (SOx) from the exhaust gas can be performed continuously without interruption.

なお、脱硝触媒10において化学式(4)において酸性硫安が析出するためには、脱硝触媒10を通過する際の排気ガスの温度を150℃以上280℃以下、より好ましくは200℃以上250℃以下とすることが好適である。すなわち、酸露点の観点から排気ガスの温度範囲の下限は150℃以上、より好ましくは200℃以上とすることが好適である。また、脱硝触媒10に酸性硫安を効率的に吸着させるという観点から排気ガスの温度範囲の上限は280℃以下、より好ましくは250℃以下とすることが好適である。   In order to deposit acidic ammonium sulfate in chemical formula (4) in the denitration catalyst 10, the temperature of the exhaust gas when passing through the denitration catalyst 10 is 150 ° C. or higher and 280 ° C. or lower, more preferably 200 ° C. or higher and 250 ° C. or lower. It is preferable to do. That is, from the viewpoint of the acid dew point, the lower limit of the exhaust gas temperature range is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. Further, from the viewpoint of efficiently adsorbing acidic ammonium sulfate on the denitration catalyst 10, the upper limit of the exhaust gas temperature range is preferably 280 ° C. or less, more preferably 250 ° C. or less.

ここで、内燃機関102が2ストロークディーゼルエンジンである場合、過給機104を通過した後の排気ガスの温度は一般的に200℃以上280℃以下となる。したがって、この場合には、過給機104を介して内燃機関102から排出された排気ガスを脱硝脱硫装置100へ直接導入すればよい。   Here, when the internal combustion engine 102 is a two-stroke diesel engine, the temperature of the exhaust gas after passing through the supercharger 104 is generally 200 ° C. or higher and 280 ° C. or lower. Therefore, in this case, the exhaust gas discharged from the internal combustion engine 102 via the supercharger 104 may be directly introduced into the denitration desulfurization apparatus 100.

一方、内燃機関102が4ストロークディーゼルエンジンである場合、過給機104を通過した後の排気ガスの温度は一般的に300℃以上450℃以下となる。この場合、図3に示すように、過給機104から脱硝触媒10との間の経路に排気ガス温度変更手段106を設けることが好適である。排気ガス温度変更手段106は、例えば、排気ガスから熱を回収する熱交換器(排熱回収装置)等とすることが好適である。排気ガス温度変更手段106を介して排気ガスの熱を回収することにより排気ガスの温度を150℃以上280℃以下に低下させ、その後、脱硝触媒10に導入するようにすればよい。   On the other hand, when the internal combustion engine 102 is a four-stroke diesel engine, the temperature of the exhaust gas after passing through the supercharger 104 is generally 300 ° C. or higher and 450 ° C. or lower. In this case, as shown in FIG. 3, it is preferable to provide an exhaust gas temperature changing means 106 in a path between the supercharger 104 and the denitration catalyst 10. The exhaust gas temperature changing means 106 is preferably a heat exchanger (exhaust heat recovery device) that recovers heat from the exhaust gas, for example. The temperature of the exhaust gas may be lowered to 150 ° C. or higher and 280 ° C. or lower by recovering the heat of the exhaust gas via the exhaust gas temperature changing means 106 and then introduced into the denitration catalyst 10.

また、脱硝触媒10においてさらにスート(煤)を除去するように構成してもよい。図4の模式図に示すように、脱硝触媒10は、複数の筒状のセル22を縦・横に並べて組み合わせて構成される。そこで、筒状のセル22をフィルタとして利用することにより排気ガスからスート(煤)を除去する。   Further, the denitration catalyst 10 may be configured to further remove soot. As shown in the schematic diagram of FIG. 4, the denitration catalyst 10 is configured by combining a plurality of cylindrical cells 22 arranged vertically and horizontally. Therefore, soot (soot) is removed from the exhaust gas by using the cylindrical cell 22 as a filter.

このとき、図4に示すように、脱硝触媒10の各々を複数段に分割し、少なくとも1つの段の単位断面積あたりのセルの数が他の段の単位断面積あたりのセルの数を異ならせることが好適である。例えば、脱硝触媒10を2段に分割し、前段の単位断面積あたりのセル22aの数を後段の単位断面積あたりのセル22bの数より多くする。このような構成では、前段においてスート(煤)を積極的に除去し、後段がスート(煤)によって詰まり難くなる。このため後段で脱硝や脱硫を効率的に行うことが可能となる。また、逆に、前段の単位断面積あたりのセルの数を後段の単位断面積あたりのセルの数より少なくしてもよい。このような構成では、前段において大きなスート(煤)を除去し、後段においてはより小さなスート(煤)を除去し、各段において均等にスート(煤)を除去することができる。このため前段でのスート(煤)の付着による詰まりが減少され、脱硝触媒10による排気ガスの圧力損失が減少される。   At this time, as shown in FIG. 4, each of the denitration catalysts 10 is divided into a plurality of stages, and the number of cells per unit cross-sectional area of at least one stage differs from the number of cells per unit cross-sectional area of other stages. Is preferable. For example, the denitration catalyst 10 is divided into two stages, and the number of cells 22a per unit cross-sectional area in the front stage is made larger than the number of cells 22b per unit cross-sectional area in the rear stage. In such a configuration, soot is removed positively at the front stage, and the rear stage is less likely to be clogged with soot. For this reason, it becomes possible to perform denitration and desulfurization efficiently in the latter stage. Conversely, the number of cells per unit cross-sectional area in the previous stage may be smaller than the number of cells per unit cross-sectional area in the rear stage. In such a configuration, it is possible to remove a large soot at the front stage, a smaller soot at the rear stage, and evenly remove the soot at each stage. For this reason, clogging due to adhesion of soot (soot) in the previous stage is reduced, and the pressure loss of the exhaust gas due to the denitration catalyst 10 is reduced.

また、排気ガス温度変更手段106を設けている場合、脱硝触媒10によって排気ガスを処理する際に、運転初期には排気ガスの温度を150℃以上225℃未満に変更し、その後、排気ガスの温度を225℃以上280℃以下に変更することが好適である。これによって、運転初期に脱硝触媒10に酸性硫安が吸着し易くなり、この吸着した酸性硫安がバインダの役割を果たしてスート(煤)を捕捉し易くなる。スート(煤)を捕捉し易くなった後、通常の温度範囲にすることによって酸性硫安とスートの両方を安定して捕捉することができる。   Further, when the exhaust gas temperature changing means 106 is provided, when the exhaust gas is processed by the NOx removal catalyst 10, the temperature of the exhaust gas is changed to 150 ° C. or higher and lower than 225 ° C. at the initial stage of operation, and then the exhaust gas temperature is changed. It is preferable to change the temperature to 225 ° C. or higher and 280 ° C. or lower. As a result, acidic ammonium sulfate is easily adsorbed to the denitration catalyst 10 in the initial stage of operation, and the adsorbed acidic ammonium sulfate serves as a binder and easily captures soot. After soot (soot) can be easily captured, both acidic ammonium sulfate and soot can be stably captured by setting the temperature within a normal temperature range.

脱硝触媒10によりスート(煤)を除去する場合、図5に示すように、スートブローのための空気供給手段30及びスート保管タンク32を設けることが好適である。空気供給手段30は、脱硝触媒10(10a,10b)にスート(煤)をブローするための空気を供給する。空気供給手段30は、脱硝触媒10の下流側から上流側に向けて空気を吹き付ける構成とすることが好適である。スート保管タンク32は、空気供給手段30によって脱硝触媒10から取り除かれたスート(煤)を回収して保管する。   When soot (soot) is removed by the denitration catalyst 10, it is preferable to provide an air supply means 30 for soot blow and a soot storage tank 32 as shown in FIG. The air supply means 30 supplies air for blowing soot (soot) to the denitration catalyst 10 (10a, 10b). The air supply means 30 is preferably configured to blow air from the downstream side to the upstream side of the denitration catalyst 10. The soot storage tank 32 collects and stores the soot removed from the denitration catalyst 10 by the air supply means 30.

図5の構成では、脱硝触媒10a,10bのうち再生の対象となる触媒に対してスートブローを施すために切替弁20fを設けている。スートブローは、脱硝触媒10a又は脱硝触媒10bの再生処理前に行うことが好適である。   In the configuration of FIG. 5, a switching valve 20f is provided to soot blow the catalyst to be regenerated among the denitration catalysts 10a and 10b. The soot blow is preferably performed before the regeneration treatment of the denitration catalyst 10a or the denitration catalyst 10b.

なお、脱硝触媒10の運転と再生の切り替えは、処理後の排気ガスの特性や脱硝脱硫装置100の状態に応じて行うことが好適である。具体的には、図6に示すように、脱硝触媒10の下流の排気ガス中の窒素酸化物(NOx)の濃度を計測する窒素酸化物濃度計測センサ40、脱硝触媒10の下流の排気ガス中の硫黄酸化物(SOx)の濃度を計測する硫黄酸化物濃度計測センサ42、及び脱硝触媒10の前後の排気ガスの差圧を計測する差圧計測センサ44の少なくとも1つを設け、これらの計測手段によって計測された結果の少なくとも1つに基づいて脱硝触媒10の運転と再生を切り替えることが好適である。   Note that switching between operation and regeneration of the denitration catalyst 10 is preferably performed in accordance with the characteristics of the exhaust gas after treatment and the state of the denitration desulfurization apparatus 100. Specifically, as shown in FIG. 6, a nitrogen oxide concentration measurement sensor 40 that measures the concentration of nitrogen oxide (NOx) in the exhaust gas downstream of the denitration catalyst 10, and in the exhaust gas downstream of the denitration catalyst 10. At least one of a sulfur oxide concentration measurement sensor 42 that measures the concentration of sulfur oxide (SOx) of the exhaust gas and a differential pressure measurement sensor 44 that measures the differential pressure of exhaust gas before and after the denitration catalyst 10 is provided. It is preferable to switch operation and regeneration of the denitration catalyst 10 based on at least one of the results measured by the means.

例えば、窒素酸化物濃度計測センサ40によって計測される排気ガス中の窒素酸化物(NOx)の濃度が所定の基準値を超えた場合には、現在処理に使用している脱硝触媒10が劣化しているものとして再生処理を施す。図6のように脱硝触媒10を複数備えている場合には、排気ガスの処理に使用している脱硝触媒10を再生に切り替え、再生している脱硝触媒10を排気ガスの処理に切り替える。   For example, when the concentration of nitrogen oxide (NOx) in the exhaust gas measured by the nitrogen oxide concentration measurement sensor 40 exceeds a predetermined reference value, the denitration catalyst 10 currently used for the processing deteriorates. As a result, the reproduction process is performed. When a plurality of denitration catalysts 10 are provided as shown in FIG. 6, the denitration catalyst 10 used for exhaust gas treatment is switched to regeneration, and the regenerated denitration catalyst 10 is switched to exhaust gas treatment.

また、例えば、硫黄酸化物濃度計測センサ42によって計測される排気ガス中の硫黄酸化物(SOx)の濃度が所定の基準値を超えた場合には、現在処理に使用している脱硝触媒10が劣化しているものとして再生処理を施す。図6のように脱硝触媒10を複数備えている場合には、排気ガスの処理に使用している脱硝触媒10を再生に切り替え、再生している脱硝触媒10を排気ガスの処理に切り替える。   Further, for example, when the concentration of sulfur oxide (SOx) in the exhaust gas measured by the sulfur oxide concentration measuring sensor 42 exceeds a predetermined reference value, the denitration catalyst 10 currently used for the processing is used. Reproduction processing is performed on the assumption that it has deteriorated. When a plurality of denitration catalysts 10 are provided as shown in FIG. 6, the denitration catalyst 10 used for exhaust gas treatment is switched to regeneration, and the regenerated denitration catalyst 10 is switched to exhaust gas treatment.

また、例えば、差圧計測センサ44によって計測される現在排気ガスの処理に使用されている脱硝触媒10の差圧が所定の基準値を超えた場合には、現在処理に使用している脱硝触媒10が劣化しているものとして再生処理を施す。図6のように脱硝触媒10を複数備えている場合には、排気ガスの処理に使用している脱硝触媒10を再生に切り替え、再生している脱硝触媒10を排気ガスの処理に切り替える。   Further, for example, when the differential pressure of the denitration catalyst 10 currently used for processing the exhaust gas measured by the differential pressure measurement sensor 44 exceeds a predetermined reference value, the denitration catalyst currently used for the processing. Reproduction processing is performed on the assumption that 10 has deteriorated. When a plurality of denitration catalysts 10 are provided as shown in FIG. 6, the denitration catalyst 10 used for exhaust gas treatment is switched to regeneration, and the regenerated denitration catalyst 10 is switched to exhaust gas treatment.

このとき、図7に示すように、一般的な脱硝触媒10では排気ガスの処理に使用する時間に対して脱硝性能、脱硫性能及び差圧維持性能の順に劣化が進行するので、窒素酸化物濃度計測センサ40、硫黄酸化物濃度計測センサ42及び差圧計測センサ44の計測結果の優先順位で脱硝触媒10の劣化を検出するようにすればよい。また、窒素酸化物濃度計測センサ40、硫黄酸化物濃度計測センサ42及び差圧計測センサ44は、そのうち少なくとも1つを設けて、設けられたセンサの計測結果に基づいて脱硝触媒10の劣化を検出できればよい。また、窒素酸化物濃度計測センサ40、硫黄酸化物濃度計測センサ42及び差圧計測センサ44によって計測される計測結果を適宜組み合わせて脱硝触媒10の劣化を検出してもよい。   At this time, as shown in FIG. 7, in the general denitration catalyst 10, the deterioration proceeds in the order of the denitration performance, the desulfurization performance, and the differential pressure maintenance performance with respect to the time used for the treatment of the exhaust gas. The deterioration of the denitration catalyst 10 may be detected based on the priority order of the measurement results of the measurement sensor 40, the sulfur oxide concentration measurement sensor 42, and the differential pressure measurement sensor 44. Further, at least one of the nitrogen oxide concentration measurement sensor 40, the sulfur oxide concentration measurement sensor 42, and the differential pressure measurement sensor 44 is provided, and the deterioration of the denitration catalyst 10 is detected based on the measurement result of the provided sensor. I can do it. Further, the deterioration of the denitration catalyst 10 may be detected by appropriately combining the measurement results measured by the nitrogen oxide concentration measurement sensor 40, the sulfur oxide concentration measurement sensor 42, and the differential pressure measurement sensor 44.

本発明は、ディーゼルエンジンを含む様々な重油を燃焼させる内燃機関の脱硝及び脱硫の処理に適用することができる。すなわち、本発明の脱硝脱硫装置を搭載した陸舶産業用内燃機関とすることができる。   The present invention can be applied to the denitration and desulfurization treatment of internal combustion engines that burn various heavy oils including diesel engines. That is, an internal combustion engine for the land and marine industry equipped with the denitration desulfurization apparatus of the present invention can be obtained.

10(10a,10b) 脱硝触媒、12 還元剤供給手段、14 空気供給手段、16 ヒータ、18 被毒物質除去手段、18a 楔状部材、18b 掻き落とし板、20a〜20f 切替弁、22(22a,22b) セル、30 空気供給手段、32 スート保管タンク、40 窒素酸化物濃度計測センサ、42 硫黄酸化物濃度計測センサ、44 差圧計測センサ、100 脱硝脱硫装置、102 内燃機関、104 過給機、106 排気ガス温度変更手段。   10 (10a, 10b) Denitration catalyst, 12 Reducing agent supply means, 14 Air supply means, 16 Heater, 18 Toxic substance removal means, 18a Wedge member, 18b Scraping plate, 20a to 20f Switching valve, 22 (22a, 22b) ) Cell, 30 air supply means, 32 soot storage tank, 40 nitrogen oxide concentration measurement sensor, 42 sulfur oxide concentration measurement sensor, 44 differential pressure measurement sensor, 100 denitration desulfurization apparatus, 102 internal combustion engine, 104 supercharger, 106 Exhaust gas temperature changing means.

Claims (10)

重油を燃焼させる内燃機関の排気ガスの窒素酸化物と硫黄酸化物を同時に処理する脱硝脱硫装置であって、
前記排気ガスのエネルギーを用いて前記内燃機関に空気を供給する過給機と、
前記窒素酸化物を処理するための還元剤を注入する還元剤供給手段と、
前記窒素酸化物と前記還元剤とを反応させる脱硝触媒を備え、
前記脱硝触媒は、前記過給機より下流側の経路に配置され、
前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲とすると共に、前記脱硝触媒を通過する前記排気ガスの量を前記脱硝触媒の体積で除した空間速度を500h−1以上2700h−1以下の範囲とした条件下で、前記排気ガスを脱硝すると同時に前記硫黄酸化物と前記還元剤の反応で生じる酸性硫安を前記脱硝触媒に吸着させることを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus that simultaneously processes nitrogen oxides and sulfur oxides of exhaust gas of an internal combustion engine that burns heavy oil,
A supercharger for supplying air to the internal combustion engine using energy of the exhaust gas;
Reducing agent supply means for injecting a reducing agent for treating the nitrogen oxides;
A denitration catalyst for reacting the nitrogen oxides and the reducing agent;
The denitration catalyst is disposed in a path downstream from the supercharger,
The temperature of the exhaust gas passing through the denitration catalyst is set to a temperature range of 150 ° C. or more and 280 ° C. or less, and the space velocity obtained by dividing the amount of the exhaust gas passing through the denitration catalyst by the volume of the denitration catalyst is 500 h −. A denitration desulfurization apparatus, wherein the exhaust gas is denitrated under the condition of 1 or more and 2700 h- 1 or less, and at the same time, acidic ammonium sulfate produced by the reaction of the sulfur oxide and the reducing agent is adsorbed to the denitration catalyst. .
請求項1に記載の脱硝脱硫装置であって、
前記脱硝触媒を通過する前記排気ガスの温度を変更する排気ガス温度変更手段を備え、
前記脱硝触媒を通過する前記排気ガスの温度を150℃以上280℃以下の温度範囲に変更することを特徴とする脱硝脱硫装置。
The denitration desulfurization apparatus according to claim 1,
An exhaust gas temperature changing means for changing the temperature of the exhaust gas passing through the denitration catalyst,
A denitration desulfurization apparatus, wherein the temperature of the exhaust gas passing through the denitration catalyst is changed to a temperature range of 150 ° C or higher and 280 ° C or lower.
請求項2に記載の脱硝脱硫装置であって、
前記排気ガス温度変更手段は、運転初期に前記排気ガスの温度を150℃以上225℃未満の温度範囲に変更し、その後、前記排気ガスの温度を225℃以上280℃以下に変更することを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus according to claim 2,
The exhaust gas temperature changing means changes the temperature of the exhaust gas to a temperature range of 150 ° C. or higher and lower than 225 ° C. in the initial stage of operation, and then changes the temperature of the exhaust gas to 225 ° C. or higher and 280 ° C. or lower. Denitration desulfurization equipment.
請求項2又は3に記載の脱硝脱硫装置であって、
前記内燃機関は、4ストロークディーゼル機関であることを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus according to claim 2 or 3,
The denitration desulfurization apparatus, wherein the internal combustion engine is a four-stroke diesel engine.
請求項1〜3のいずれか1項に記載の脱硝脱硫装置であって、
前記内燃機関は、2ストロークディーゼル機関であることを特徴とする脱硝脱硫装置。
The denitration desulfurization apparatus according to any one of claims 1 to 3,
The denitration desulfurization apparatus, wherein the internal combustion engine is a two-stroke diesel engine.
請求項1〜5のいずれか1項に記載の脱硝脱硫装置であって、
前記脱硝触媒は、複数段に分割されて設けられ、
少なくとも1つの段の前記脱硝触媒の単位断面積あたりのセルの数が他の段の前記脱硝触媒の単位断面積あたりのセルの数と異なっていることを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus according to any one of claims 1 to 5,
The denitration catalyst is provided divided into a plurality of stages,
A denitration desulfurization apparatus, wherein the number of cells per unit cross-sectional area of the denitration catalyst of at least one stage is different from the number of cells per unit cross-sectional area of the denitration catalyst of another stage.
請求項1〜6のいずれか1項に記載の脱硝脱硫装置であって、
並列に配置された複数の前記脱硝触媒と、
それぞれの前記脱硝触媒を通る前記経路に前記脱硝触媒に流す気体を切り替える切替弁を備え、
前記切替弁を切り替えることにより、前記脱硝触媒の運転時は前記脱硝触媒に前記排気ガスを流し、前記脱硝触媒の再生時は前記脱硝触媒に再生温度以上の温度の高温気体を流し、前記内燃機関の運転中に複数の前記脱硝触媒の運転と再生を切り替えることを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus according to any one of claims 1 to 6,
A plurality of the denitration catalysts arranged in parallel;
A switching valve for switching a gas flowing through the denitration catalyst in the path passing through each of the denitration catalysts;
By switching the switching valve, the exhaust gas is caused to flow through the denitration catalyst during operation of the denitration catalyst, and a high-temperature gas having a temperature equal to or higher than the regeneration temperature is caused to flow through the denitration catalyst during regeneration. A denitration desulfurization apparatus that switches between the operation and regeneration of the plurality of denitration catalysts during the operation.
請求項7に記載の脱硝脱硫装置であって、
前記経路の前記脱硝触媒の下流側に前記脱硝触媒の被毒物質を除去する被毒物質除去装置を備えることを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus according to claim 7,
A denitration desulfurization apparatus comprising a poisoning substance removing device that removes a poisoning substance of the denitration catalyst on the downstream side of the denitration catalyst in the path.
請求項7又は8に記載の脱硝脱硫装置であって、
前記脱硝触媒の下流の前記窒素酸化物の濃度を計測する窒素酸化物濃度計測手段、前記脱硝触媒の下流の前記硫黄酸化物の濃度を計測する硫黄酸化物濃度計測手段、及び前記脱硝触媒の前後の前記排気ガスの差圧を計測する差圧計測手段の少なくとも1つを備え、備えられた計測手段による計測結果の少なくとも1つに基づいて前記脱硝触媒の運転と再生を切り替えることを特徴とする脱硝脱硫装置。
A denitration desulfurization apparatus according to claim 7 or 8,
Nitrogen oxide concentration measuring means for measuring the concentration of nitrogen oxide downstream of the denitration catalyst, sulfur oxide concentration measuring means for measuring the concentration of sulfur oxide downstream of the denitration catalyst, and before and after the denitration catalyst At least one of differential pressure measuring means for measuring the differential pressure of the exhaust gas, and switching between operation and regeneration of the denitration catalyst based on at least one of the measurement results by the provided measuring means. Denitration desulfurization equipment.
請求項1〜9のいずれか1項に記載の脱硝脱硫装置を陸舶産業用内燃機関に搭載したことを特徴とする脱硝脱硫装置を用いた陸舶産業用内燃機関。   An internal combustion engine for land and marine industries using the denitration desulfurization apparatus, wherein the denitration desulfurization apparatus according to any one of claims 1 to 9 is mounted on an internal combustion engine for land and marine industries.
JP2015123720A 2015-06-19 2015-06-19 Denitrification desulfurization apparatus and land and ship internal combustion engine using the same Active JP6655241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123720A JP6655241B2 (en) 2015-06-19 2015-06-19 Denitrification desulfurization apparatus and land and ship internal combustion engine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123720A JP6655241B2 (en) 2015-06-19 2015-06-19 Denitrification desulfurization apparatus and land and ship internal combustion engine using the same

Publications (2)

Publication Number Publication Date
JP2017008772A true JP2017008772A (en) 2017-01-12
JP6655241B2 JP6655241B2 (en) 2020-02-26

Family

ID=57763685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123720A Active JP6655241B2 (en) 2015-06-19 2015-06-19 Denitrification desulfurization apparatus and land and ship internal combustion engine using the same

Country Status (1)

Country Link
JP (1) JP6655241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537924A (en) * 2019-06-10 2022-08-31 ネムセドゥク カンパニー リミテッド Ship exhaust gas purification device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222005A (en) * 2008-03-18 2009-10-01 Mitsubishi Heavy Ind Ltd Low-temperature denitration device
JP3154287U (en) * 2008-09-26 2009-10-15 冠志 盧 Catalytic converter
JP2011032953A (en) * 2009-08-04 2011-02-17 Ne Chemcat Corp Exhaust emission control device for ship and method for exhaust emission control
JP2012036881A (en) * 2010-08-11 2012-02-23 National Maritime Research Institute Nox removal apparatus for internal combustion engine, and marine vessel
JP2015066473A (en) * 2013-09-26 2015-04-13 株式会社日本触媒 Catalyst for treating marine exhaust gas and exhaust gas treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222005A (en) * 2008-03-18 2009-10-01 Mitsubishi Heavy Ind Ltd Low-temperature denitration device
JP3154287U (en) * 2008-09-26 2009-10-15 冠志 盧 Catalytic converter
JP2011032953A (en) * 2009-08-04 2011-02-17 Ne Chemcat Corp Exhaust emission control device for ship and method for exhaust emission control
JP2012036881A (en) * 2010-08-11 2012-02-23 National Maritime Research Institute Nox removal apparatus for internal combustion engine, and marine vessel
JP2015066473A (en) * 2013-09-26 2015-04-13 株式会社日本触媒 Catalyst for treating marine exhaust gas and exhaust gas treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537924A (en) * 2019-06-10 2022-08-31 ネムセドゥク カンパニー リミテッド Ship exhaust gas purification device and method
JP7216380B2 (en) 2019-06-10 2023-02-01 ネムセドゥク カンパニー リミテッド Ship exhaust gas purification device and method

Also Published As

Publication number Publication date
JP6655241B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6482634B2 (en) Method and system for removing particulate matter soot, ash and heavy metals from engine exhaust gas
CN101550859B (en) Apparatus for purifying exhaust gas
CN102301103B (en) Exhaust gas cleaning device
JP2011122593A (en) Method for treating pollutant contained in exhaust gas of internal combustion engine, and pollutant treatment system using the same
KR20110117323A (en) Diesel engine exhaust gas purification device having ammonia decomposition module
JP2011230120A (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
JP2014226622A (en) Carbon dioxide recovery system
KR101525302B1 (en) Selective catalytic reuction system and method of regenerating catalyst for selective catalytic reuction
US7235220B2 (en) Exhaust gas treatment method, exhaust gas treatment system, and catalytic oxidation apparatus
JP5033848B2 (en) Ship exhaust gas purification device and exhaust gas purification method
KR101487303B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Scrubber and Filter Part Having Ceramic Filter
CN108779695B (en) Method for optimizing the consumption of a reducing agent in an exhaust line of a motor vehicle
CN113356972A (en) Product for depolluting exhaust gases, in particular from internal combustion engines, and exhaust gas depolluting method using said product
JP6655241B2 (en) Denitrification desulfurization apparatus and land and ship internal combustion engine using the same
KR20140018938A (en) Exhaust gas purification method and device
KR101334528B1 (en) Selective catalytic reuction system for using filter belt
JP2018513298A (en) Method and system for removing particulate matter from engine exhaust or process equipment
KR102391330B1 (en) Apparatus for reducing air pollutant
US20130111877A1 (en) System and method for particulate filter regeneration
KR101487305B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Filter Part Having Ceramic Filter
KR101516251B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Filter Part Having Ceramic Filter
KR101505578B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas
KR101563698B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Cooling Part and Filter Part Having Ceramic Filter
KR101444172B1 (en) Toxic Substance Reduction System of Treating Exhaust Gas Having Plural Filter Part
KR20190050992A (en) Methods for reducing nitric oxide compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6655241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250