JP2017006902A - Water treatment system, water treatment method, and method for managing water treatment method - Google Patents

Water treatment system, water treatment method, and method for managing water treatment method Download PDF

Info

Publication number
JP2017006902A
JP2017006902A JP2015253331A JP2015253331A JP2017006902A JP 2017006902 A JP2017006902 A JP 2017006902A JP 2015253331 A JP2015253331 A JP 2015253331A JP 2015253331 A JP2015253331 A JP 2015253331A JP 2017006902 A JP2017006902 A JP 2017006902A
Authority
JP
Japan
Prior art keywords
water
treatment
raw water
treated
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015253331A
Other languages
Japanese (ja)
Other versions
JP6589627B2 (en
Inventor
元 高橋
Hajime Takahashi
高橋  元
高志 西田
Takashi Nishida
高志 西田
山本 学
Manabu Yamamoto
学 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Publication of JP2017006902A publication Critical patent/JP2017006902A/en
Application granted granted Critical
Publication of JP6589627B2 publication Critical patent/JP6589627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment system that can sufficiently remove impurity components from water, and is low in equipment cost, treatment cost and management cost.SOLUTION: Provided is a water treatment system and method including: a raw water tank for diluting a heavy metal-containing raw water with a treated water or a fresh water; a means for adding an inorganic coagulant and a chelator installed after the raw water tank; a pH adjustment means disposed in the inorganic coagulant and chelator addition means, or downstream of the inorganic coagulant and chelator addition means; a membrane filtration unit capable of treating a high turbidity wastewater at high permeation flow rate, in which hollow fibers made of PVDF having an unused fresh water permeation flow rate of 50 m/m/ day or more on a single fiber base under an operation pressure of 100 kPa, are bundled with one end free, downstream of the pH adjustment means as a means for carrying out a physical treatment; and a means for sending the treated water from the membrane filtration unit to the raw water tank.SELECTED DRAWING: Figure 1

Description

本発明は、水処理システムおよび水処理方法に関する。具体的には、本発明は、重金属を含む排水から重金属を除去する処理を施すシステムおよび処理方法であって、重金属以外のCOD成分もしくは濁度成分を含む排水に適用できる水処理システムおよび水処理方法に関する。   The present invention relates to a water treatment system and a water treatment method. Specifically, the present invention relates to a system and a processing method for performing a treatment for removing heavy metals from wastewater containing heavy metals, and a water treatment system and a water treatment that can be applied to wastewater containing COD components or turbidity components other than heavy metals. Regarding the method.

水資源を守るために、上水、排水、廃水、汚水などの様々な水から不純物成分を除去し、浄化水を得る水処理が求められている。例えば、イタイイタイ病の原因物質であるカドミウムのように、金属工業、非鉄金属第1次製錬・精製業、非鉄金属第2次製錬・精製業、溶融めっき業、水産食料品製造業の排水に含まれる重金属成分は、人の健康に影響を及ぼす可能性がある。このため、国連機関や日本国を含む各国で重金属に関する環境基準や排出基準が定められている。カドミウムは、国連機関による耐容摂取量の設定を受け、水質汚濁防止法の排水基準が0.03mg/L以下に強化された(非特許文献1)。   In order to protect water resources, there is a demand for water treatment that removes impurity components from various waters such as tap water, waste water, waste water, and sewage to obtain purified water. For example, like cadmium which is a causative agent of Itai-itai disease, it is used for wastewater of the metal industry, non-ferrous metal primary smelting / refining industry, non-ferrous metal secondary smelting / refining industry, hot-dip plating industry, fishery food manufacturing industry. Contained heavy metal components can affect human health. For this reason, environmental standards and emission standards for heavy metals have been established in each country, including UN agencies and Japan. Cadmium has been set tolerable intake by the United Nations organization, and the water pollution standard of the Water Pollution Control Law has been strengthened to 0.03 mg / L or less (Non-patent Document 1).

特開2014−61506号公報JP 2014-61506 A 特表2009−509737号公報Special table 2009-509737 gazette

環境省「水質汚濁防止法に基づく排出水の排出、地下浸透水の浸透等の規制に係る項目の許容限度等の見直しについて(報告案)」Ministry of the Environment “About review of allowable limits of items related to regulations such as discharge of discharged water and penetration of underground seepage water based on Water Pollution Control Law (Draft Report)”

排水中からのカドミウムの除去方法として、キレート剤と無機凝集剤を添加後に凝集沈殿または加圧浮上により汚泥として分離する方法や、pH12程度のアルカリ性にして凝集沈殿で水酸化カドミウム汚泥として分離する方法などの物理化学処理が知られている。しかしながら、本発明者が物理化学処理を検討したところ、凝集沈殿または加圧浮上での汚泥分離率(除去率)は100%ではなく、水から不純物成分を十分に除去できないことがわかった。例えば、カドミウム含有量が高い排水に物理化学処理をしただけでは、法規制値(0.03mg/L未満)を満たす程度まで水を浄化することが難しかった。
すなわち、従来、排水の処理では新たな法規制値(0.03mg/L未満)までカドミウム含有量を減らさないでよかったので生物処理および/または物理化学処理で十分だった。しかしながら、生物処理および/または物理化学処理で除去されなかったカドミウムを十分に除去する要望が、法基準の変更により生じたことがわかった。
As a method for removing cadmium from wastewater, a method of separating as sludge by adding coagulant and inorganic flocculant after coagulating sedimentation or pressurized flotation, or a method of separating it as cadmium hydroxide sludge by coagulation sedimentation with alkalinity of about pH 12 Physicochemical processing such as is known. However, when the present inventor examined the physicochemical treatment, it was found that the sludge separation rate (removal rate) during coagulation sedimentation or pressurized flotation was not 100%, and the impurity components could not be sufficiently removed from water. For example, it was difficult to purify water to the extent that it satisfies the legal regulation value (less than 0.03 mg / L) only by physicochemical treatment of wastewater with a high cadmium content.
That is, conventionally, in the treatment of wastewater, it was not necessary to reduce the cadmium content to a new legal regulation value (less than 0.03 mg / L), and thus biological treatment and / or physicochemical treatment was sufficient. However, it has been found that the desire to fully remove cadmium that has not been removed by biological and / or physicochemical treatment has arisen due to changes in legal standards.

一方、水から不純物成分を除去する方法として、ろ過膜などの物理処理を行う方法が知られている。しかしながら、水から除去される不純物成分の割合を100%に近づけようとして限外ろ過膜などを用いて精度の高い物理処理を行うと、大面積のろ過膜を用いなくては十分な処理水量(通水量)を維持できないために設備コストが高くなる。また、精度の高い物理処理を行うと、ろ過膜の逆洗の頻度を多くしなければならないために処理コストおよび管理コストが高くなる。   On the other hand, as a method of removing impurity components from water, a method of performing physical treatment such as filtration membrane is known. However, if high-precision physical treatment is performed using an ultrafiltration membrane or the like in an attempt to bring the ratio of impurity components removed from water close to 100%, a sufficient amount of treated water ( The equipment cost increases because the water flow rate cannot be maintained. Moreover, if physical processing with high accuracy is performed, the frequency of backwashing of the filtration membrane must be increased, which increases processing costs and management costs.

これに対し、オゾン等を用いた洗浄を加えることで物理処理を可能とし、処理水中の固体濃度をさらに減らす方法が知られている(特許文献1および2参照)。
特許文献1には、有機物を含む下水および排水の少なくともいずれかが流入して生物処理された後に固液分離する1次処理手段と、この1次処理手段で処理され発生した1次処理水を限外ろ過膜でろ過する2次処理手段と、この2次処理手段で処理され発生した2次処理水で2次処理手段を逆洗する逆洗手段と、2次処理手段で逆洗されて発生した逆洗排水を1次処理手段に導く逆洗排水流路と、1次処理手段から引抜汚泥を廃棄する汚泥引抜流路とを備え、2次処理手段はこの2次処理手段の被処理水を循環させる循環手段を有する液体処理設備が記載されている。特許文献1によれば、オゾンによる洗浄を定期的に行うことで、2次処理の限外ろ過膜処理が可能であるとしている。
特許文献2には、液体−固体分離ステップと、ステップに続いて少なくとも1つの濾過ステップとを含む水処理方法であって、液体−固体分離ステップが、15m/hを超える速度で実施される沈降ステップを含み、濾過ステップが、少なくとも1つの精密濾過膜または限外濾過膜により直接行われる水処理方法が記載されている。特許文献2によれば、オゾンによる洗浄を行うことで、処理水の目詰まり指数(またはSDI)のより良好な制御を可能にする処理方法を提案すること、すなわち既知の技法によって得られた指数に対してこの指数を低下させることを目的とするなどと記載されている。
On the other hand, a method is known in which physical treatment is possible by adding cleaning using ozone or the like, and the solid concentration in the treated water is further reduced (see Patent Documents 1 and 2).
Patent Document 1 discloses a primary treatment means for performing solid-liquid separation after at least one of sewage and wastewater containing organic substances flows in and biologically treated, and primary treated water generated by the treatment by the primary treatment means. Secondary processing means for filtering with an ultrafiltration membrane, backwashing means for backwashing the secondary treatment means with secondary treated water generated by the secondary treatment means, and backwashed by the secondary treatment means A backwash drainage channel for guiding the generated backwash wastewater to the primary treatment means, and a sludge extraction channel for discarding the sludge withdrawn from the primary treatment means, the secondary treatment means being treated by the secondary treatment means A liquid treatment facility having a circulation means for circulating water is described. According to Patent Document 1, it is said that a secondary ultrafiltration membrane treatment is possible by periodically performing cleaning with ozone.
Patent Document 2 discloses a water treatment method including a liquid-solid separation step and at least one filtration step following the step, wherein the liquid-solid separation step is performed at a speed exceeding 15 m / h. A water treatment method is described, wherein the filtration step is carried out directly by at least one microfiltration membrane or ultrafiltration membrane. According to Patent Document 2, a treatment method that enables better control of the clogging index (or SDI) of treated water by performing cleaning with ozone, that is, an index obtained by a known technique. Is intended to reduce this index.

本発明の第1の特徴は、無機凝集剤およびキレート剤を適切に組み合わせることで、特許文献1や2などに記載のようなオゾンによる洗浄を行わなくとも、物理処理を可能としている点にある。さらに、前記キレート剤の使用により、単に物理化学処理と物理処理を組み合わせる特許文献1や2などに記載の方法では不可能であったカドミウムなど水に溶解した汚濁成分を法規制値(0.03mg/L未満)を満たす程度まで浄化できる点にある。   The first feature of the present invention is that a physical treatment is possible by appropriately combining an inorganic flocculant and a chelating agent without performing cleaning with ozone as described in Patent Documents 1 and 2 and the like. . Furthermore, by using the chelating agent, a turbid component dissolved in water such as cadmium, which is impossible by the method described in Patent Documents 1 and 2, which simply combines physicochemical treatment and physical treatment, is regulated by law (0.03 mg). / L) can be purified to such a degree as to satisfy.

本発明の第2の特徴は、物理処理した処理水もしくは清水で原水を希釈することで原水のCODもしくは濁度を一定濃度以下とし、従来中空糸膜のような高度な処理の適用が困難であったCODもしくは濁度が高い原水の処理が可能になる点である。さらに、処理水を原水と混ぜて処理する手段として広く採用されるクロスフロー方式と異なり、中空糸膜で分離した汚濁成分を濃縮水として原水側に蓄積することなく、定期的な物理洗浄により汚濁物を定期的に系外に排出できる点にある。しかしながら、原水の希釈倍率が高くなると物理処理を通過する排水量が増え、設備が過大となる欠点があることから、物理処理に高濁度の原水処理が可能で透過流量が高い中空糸膜を採用し、前記欠点を克服した。   The second feature of the present invention is that the raw water is diluted with physically treated treated water or fresh water so that the COD or turbidity of the raw water is not more than a certain concentration, and it is difficult to apply advanced treatment such as a conventional hollow fiber membrane. This is the point that it is possible to treat the raw water with high COD or high turbidity. Furthermore, unlike the cross-flow method, which is widely used as a means of mixing treated water with raw water, the pollutant components separated by the hollow fiber membrane are not accumulated as concentrated water on the raw water side, and are contaminated by regular physical cleaning. It is in the point that a thing can be periodically discharged out of the system. However, as the dilution rate of raw water increases, the amount of wastewater that passes through physical treatment increases, and there is a disadvantage that the equipment becomes excessive, so a hollow fiber membrane that can treat raw water with high turbidity and has a high permeate flow rate is adopted for physical treatment. And the above-mentioned drawbacks were overcome.

本発明が解決しようとする課題は、水から溶解成分を含む不純物成分を十分に除去でき、設備コスト、処理コストおよび管理コストが低い水処理システムを提供することである。   The problem to be solved by the present invention is to provide a water treatment system that can sufficiently remove impurity components including dissolved components from water and has low equipment cost, treatment cost, and management cost.

上記の課題を解決するために鋭意検討を行った。物理処理を行う前に無機凝集剤およびキレート剤を添加することにより、水から重金属成分を十分に除去でき、設備コスト、処理コストおよび管理コストが低い水処理システムを提供できることが見出された。しかしながら、原水のCODもしくは濁度が高い場合、キレート剤もしくは無機凝集剤の効果が小さくなり、重金属の除去が不十分となった。そこで、原水を物理処理水の一部もしくは清水で希釈してCODもしくは濁度を一定濃度未満とすることで十分な重金属の除去が可能となることを見出した。
上記課題を解決するための具体的な手段である本発明および本発明の好ましい態様は、以下の構成である。
In order to solve the above problems, intensive studies were conducted. It has been found that by adding an inorganic flocculant and a chelating agent prior to physical treatment, a heavy metal component can be sufficiently removed from water, and a water treatment system with low equipment cost, treatment cost and management cost can be provided. However, when COD or turbidity of raw water is high, the effect of the chelating agent or inorganic flocculant is reduced, and the removal of heavy metals is insufficient. Therefore, it was found that sufficient heavy metals can be removed by diluting raw water with a part of physical treated water or with fresh water to make COD or turbidity below a certain concentration.
The present invention, which is a specific means for solving the above problems, and preferred embodiments of the present invention have the following configurations.

[1] 重金属を含有する原水に無機凝集剤およびキレート剤を添加する手段と、無機凝集剤とキレート剤を添加する手段の中、もしくは無機凝集剤とキレート剤の添加手段の下流に配置されるpH調整手段と、pH調整手段の下流に物理処理を行う手段として未使用での清水透過流量が操作圧力100kPa下単糸ベースで50m3/m2/・日以上であるPVDF製の中空糸を片端をフリーとして束ねた高濁度排水を高透過流量で処理することが可能な膜ろ過装置を設置した水処理システム。
[2] 前記重金属を含有する原水を物理処理した処理水もしくは清水で希釈する手段を有する[1]に記載の水処理システム。
[3] 前記重金属を含有する原水を前記物理処理した処理水もしくは清水で希釈し、前記原水のCODもしくは濁度を一定濃度未満に調整することを特徴とする重金属を含有する原水の処理方法。
[1] Arranged in the means for adding the inorganic flocculant and chelating agent to the raw water containing heavy metal and the means for adding the inorganic flocculant and chelating agent, or downstream of the means for adding the inorganic flocculant and chelating agent One end of a PVDF hollow fiber with a pH adjustment means and a fresh water permeation flow rate of 50 m3 / m2 / day or more on a single yarn base under an operating pressure of 100 kPa as a means for performing physical treatment downstream of the pH adjustment means. A water treatment system equipped with a membrane filtration device that can treat high-turbidity wastewater bundled as free at a high permeation flow rate.
[2] The water treatment system according to [1], further comprising means for diluting the raw water containing the heavy metal with treated water or fresh water that has been physically treated.
[3] A method for treating raw water containing heavy metal, wherein the raw water containing heavy metal is diluted with the physically treated treated water or fresh water, and the COD or turbidity of the raw water is adjusted to be less than a certain concentration.

本発明によれば、CODもしくは濁度の汚濁のある排水から重金属を十分に除去でき、設備コスト、処理コストおよび管理コストが低い水処理システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a heavy metal can fully be removed from the waste_water | drain with COD or turbidity pollution, and the water treatment system with low installation cost, processing cost, and management cost can be provided.

図1は、本発明の水処理システムの構成の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the configuration of the water treatment system of the present invention.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は「〜」前後に記載される数値を下限値および上限値として含む範囲を意味する。   Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

[水処理システム、水処理方法]
本発明の水処理システムは、原水に無機凝集剤およびキレート剤を添加する手段と、無機凝集剤およびキレート剤を添加する手段の中もしくはその下流に配置されるpHを調整する手段とpHを調整する手段の下流に設置された物理処理を行う手段を有する。さらに、物理処理した処理水もしくは清水を用いて原水のCODもしくは濁度を一定値未満に希釈調整する手段を有する。
これらの構成により、本発明の水処理システムおよび水処理方法は、水から重金属物成分を十分に除去でき、設備コスト、処理コストおよび管理コストが低い。さらに、原水を処理水で希釈調整することで、CODもしくは濁度が高い原水であっても、重金属を十分に除去できる。
本発明の水処理システムおよび水処理方法によれば、物理処理した処理水中の不純物成分の濃度を低くできる。前期不純物には大腸菌などの細菌類も含まれることから、処理水は細菌類が完全に除去された無菌水となる。
本発明の水処理システムおよび水処理方法によれば、CODもしくは濁度が高い原水であっても、重金属を十分に除去できるため、従来必要であった物理化学処理や生物処理を割愛できる。そのため、設備コスト、処理コストおよび管理コストを低くすることができる。
特開2014−61506、特表2009−509737号公報などで、一次処理手段を通過した処理水に対し、物理処理の前に無機凝集剤を添加せずに限外ろ過などの物理処理をしていたことから、微細な懸濁物が物理処理装置の細孔内に詰まることで発生するファウリングの問題で経済性や処理性に大きな問題を抱えていた。本発明によれば、この問題は凝集剤が懸濁物を粗大化させ、細孔詰まりを生じず、ファウリングトラブルが発生し難くなることがわかった。さらに、本発明では、一次処理水のCODおよび/または紫外線吸収量を設定値未満とする管理を取り入れることで、物理処理でのファウリングを抑制し、逆洗間隔の延長および処理流量の増大を可能とした。
特開2014−61506、特表2009−509737号公報の水に凝集剤を加えてから固体と液体を分離する物理化学処理をした処理水に対し、ろ過膜などを用いて物理処理を行って処理水中の固体濃度をさらに減らす方法であるが、溶解している重金属成分を排水から取り除く作用はなかった。本発明は凝集剤の一部に重金属を水に不溶な状態に変えるキレート剤を適切量用いることで、溶存するカドミウムなどの重金属を排水規制値以下にまで除去できる点で優れている。
[Water treatment system, water treatment method]
The water treatment system of the present invention adjusts the pH with a means for adding an inorganic flocculant and a chelating agent to raw water, a means for adjusting the pH disposed in or downstream of the means for adding an inorganic flocculant and a chelating agent. Means for performing physical processing installed downstream of the means for performing the processing. Furthermore, it has means for diluting the COD or turbidity of raw water to below a certain value using treated water or fresh water that has been physically treated.
With these configurations, the water treatment system and the water treatment method of the present invention can sufficiently remove heavy metal components from water, and the equipment cost, treatment cost, and management cost are low. Furthermore, by adjusting the dilution of raw water with treated water, heavy metals can be sufficiently removed even with raw water having high COD or high turbidity.
According to the water treatment system and the water treatment method of the present invention, the concentration of the impurity component in the physically treated treated water can be lowered. Since the impurities in the early stage include bacteria such as E. coli, the treated water is aseptic water from which the bacteria have been completely removed.
According to the water treatment system and water treatment method of the present invention, heavy metals can be sufficiently removed even with raw water having high COD or high turbidity, so that conventionally required physicochemical treatment and biological treatment can be omitted. Therefore, equipment cost, processing cost, and management cost can be reduced.
In JP 2014-61506 A, JP 2009-509737 A, etc., physical treatment such as ultrafiltration is performed on the treated water that has passed through the primary treatment means without adding an inorganic flocculant before the physical treatment. For this reason, the problem of fouling that occurs when the fine suspension is clogged in the pores of the physical processing apparatus has a big problem in economy and processability. According to the present invention, it has been found that the problem is that the flocculant coarsens the suspension, does not cause pore clogging, and fouling trouble is less likely to occur. Furthermore, in the present invention, by adopting management that makes the COD and / or ultraviolet absorption amount of the primary treated water less than the set value, fouling in the physical treatment is suppressed, the backwash interval is extended and the treatment flow rate is increased. It was possible.
Treated water treated by physicochemical treatment to separate solids and liquids after adding a flocculant to water described in JP-A-2014-61506 and JP-T-2009-509737, using a filtration membrane or the like to perform treatment Although it is a method of further reducing the concentration of solids in water, there was no effect of removing dissolved heavy metal components from waste water. The present invention is excellent in that a heavy metal such as cadmium that is dissolved can be removed to a level equal to or lower than the drainage regulation value by using an appropriate amount of a chelating agent that changes heavy metal into a state insoluble in water as a part of the flocculant.

本発明の水処理システムおよび水処理方法では、CODもしくは濁度が高い原水であっても、最終的に得られる浄化水の重金属濃度を非常に低くすることができる。特に、カドミウムを高濃度(0.1mg/L以上)含む原水を用いた場合であっても、確実に水質汚濁防止法の放流規制値(0.03mg/L)未満のカドミウム濃度の浄化水を得られる。
本発明の水処理システムおよび水処理方法で物理処理の後に最終的に得られる浄化水は、大腸菌などの菌類を含まない清澄な水である。そのため、衛生上の観点から海水の代わりに水道水を使用しているような水産加工分野では、得られた浄化水を水道水に替えて使用できるメリットも期待できる。
以下、本発明の水処理システムおよび水処理方法の好ましい態様について説明する。
In the water treatment system and the water treatment method of the present invention, even if the raw water has high COD or high turbidity, the heavy metal concentration of the finally obtained purified water can be very low. In particular, even when raw water containing a high concentration (0.1 mg / L or more) of cadmium is used, purified water with a cadmium concentration that is surely less than the release regulation value (0.03 mg / L) of the Water Pollution Control Law is used. can get.
The purified water finally obtained after physical treatment by the water treatment system and the water treatment method of the present invention is clear water that does not contain fungi such as Escherichia coli. Therefore, in the fishery processing field where tap water is used instead of seawater from the viewpoint of hygiene, a merit that the obtained purified water can be used instead of tap water can be expected.
Hereinafter, preferred embodiments of the water treatment system and the water treatment method of the present invention will be described.

<水処理システムの構成>
本発明の水処理システムの構成の好ましい態様を図面に基づいて説明する。本発明は図面に示された具体的な構成によって限定されるものではない。
図1は、本発明の水処理システムの構成の一例を示す概略図である。図1に示す水処理システムは、原水1を受け入れ、物理処理装置14で処理した処理水5および清水で原水1のCODもしくは濁度が一定濃度未満となるように希釈する原水槽11と、原水槽11でCODもしくは濁度を一定濃度未満に希釈調整された処理水2に無機凝集剤とキレート剤を添加する手段12と、手段12を通過した処理水3のpHを調整する手段13と、手段13でpHを調整された処理水4を物理処理する手段14と、手段14を通過した処理水5を原水槽に戻す手段15を有する。手段12で添加するキレート剤は原水が含有する重金属濃度に応じて調整し、無機凝集剤は原水が含有するCODもしくは濁度に応じて調整する。キレート剤と無機凝集剤の添加の順番は同時添加でも良いが、キレート剤を添加後、無機凝集剤を添加することが好ましい。
本発明の水処理システムは、図1に示すとおり物理処理手段14において中空糸表面に蓄積した懸濁物を定期的に系外排出する洗浄する装置16を備えることが望ましい。
次に、本発明の水処理システムを構成する各手段の好ましい態様について説明する。
<Configuration of water treatment system>
The preferable aspect of the structure of the water treatment system of this invention is demonstrated based on drawing. The present invention is not limited to the specific configuration shown in the drawings.
FIG. 1 is a schematic diagram showing an example of the configuration of the water treatment system of the present invention. The water treatment system shown in FIG. 1 receives the raw water 1 and dilutes the raw water 1 with the treated water 5 and fresh water treated by the physical treatment device 14 so that the COD or turbidity of the raw water 1 is less than a certain concentration, Means 12 for adding an inorganic flocculant and a chelating agent to the treated water 2 whose COD or turbidity is adjusted to be less than a certain concentration in the water tank 11; means 13 for adjusting the pH of the treated water 3 that has passed the means 12; A means 14 for physically treating the treated water 4 whose pH is adjusted by the means 13 and a means 15 for returning the treated water 5 that has passed the means 14 to the raw water tank are provided. The chelating agent added by means 12 is adjusted according to the concentration of heavy metal contained in the raw water, and the inorganic flocculant is adjusted according to the COD or turbidity contained in the raw water. The order of addition of the chelating agent and the inorganic flocculant may be simultaneous addition, but it is preferable to add the inorganic flocculant after the addition of the chelating agent.
As shown in FIG. 1, the water treatment system of the present invention desirably includes a cleaning device 16 that periodically discharges the suspension accumulated on the surface of the hollow fiber in the physical treatment means 14.
Next, the preferable aspect of each means which comprises the water treatment system of this invention is demonstrated.

<原水槽>
本発明の水処理システムは、原水のCODもしくは濁度を一定濃度未満に調整する原水槽を含む。
<Raw water tank>
The water treatment system of this invention contains the raw | natural water tank which adjusts COD or turbidity of raw | natural water to less than a fixed density | concentration.

原水としては、例えば水産加工排水や水産加工場排水を下水受け入れしている公共下水を挙げることができる。
原水中に溶解している成分、例えばカドミウム等の重金属を除去する場合、キレート剤など除去したい溶解成分に適した凝集剤と十分に反応させて水に不溶な懸濁物に変えた後、中空糸膜などの物理処理で懸濁物を原水から分離し、前記汚濁成分を含まない水を得ることができる。前記処理方法を鋭意検討する中で、原水中に有機物、とりわけ水産加工排水などに多く含まれるタンパクや油脂が前期物理処理前に添加するキレート剤等の凝集剤との反応を阻害し、凝集剤の必要量が増加すること、さらに前期有機物は中空糸膜表面に付着してろ過を妨げたり、原水の粘性を上げて前期限外ろ過膜の通過抵抗を大きくし、膜の逆洗頻度が上昇したり、必要な膜面積が増加するなど種々の阻害要因になることを見出し、原水槽にて原水のCOD(マンガン)を160mg/L以下、好ましくは120mg/L以下、もっとも好ましくは80mg/L以下とすることで、前期凝集剤や膜面積を増やすことなく、カドミウム等の水に溶存している物質を確実に除去できることを見出した。原水槽での希釈処理の指標は濁度で代替することも可能であり、原水槽通過後の原水の濁度は50度以下、望ましくは30度以下、もっとも望ましくは20度以下であった。紫外線吸収量の設定値は濁度または色度の影響を受けることから、CODとの相関を確認して設定する。
Examples of the raw water include public sewage that receives sewage from fishery processing wastewater and fishery processing plant wastewater.
When removing components dissolved in the raw water, such as heavy metals such as cadmium, the mixture is thoroughly reacted with an aggregating agent suitable for the dissolved component to be removed, such as a chelating agent, and then changed to a water-insoluble suspension, then hollow. The suspension can be separated from the raw water by physical treatment such as a thread membrane to obtain water that does not contain the contaminating component. In the intensive study of the treatment method, organic substances in raw water, especially proteins and fats and oils that are abundantly contained in fishery processing wastewater, inhibit the reaction with aggregating agents such as chelating agents added before the previous physical treatment, In addition, the organic matter adheres to the hollow fiber membrane surface and impedes filtration, or increases the viscosity of the raw water to increase the passage resistance of the pre-deadline membrane and increases the frequency of backwashing of the membrane. Or COD (manganese) of raw water in the raw water tank is 160 mg / L or less, preferably 120 mg / L or less, most preferably 80 mg / L. It has been found that the substances dissolved in water such as cadmium can be reliably removed without increasing the aggregating agent and membrane area in the previous period. The index of dilution treatment in the raw water tank can be replaced by turbidity, and the turbidity of the raw water after passing through the raw water tank is 50 degrees or less, desirably 30 degrees or less, and most desirably 20 degrees or less. The set value of the UV absorption amount is affected by turbidity or chromaticity, and is set after confirming the correlation with COD.

重金属含有水である原水としては、例えば水産加工排水が挙げられる。水産加工排水とは、水産加工事業所から排出される排水であり、主に、魚類、貝類及び魚卵由来の有機物や重金属を含む排水である。特に、ホタテの中腸腺やイカの肝臓、カニの内臓にはカドミウムが含まれることから、これら軟体動物や甲殻動物を加工する水産加工場からはカドミウムを含む排水が排出される。このため、本発明を水産加工排水に好ましく用いることができる。水産加工排水は、通常、BOD濃度が10〜5000mg/L、COD濃度が30〜3000mg/L、塩分濃度が0〜20%、カドミウム濃度が0〜3mg/L、亜鉛濃度が0〜30mg/L、鉄濃度が0〜30mg/Lである。
なお、本発明は、水産加工場より排出される重金属含有排水の処理において、顕著な効果を奏するが、これ以外の原水、例えば、非鉄金属業やメッキ工場、半導体工場等より排出される重金属含有排水の処理に適用することもできる。
Examples of raw water that is heavy metal-containing water include fishery processing wastewater. Fishery processing wastewater is wastewater discharged from a fishery processing establishment, and is mainly wastewater containing fish, shellfish, fish egg-derived organic matter and heavy metals. In particular, cadmium is contained in the midgut gland of the scallop, the liver of the squid, and the internal organs of the crabs. Therefore, wastewater containing cadmium is discharged from the fishery processing plant that processes these molluscs and crustaceans. For this reason, this invention can be preferably used for fishery processing waste water. Marine processed wastewater usually has a BOD concentration of 10 to 5000 mg / L, a COD concentration of 30 to 3000 mg / L, a salinity concentration of 0 to 20%, a cadmium concentration of 0 to 3 mg / L, and a zinc concentration of 0 to 30 mg / L. The iron concentration is 0-30 mg / L.
In addition, although this invention has a remarkable effect in the treatment of heavy metal containing wastewater discharged from a fishery processing plant, it contains heavy metals discharged from other raw water such as non-ferrous metal industry, plating factory, semiconductor factory, etc. It can also be applied to wastewater treatment.

本発明において処理し得る原水の量は特に制限されないが、本発明では、多量の原水を処理することが可能である。具体的には、一日当たり500m以上の原水を処理することも可能である。本発明は多量の原水を効率よく処理できる。とりわけ多量の原水を処理する場合において、高濁度の原水を高透過水量で処理できる本発明は設備費および設備面積の観点から有利となる。、 The amount of raw water that can be treated in the present invention is not particularly limited, but a large amount of raw water can be treated in the present invention. Specifically, it is possible to treat raw water of 500 m 3 or more per day. The present invention can efficiently treat a large amount of raw water. In particular, when a large amount of raw water is treated, the present invention that can treat high-turbidity raw water with a high permeated water amount is advantageous from the viewpoint of equipment cost and equipment area. ,

凝集剤を添加する手段は、原水槽で濃度調整した処理水1にキレート剤および無機凝集剤を加えた後、適切な混合時間でよく混合し、pHを調整した上で、続く物理処理に供給する。キレート剤としては、カドミウムなどの除去したい溶存重金属の種類に応じて王子フロックL−1などを含有量に応じて添加する必要がある。キレート剤に変えて硫化ナトリウムを採用することも可能であるが、硫化水素の安全対策および腐食対策が必要となる。無機凝集剤としては、PAC(ポリ塩化アルミニウム)または硫酸バンドのアルミ系凝集剤またはポリ鉄または塩化第一鉄または塩化第二鉄の鉄系凝集剤のいずれかを適当量加える。無機凝集剤の添加量は、処理水1に対し無機凝集剤の酸化物固形量換算で100mg/L未満であることが望ましい。無機凝集剤の添加量がこれ未満であると、無機凝集剤に要する費用をより低減することができる。また、無機凝集剤の添加量がこれ未満であると、副生する汚泥の発生量をより低減することができ、従って、その汚泥の処分費をより低減することができる。さらに汚泥の発生量が低減することから、手段14(中空糸膜処理設備)での逆洗頻度を少なくして稼働を率げ1本あたりの処理流量が増え、設備費が抑制できる。   The means for adding the flocculant is to add the chelating agent and the inorganic flocculant to the treated water 1 whose concentration has been adjusted in the raw water tank, then mix well with an appropriate mixing time, adjust the pH, and supply it to the subsequent physical treatment To do. As a chelating agent, it is necessary to add Oji Flock L-1 etc. according to content depending on the kind of dissolved heavy metals to remove, such as cadmium. Although it is possible to use sodium sulfide instead of the chelating agent, hydrogen sulfide safety measures and corrosion measures are required. As the inorganic flocculant, an appropriate amount of either PAC (polyaluminum chloride) or sulfuric acid band aluminum flocculant or polyiron or ferrous chloride or ferric chloride iron flocculant is added. The amount of the inorganic flocculant added is desirably less than 100 mg / L in terms of the solid oxide content of the inorganic flocculant with respect to the treated water 1. When the amount of the inorganic flocculant added is less than this, the cost required for the inorganic flocculant can be further reduced. Moreover, when the added amount of the inorganic flocculant is less than this, the amount of sludge generated as a by-product can be further reduced, and therefore the disposal cost of the sludge can be further reduced. Furthermore, since the amount of sludge generated is reduced, the frequency of backwashing in the means 14 (hollow fiber membrane treatment equipment) is reduced, the operation is increased, the treatment flow rate per bottle is increased, and the equipment cost can be suppressed.

キレート剤は除去したい重金属以外の成分、例えば亜鉛やアルミ、鉄とも反応するため溶解成分中に亜鉛やアルミ、鉄が多い場合はキレート剤2から5倍量の添加が必要となる。1次処理が不十分で原水のCODまたはBODが規定より高い場合でもキレート剤の必要量が増し、この場合2〜10倍の添加が必要となるが、CODまたは濁度が規定濃度より著しく高い場合はキレート剤を増やしても目標レベルまでカドミウム等の溶存成分を除去できない。キレート剤の添加量は、原水で希釈した処理水1に対して10mg/L未満であることが望ましい。キレート剤の添加量がこれ未満であると、キレート剤に要する費用をより低減することができる。   The chelating agent also reacts with components other than the heavy metal to be removed, such as zinc, aluminum, and iron. Therefore, when zinc, aluminum, and iron are contained in the dissolved component, it is necessary to add 2 to 5 times the amount of the chelating agent. Even if the primary treatment is insufficient and the COD or BOD of raw water is higher than specified, the required amount of chelating agent increases. In this case, addition of 2 to 10 times is required, but COD or turbidity is significantly higher than the specified concentration. In this case, even if the chelating agent is increased, dissolved components such as cadmium cannot be removed to the target level. The addition amount of the chelating agent is desirably less than 10 mg / L with respect to the treated water 1 diluted with raw water. When the addition amount of the chelating agent is less than this, the cost required for the chelating agent can be further reduced.

物理処理に供する際の原水のpHは4から10であることが望ましく、5から9であることがさらに望ましく、6から8であるこが最も望ましい。前記範囲を超えてpHが高くなった場合、炭酸カルシウムが物理処理装置に付着するスケールトラブルの原因となり、前記範囲を超えて低い場合はキレート剤等の凝集剤の効果が十分発揮できなくなり、さらにアルミ系もしくは鉄系の凝集剤のフロック生成が不能もしくは阻害され、重金属等の溶解成分の除去性能が落ちたり、物理処理装置を汚濁するトラブルの原因となる。pH調整剤としては、例えば、水酸化ナトリウムや水酸化カルシウム等が挙げられる。   The pH of the raw water when subjected to physical treatment is preferably 4 to 10, more preferably 5 to 9, and most preferably 6 to 8. When the pH is higher than the above range, it causes a scale trouble that the calcium carbonate adheres to the physical processing device, and when it is lower than the above range, the effect of the aggregating agent such as a chelating agent cannot be sufficiently exhibited. The generation of flocs of aluminum-based or iron-based flocculants is impossible or hindered, resulting in a problem that the performance of removing dissolved components such as heavy metals is deteriorated and the physical processing apparatus is contaminated. Examples of the pH adjuster include sodium hydroxide and calcium hydroxide.

物理処理としては、未使用での清水透過流量が操作圧力100kPa下単糸ベースで50m3/m2/・日以上であるPVDF製の中空糸を片端をフリーとして束ねた高濁度排水を高透過流量で処理することが可能な膜ろ過装置を用いる。本発明において、高濁度排水とは、SS濃度20mg/Lのカオリン懸濁水を操作圧力100kPaで0.5m3/m2処理した後の清水の透過流量が、未使用時の清水の透過流量に対して40%以上であることを意味する。この高濁度排水は、望ましくは50%以上であり、最も望ましくは60%以上である。本発明において、高透過流量とは、未使用での清水透過流量が操作圧力100kPa下単糸ベースで50m3/m2・日以上であることを意味する。この高透過流量は、望ましくは70m3/m2・日以上であり、最も望ましくは80m3/m2・日以上である。5から120分に1回の頻度で膜表面の洗浄を行うのが望ましく、前記頻度は10から60分に1回がさらに望ましく、20から40分に1回が最も望ましい。 As a physical treatment, high turbidity drainage of high-turbidity wastewater bundled with PVDF hollow fibers with a free end at 50 m3 / m2 / day or more on a single yarn base under an operating pressure of 100 kPa is used for physical treatment. Use a membrane filtration device that can be treated with In the present invention, high turbidity drainage means the permeate flow rate of fresh water after treatment of 0.5 m 3 / m 2 of kaolin suspension water with an SS concentration of 20 mg / L at an operating pressure of 100 kPa. It means that it is 40% or more. This high turbidity drainage is desirably 50% or more, and most desirably 60% or more. In the present invention, the high permeate flow rate means that the fresh water permeate flow rate is 50 m 3 / m 2 · day or more on a single yarn base under an operating pressure of 100 kPa. This high permeation flow rate is desirably 70 m 3 / m 2 · day or more, and most desirably 80 m 3 / m 2 · day or more. It is desirable to clean the membrane surface once every 5 to 120 minutes, more preferably once every 10 to 60 minutes and most preferably once every 20 to 40 minutes.

物理処理は、装置表面に微生物が繁殖して堆積するバイオファウリングの問題を潜在的に有する。前記1次処理でCODもしくは紫外線吸収量を管理することで、バイオファウリングの進行速度を抑制でき、バイオファウリングの洗浄頻度を下げることができる。バイオファウリングの洗浄は、次亜塩素酸ナトリウムを用いて1時間から48時間に1回実施することが望ましく、6時間から36時間に1回実施することがさに望ましく、12時間から24時間に1回実施することが最も望ましい。   Physical treatment potentially has the problem of biofouling where microorganisms grow and accumulate on the surface of the device. By managing the amount of COD or UV absorption in the primary treatment, the progress rate of biofouling can be suppressed, and the cleaning frequency of biofouling can be reduced. The biofouling wash is preferably performed once every 1 to 48 hours with sodium hypochlorite, more preferably once every 6 to 36 hours, and 12 to 24 hours. It is most desirable to carry out once.

物理処理に限外ろ過膜もしくは精密ろ過膜を採用することで、大腸菌などの細菌類を原水から完全に除去し、無菌水を得ることが出来る。前記物理処理水はナノろ過膜(NF膜)もしくは逆浸透膜(RO膜)でそのまま処理することが可能であり、容易に脱塩水が得られる。   By adopting an ultrafiltration membrane or a microfiltration membrane for physical treatment, bacteria such as Escherichia coli can be completely removed from the raw water and aseptic water can be obtained. The physical treated water can be treated as it is with a nanofiltration membrane (NF membrane) or a reverse osmosis membrane (RO membrane), and demineralized water can be easily obtained.

重金属含有水に含まれる重金属としては、銅(Cu)、亜鉛(Zn)、錫(Sn)、ニッケル(Ni)、鉛(Pb)、カドミウム(Cd)等が挙げられる。カドミウムは、国連機関による耐容摂取量の設定を受け、水質汚濁防止法の排水基準が0.03mg/L以下に強化された(環境省「水質汚濁防止法に基づく排出水の排出、地下浸透水の浸透等の規制に係る項目の許容限度等の見直しについて(報告案)」)。   Examples of the heavy metal contained in the heavy metal-containing water include copper (Cu), zinc (Zn), tin (Sn), nickel (Ni), lead (Pb), and cadmium (Cd). Cadmium has been set tolerable intake by the United Nations organization, and the water pollution standard of the Water Pollution Control Act has been strengthened to 0.03 mg / L or less (the Ministry of the Environment's discharge of discharged water based on the Water Pollution Control Act, underground seepage water) Review of permissible limits for items related to regulations such as penetration of reports (draft report) ”).

本発明の水処理システムや水処理方法は、原水に含まれる重金属成分がカドミウムまたはカドミウムイオンである場合に特に好ましく用いることができる。特に本発明の水処理システムや水処理方法によれば、原水槽でCODもしくは濁度を前記範囲内とした希釈水に、キレート剤と凝集剤を加えてpHを調整後、物理処理することでカドミウム含有量が0.03mg/L以下の浄化水を生成することができる。そのため、本発明の水処理システムや水処理方法は、排水中のカドミウム濃度を上記基準値以下とし得る画期的方法であり、水産加工事業所から排出されるカドミウムを含む排水を処理するために特に好ましく用いられる。   The water treatment system and water treatment method of the present invention can be particularly preferably used when the heavy metal component contained in the raw water is cadmium or cadmium ions. In particular, according to the water treatment system and the water treatment method of the present invention, by adjusting the pH by adding a chelating agent and a flocculant to the diluted water having COD or turbidity within the above range in the raw water tank, Purified water having a cadmium content of 0.03 mg / L or less can be produced. Therefore, the water treatment system and the water treatment method of the present invention is an epoch-making method that allows the cadmium concentration in the wastewater to be equal to or lower than the above-mentioned reference value, in order to treat wastewater containing cadmium discharged from the fishery processing establishment. Particularly preferably used.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す薬品、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. The chemicals, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

(実施例1)
水産加工場の排水を原水(被処理水)として用いて下記の処理を行った。まず、水産加工場の排水に対して活性汚泥処理を行った。得られた処理水の紫外線吸収量から換算したCOD濃度は42〜76mg/Lであった。また、この処理水のカドミウム濃度は0.02mg/L〜0.09mg/Lで推移した。この処理水に対して、キレート剤1mg/Lおよび10%PAC50mg/Lを添加した。これを、水酸化ナトリウムでpHを7.0に調整した後、未使用での清水透過流量が操作圧力100kPa下単糸ベースで80m3/m2/・日であったPVDF製の中空糸を片端をフリーとして束ねた高濁度排水を高透過流量で処理することが可能な膜ろ過装置で処理した。この方法により得られた浄化水のカドミウム濃度は常に0.03mg/L未満となった。また、この方法により得られた浄化水から大腸菌は検出されなかった。30分に1回の逆洗浄および1日1回の次亜塩素酸ナトリウム溶液洗浄を行うことで、この限外ろ過膜は4か月間に渡って1.m3/m2/・日の透過流量を維持できた。
Example 1
The following treatment was performed using the wastewater from the fishery processing plant as raw water (treated water). First, activated sludge treatment was performed on the wastewater from the fishery processing plant. The COD concentration converted from the ultraviolet absorption amount of the obtained treated water was 42 to 76 mg / L. Moreover, the cadmium density | concentration of this treated water changed with 0.02 mg / L-0.09 mg / L. To this treated water, 1 mg / L of chelating agent and 50 mg / L of 10% PAC were added. After adjusting the pH to 7.0 with sodium hydroxide, PVDF hollow fiber with a fresh water permeation flow rate of 80 m3 / m2 / day on a single yarn base under an operating pressure of 100 kPa was attached to one end. High turbidity waste water bundled as free was treated with a membrane filtration device capable of treating with high permeate flow rate. The cadmium concentration of purified water obtained by this method was always less than 0.03 mg / L. E. coli was not detected from the purified water obtained by this method. By performing backwashing once every 30 minutes and washing with sodium hypochlorite solution once a day, this ultrafiltration membrane becomes 1. The permeation flow rate of m3 / m2 / · day could be maintained.

(実施例2)
COD濃度が380mg/Lである水産加工場の活性汚泥原水を、原水槽でCOD濃度が120mg/Lとなるように中空糸膜ろ過装置の処理水で希釈した希釈原水に、キレート剤1mg/Lおよび10%PAC50mg/Lを添加した。これを、水酸化ナトリウムでpHを7.0に調整した後、未使用での清水透過流量が操作圧力100kPa下単糸ベースで80m3/m2/・日であるPVDF製の中空糸を片端をフリーとして束ねた高濁度排水を高透過流量で処理することが可能な膜ろ過装置で処理した。この方法により得られた浄化水のカドミウム濃度は常に0.03mg/L未満となった。また、この方法により得られた浄化水から大腸菌は検出されなかった。処理に必要な中空糸モジュールの本数は30本と試算された。
(Example 2)
The activated sludge raw water of the fishery processing plant with a COD concentration of 380 mg / L is diluted with the treated water of the hollow fiber membrane filtration device so that the COD concentration is 120 mg / L in the raw water tank, and the chelating agent 1 mg / L And 10% PAC 50 mg / L was added. After adjusting the pH to 7.0 with sodium hydroxide, PVDF hollow fiber with a fresh water permeate flow rate of 80 m3 / m2 / day on a single yarn base under an operating pressure of 100 kPa is free at one end. The high turbidity waste water bundled as was treated with a membrane filtration device capable of treating with high permeate flow rate. The cadmium concentration of purified water obtained by this method was always less than 0.03 mg / L. E. coli was not detected from the purified water obtained by this method. The number of hollow fiber modules required for processing was estimated to be 30.

(比較例1)
COD濃度380mg/Lの水産加工場の活性汚泥原水を原水(被処理水)して用いた。この被処理水のカドミウム濃度は0.12mg/Lであった。この被処理水に対し、キレート剤2mg/Lおよび10%PAC3000mg/Lを添加した。これを、水酸化ナトリウムでpHを7.0に調整した後、未使用での清水透過流量が操作圧力100kPa下単糸ベースで80m3/m2/・日であるPVDF製の中空糸を片端をフリーとして束ねた高濁度排水を高透過流量で処理することが可能な膜ろ過装置で処理した。この処理により得られた水のカドミウム濃度は0.027mg/Lであった。限外ろ過膜の透過流量は0.3m3/m2・日であったが、2時間ごとに次亜塩素酸ナトリウム溶液でバイオファウリングを除去することが必要となり、実操業には至らなかった。
(Comparative Example 1)
The raw raw water (treated water) was used as the activated sludge raw water from a fishery processing plant with a COD concentration of 380 mg / L. The cadmium concentration of this treated water was 0.12 mg / L. 2 mg / L of chelating agent and 3000 mg / L of 10% PAC were added to this treated water. After adjusting the pH to 7.0 with sodium hydroxide, PVDF hollow fiber with a fresh water permeate flow rate of 80 m3 / m2 / day on a single yarn base under an operating pressure of 100 kPa is free at one end. The high turbidity waste water bundled as was treated with a membrane filtration device capable of treating with high permeate flow rate. The cadmium concentration of the water obtained by this treatment was 0.027 mg / L. The permeation flow rate of the ultrafiltration membrane was 0.3 m 3 / m 2 · day, but it was necessary to remove biofouling with sodium hypochlorite solution every 2 hours, and it did not lead to actual operation It was.

(比較例2)
COD濃度が380mg/Lである水産加工場の活性汚泥原水を、未使用での清水透過流量が操作圧力100kPa下単糸ベースで20m3/m2/・日であること以外は実施例2と同一の条件で処理した。この方法により得られた浄化水のカドミウム濃度は常に0.03mg/L未満となった。また、この方法により得られた浄化水から大腸菌は検出されなかった。処理に必要な中空糸モジュールの本数は240本と試算された。
(Comparative Example 2)
Same as Example 2, except that the activated sludge raw water of a fishery processing plant with a COD concentration of 380 mg / L is 20 m3 / m2 / day on a single yarn basis with a fresh water permeate flow rate of 100 kPa under an operating pressure. Processed with conditions. The cadmium concentration of purified water obtained by this method was always less than 0.03 mg / L. E. coli was not detected from the purified water obtained by this method. The number of hollow fiber modules required for the treatment was estimated to be 240.

1 原水
2 希釈原水
3 キレート剤および無機凝集剤処理水
4 pH調整処理水
5 物理処理水
11 原水槽
12 キレート剤および無機凝集剤を添加する手段
13 pHを調整する手段
14 物理処理する手段
15 処理水5を原水槽に送る手段
16 中空糸に付着した汚泥を定期的に排出する手段
DESCRIPTION OF SYMBOLS 1 Raw water 2 Diluted raw water 3 Chelating agent and inorganic flocculant treated water 4 pH adjusted treated water 5 Physically treated water 11 Raw water tank 12 Means for adding chelating agent and inorganic flocculant 13 Means for adjusting pH 14 Physically treated means 15 Treatment Means 16 for sending water 5 to raw water tank Means for periodically discharging sludge adhering to hollow fiber

Claims (3)

重金属を含有する原水に無機凝集剤およびキレート剤を添加する手段と、無機凝集剤とキレート剤を添加する手段の中、もしくは無機凝集剤とキレート剤の添加手段の下流に配置されるpH調整手段と、pH調整手段の下流に物理処理を行う手段として未使用での清水透過流量が操作圧力100kPa下単糸ベースで50m3/m2/・日以上であるPVDF製の中空糸を片端をフリーとして束ねた高濁度排水を高透過流量で処理することが可能な膜ろ過装置を設置した水処理システム。 Means for adding inorganic flocculant and chelating agent to raw water containing heavy metal, means for adding inorganic flocculant and chelating agent, or pH adjusting means disposed downstream of means for adding inorganic flocculant and chelating agent As a means for performing physical treatment downstream of the pH adjusting means, a fresh water permeate flow rate of 50 m3 / m2 / day or more on a single yarn base under an operating pressure of 100 kPa is bundled with PVDF hollow fibers free at one end. Water treatment system equipped with a membrane filtration device that can treat high turbidity wastewater with high permeate flow rate. 前記重金属を含有する原水を物理処理した処理水もしくは清水で希釈する手段を有する請求項1に記載の水処理システム。 The water treatment system of Claim 1 which has a means to dilute the raw | natural water containing the said heavy metal with the treated water or the fresh water which carried out the physical treatment. 前記重金属を含有する原水を前記物理処理した処理水もしくは清水で希釈し、前記原水のCODもしくは濁度を一定濃度未満に調整することを特徴とする重金属を含有する原水の処理方法。 A method for treating a raw water containing heavy metal, comprising diluting the raw water containing the heavy metal with the physically treated treated water or fresh water, and adjusting the COD or turbidity of the raw water to be less than a certain concentration.
JP2015253331A 2015-06-22 2015-12-25 Water treatment system, water treatment method and water treatment method management method Active JP6589627B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015124493 2015-06-22
JP2015124493 2015-06-22

Publications (2)

Publication Number Publication Date
JP2017006902A true JP2017006902A (en) 2017-01-12
JP6589627B2 JP6589627B2 (en) 2019-10-16

Family

ID=57197551

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015223031A Active JP6015841B1 (en) 2015-06-22 2015-11-13 Water treatment system, water treatment method, aseptic water production method, antibacterial water production method, and water treatment method management method
JP2015253331A Active JP6589627B2 (en) 2015-06-22 2015-12-25 Water treatment system, water treatment method and water treatment method management method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015223031A Active JP6015841B1 (en) 2015-06-22 2015-11-13 Water treatment system, water treatment method, aseptic water production method, antibacterial water production method, and water treatment method management method

Country Status (1)

Country Link
JP (2) JP6015841B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217423A (en) * 2018-06-15 2019-12-26 株式会社ノアテック System of treating effluent or sludge containing high-concentration suspended matter
JP2020516438A (en) * 2017-04-12 2020-06-11 シーオン,エルエルシー Wastewater treatment method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6550084B2 (en) * 2017-01-18 2019-07-24 株式会社大都技研 Game console
JP7119568B2 (en) * 2018-05-23 2022-08-17 王子ホールディングス株式会社 Water treatment device and water treatment method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515879A (en) * 1991-07-15 1993-01-26 Suntory Ltd Device for processing circulating water
JPH09192675A (en) * 1996-01-25 1997-07-29 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP3334786B2 (en) * 1996-09-03 2002-10-15 株式会社荏原製作所 Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JPH10118664A (en) * 1996-10-24 1998-05-12 Kansai Electric Power Co Inc:The Treatment of waste water containing cyan compound and organic matter
JPH11262799A (en) * 1998-03-17 1999-09-28 Hitachi Zosen Corp Waste water treatment method
JP2002011498A (en) * 2000-06-28 2002-01-15 Atlas:Kk Device for treating leachate
JP5982239B2 (en) * 2012-09-24 2016-08-31 株式会社日立製作所 Liquid processing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516438A (en) * 2017-04-12 2020-06-11 シーオン,エルエルシー Wastewater treatment method and device
JP7076138B2 (en) 2017-04-12 2022-05-27 シーオン,エルエルシー Wastewater treatment method and equipment
JP2019217423A (en) * 2018-06-15 2019-12-26 株式会社ノアテック System of treating effluent or sludge containing high-concentration suspended matter

Also Published As

Publication number Publication date
JP6589627B2 (en) 2019-10-16
JP6015841B1 (en) 2016-10-26
JP2017006899A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
Sahinkaya et al. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater
US20110163032A1 (en) High recovery sulfate removal process
JP6589627B2 (en) Water treatment system, water treatment method and water treatment method management method
CN102815836A (en) Treating system and treating method for hardly degradable organic waste water
JP7299022B2 (en) Improving Phosphorus Deposition and Membrane Flux in Membrane Bioreactors
WO2021072483A1 (en) Process and apparatus for water treatment
KR20190095152A (en) Treatment and recirculating system for waste water of fish farm
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
Azmi et al. The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water
JP5238778B2 (en) Desalination system
JP4933679B1 (en) Seawater desalination method and seawater desalination apparatus
Widiasa et al. Membrane-based recirculating aquaculture system: Opportunities and challenges shrimp farming
JP5250684B2 (en) Seawater desalination method and seawater desalination apparatus
CN112533874A (en) Anolyte as additive for wastewater treatment
JP7119568B2 (en) Water treatment device and water treatment method
Fatima et al. Treatment of Poultry Slaughterhouse Wastewater with Membrane Technologies: A Review. Water 2021, 13, 1905
CN209010325U (en) A kind of complete processing equipment of Wastewater in Biologic Pharmacy zero-emission
CN112939368A (en) Circulating water sewage treatment and recycling method with high desalting rate
CN104016551A (en) High-salinity industrial wastewater treatment method based on biochemical treatment
Al-Shammari et al. Treatment of Dairy Wastewater Effluent Using Submerged Membrane Microfiltration System
CN109516601A (en) In conjunction with the electroplating waste-water reutilizing process of desalination technology
JP5232906B2 (en) Purified water generating method and purified water generating apparatus
JPH1028995A (en) Treatment of waste water
CN102452767A (en) Method for treating and recycling city reclaimed water
DE102006007859A1 (en) Use of a membrane bioreactor for the purification of weakly organically contaminated, salt-containing raw water, where a specialized biocoenosis or biotic community is adapted to special boundary conditions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250