KR102391330B1 - Apparatus for reducing air pollutant - Google Patents

Apparatus for reducing air pollutant Download PDF

Info

Publication number
KR102391330B1
KR102391330B1 KR1020200082637A KR20200082637A KR102391330B1 KR 102391330 B1 KR102391330 B1 KR 102391330B1 KR 1020200082637 A KR1020200082637 A KR 1020200082637A KR 20200082637 A KR20200082637 A KR 20200082637A KR 102391330 B1 KR102391330 B1 KR 102391330B1
Authority
KR
South Korea
Prior art keywords
exhaust gas
carbon dioxide
reactor
exhaust
methane oxidation
Prior art date
Application number
KR1020200082637A
Other languages
Korean (ko)
Other versions
KR20220005663A (en
Inventor
이승재
최정인
하대승
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to KR1020200082637A priority Critical patent/KR102391330B1/en
Publication of KR20220005663A publication Critical patent/KR20220005663A/en
Application granted granted Critical
Publication of KR102391330B1 publication Critical patent/KR102391330B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명의 일 실시예에 의해 배기 오염물질 저감장치가 제공된다.
본 발명의 일 실시예에 따른 배기 오염물질 저감장치는, 액화천연가스를 연소하여 동력을 생성하는 연소기관에서 발생한 배기가스를 배출하는 배기관과, 배기관에 설치되며, 메탄산화촉매를 포함하여 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시키는 메탄산화촉매반응기와, 메탄산화촉매반응기 후단의 배기관에 설치되어 배기가스에 포함된 질소산화물을 저감시키는 선택적촉매환원반응기, 및 선택적촉매환원반응기 후단의 배기관에서 분기된 분기관에 설치되어 배기가스에 포함된 이산화탄소를 제거하는 이산화탄소포집장치를 포함할 수 있다.
An apparatus for reducing exhaust pollutants is provided according to an embodiment of the present invention.
An exhaust pollutant reduction device according to an embodiment of the present invention includes an exhaust pipe for discharging exhaust gas generated from a combustion engine generating power by burning liquefied natural gas, and installed in the exhaust pipe, the exhaust gas including a methane oxidation catalyst A methane oxidation catalyst reactor that oxidizes unburned methane contained in the It may include a carbon dioxide capture device installed in a branch pipe branched from the to remove carbon dioxide contained in the exhaust gas.

Description

배기 오염물질 저감장치{Apparatus for reducing air pollutant}Apparatus for reducing air pollutant

본 발명은 배기 오염물질 저감장치에 관한 것으로서, 더욱 상세하게는 배기가스에 포함된 미연소 메탄, 질소산화물, 및 이산화탄소를 저감시킬 수 있는 배기 오염물질 저감장치에 관한 것이다.The present invention relates to an exhaust pollutant reduction device, and more particularly, to an exhaust pollutant reducing device capable of reducing unburned methane, nitrogen oxides, and carbon dioxide contained in exhaust gas.

일반적으로, 선박에 설치되는 각종 엔진은 연료를 연소하여 동력을 생성하며, 연료의 연소과정에서 발생되는 배기가스는 질소산화물, 황산화물, 이산화탄소, 미연소 메탄 등을 포함하고 있다. 대기오염이 증가함에 따라 배기가스에 포함된 각종 유해물질에 대한 규제가 엄격해지고 있는 실정이며, 질소산화물과 황산화물뿐만 아니라 이산화탄소도 유엔 산화기관인 국제해사기구(IMO; International Maritime Organization)로부터 배출규제를 받고 있다. 실제, 국제해사기구는 2020년부터 배출통제지역(ECA: Emission Control Area) 뿐만 아니라 글로벌지역(global area)에서도 연료의 황함유량을 0.5%로 제한하고 있으며, 2008년 기준 이산화탄소의 배출량을 2030년까지 40% 줄이고 2050년까지 70% 줄이는 것을 추진 중에 있다.In general, various engines installed in ships generate power by burning fuel, and exhaust gas generated in the process of combustion of fuel includes nitrogen oxides, sulfur oxides, carbon dioxide, unburned methane, and the like. As air pollution increases, regulations on various harmful substances included in exhaust gas are becoming stricter, and not only nitrogen oxides and sulfur oxides, but also carbon dioxide are subject to emission regulations from the International Maritime Organization (IMO), the United Nations oxidation agency. are receiving In fact, from 2020, the International Maritime Organization limits the sulfur content of fuel to 0.5% in the global area as well as in the Emission Control Area (ECA). It is in the process of reducing it by 40% and reducing it by 70% by 2050.

한편, 질소산화물의 경우, 선택적촉매환원반응기(SCR)를 이용하여 제거하며, 황산화물의 경우, 습식 스크러버를 이용하여 제거하는 것이 일반적이다. 습식 스크러버는 초기에 비해 성능, 가격 등이 개선된 상태이므로, 연료의 황함유량과 관련된 규제를 만족시키는 데에는 큰 어려움이 없다. 그러나, 이산화탄소의 배출량과 관련된 규제는 저탄소 또는 탈탄소 연료를 사용하지 않는 한 기존의 연비 저감 기술로는 만족시키기 어렵다. 또한, 연료의 불완전 연소에 따른 미연소 메탄은 연통(funnel)을 통해 대기 중으로 방출되고 있으며, 지구온난화지수(Global Warming Potential; GWP)가 높은 메탄을 별도의 처리 없이 대기 중으로 방출하는 것은 지구 온난화를 가중시키는 문제가 있다.On the other hand, in the case of nitrogen oxides, they are removed using a selective catalytic reduction reactor (SCR), and in the case of sulfur oxides, it is common to remove them using a wet scrubber. Since the wet scrubber has improved performance and price compared to the initial stage, there is no great difficulty in satisfying the regulations related to the sulfur content of fuel. However, it is difficult to satisfy the regulations related to the emission of carbon dioxide using the existing fuel efficiency reduction technology unless a low-carbon or de-carbonized fuel is used. In addition, unburned methane due to incomplete combustion of fuel is released into the atmosphere through a funnel, and discharging methane with a high Global Warming Potential (GWP) into the atmosphere without separate treatment is responsible for global warming. There is an aggravating problem.

이에, 배기가스에 포함된 미연소 메탄과 이산화탄소를 저감시킬 수 있는 배기 오염물질 저감장치가 필요하게 되었다.Accordingly, there is a need for an exhaust pollutant reduction device capable of reducing unburned methane and carbon dioxide contained in exhaust gas.

대한민국 등록특허 제10-1834488호 (2018. 02. 26.)Republic of Korea Patent Registration No. 10-1834488 (2018. 02. 26.)

본 발명이 이루고자 하는 기술적 과제는, 배기가스에 포함된 미연소 메탄, 질소산화물, 및 이산화탄소를 저감시킬 수 있는 배기 오염물질 저감장치를 제공하는 것이다.An object of the present invention is to provide an exhaust pollutant reduction device capable of reducing unburned methane, nitrogen oxides, and carbon dioxide contained in exhaust gas.

본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기 기술적 과제를 달성하기 위한 본 발명의 실시예에 따른 배기 오염물질 저감장치는, 액화천연가스를 연소하여 동력을 생성하는 연소기관에서 발생한 배기가스를 배출하는 배기관과, 상기 배기관에 설치되며, 메탄산화촉매를 포함하여 상기 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시키는 메탄산화촉매반응기와, 상기 메탄산화촉매반응기 후단의 상기 배기관에 설치되어 상기 배기가스에 포함된 질소산화물을 저감시키는 선택적촉매환원반응기, 및 상기 선택적촉매환원반응기 후단의 상기 배기관에서 분기된 분기관에 설치되어 상기 배기가스에 포함된 이산화탄소를 제거하는 이산화탄소포집장치를 포함한다.Exhaust pollutant reduction apparatus according to an embodiment of the present invention for achieving the above technical problem is an exhaust pipe for discharging exhaust gas generated from a combustion engine generating power by burning liquefied natural gas, and is installed in the exhaust pipe, and methane A methane oxidation catalyst reactor for oxidizing unburned methane contained in the exhaust gas to carbon dioxide, including an oxidation catalyst, and a selective catalyst installed in the exhaust pipe at the rear end of the methane oxidation catalyst reactor to reduce nitrogen oxides contained in the exhaust gas It includes a reduction reactor, and a carbon dioxide collecting device installed in a branch pipe branched from the exhaust pipe at the rear end of the selective catalytic reduction reactor to remove carbon dioxide contained in the exhaust gas.

상기 메탄산화촉매반응기는, 마그네슘, 알루미늄, 실리카, 지르코니아 중에서 선택된 하나 또는 둘 이상의 산화물로 이루어진 담체에 백금, 팔라듐, 로듐, 루테늄, 코발트 중에서 선택된 하나 이상의 금속으로 이루어진 메탄산화촉매가 담지된 세라믹 구조물인 다공성 지지체를 포함할 수 있다.The methane oxidation catalyst reactor is a ceramic structure in which a methane oxidation catalyst made of one or more metals selected from platinum, palladium, rhodium, ruthenium, and cobalt is supported on a carrier made of one or more oxides selected from magnesium, aluminum, silica, and zirconia. It may include a porous support.

상기 메탄산화촉매반응기는 상기 선택적촉매환원반응기 내부에 설치될 수 있다.The methane oxidation catalytic reactor may be installed inside the selective catalytic reduction reactor.

상기 배기 오염물질 저감장치는, 상기 선택적촉매환원반응기 후단의 상기 배기관으로부터 상기 배기가스를 공급받아 가열하여 상기 메탄산화촉매반응기 전단의 상기 배기관으로 공급하는 버너유닛을 더 포함할 수 있다.The exhaust pollutant reduction device may further include a burner unit that receives the exhaust gas from the exhaust pipe at the rear end of the selective catalytic reduction reactor, heats it, and supplies it to the exhaust pipe at the front end of the methane oxidation catalyst reactor.

상기 배기 오염물질 저감장치는, 상기 메탄산화촉매반응기와 상기 선택적촉매환원반응기에 각각 압축공기를 분사하여 불순물을 탈리시키는 공기분사유닛을 더 포함할 수 있다.The exhaust pollutant reduction device may further include an air injection unit for desorbing impurities by injecting compressed air into the methane oxidation catalytic reactor and the selective catalytic reduction reactor, respectively.

상기 이산화탄소포집장치는, 상기 배기가스에 이산화탄소를 흡수하는 흡수제를 분사하는 흡수탑과, 상기 흡수탑으로부터 이산화탄소가 흡수된 상기 흡수제를 공급받아 상기 흡수제로부터 이산화탄소를 분리하는 재생탑을 포함할 수 있다.The carbon dioxide collection device may include an absorption tower that injects an absorbent that absorbs carbon dioxide into the exhaust gas, and a regeneration tower that receives the absorbent in which carbon dioxide has been absorbed from the absorption tower and separates carbon dioxide from the absorbent.

상기 배기 오염물질 저감장치는, 상기 배기관에 설치되며 상기 배기가스와 열교환하여 스팀을 생성하는 이코노마이저와, 상기 이코노마이저에서 생성된 상기 스팀을 이용하여 상기 재생탑으로 공급되는 상기 흡수제를 가열하는 리보일러를 더 포함할 수 있다.The exhaust pollutant reduction device includes an economizer installed in the exhaust pipe to generate steam by exchanging heat with the exhaust gas, and a reboiler for heating the absorbent supplied to the regeneration tower using the steam generated by the economizer. may include more.

본 발명에 따르면, 배기관에 메탄산화촉매반응기를 설치하여, 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시킬 수 있다. 미연소 메탄이 이산화탄소로 산화됨에 따라, 온실가스인 메탄이 대기 중으로 방출되는 것을 최소화할 수 있어 지구 온난화가 가중되는 것을 줄일 수 있다. 특히, 메탄산화촉매반응기가 선택적촉매환원반응기 내부에 설치됨에 따라 선내 공간을 보다 효율적으로 활용할 수 있으며, 버너유닛, 공기분사유닛과 같은 부수장비를 공유할 수 있어 이에 따른 비용을 절감할 수 있다. 또한, 메탄산화촉매반응기가 연소기관에 근접하여 배치됨에 따라, 연소기관에서 발생되는 폐열 일부를 촉매반응에 활용할 수 있어 이에 따른 비용도 절감할 수 있다.According to the present invention, by installing a methane oxidation catalyst reactor in the exhaust pipe, it is possible to oxidize unburned methane contained in the exhaust gas to carbon dioxide. As unburned methane is oxidized to carbon dioxide, it is possible to minimize the emission of methane, a greenhouse gas, into the atmosphere, thereby reducing the aggravation of global warming. In particular, as the methane oxidation catalytic reactor is installed inside the selective catalytic reduction reactor, the space inside the ship can be used more efficiently, and the ancillary equipment such as a burner unit and an air injection unit can be shared, thereby reducing costs. In addition, as the methane oxidation catalytic reactor is disposed close to the combustion engine, some of the waste heat generated from the combustion engine can be utilized for the catalytic reaction, thereby reducing costs.

또한, 배기관에서 분기된 분기관에 이산화탄소포집장치를 설치하여, 배기가스에 포함된 이산화탄소도 저감시킬 수 있다. 특히, 리보일러가 이코노마이저에서 생성된 스팀을 이용하여 흡수제를 가열하므로, 스팀 생성을 위한 별도의 보일러를 가동할 필요가 없어 에너지 소모를 줄일 수 있고 보일러 가동에 따른 또 다른 이산화탄소의 생성도 방지할 수 있다.In addition, by installing a carbon dioxide collecting device in a branch pipe branched from the exhaust pipe, it is possible to reduce carbon dioxide contained in the exhaust gas. In particular, since the reboiler heats the absorbent using the steam generated by the economizer, there is no need to operate a separate boiler for steam generation, thereby reducing energy consumption and preventing the generation of another carbon dioxide due to boiler operation. there is.

도 1은 본 발명의 실시예에 따른 배기 오염물질 저감장치의 구성을 개략적으로 도시한 도면이다.
도 2는 도 1의 배기 오염물질 저감장치를 일부 확대하여 도시한 도면이다.
도 3은 이산화탄소포집장치의 구성을 도시한 도면이다.
도 4 및 도 5는 배기 오염물질 저감장치의 동작을 설명하기 위한 작동도이다.
1 is a diagram schematically showing the configuration of an exhaust pollutant reduction device according to an embodiment of the present invention.
FIG. 2 is a partially enlarged view of the exhaust pollutant reduction device of FIG. 1 .
3 is a diagram showing the configuration of a carbon dioxide trapping device.
4 and 5 are operational diagrams for explaining the operation of the exhaust pollutant reducing device.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.

이하, 도 1 내지 도 5를 참조하여, 본 발명의 실시예에 따른 배기 오염물질 저감장치에 관하여 상세히 설명한다.Hereinafter, an apparatus for reducing exhaust pollutants according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 5 .

본 발명의 실시예에 따른 배기 오염물질 저감장치는 배기가스에 포함된 미연소 메탄과 질소산화물, 및 이산화탄소의 농도를 줄이는 장치로, 예를 들어, 선박에 설치되어 조선, 해양 분야에서 발생하는 배기가스를 처리하는데 사용될 수 있다.Exhaust pollutant reduction device according to an embodiment of the present invention is a device for reducing the concentrations of unburned methane, nitrogen oxide, and carbon dioxide contained in exhaust gas, for example, is installed in a ship, the exhaust generated in the shipbuilding and marine fields It can be used to treat gases.

배기 오염물질 저감장치는 배기관에 메탄산화촉매반응기를 설치하여, 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시킬 수 있다. 미연소 메탄이 이산화탄소로 산화됨에 따라, 온실가스인 메탄이 대기 중으로 방출되는 것을 최소화할 수 있어 지구 온난화가 가중되는 것을 줄일 수 있다. 특히, 메탄산화촉매반응기가 선택적촉매환원반응기 내부에 설치됨에 따라 선내 공간을 보다 효율적으로 활용할 수 있으며, 버너유닛, 공기분사유닛과 같은 부수장비를 공유할 수 있어 이에 따른 비용을 절감할 수 있다. 또한, 메탄산화촉매반응기가 연소기관에 근접하여 배치됨에 따라, 연소기관에서 발생되는 폐열 일부를 촉매반응에 활용할 수 있어 이에 따른 비용도 절감할 수 있다. 또한, 배기관에서 분기된 분기관에 이산화탄소포집장치를 설치하여, 배기가스에 포함된 이산화탄소도 저감시킬 수 있다. 특히, 리보일러가 이코노마이저에서 생성된 스팀을 이용하여 흡수제를 가열하므로, 스팀 생성을 위한 별도의 보일러를 가동할 필요가 없어 에너지 소모를 줄일 수 있고 보일러 가동에 따른 또 다른 이산화탄소의 생성도 방지할 수 있는 특징이 있다.The exhaust pollutant reduction device may oxidize unburned methane contained in the exhaust gas to carbon dioxide by installing a methane oxidation catalyst reactor in the exhaust pipe. As unburned methane is oxidized to carbon dioxide, it is possible to minimize the emission of methane, a greenhouse gas, into the atmosphere, thereby reducing the aggravation of global warming. In particular, as the methane oxidation catalytic reactor is installed inside the selective catalytic reduction reactor, the space inside the ship can be used more efficiently, and the ancillary equipment such as a burner unit and an air injection unit can be shared, thereby reducing costs. In addition, as the methane oxidation catalytic reactor is disposed close to the combustion engine, some of the waste heat generated from the combustion engine can be utilized for the catalytic reaction, thereby reducing costs. In addition, by installing a carbon dioxide collecting device in a branch pipe branched from the exhaust pipe, it is possible to reduce carbon dioxide contained in the exhaust gas. In particular, since the reboiler heats the absorbent using the steam generated by the economizer, there is no need to operate a separate boiler for steam generation, thereby reducing energy consumption and preventing the generation of another carbon dioxide due to boiler operation. there is a characteristic

이하, 도 1 내지 도 3을 참조하여, 배기 오염물질 저감장치(1)에 관하여 구체적으로 설명한다.Hereinafter, the exhaust pollutant reducing device 1 will be described in detail with reference to FIGS. 1 to 3 .

도 1은 본 발명의 실시예에 따른 배기 오염물질 저감장치의 구성을 개략적으로 도시한 도면이고, 도 2는 도 1의 배기 오염물질 저감장치를 일부 확대하여 도시한 도면이며, 도 3은 이산화탄소포집장치의 구성을 도시한 도면이다.1 is a diagram schematically showing the configuration of an exhaust pollutant reducing device according to an embodiment of the present invention, FIG. 2 is a partially enlarged view of the exhaust polluting pollutant reducing device of FIG. 1, and FIG. 3 is carbon dioxide capture It is a diagram showing the configuration of the device.

본 발명에 따른 배기 오염물질 저감장치(1)는 배기관(10)과, 메탄산화촉매반응기(20)와, 선택적촉매환원반응기(30), 및 이산화탄소포집장치(40)를 포함한다.The exhaust pollutant reducing device 1 according to the present invention includes an exhaust pipe 10 , a methane oxidation catalytic reactor 20 , a selective catalytic reduction reactor 30 , and a carbon dioxide trapping device 40 .

배기관(10)은 연소기관(100)에서 발생한 배기가스를 배출하는 관으로, 일단이 연소기관(100)에 연결되고 타단이 연통(F)에 연결된다. 연소기관(100)은 연료를 연소하여 동력을 생성하므로, 연료의 연소에 따른 배기가스가 발생되며, 발생된 배기가스는 배기관(10)을 통해 배출된다. 이 때, 배기가스는 다량의 미연소 메탄과 질소산화물, 및 이산화탄소를 포함하고 있으므로, 이를 제거한 후 대기 중에 배출해야 한다.The exhaust pipe 10 is a pipe for discharging exhaust gas generated from the combustion engine 100 , and one end is connected to the combustion engine 100 and the other end is connected to the communication (F). Since the combustion engine 100 generates power by burning fuel, exhaust gas according to the combustion of the fuel is generated, and the generated exhaust gas is discharged through the exhaust pipe 10 . At this time, since the exhaust gas contains a large amount of unburned methane, nitrogen oxides, and carbon dioxide, it must be removed and then discharged to the atmosphere.

배기관(10)에는 분기관(10a)이 분기되며, 분기관(10a) 전단의 배기관(10)에는A branch pipe (10a) is branched to the exhaust pipe (10), and the exhaust pipe (10) at the front end of the branch pipe (10a) has

메탄산화촉매반응기(20)와 선택적촉매환원반응기(30)가 직렬로 설치되고, 선택적촉매환원반응기(30) 후단의 배기관(10)에서 분기된 분기관(10a)에는 이산화탄소포집장치(40)가 설치된다. 메탄산화촉매반응기(20)는 반응 온도가 약 300℃ ~ 600℃이고, 선택적촉매환원반응기(30)는 반응 온도가 약 200℃ ~ 400℃이므로, 반응 온도가 높은 메탄산화촉매반응기(20)가 선택적촉매환원반응기(30) 전단에 설치되어 연소기관(100)에 근접하게 배치될 수 있다. 메탄산화촉매반응기(20)가 연소기관(100)에 근접하게 배치되면, 연소기관(100)에서 발생되는 폐열 일부를 촉매반응에 활용할 수 있어 이에 따른 비용을 절감할 수 있다.A methane oxidation catalytic reactor 20 and a selective catalytic reduction reactor 30 are installed in series, and a carbon dioxide capture device 40 is provided in a branch pipe 10a branched from the exhaust pipe 10 at the rear end of the selective catalytic reduction reactor 30. is installed The methane oxidation catalytic reactor 20 has a reaction temperature of about 300 ° C to 600 ° C, and the selective catalytic reduction reactor 30 has a reaction temperature of about 200 ° C to 400 ° C, so the methane oxidation catalytic reactor 20 having a high reaction temperature is It may be installed in front of the selective catalytic reduction reactor 30 and disposed close to the combustion engine 100 . When the methane oxidation catalytic reactor 20 is disposed close to the combustion engine 100, some of the waste heat generated in the combustion engine 100 can be utilized for the catalytic reaction, thereby reducing costs.

메탄산화촉매반응기(20)는 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시키는 것으로, 메탄산화촉매를 포함할 수 있다. 보다 구체적으로, 메탄산화촉매반응기(20)는, 마그네슘, 알루미늄, 실리카, 지르코니아 중에서 선택된 하나 또는 둘 이상의 산화물로 이루어진 담체에 백금, 팔라듐, 로듐, 루테늄, 코발트 중 선택된 하나 이상의 금속으로 이루어진 메탄산화촉매가 담지된 세라믹 구조물인 다공성 지지체(21)를 포함할 수 있다. 메탄산화촉매는 담체에 담지되어 바인더(binder)에 의해 용액 형태로 제조된 후 세라믹 구조물인 다공성 지지체(21)에 코팅될 수 있다. 다공성 지지체(21)는 도 2에 도시된 바와 같이, 허니컴(honeycomb) 구조로 형성되거나, 플레이트(plate) 구조로 형성될 수 있다. 다공성 지지체(21)가 허니컴 구조로 형성됨으로써, 배기가스와의 접촉 면적이 증가하여 미연소 메탄의 산화 효과가 증대될 수 있다. 이러한 메탄산화촉매반응기(20)는 선택적촉매환원반응기(30) 내부에 설치될 수 있다. 메탄산화촉매반응기(20)가 선택적촉매환원반응기(30) 내부에 설치됨에 따라 선내 공간을 보다 효율적으로 활용할 수 있으며, 후술할 버너유닛(50), 공기분사유닛(60)과 같은 부수장비를 공유할 수 있어 이에 따른 비용도 절감할 수 있다. 배기가스에 포함된 미연소 메탄은 아래의 반응식에 따라 반응하여 산화될 수 있다.The methane oxidation catalyst reactor 20 oxidizes unburned methane contained in exhaust gas to carbon dioxide, and may include a methane oxidation catalyst. More specifically, the methane oxidation catalyst reactor 20 is a methane oxidation catalyst consisting of one or more metals selected from platinum, palladium, rhodium, ruthenium, and cobalt on a carrier made of one or more oxides selected from magnesium, aluminum, silica, and zirconia. may include a porous support 21 that is a ceramic structure on which is supported. The methane oxidation catalyst may be supported on a support, prepared in a solution form by a binder, and then coated on the porous support 21, which is a ceramic structure. The porous support 21 may be formed in a honeycomb structure or a plate structure, as shown in FIG. 2 . Since the porous support 21 is formed in a honeycomb structure, a contact area with exhaust gas may be increased to increase the oxidizing effect of unburned methane. This methane oxidation catalytic reactor 20 may be installed inside the selective catalytic reduction reactor 30 . As the methane oxidation catalytic reactor 20 is installed inside the selective catalytic reduction reactor 30, the space inside the ship can be used more efficiently, and ancillary equipment such as a burner unit 50 and an air injection unit 60, which will be described later, are shared. This can also reduce costs. Unburned methane contained in the exhaust gas may be oxidized by reacting according to the following reaction equation.

<반응식><reaction formula>

CH4 + 2O2 → CO2 + 2H2OCH 4 + 2O 2 → CO 2 + 2H 2 O

(여기서, 미연소 메탄의 산화 반응에 쓰인 O2는 배기가스에 포함된 산소일 수 있다.)(Here, O 2 used in the oxidation reaction of unburned methane may be oxygen contained in exhaust gas.)

메탄산화촉매반응기(20)에서 미연소 메탄이 산화된 배기가스는 선택적촉매환원반응기(30)에서 질소산화물이 저감될 수 있다. 선택적촉매환원반응기(30)는 내부에 설치된 촉매층(31)에 배기가스와 암모니아를 통과시켜 배기가스에 포함된 질소산화물을 질소와 물로 환원시킬 수 있다. 촉매층(31)은 다공성 지지체(21)와 같이, 허니컴(honeycomb) 구조로 형성되거나, 플레이트(plate) 구조로 형성될 수 있다. 선택적촉매환원반응기(30) 및 촉매층(31)은 공지된 기술이므로, 구조와 관련된 자세한 설명은 생략하도록 한다. 배기가스에 포함된 질소산화물은 아래의 반응식에 따라 반응하여 환원될 수 있다.In the exhaust gas in which unburned methane is oxidized in the methane oxidation catalytic reactor 20 , nitrogen oxides may be reduced in the selective catalytic reduction reactor 30 . The selective catalytic reduction reactor 30 may reduce nitrogen oxides contained in the exhaust gas to nitrogen and water by passing exhaust gas and ammonia through the catalyst layer 31 installed therein. The catalyst layer 31 may be formed in a honeycomb structure or a plate structure, like the porous support 21 . Since the selective catalytic reduction reactor 30 and the catalyst layer 31 are known techniques, detailed descriptions related to their structures will be omitted. The nitrogen oxides contained in the exhaust gas may be reduced by reacting according to the following reaction formula.

<반응식><reaction formula>

NO + NO2 + 2NH3 → 2N2 + 3H2ONO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O

4NO + 4NH3 + O2 → 4N2 + 6H2O4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O

2NO2 + 4NH3 + O2 → 3N2 + 6H2O2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O

(여기서, 질소산화물의 환원 반응에 쓰인 O2는 배기가스에 포함된 산소일 수 있다.)(Here, O 2 used in the reduction reaction of nitrogen oxides may be oxygen contained in the exhaust gas.)

미연소 메탄과 질소산화물의 농도가 저감된 배기가스는 배기관(10)을 따라 이동하여 이코노마이저(12)를 통과한 후, 일부가 연통(F)을 통해 대기 중으로 방출되고 나머지 일부가 분기관(10a)을 통해 이산화탄소포집장치(40)로 유입될 수 있다. 이코노마이저(12)는 배기가스와 열교환하여 스팀을 생성하며, 생성된 스팀을 후술할 리보일러(43)에 공급할 수 있다.Exhaust gas with reduced concentrations of unburned methane and nitrogen oxides moves along the exhaust pipe 10 and passes through the economizer 12, a part is released into the atmosphere through the flue F, and the remaining part is the branch pipe 10a ) may be introduced into the carbon dioxide collecting device 40 through the. The economizer 12 generates steam by heat-exchanging with the exhaust gas, and may supply the generated steam to a reboiler 43 to be described later.

선택적촉매환원반응기(30) 후단의 배기관(10)에는 회수관(11)이 분기될 수 있다. 회수관(11)은 입구단이 선택적촉매환원반응기(30) 후단의 배기관(10)에 연결되고 출구단이 메탄산화촉매반응기(20) 전단의 배기관(10)에 연결되어, 미연소 메탄과 질소산화물의 농도가 저감된 배기가스를 일부를 회수할 수 있다. 회수관(11)에는 버너유닛(50)이 설치된다.A recovery pipe 11 may be branched from the exhaust pipe 10 at the rear end of the selective catalytic reduction reactor 30 . The recovery pipe 11 has an inlet end connected to the exhaust pipe 10 at the rear end of the selective catalytic reduction reactor 30 and an outlet end connected to the exhaust pipe 10 at the front end of the methane oxidation catalytic reactor 20, so that unburned methane and nitrogen Part of the exhaust gas with the reduced oxide concentration can be recovered. A burner unit 50 is installed in the recovery pipe 11 .

버너유닛(50)은 선택적촉매환원반응기(30)를 통과한 배기가스를 공급받아 가스, 기름 등의 연료와 함께 가열하여 메탄산화촉매반응기(20) 전단의 배기관(10)으로 공급할 수 있다. 버너유닛(50)에서 생성된 열은 메탄산화촉매반응기(20)의 다공성 지지체(21) 또는 선택적촉매환원반응기(30)의 촉매층(31)을 재생하는데 사용되거나, 메탄산화촉매반응기(20) 또는 선택적촉매환원반응기(30)에서 반응하는데 사용되거나, 선택적촉매환원반응기(30)에서 사용되는 암모니아를 생성하는데 사용될 수 있다. 보다 구체적으로, 버너유닛(50) 전단의 회수관(11) 상에는 블로어(51)가 설치되며, 블로어(51)는 선택적촉매환원반응기(30)에서 배출되는 배기가스 중 일부를 흡입하여 버너유닛(50)으로 공급할 수 있다. 필요에 따라, 블로어(51) 전단의 회수관(11)에 유량계(도시되지 않음)와 유량조절밸브(도시되지 않음)가 설치되어 버너유닛(50)으로 공급되는 배기가스의 양을 조절할 수도 있다. 버너유닛(50) 후단의 회수관(11)에는 요소수분해유닛(70)이 설치된다.The burner unit 50 may receive the exhaust gas that has passed through the selective catalytic reduction reactor 30 and heat it together with fuel such as gas and oil, and supply it to the exhaust pipe 10 of the front end of the methane oxidation catalytic reactor 20 . The heat generated in the burner unit 50 is used to regenerate the porous support 21 of the methane oxidation catalytic reactor 20 or the catalyst layer 31 of the selective catalytic reduction reactor 30, or the methane oxidation catalytic reactor 20 or It can be used to react in the selective catalytic reduction reactor 30 or used to generate ammonia used in the selective catalytic reduction reactor 30 . More specifically, a blower 51 is installed on the recovery pipe 11 at the front end of the burner unit 50, and the blower 51 sucks some of the exhaust gas discharged from the selective catalytic reduction reactor 30, and the burner unit ( 50) can be supplied. If necessary, a flow meter (not shown) and a flow control valve (not shown) are installed in the recovery pipe 11 at the front end of the blower 51 to adjust the amount of exhaust gas supplied to the burner unit 50 . . A urea water decomposition unit 70 is installed in the recovery pipe 11 at the rear end of the burner unit 50 .

요소수분해유닛(70)은 버너유닛(50)으로부터 공급된 배기가스의 열로 요소수를 가열하여 암모니아를 생성할 수 있다. 요소수는 요소수저장탱크(72)에 저장되며, 요소수주입유닛(71)에 의해 요소수분해유닛(70)으로 주입될 수 있다. 요소수가 열분해되어 생성된 암모니아는 회수관(11)을 통해 메탄산화촉매반응기(20) 전단으로 공급되며, 회수관(11)의 출구단과 배기관(10)의 연결 지점에는 혼합기(80)가 설치되어 배기가스와 암모니아가 용이하게 혼합될 수 있다. 예를 들어, 혼합기(80)는 곡면(曲面)을 갖는 판재 또는 일정 각도로 비틀어진 판재로 형성되어 배기가스와 암모니아의 혼합 및 회전 유동을 유도할 수 있다.The urea water decomposition unit 70 may generate ammonia by heating the urea water with the heat of the exhaust gas supplied from the burner unit 50 . The urea water is stored in the urea water storage tank 72 , and may be injected into the urea water decomposition unit 70 by the urea water injection unit 71 . Ammonia generated by thermal decomposition of urea water is supplied to the front end of the methane oxidation catalyst reactor 20 through the recovery pipe 11, and a mixer 80 is installed at the connection point between the outlet end of the recovery pipe 11 and the exhaust pipe 10. Exhaust gas and ammonia can be easily mixed. For example, the mixer 80 may be formed of a plate having a curved surface or a plate twisted at an angle to induce mixing and rotational flow of exhaust gas and ammonia.

다공성 지지체(21) 또는 촉매층(31)의 재생 공정 시, 요소수주입유닛(71)은 요소수분해유닛(70)으로 요소수의 주입을 중단하며, 이에 따라, 버너유닛(50)에서 공급되는 배기가스의 열은 요소수분해유닛(70), 회수관(11), 혼합기(80)를 차례로 통과하여 배기관(10)을 통해 선택적촉매환원반응기(30) 내부로 공급될 수 있다. 버너유닛(50)의 열이 선택적촉매환원반응기(30) 내부로 공급되면, 다공성 지지체(21) 또는 촉매층(31)의 표면에 흡착된 수트(soot) 등의 이물질이 연소되어 촉매 반응 효과가 증대될 수 있다. 다공성 지지체(21) 또는 촉매층(31)을 장시간 사용하면, 수트(soot), 미세분진(PM), 부산물, 기름유, 유/무기 화합물, 고형물질 등 각종 찌꺼기가 촉매 표면에 흡착되어 반응 면적이 줄어들며, 이로 인해, 미연소 메탄과 질소산화물의 촉매 반응이 저하될 수 밖에 없다. 따라서, 주기적으로 다공성 지지체(21)와 촉매층(31)에 열을 가하여 이물질을 제거한다. 그러나, 버너유닛(50)으로부터 공급되는 열에 의해 다공성 지지체(21)와 촉매층(31)이 재생되는 것으로 한정될 것은 아니며, 다공성 지지체(21)와 촉매층(31)은 공기분사유닛(60)에 의해 재생될 수도 있다.During the regeneration process of the porous support 21 or the catalyst layer 31, the urea water injection unit 71 stops the injection of urea water into the urea water decomposition unit 70, and accordingly, the urea water injection unit 71 is supplied from the burner unit 50. The heat of the exhaust gas may sequentially pass through the urea water decomposition unit 70 , the recovery pipe 11 , and the mixer 80 , and may be supplied into the selective catalytic reduction reactor 30 through the exhaust pipe 10 . When the heat of the burner unit 50 is supplied into the selective catalytic reduction reactor 30, foreign substances such as soot adsorbed on the surface of the porous support 21 or the catalyst layer 31 are burned to increase the catalytic reaction effect. can be When the porous support 21 or the catalyst layer 31 is used for a long time, various residues such as soot, fine dust (PM), by-products, oil oil, organic/inorganic compounds, and solid substances are adsorbed on the catalyst surface to reduce the reaction area. decreased, and thus, the catalytic reaction of unburned methane and nitrogen oxides is inevitably reduced. Accordingly, foreign substances are removed by periodically applying heat to the porous support 21 and the catalyst layer 31 . However, the porous support 21 and the catalyst layer 31 are not limited to being regenerated by the heat supplied from the burner unit 50, and the porous support 21 and the catalyst layer 31 are formed by the air injection unit 60. may be played.

공기분사유닛(60)은 메탄산화촉매반응기(20)와 선택적촉매환원반응기(30)에 각각 압축공기를 분사하여 촉매 표면에 붙은 불순물을 탈리시키는 것으로, 버너유닛(50)에 의한 재생 공정과 별도로 주기적으로 동작하여 촉매에 침적된 입자상 또는 유/무기 불순물을 제거할 수 있다. 공기분사유닛(60)은 저장탱크(61)와, 복수 개의 노즐관(62), 및 송풍기(63)를 포함한다. 저장탱크(61)는 내부에 압축공기를 저장하며, 선택적촉매환원반응기(30) 외측에 설치된다. 이 때, 저장탱크(61)는 외부에서 압축공기를 공급받아 저장할 수도 있고, 자체적으로 압축공기를 생성하여 저장할 수도 있다. 저장탱크(61)에 저장된 압축공기는 복수 개의 노즐관(62)을 통해 메탄산화촉매반응기(20)와 선택적촉매환원반응기(30)에 각각 분사된다. 노즐관(62) 상에는 송풍기(63)가 설치되어 압축공기가 원활하게 유동할 수 있다. 도면 상에는 저장탱크(61)에 2개의 노즐관(62)이 연결되고, 각각의 노즐관(62)이 선택적촉매환원반응기(30)를 관통하여 다공성 지지체(21)와 촉매층(31) 하부에서 압축공기를 분사하는 구조로 도시하였으나, 이에 한정될 것은 아니며, 노즐관(62)의 개수, 및 배치 구조는 다양하게 변형될 수 있다.The air injection unit 60 sprays compressed air into the methane oxidation catalytic reactor 20 and the selective catalytic reduction reactor 30, respectively, to desorb impurities attached to the catalyst surface. Separately from the regeneration process by the burner unit 50 It can be operated periodically to remove particulate or organic/inorganic impurities deposited on the catalyst. The air injection unit 60 includes a storage tank 61 , a plurality of nozzle pipes 62 , and a blower 63 . The storage tank 61 stores compressed air therein, and is installed outside the selective catalytic reduction reactor 30 . At this time, the storage tank 61 may receive compressed air from the outside and store it, or may generate and store compressed air by itself. The compressed air stored in the storage tank 61 is injected into the methane oxidation catalytic reactor 20 and the selective catalytic reduction reactor 30 through a plurality of nozzle pipes 62 , respectively. A blower 63 is installed on the nozzle tube 62 so that compressed air can flow smoothly. In the drawing, two nozzle pipes 62 are connected to the storage tank 61, and each nozzle pipe 62 passes through the selective catalytic reduction reactor 30 and is compressed under the porous support 21 and the catalyst layer 31. Although illustrated as a structure for spraying air, the present invention is not limited thereto, and the number and arrangement of the nozzle tubes 62 may be variously modified.

한편, 분기관(10a)에 설치된 블로어(도면부호 미도시)를 통해 이산화탄소포집장치(40)로 유입된 배기가스는 이산화탄소 제거 공정을 거치게 된다. 미연소 메탄과 질소산화물의 농도가 저감된 배기가스가 이산화탄소포집장치(40)로 유입됨에 따라, 이산화탄소포집장치(40)의 용량을 줄일 수 있어 CAPEX(Capital Expenditures) 및 부피를 절감할 수 있으며, 이에 따라, 선박 내 배치도 용이한 장점이 있다.Meanwhile, the exhaust gas introduced into the carbon dioxide collecting device 40 through a blower (not shown) installed in the branch pipe 10a is subjected to a carbon dioxide removal process. As the exhaust gas with reduced concentrations of unburned methane and nitrogen oxides flows into the carbon dioxide capture device 40, the capacity of the carbon dioxide capture device 40 can be reduced, thereby reducing CAPEX (Capital Expenditures) and volume, Accordingly, there is an advantage of easy arrangement in the ship.

이산화탄소포집장치(40)는 배기가스에 포함된 이산화탄소를 제거하는 것으로, 흡수탑(41)과, 재생탑(42), 및 리보일러(43)를 포함한다.The carbon dioxide collecting device 40 removes carbon dioxide contained in exhaust gas, and includes an absorption tower 41 , a regeneration tower 42 , and a reboiler 43 .

흡수탑(41)은 분기관(10a)을 통해 공급받은 배기가스에 이산화탄소를 흡수하는 흡수제를 무화(霧化) 또는 미립자화(微粒子化)하여 분사하는 것으로, 여기서, 흡수제라 함은, 이산화탄소를 흡수하는 성질이 있는 용액, 예를 들어, 아민(amine) 화합물 또는 암모니아의 수용액일 수 있다. 흡수탑(41)은 선박의 요동에 용이하게 대처할 수 있도록 기체 접촉 방식의 흡수탑으로 형성될 수 있다. 배기가스는 흡수탑(41) 하부로 공급되어 흡수탑(41) 상부에서 분사되는 흡수제와 접촉하게 되며, 이로 인해, 배기가스에 포함된 이산화탄소가 흡수제에 흡수되어 배기가스로부터 제거될 수 있다. 미연소 메탄, 질소산화물, 이산화탄소가 모두 제거된 배기가스는 흡수탑(41) 상부를 통해 외부로 배출되는데, 이 때, 연통(F)으로 배출되는 배기가스에 합류되어 외부로 배출될 수도 있고, 독립적으로 배출될 수도 있다. 흡수탑(41)에서 이산화탄소가 흡수제에 흡수될 때 발열 반응이 일어나므로, 흡수탑(41) 상부로 배출되는 배기가스는 별도의 냉각 과정을 거친 후 외부로 배출될 수 있다. 예를 들어, 배기가스는 흡수탑(41) 상부에서 분사되는 청수 등의 냉각매체와 기액 접촉하여 냉각된 후 배출될 수 있으며, 배기가스와 접촉한 냉각매체는 집수되어 흡수탑(41) 외부로 배출된 후 가압 및 냉각 과정을 거쳐 다시 흡수탑(41)으로 순환될 수 있다. 흡수탑(41)에서 이산화탄소를 흡수한 흡수제는 공급라인(41a)을 통해 재생탑(42)으로 공급된다.The absorption tower 41 atomizes or atomizes an absorbent that absorbs carbon dioxide into the exhaust gas supplied through the branch pipe 10a and atomizes it and sprays it, where the absorbent refers to carbon dioxide It may be a solution having absorption properties, for example, an aqueous solution of an amine compound or ammonia. The absorption tower 41 may be formed as a gas contact type absorption tower to easily cope with the fluctuations of the ship. The exhaust gas is supplied to the lower portion of the absorption tower 41 and comes into contact with the absorbent sprayed from the upper portion of the absorption tower 41, whereby carbon dioxide contained in the exhaust gas may be absorbed by the absorbent and removed from the exhaust gas. The exhaust gas from which unburned methane, nitrogen oxides, and carbon dioxide are all removed is discharged to the outside through the upper part of the absorption tower 41. At this time, it may be joined to the exhaust gas discharged through the flue (F) and discharged to the outside, They can also be released independently. Since an exothermic reaction occurs when carbon dioxide is absorbed into the absorbent in the absorption tower 41, the exhaust gas discharged to the upper portion of the absorption tower 41 may be discharged to the outside after undergoing a separate cooling process. For example, the exhaust gas may be discharged after being cooled in contact with a cooling medium such as fresh water sprayed from the upper portion of the absorption tower 41 , and the cooling medium in contact with the exhaust gas is collected and discharged to the outside of the absorption tower 41 . After being discharged, it may be circulated back to the absorption tower 41 through a pressurization and cooling process. The absorbent that has absorbed carbon dioxide in the absorption tower 41 is supplied to the regeneration tower 42 through the supply line 41a.

공급라인(41a)은 일단이 흡수탑(41) 하부에 연결되고 타단이 재생탑(42) 상부에 연결되어, 흡수탑(41)에서 배출된 이산화탄소를 흡수한 흡수제를 재생탑(42) 상부로 공급할 수 있다. 공급라인(41a) 상에는 이산화탄소를 흡수하는 흡수제를 가압하는 펌프(41b)와, 공급라인(41a)과 후술할 제2 순환라인(42b)을 열교환하는 열교환기(41c)가 설치될 수 있다. 열교환기(41c)는 흡수탑(41)에서 배출된 약 40~50℃의 이산화탄소를 흡수한 흡수제를, 재생탑(42)에서 배출된 약 80~150℃의 이산화탄소가 분리된 흡수제와 열교환하여 가열한다. 즉, 열교환기(41c)는 공급라인(41a)을 통해 흡수탑(41)에서 재생탑(42)으로 공급되는 흡수제와, 제2 순환라인(42b)을 통해 재생탑(42)에서 흡수탑(41)으로 순환되는 흡수제를 열교환하여, 재생탑(42)으로 공급되는 흡수제의 온도는 높이고 흡수탑(41)으로 순환되는 흡수제의 온도는 낮추는 역할을 한다. 따라서, 흡수탑(41)에서 이산화탄소가 흡수제에 용이하게 흡수될 수 있고, 재생탑(42)에서 이산화탄소가 흡수제로부터 용이하게 분리될 수 있다. 열교환기(41c)에서 가열된 이산화탄소를 흡수한 흡수제는 재생탑(42) 상부로 유입될 수 있다.The supply line 41a has one end connected to the lower portion of the absorption tower 41 and the other end connected to the upper portion of the regeneration tower 42, so that the absorbent absorbing carbon dioxide discharged from the absorption tower 41 is transferred to the upper portion of the regeneration tower 42. can supply A pump 41b for pressurizing the absorbent for absorbing carbon dioxide and a heat exchanger 41c for exchanging heat between the supply line 41a and a second circulation line 42b to be described later may be installed on the supply line 41a. The heat exchanger 41c heats the absorbent that has absorbed carbon dioxide at about 40 to 50° C. discharged from the absorption tower 41 with the absorbent from which carbon dioxide of about 80 to 150° C. discharged from the regeneration tower 42 is separated. do. That is, the heat exchanger 41c includes the absorbent supplied from the absorption tower 41 to the regeneration tower 42 through the supply line 41a, and the absorption tower from the regeneration tower 42 through the second circulation line 42b ( By exchanging the absorbent circulated to 41), the temperature of the absorbent supplied to the regeneration tower 42 is increased and the temperature of the absorbent circulated to the absorption tower 41 is lowered. Accordingly, carbon dioxide can be easily absorbed by the absorbent in the absorption tower 41 , and carbon dioxide can be easily separated from the absorbent in the regeneration tower 42 . The absorbent that has absorbed the carbon dioxide heated in the heat exchanger 41c may be introduced into the upper portion of the regeneration tower 42 .

재생탑(42)은 흡수탑(41)으로부터 이산화탄소를 흡수한 흡수제를 공급받아 흡수제로부터 이산화탄소를 분리한다. 보다 구체적으로, 열교환기(41c)에서 가열된 후 재생탑(42)의 상부로 공급된 이산화탄소를 흡수한 흡수제는, 재생탑(42) 상부에서 하부로 흐르면서 열에너지에 의해 이산화탄소가 분리된다. 이 때, 재생탑(42) 내의 흡수제 중 일부는 제1 순환라인(42a)을 통해 리보일러(43)로 유입되어 가열되며, 리보일러(43)의 가열에 의해 흡수제로부터 발생된 이산화탄소와 증기는 제1 순환라인(42a)을 통해 재생탑(42)으로 공급되어 열에너지를 추가로 제공하면서 이산화탄소의 분리 효율을 높일 수 있다. 전술한 바와 같이, 재생탑(42)으로 공급되는 흡수제는 열교환기(41c)에서 가열된 상태이고, 리보일러(43)에서 가열된 흡수제로부터 발생된 이산화탄소와 증기가 열에너지를 추가로 제공하므로, 이산화탄소가 흡수제로부터 용이하게 분리될 수 있다. 흡수제로부터 분리된 고농도의 이산화탄소는 재생탑(42) 상부로 배출되어 응축기(42c)와 환류드럼(42d)을 차례로 통과하며 수분이 제거되며, 별도의 압축 과정을 거쳐 필요처로 공급될 수 있다. 이산화탄소에서 분리된 수분은 가압되어 다시 재생탑(42)으로 순환된다.The regeneration tower 42 receives an absorbent that has absorbed carbon dioxide from the absorption tower 41 and separates carbon dioxide from the absorbent. More specifically, the absorbent absorbing carbon dioxide supplied to the upper portion of the regeneration tower 42 after being heated in the heat exchanger 41c flows from the upper portion of the regeneration tower 42 to the lower portion, and carbon dioxide is separated by thermal energy. At this time, some of the absorbent in the regeneration tower 42 is introduced into the reboiler 43 through the first circulation line 42a and is heated, and carbon dioxide and vapor generated from the absorbent by the heating of the reboiler 43 are It is supplied to the regeneration tower 42 through the first circulation line 42a to provide additional thermal energy and increase the separation efficiency of carbon dioxide. As described above, the absorbent supplied to the regeneration tower 42 is heated in the heat exchanger 41c, and carbon dioxide and steam generated from the absorbent heated in the reboiler 43 additionally provide thermal energy, so carbon dioxide can be easily separated from the absorbent. The high-concentration carbon dioxide separated from the absorbent is discharged to the upper portion of the regeneration tower 42, passes through the condenser 42c and the reflux drum 42d in sequence, moisture is removed, and may be supplied as needed through a separate compression process. The water separated from the carbon dioxide is pressurized and circulated back to the regeneration tower 42 .

리보일러(43)는 전술한 이코노마이저(12)에서 생성된 스팀을 이용하여 재생탑(42)으로 공급되는 흡수제를 가열하며, 재생탑(42)으로부터 배출된 흡수제를 다시 재생탑(42)으로 순환시키는 제1 순환라인(42a) 상에 설치될 수 있다. 다시 말해, 리보일러(43)는 제1 순환라인(42a) 상에 설치되어 제1 순환라인(42a)을 유동하는 흡수제를 이코노마이저(12)에서 공급되는 스팀으로 가열하여 이산화탄소와 증기를 생성하고 이를 재생탑(42)으로 공급한다. 이 때, 스팀은 스팀공급관(12a)을 통해 공급될 수 있다. 배기가스의 폐열로 생성된 스팀을 리보일러(43)로 공급하여 열원으로 사용함으로써, 전체적인 시스템 효율이 향상될 뿐만 아니라 스팀 생성을 위한 별도의 보일러를 가동할 필요가 없어 에너지 소모를 줄일 수 있으며, 보일러의 가동에 따른 또 다른 이산화탄소의 생성도 방지할 수 있다.The reboiler 43 heats the absorbent supplied to the regeneration tower 42 using the steam generated by the economizer 12 described above, and circulates the absorbent discharged from the regeneration tower 42 back to the regeneration tower 42 . It may be installed on the first circulation line (42a). In other words, the reboiler 43 is installed on the first circulation line 42a and heats the absorbent flowing through the first circulation line 42a with steam supplied from the economizer 12 to generate carbon dioxide and steam, and It is supplied to the regeneration tower (42). At this time, the steam may be supplied through the steam supply pipe (12a). By supplying steam generated from waste heat of exhaust gas to the reboiler 43 and using it as a heat source, not only the overall system efficiency is improved, but also energy consumption can be reduced because there is no need to operate a separate boiler for steam generation, Another generation of carbon dioxide due to the operation of the boiler can be prevented.

한편, 재생탑(42)에는 제2 순환라인(42b)도 연결될 수 있다. 제2 순환라인(42b)은 재생탑(42)에서 배출되는 흡수제를 흡수탑(41)으로 순환시키는 것으로, 전술한 열교환기(41c)와, 펌프(421), 및 냉각기(422)가 설치될 수 있다. 제2 순환라인(42b)을 통해 재생탑(42)에서 배출된 약 80~150℃의 이산화탄소가 분리된 흡수제는 열교환기(41c)에서 공급라인(41a)을 유동하는 흡수제와 열교환하여 1차로 냉각되며, 펌프(421)에서 가압된 후 냉각기(422)에서 2차로 냉각되어 약 30~50℃로 흡수탑(41)에 공급될 수 있다.Meanwhile, the second circulation line 42b may also be connected to the regeneration tower 42 . The second circulation line 42b circulates the absorbent discharged from the regeneration tower 42 to the absorption tower 41, and the above-described heat exchanger 41c, the pump 421, and the cooler 422 are installed. can The absorbent from which carbon dioxide at about 80 to 150° C. discharged from the regeneration tower 42 through the second circulation line 42b is separated is primarily cooled by exchanging heat with the absorbent flowing through the supply line 41a in the heat exchanger 41c. And, after being pressurized by the pump 421, the second cooling in the cooler 422 may be supplied to the absorption tower 41 at about 30 ~ 50 ℃.

이하, 도 4 및 도 5를 참조하여, 배기 오염물질 저감장치(1)의 동작에 대해 보다 구체적으로 설명한다.Hereinafter, the operation of the exhaust pollutant reducing device 1 will be described in more detail with reference to FIGS. 4 and 5 .

도 4 및 도 5는 배기 오염물질 저감장치의 동작을 설명하기 위한 작동도이다.4 and 5 are operational diagrams for explaining the operation of the exhaust pollutant reducing device.

본 발명에 따른 배기 오염물질 저감장치(1)는 배기관(10)에 메탄산화촉매반응기(20)를 설치하여, 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시킬 수 있다. 미연소 메탄이 이산화탄소로 산화됨에 따라, 온실가스인 메탄이 대기 중으로 방출되는 것을 최소화할 수 있어 지구 온난화가 가중되는 것을 줄일 수 있다. 특히, 메탄산화촉매반응기(20)가 선택적촉매환원반응기(30) 내부에 설치됨에 따라 선내 공간을 보다 효율적으로 활용할 수 있으며, 버너유닛(50), 공기분사유닛(60)과 같은 부수장비를 공유할 수 있어 이에 따른 비용을 절감할 수 있다. 또한, 메탄산화촉매반응기(20)가 연소기관(100)에 근접하여 배치됨에 따라, 연소기관(100)에서 발생되는 폐열 일부를 촉매반응에 활용할 수 있어 이에 따른 비용도 절감할 수 있다. 또한, 배기관(10)에서 분기된 분기관(10a)에 이산화탄소포집장치(40)를 설치하여, 배기가스에 포함된 이산화탄소도 저감시킬 수 있다. 특히, 리보일러(43)가 이코노마이저(12)에서 생성된 스팀을 이용하여 흡수제를 가열하므로, 스팀 생성을 위한 별도의 보일러를 가동할 필요가 없어 에너지 소모를 줄일 수 있고 보일러 가동에 따른 또 다른 이산화탄소의 생성도 방지할 수 있다.The exhaust pollutant reduction device 1 according to the present invention may oxidize unburned methane contained in the exhaust gas to carbon dioxide by installing the methane oxidation catalytic reactor 20 in the exhaust pipe 10 . As unburned methane is oxidized to carbon dioxide, it is possible to minimize the emission of methane, a greenhouse gas, into the atmosphere, thereby reducing the aggravation of global warming. In particular, as the methane oxidation catalytic reactor 20 is installed inside the selective catalytic reduction reactor 30, the space inside the ship can be used more efficiently, and the ancillary equipment such as the burner unit 50 and the air injection unit 60 is shared. You can do this to reduce costs. In addition, as the methane oxidation catalytic reactor 20 is disposed close to the combustion engine 100, some of the waste heat generated in the combustion engine 100 can be utilized for the catalytic reaction, thereby reducing costs. In addition, by installing the carbon dioxide collecting device 40 in the branch pipe 10a branched from the exhaust pipe 10, it is possible to reduce the carbon dioxide contained in the exhaust gas. In particular, since the reboiler 43 heats the absorbent using the steam generated by the economizer 12, there is no need to operate a separate boiler for steam generation, thereby reducing energy consumption and another carbon dioxide can also be prevented.

도 4는 배기가스의 정화 공정을 도시한 작동도이고, 도 5는 메탄산화촉매반응기와 선택적촉매환원반응기의 재생 공정을 도시한 작동도이다.4 is an operational diagram illustrating a purification process of exhaust gas, and FIG. 5 is an operational diagram illustrating a regeneration process of a methane oxidation catalytic reactor and a selective catalytic reduction reactor.

먼저, 도 4를 참조하여 설명하면, 연소기관(100)에서 발생된 배기가스는 First, referring to FIG. 4 , the exhaust gas generated from the combustion engine 100 is

메탄산화촉매반응기(20)와 선택적촉매환원반응기(30)가 직렬로 설치된 배기관(10)으로 배출되어 혼합기(80)에서 암모니아와 혼합된다. 암모니아는 회수관(11)을 통해 요소수분해유닛(70)으로부터 공급되며, 요소수분해유닛(70)은 버너유닛(50)으로부터 공급되는 열로 요소수주입유닛(71)으로부터 주입되는 요소수를 가열하여 암모니아를 생성할 수 있다. 회수관(11)을 통해 버너유닛(50)으로 공급되는 배기가스가 없는 초기 상태에서는, 버너유닛(50)에 별도로 외기가 유입되어 연료와 함께 가열되며 열을 생성할 수 있다.The methane oxidation catalytic reactor 20 and the selective catalytic reduction reactor 30 are discharged to the exhaust pipe 10 installed in series and mixed with ammonia in the mixer 80 . Ammonia is supplied from the urea water decomposition unit 70 through the recovery pipe 11, and the urea water decomposition unit 70 receives the urea water injected from the urea water injection unit 71 with heat supplied from the burner unit 50. It can be heated to produce ammonia. In an initial state in which there is no exhaust gas supplied to the burner unit 50 through the recovery pipe 11 , outside air is separately introduced into the burner unit 50 to be heated together with fuel and generate heat.

혼합기(80)에서 혼합된 배기가스와 암모니아는 메탄산화촉매반응기(20)의 다공성 지지체(21)를 통과한다. 다공성 지지체(21)는 마그네슘, 알루미늄, 실리카, 지르코니아 중에서 선택된 하나 또는 둘 이상의 산화물로 이루어진 담체에 백금, 팔라듐, 로듐, 루테늄, 코발트 중 선택된 하나 이상의 금속으로 이루어진 메탄산화촉매가 담지된 세라믹 구조물이므로, 배기가스에 포함된 미연소 메탄이 메탄산화촉매의 산소와 반응하여 이산화탄소로 산화될 수 있다. 미연소 메탄이 이산화탄소로 산화된 배기가스는 암모니아와 함께 다공성 지지체(21) 후단에 배치된 선택적촉매환원반응기(30)의 촉매층(31)을 통과하게 되며, 이 때, 배기가스에 포함된 질소산화물이 암모니아 및 배기가스에 포함된 산소와 반응하여 질소와 물로 환원될 수 있다. 이산화탄소와 질소, 물을 포함하는 배기가스는 일부가 배기관(10)으로 이동하고, 나머지 일부가 블로어(51)에 의해 회수관(11)으로 유입될 수 있다. 회수관(11)으로 유입된 배기가스는 버너유닛(50)으로 공급되어 연료와 함께 가열되며 열을 생성하고, 버너유닛(50)에서 생성된 열은 회수관(11)을 통해 요소수분해유닛(70)으로 공급될 수 있다. 버너유닛(50)에 배기가스가 공급되면, 외기의 유입이 중단될 수 있다.The exhaust gas and ammonia mixed in the mixer 80 pass through the porous support 21 of the methane oxidation catalytic reactor 20 . The porous support 21 is a ceramic structure in which a methane oxidation catalyst made of one or more metals selected from platinum, palladium, rhodium, ruthenium, and cobalt is supported on a support made of one or more oxides selected from magnesium, aluminum, silica, and zirconia. Unburned methane contained in the exhaust gas may react with oxygen in the methane oxidation catalyst to be oxidized to carbon dioxide. The exhaust gas in which unburned methane is oxidized to carbon dioxide passes through the catalyst layer 31 of the selective catalytic reduction reactor 30 disposed at the rear end of the porous support 21 together with ammonia, and at this time, nitrogen oxides contained in the exhaust gas It can be reduced to nitrogen and water by reacting with the ammonia and oxygen contained in the exhaust gas. A part of the exhaust gas containing carbon dioxide, nitrogen, and water may move to the exhaust pipe 10 , and the remaining part may be introduced into the recovery pipe 11 by the blower 51 . The exhaust gas introduced into the recovery pipe 11 is supplied to the burner unit 50 and heated together with fuel to generate heat, and the heat generated in the burner unit 50 is transferred to the urea water decomposition unit through the recovery pipe 11 . (70) can be supplied. When exhaust gas is supplied to the burner unit 50 , the inflow of outside air may be stopped.

한편, 배기관(10)으로 이동한 배기가스는 이코노마이저(12)를 통과한 후 일부가 분기관(10a)으로 분기되고 나머지 일부가 연통(F)을 통해 대기 중으로 방출된다. 이코노마이저(12)에서 생성된 스팀은 스팀공급관(12a)을 통해 리보일러(43)로 공급되어 흡수제의 가열에 활용된다.On the other hand, the exhaust gas moving to the exhaust pipe 10 passes through the economizer 12, a part is branched into the branch pipe 10a, and the remaining part is discharged to the atmosphere through the communication pipe (F). The steam generated by the economizer 12 is supplied to the reboiler 43 through the steam supply pipe 12a to be used for heating the absorbent.

분기관(10a)으로 분기된 배기가스는 흡수탑(41)과 재생탑(42)을 차례로 통과하며 이산화탄소가 제거되고, 미연소 메탄, 질소산화물, 이산화탄소가 모두 제거된 배기가스는 흡수탑(41) 상부를 통해 외부로 배출된다. 이 때, 흡수탑(41) 상부를 통해 배출되는 배기가스는 연통(F)으로 배출되는 배기가스에 합류되어 외부로 배출될 수도 있고, 독립적으로 배출될 수도 있다.The exhaust gas branched into the branch pipe 10a passes through the absorption tower 41 and the regeneration tower 42 sequentially to remove carbon dioxide, and the exhaust gas from which all unburned methane, nitrogen oxides, and carbon dioxide are removed is the absorption tower 41 ) is discharged to the outside through the upper part. At this time, the exhaust gas discharged through the upper absorption tower 41 may be discharged to the outside by joining the exhaust gas discharged through the flue F, or may be discharged independently.

이와 같은 일련의 과정을 통해 다공성 지지체(21)와 촉매층(31)이 장시간 사용되면, 수트(soot), 미세분진(PM), 부산물, 기름유, 유/무기 화합물, 고형물질 등 각종 찌꺼기가 촉매 표면에 흡착되어 반응 면적이 줄어들게 된다. 촉매의 반응 면적이 줄어들면, 촉매 반응이 저하되어 오염물질 저감 효과가 감소하므로, 촉매를 재생시켜야 한다. 따라서, 도 5의 (a)에 도시된 바와 같이, 버너유닛(50)에서 생성된 열을 선택적촉매환원반응기(30) 내부로 공급하여 다공성 지지체(21)와 촉매층(31)의 표면에 흡착된 수트(soot) 등의 이물질을 연소시킬 수 있다. 촉매 재생 공정 시, 선택적촉매환원반응기(30)가 설치된 배기관(10)으로 배기가스의 유입이 중단되고 선택적촉매환원반응기(30)를 우회하는 바이패스관(도시되지 않음)으로 배기가스가 유동할 수 있다. 또한, 요소수주입유닛(71)도 요소수분해유닛(70)으로 요소수의 주입을 중단할 수 있다.When the porous support 21 and the catalyst layer 31 are used for a long time through this series of processes, various residues such as soot, fine dust (PM), by-products, oil oil, organic/inorganic compounds, and solid substances become catalysts. It is adsorbed on the surface and the reaction area is reduced. If the reaction area of the catalyst is reduced, the catalyst reaction is lowered and the effect of reducing pollutants is reduced, so the catalyst must be regenerated. Therefore, as shown in (a) of Figure 5, the heat generated in the burner unit 50 is supplied to the inside of the selective catalytic reduction reactor 30 and adsorbed on the surface of the porous support 21 and the catalyst layer 31 Foreign substances such as soot can be burned. During the catalyst regeneration process, the inflow of exhaust gas to the exhaust pipe 10 in which the selective catalytic reduction reactor 30 is installed is stopped, and the exhaust gas flows to a bypass pipe (not shown) that bypasses the selective catalytic reduction reactor 30. can In addition, the urea water injection unit 71 may also stop the injection of the urea water into the urea water decomposition unit 70 .

공기분사유닛(60)은 버너유닛(50)에 의한 촉매 재생 공정과 별도로 주기적으로 동작하여, 도 5의 (b)에 도시된 바와 같이, 다공성 지지체(21)와 촉매층(31)에 압축공기를 분사할 수 있다. 압축공기가 분사됨에 따라 촉매 표면에 붙은 침적된 입자상 또는 유/무기 불순물이 탈리되어 촉매가 재생될 수 있다.The air injection unit 60 operates periodically separately from the catalyst regeneration process by the burner unit 50 to supply compressed air to the porous support 21 and the catalyst layer 31 as shown in FIG. can be sprayed As the compressed air is sprayed, the deposited particulate or organic/inorganic impurities attached to the surface of the catalyst are detached, and the catalyst can be regenerated.

이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can realize that the present invention can be embodied in other specific forms without changing its technical spirit or essential features. you will be able to understand Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

1: 배기 오염물질 저감장치
10: 배기관 10a: 분기관
11: 회수관 12: 이코노마이저
12a: 스팀공급관 20: 메탄산화촉매반응기
21: 다공성 지지체 30: 선택적촉매환원반응기
31: 촉매층 40: 이산화탄소포집장치
41: 흡수탑 42: 재생탑
43: 리보일러 50: 버너유닛
51: 블로어 60: 공기분사유닛
61: 저장탱크 62: 노즐관
63: 송풍기 70: 요소수분해유닛
71: 요소수주입유닛 72: 요소수저장탱크
80: 혼합기
100: 연소기관
F: 연통
1: Exhaust pollutant reduction device
10: exhaust pipe 10a: branch pipe
11: Recovery Building 12: Economizer
12a: steam supply pipe 20: methane oxidation catalyst reactor
21: porous support 30: selective catalytic reduction reactor
31: catalyst layer 40: carbon dioxide trapping device
41: absorption tower 42: regeneration tower
43: reboiler 50: burner unit
51: blower 60: air injection unit
61: storage tank 62: nozzle pipe
63: blower 70: urea water decomposition unit
71: urea water injection unit 72: urea water storage tank
80: mixer
100: combustion engine
F: flue

Claims (7)

액화천연가스를 연소하여 동력을 생성하는 연소기관에서 발생한 배기가스를 배출하는 배기관;
상기 배기관에 설치되며, 메탄산화촉매를 포함하여 상기 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시키는 메탄산화촉매반응기;
상기 메탄산화촉매반응기 후단의 상기 배기관에 설치되어 상기 배기가스에 포함된 질소산화물을 저감시키는 선택적촉매환원반응기;
상기 선택적촉매환원반응기 후단의 상기 배기관에서 분기된 분기관에 설치되어 상기 배기가스에 포함된 이산화탄소를 제거하는 이산화탄소포집장치, 및
상기 선택적촉매환원반응기 후단의 상기 배기관으로부터 상기 배기가스를 공급받아 가열하여 상기 메탄산화촉매반응기 전단의 상기 배기관으로 공급하는 버너유닛을 포함하되,
상기 메탄산화촉매반응기는,
마그네슘, 알루미늄, 실리카, 지르코니아 중에서 선택된 하나 또는 둘 이상의 산화물로 이루어진 담체에 백금, 팔라듐, 로듐, 루테늄, 코발트 중에서 선택된 하나 이상의 금속으로 이루어진 메탄산화촉매가 담지된 세라믹 구조물인 다공성 지지체를 포함하는 배기 오염물질 저감장치.
an exhaust pipe for discharging exhaust gas generated from a combustion engine that generates power by burning liquefied natural gas;
a methane oxidation catalyst reactor installed in the exhaust pipe and oxidizing unburned methane contained in the exhaust gas to carbon dioxide, including a methane oxidation catalyst;
a selective catalytic reduction reactor installed in the exhaust pipe at the rear end of the methane oxidation catalytic reactor to reduce nitrogen oxides contained in the exhaust gas;
A carbon dioxide collecting device installed in a branch pipe branched from the exhaust pipe at the rear end of the selective catalytic reduction reactor to remove carbon dioxide contained in the exhaust gas, and
a burner unit receiving the exhaust gas from the exhaust pipe at the rear end of the selective catalytic reduction reactor, heating it, and supplying it to the exhaust pipe at the front end of the methane oxidation catalyst reactor,
The methane oxidation catalyst reactor,
Exhaust pollution comprising a porous support as a ceramic structure in which a methane oxidation catalyst made of one or more metals selected from platinum, palladium, rhodium, ruthenium, and cobalt is supported on a carrier made of one or more oxides selected from magnesium, aluminum, silica, and zirconia. Substance abatement device.
삭제delete 제1 항에 있어서,
상기 메탄산화촉매반응기는 상기 선택적촉매환원반응기 내부에 설치되는 배기 오염물질 저감장치.
According to claim 1,
The methane oxidation catalytic reactor is an exhaust pollutant reduction device installed inside the selective catalytic reduction reactor.
삭제delete 액화천연가스를 연소하여 동력을 생성하는 연소기관에서 발생한 배기가스를 배출하는 배기관;
상기 배기관에 설치되며, 메탄산화촉매를 포함하여 상기 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시키는 메탄산화촉매반응기;
상기 메탄산화촉매반응기 후단의 상기 배기관에 설치되어 상기 배기가스에 포함된 질소산화물을 저감시키는 선택적촉매환원반응기;
상기 선택적촉매환원반응기 후단의 상기 배기관에서 분기된 분기관에 설치되어 상기 배기가스에 포함된 이산화탄소를 제거하는 이산화탄소포집장치, 및
상기 메탄산화촉매반응기와 상기 선택적촉매환원반응기에 각각 압축공기를 분사하여 불순물을 탈리시키는 공기분사유닛을 포함하되,
상기 메탄산화촉매반응기는,
마그네슘, 알루미늄, 실리카, 지르코니아 중에서 선택된 하나 또는 둘 이상의 산화물로 이루어진 담체에 백금, 팔라듐, 로듐, 루테늄, 코발트 중에서 선택된 하나 이상의 금속으로 이루어진 메탄산화촉매가 담지된 세라믹 구조물인 다공성 지지체를 포함하는 배기 오염물질 저감장치.
an exhaust pipe for discharging exhaust gas generated from a combustion engine that generates power by burning liquefied natural gas;
a methane oxidation catalyst reactor installed in the exhaust pipe and oxidizing unburned methane contained in the exhaust gas to carbon dioxide, including a methane oxidation catalyst;
a selective catalytic reduction reactor installed in the exhaust pipe at the rear end of the methane oxidation catalytic reactor to reduce nitrogen oxides contained in the exhaust gas;
A carbon dioxide collecting device installed in a branch pipe branched from the exhaust pipe at the rear end of the selective catalytic reduction reactor to remove carbon dioxide contained in the exhaust gas, and
An air injection unit for desorbing impurities by injecting compressed air into the methane oxidation catalytic reactor and the selective catalytic reduction reactor, respectively;
The methane oxidation catalyst reactor,
Exhaust pollution comprising a porous support as a ceramic structure in which a methane oxidation catalyst made of one or more metals selected from platinum, palladium, rhodium, ruthenium, and cobalt is supported on a carrier made of one or more oxides selected from magnesium, aluminum, silica, and zirconia. Substance abatement device.
삭제delete 액화천연가스를 연소하여 동력을 생성하는 연소기관에서 발생한 배기가스를 배출하는 배기관;
상기 배기관에 설치되며, 메탄산화촉매를 포함하여 상기 배기가스에 포함된 미연소 메탄을 이산화탄소로 산화시키는 메탄산화촉매반응기;
상기 메탄산화촉매반응기 후단의 상기 배기관에 설치되어 상기 배기가스에 포함된 질소산화물을 저감시키는 선택적촉매환원반응기;
상기 선택적촉매환원반응기 후단의 상기 배기관에서 분기된 분기관에 설치되어 상기 배기가스에 포함된 이산화탄소를 제거하며, 상기 배기가스에 이산화탄소를 흡수하는 흡수제를 분사하는 흡수탑과, 상기 흡수탑으로부터 이산화탄소가 흡수된 상기 흡수제를 공급받아 상기 흡수제로부터 이산화탄소를 분리하는 재생탑을 포함하는 이산화탄소포집장치;
상기 배기관에 설치되며 상기 배기가스와 열교환하여 스팀을 생성하는 이코노마이저, 및
상기 이코노마이저에서 생성된 상기 스팀을 이용하여 상기 재생탑으로 공급되는 상기 흡수제를 가열하는 리보일러를 포함하는 배기 오염물질 저감장치.
an exhaust pipe for discharging exhaust gas generated from a combustion engine that generates power by burning liquefied natural gas;
a methane oxidation catalyst reactor installed in the exhaust pipe and oxidizing unburned methane contained in the exhaust gas to carbon dioxide, including a methane oxidation catalyst;
a selective catalytic reduction reactor installed in the exhaust pipe at the rear end of the methane oxidation catalytic reactor to reduce nitrogen oxides contained in the exhaust gas;
an absorption tower installed in a branch pipe branched from the exhaust pipe at the rear end of the selective catalytic reduction reactor to remove carbon dioxide contained in the exhaust gas, and injecting an absorbent for absorbing carbon dioxide into the exhaust gas; a carbon dioxide collecting device including a regeneration tower for receiving the absorbed absorbent and separating carbon dioxide from the absorbent;
an economizer installed in the exhaust pipe and heat-exchanged with the exhaust gas to generate steam; and
and a reboiler configured to heat the absorbent supplied to the regeneration tower by using the steam generated by the economizer.
KR1020200082637A 2020-07-06 2020-07-06 Apparatus for reducing air pollutant KR102391330B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200082637A KR102391330B1 (en) 2020-07-06 2020-07-06 Apparatus for reducing air pollutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200082637A KR102391330B1 (en) 2020-07-06 2020-07-06 Apparatus for reducing air pollutant

Publications (2)

Publication Number Publication Date
KR20220005663A KR20220005663A (en) 2022-01-14
KR102391330B1 true KR102391330B1 (en) 2022-04-28

Family

ID=79342710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200082637A KR102391330B1 (en) 2020-07-06 2020-07-06 Apparatus for reducing air pollutant

Country Status (1)

Country Link
KR (1) KR102391330B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102531551B1 (en) * 2022-09-27 2023-05-18 겟에스씨알 주식회사 Carbon Dioxide Capture Storage System and Method for Vessel
WO2024186172A1 (en) * 2023-03-08 2024-09-12 에이치디한국조선해양 주식회사 Carbon dioxide capture system for ship

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034503A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Process for producing synthesis gas and methanol
US20100263352A1 (en) * 2007-11-02 2010-10-21 T. Baden Hardstaff Ltd. Hillside Exhaust system
JP2016215091A (en) * 2015-05-15 2016-12-22 株式会社 Acr Binary fuel oxidation catalyst, binary fuel scr exhaust gas treatment mechanism, binary fuel diesel internal combustion engine and controlling method therefor
JP2020062604A (en) * 2018-10-17 2020-04-23 トヨタ自動車株式会社 Gas separation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834488B1 (en) 2016-10-27 2018-03-05 삼성중공업 주식회사 Apparatus for reducing air pollutant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034503A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Process for producing synthesis gas and methanol
US20100263352A1 (en) * 2007-11-02 2010-10-21 T. Baden Hardstaff Ltd. Hillside Exhaust system
JP2016215091A (en) * 2015-05-15 2016-12-22 株式会社 Acr Binary fuel oxidation catalyst, binary fuel scr exhaust gas treatment mechanism, binary fuel diesel internal combustion engine and controlling method therefor
JP2020062604A (en) * 2018-10-17 2020-04-23 トヨタ自動車株式会社 Gas separation system

Also Published As

Publication number Publication date
KR20220005663A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6482634B2 (en) Method and system for removing particulate matter soot, ash and heavy metals from engine exhaust gas
RU2517714C2 (en) Method of removing impurities from diesel engine exhaust gas
EP2724767B1 (en) A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
US10350543B2 (en) Gas treatment process and apparatus
CN105102782B (en) The situ regeneration method of the denitrating catalyst of emission control system
JP2011122593A (en) Method for treating pollutant contained in exhaust gas of internal combustion engine, and pollutant treatment system using the same
KR102391330B1 (en) Apparatus for reducing air pollutant
CN106133288A (en) Use the emission-control equipment of the marine diesel engine of the low-grade fuel containing high concentration sulfur composition
BR112013005816B1 (en) CATALYST, METHOD FOR GENERATING HEAT FOR SOOT REMOVAL AND REDUCING NH3 EXHAUST IN AN EXHAUST SYSTEM, AND EXHAUST TREATMENT SYSTEM
KR20110117323A (en) Diesel engine exhaust gas purification device having ammonia decomposition module
JP2007291980A (en) Exhaust emission control device
KR100999616B1 (en) Apparatus for reducing nitrogen oxide cotained in exhaust gas
CN107737527A (en) Marine exhaust dedusting denitrification integral system
EA021314B1 (en) Combined treatment of waste gas streams containing ammonia and nitrogen oxides in industrial plants
JP2015068345A (en) Method of exhaust gas treatment for gas turbine system and exhaust gas treatment assembly
CN104857823A (en) Flue gas purifying compression and decompression equipment and method thereof
JP2007009718A (en) Exhaust emission control device
KR20100108802A (en) Treatment unit of exhaust gas from ship
KR101485952B1 (en) Apparatus of carbon dioxide separation-regeneration with oxygen removal equipment
KR102369336B1 (en) Apparatus for reducing air pollutant
JP2007218108A (en) Exhaust emission control device
KR101096317B1 (en) The removal system and the method of air pollutants from exhaust gas by using the catalytic converter
JP6655241B2 (en) Denitrification desulfurization apparatus and land and ship internal combustion engine using the same
KR102608674B1 (en) CO2 capture system in flue gas of ship including regeneration of CO2 adsorbent using waste heat of flue gas and method for colleting the same
CN218599739U (en) Heat accumulating type incinerator-SNCR-SCR combined denitration integrated device

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right