JP2017006828A - Method for producing honeycomb structure - Google Patents

Method for producing honeycomb structure Download PDF

Info

Publication number
JP2017006828A
JP2017006828A JP2015123114A JP2015123114A JP2017006828A JP 2017006828 A JP2017006828 A JP 2017006828A JP 2015123114 A JP2015123114 A JP 2015123114A JP 2015123114 A JP2015123114 A JP 2015123114A JP 2017006828 A JP2017006828 A JP 2017006828A
Authority
JP
Japan
Prior art keywords
temperature range
temperature
honeycomb
atmosphere
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123114A
Other languages
Japanese (ja)
Other versions
JP6380249B2 (en
Inventor
泰史 ▲高▼山
泰史 ▲高▼山
Yasushi Takayama
中西 友彦
Tomohiko Nakanishi
友彦 中西
洋一 門田
Yoichi Kadota
洋一 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015123114A priority Critical patent/JP6380249B2/en
Publication of JP2017006828A publication Critical patent/JP2017006828A/en
Application granted granted Critical
Publication of JP6380249B2 publication Critical patent/JP6380249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a honeycomb structure having oxygen storage capacity while preventing the generation of breakage caused by thermal impact and the scattering of broken pieces.SOLUTION: Raw material grains CZ using a ceria-zirconia composite oxide as the main component and an inorganic binder 4 are mixed, a green body added with a green body control material is subjected to extrusion molding, and thereafter, it is fired into a honeycomb structure 1. The firing step includes: the first stage S1 of performing temperature increase to the first temperature range T1 at which the organic components in the green body control material are thermally decomposed under the first low oxygen atmosphere A1; the second step S2 of performing temperature increase to the second temperature range T2 at which the honeycomb molded body is sintered; the third stage of performing temperature decrease to the third temperature range T3 at which the residual carbon component caused by the organic components are burnt; the fourth stage S4 of gradually increasing the oxygen concentration not exceeding the second low oxygen atmosphere A2 in the third temperature range T3; and the fifth stage of forming the ambient atmosphere after the temperature decrease to the fourth temperature range T4.SELECTED DRAWING: Figure 1

Description

本発明は、セリア−ジルコニア複合酸化物を主成分として構成され、酸素吸蔵能を有するハニカム構造体の製造方法に関する。   The present invention relates to a method for manufacturing a honeycomb structure that is composed mainly of a ceria-zirconia composite oxide and has an oxygen storage capacity.

自動車の排ガスを浄化するために、ハニカム構造体を基材として触媒を担持し、ケースに収容した触媒コンバータが用いられている。ハニカム構造体は、一般に、コージェライト又はSiC等の材料を用いて構成され、排ガスが流通する多数のセルの内表面を覆って、助触媒成分と貴金属触媒を含む多孔質のコート層が形成される。また、ハニカム構造体は、通常、外周面の全体に、キャニング用の保持マットを巻き付けた状態で、ケース内に固定される。   In order to purify automobile exhaust gas, a catalytic converter that supports a catalyst using a honeycomb structure as a base material and accommodates the catalyst in a case is used. A honeycomb structure is generally configured using a material such as cordierite or SiC, and covers the inner surface of many cells through which exhaust gas flows to form a porous coat layer containing a promoter component and a noble metal catalyst. The In addition, the honeycomb structure is usually fixed in the case in a state where a holding mat for canning is wound around the entire outer peripheral surface.

一方、ハニカム構造体からなる基材自体を、助触媒成分を主体とする材料で構成することが検討されている。例えば、酸素吸蔵能を有するセリア−ジルコニア複合酸化物からなる助触媒粒子を使用し、助触媒粒子同士を無機バインダで結合させて、酸素吸蔵能を有するハニカム構造体とする技術が知られている。ただし、助触媒成分を主体とする材料は、従来の材料に比べて、機械的強度が弱い問題がある。このため、キャニングによる面圧や熱衝撃等への対策が必要となる。   On the other hand, it has been studied that the substrate itself made of a honeycomb structure is made of a material mainly composed of a promoter component. For example, a technology is known in which a promoter structure made of ceria-zirconia composite oxide having oxygen storage ability is used, and the promoter particles are bonded together with an inorganic binder to form a honeycomb structure having oxygen storage ability. . However, a material mainly composed of a promoter component has a problem that its mechanical strength is weaker than that of a conventional material. For this reason, it is necessary to take measures against surface pressure, thermal shock, etc. caused by canning.

特許文献1には、セリア粒子と、セリア粒子よりも自己焼結性が低いセラミック材料の粒子と、無機バインダとを含むハニカムユニットからなるハニカム構造体が提案されている。自己焼結性が低いセラミック材料は、2次粒子同士の結合反応性が相対的に高い材料、例えば、アルミナ、シリカ、ゼオライトであり、その平均粒径を、セリア粒子の平均粒径以下として、原料ペーストに配合し、ハニカムユニットの強度を高めている。また、複数のハニカムユニットの側面同士を、接着層で接合したセグメント構造として、大口径のハニカム構造体を得ている。   Patent Document 1 proposes a honeycomb structure including a honeycomb unit including ceria particles, particles of a ceramic material whose self-sinterability is lower than that of ceria particles, and an inorganic binder. The ceramic material having a low self-sintering property is a material having a relatively high binding reactivity between the secondary particles, for example, alumina, silica, zeolite, and the average particle size thereof is equal to or less than the average particle size of the ceria particles. Blended into the raw material paste to increase the strength of the honeycomb unit. Moreover, a large-diameter honeycomb structure is obtained as a segment structure in which the side surfaces of a plurality of honeycomb units are joined by an adhesive layer.

特許第5185837号Japanese Patent No. 518583

ところが、酸素吸蔵能を有する助触媒成分を主体として、押出成形を行うために有機成分よりなる坏土調整材を加えた原料坏土を成形、焼成して、ハニカム構造体を製造する過程で、急激な自己発熱を生じ、熱衝撃でクラック等の破損が発生する問題が生じた。これは、助触媒成分の触媒機能により、酸素が存在する雰囲気下で、原料坏土に含まれる有機成分が自己分解し、反応部位での急激な発熱により温度分布が生じるためと考えられる。また、焼成を低酸素雰囲気下で行うようにしても、焼成温度から冷却したハニカム構造体を取り出す際に、焼成炉を大気開放することにより、急激な酸素吸蔵が発生し、発熱する。この場合、助触媒成分の配合割合が高いほど、また、ハニカム構造体が大口径となるほど、発熱昇温量が大きくなり、熱衝撃による破損や、さらには、破損片の飛散が起こるおそれが高い。   However, in the process of manufacturing a honeycomb structure by forming and firing a raw clay containing a clay adjusting material made of an organic component in order to perform extrusion molding, mainly with a promoter component having oxygen storage capacity, Sudden self-heating occurred, and there was a problem that breakage such as cracks occurred due to thermal shock. This is presumably because of the catalytic function of the promoter component, the organic component contained in the raw material clay self-decomposes in an atmosphere where oxygen is present, and a temperature distribution is generated due to rapid heat generation at the reaction site. Even when firing is performed in a low-oxygen atmosphere, when the honeycomb structure cooled from the firing temperature is taken out, when the firing furnace is opened to the atmosphere, rapid oxygen storage occurs and heat is generated. In this case, the higher the proportion of the cocatalyst component is, and the larger the honeycomb structure is, the larger the heat generation temperature rise is, and there is a high possibility that breakage due to thermal shock and further scattering of broken pieces will occur. .

本発明は、かかる背景に鑑みてなされたものであり、熱衝撃による破損の発生や、破損片の飛散を防止しながら、酸素吸蔵能を有するハニカム構造体を製造しようとするものである。   The present invention has been made in view of such a background, and an object of the present invention is to produce a honeycomb structure having an oxygen storage capacity while preventing occurrence of damage due to thermal shock and scattering of broken pieces.

本発明の一態様は、ハニカム構造体の製造方法であって、
セリア−ジルコニア複合酸化物を主成分とする原料粒子と、該原料粒子同士を接合する無機バインダとを混合し、有機成分よりなる坏土調整材を添加、混錬して得た坏土を、押出成形して、ハニカム成形体とする成形工程と、
得られたハニカム成形体を、乾燥させた後、焼結させて、上記ハニカム構造体を得る焼成工程と、を備えており、
上記焼成工程は、
上記ハニカム成形体を、大気雰囲気よりも酸素濃度の低い第1低酸素雰囲気下で、上記坏土調整材中の上記有機成分が熱分解可能な第1温度域に昇温する第1工程と、
上記第1低酸素雰囲気下で、上記第1温度域から、上記ハニカム成形体が焼結可能な第2温度域まで昇温する第2工程と、
上記第1低酸素雰囲気下で、上記第2温度域から、上記有機成分に起因する残留炭素成分が酸化燃焼可能な第3温度域まで降温する第3工程と、
上記第3温度域に保持しながら、上記第1低酸素雰囲気よりも酸素濃度が高く、かつ大気雰囲気よりも酸素濃度の低い第2低酸素雰囲気を超えない範囲で、徐々に酸素濃度を上昇させる第4工程と、
上記第3温度域よりも温度が低い第4温度域に降温させ、上記第2低酸素雰囲気に到達させた後、大気雰囲気まで酸素濃度を上昇させる第5工程と、を有する、ハニカム構造体の製造方法にある。
One aspect of the present invention is a method for manufacturing a honeycomb structure,
Mixing raw material particles mainly composed of ceria-zirconia composite oxide and an inorganic binder that joins the raw material particles, adding a soil conditioner composed of organic components, and kneading the kneaded material obtained by kneading, Extrusion molding to form a honeycomb molded body,
The resulting honeycomb formed body is dried and then sintered to obtain the honeycomb structure, and
The firing step is
A first step of raising the temperature of the honeycomb formed body to a first temperature range in which the organic component in the clay adjusting material can be thermally decomposed in a first low-oxygen atmosphere having an oxygen concentration lower than that of an air atmosphere;
A second step of raising the temperature from the first temperature range to a second temperature range where the honeycomb formed body can be sintered in the first low oxygen atmosphere;
A third step of lowering the temperature of the residual carbon component resulting from the organic component from the second temperature range to a third temperature range where oxidation combustion is possible under the first low oxygen atmosphere;
While maintaining the third temperature range, the oxygen concentration is gradually increased within a range that does not exceed the second low oxygen atmosphere having a higher oxygen concentration than the first low oxygen atmosphere and a lower oxygen concentration than the air atmosphere. A fourth step;
A fifth step of lowering the temperature to a fourth temperature range lower than the third temperature range, reaching the second low oxygen atmosphere, and then increasing the oxygen concentration to the air atmosphere. In the manufacturing method.

上記製造方法によれば、第1工程〜第3工程を、第1低酸素雰囲気下で行っている。そのため、第1温度域から第2温度域に昇温する際に、セリア−ジルコニア複合酸化物の触媒活性を抑制することができ、坏土中の有機成分の自己分解による発熱を抑制しながら、焼成を行うことができる。また、残留炭素成分が酸化燃焼可能な第3温度域に降温後、第4工程においては、第2低酸素雰囲気を超えない範囲で徐々に酸素導入を行っている。そのため、緩やかに残留炭素成分を酸化燃焼させるとともに、酸素吸蔵を徐々に進行させることができる。したがって、第5工程において、第4温度域に降温させた後、大気雰囲気まで酸素濃度を上昇させる際に、急激な発熱が抑制されて、熱衝撃によるクラック等の破損の発生を防止できる。   According to the manufacturing method, the first to third steps are performed in a first low oxygen atmosphere. Therefore, when raising the temperature from the first temperature range to the second temperature range, it is possible to suppress the catalytic activity of the ceria-zirconia composite oxide, while suppressing heat generation due to the self-decomposition of organic components in the clay, Firing can be performed. In addition, after the temperature of the residual carbon component is lowered to the third temperature range where oxidation combustion is possible, in the fourth step, oxygen is gradually introduced in a range not exceeding the second low oxygen atmosphere. Therefore, the residual carbon component can be gradually oxidized and burned, and the oxygen storage can be gradually advanced. Therefore, in the fifth step, when the oxygen concentration is raised to the atmospheric atmosphere after the temperature is lowered to the fourth temperature range, rapid heat generation is suppressed, and occurrence of breakage such as cracks due to thermal shock can be prevented.

これにより、酸素吸蔵能を有するハニカム構造体を、熱衝撃による破損の発生や、破損片の飛散を防止しながら、製造することができる。そして、上記製造方法によれば、破損のない品質の安定したハニカム構造体が得られるので、助触媒成分の配合割合を比較的大きくして、助触媒機能を高めることができる。また、口径を比較的大きくしても、要求される機械的強度を保つことができるので、一体型の非セグメント構造のハニカム構造体として、自動車用触媒コンバータに搭載することができる。   As a result, a honeycomb structure having an oxygen storage capacity can be manufactured while preventing breakage due to thermal shock and scattering of broken pieces. And according to the said manufacturing method, since the stable honeycomb structure of the quality which is not damaged is obtained, the compounding ratio of a promoter component can be made comparatively large, and a promoter function can be improved. Further, even if the aperture is relatively large, the required mechanical strength can be maintained, so that it can be mounted on an automobile catalytic converter as an integral non-segment honeycomb structure.

実施形態1における、ハニカム構造体の焼成工程を説明するための焼成プロファイル図。The firing profile figure for demonstrating the firing process of the honeycomb structure in Embodiment 1. FIG. 実施形態1における、ハニカム構造体の全体斜視図。1 is an overall perspective view of a honeycomb structure in Embodiment 1. FIG. 実施形態1のハニカム構造体を備える触媒コンバータの全体概略断面図。1 is an overall schematic cross-sectional view of a catalytic converter including a honeycomb structure according to Embodiment 1. FIG. 実施形態1における、ハニカム構造体の焼成前後の組織を比較して示す模式的な図。FIG. 2 is a schematic diagram showing a comparison of structures before and after firing of a honeycomb structure in the first embodiment. 実施形態1における、ハニカム構造体の焼結過程を説明するための模式的な図。FIG. 3 is a schematic diagram for explaining a sintering process of a honeycomb structure in the first embodiment. 従来のハニカム構造体の焼結前後の焼成前後の組織を比較して示す模式的な図。The typical figure which compares and shows the structure | tissue before and after baking of the conventional honeycomb structure before and behind sintering. 実施例1における、ハニカム構造体の焼成プロファイル図。The firing profile figure of a honeycomb structure in Example 1. FIG. 実施例1における、ハニカム構造体の発熱温度と、必要反応時間の関係を示す図。The figure which shows the relationship of the heat_generation | fever temperature of a honeycomb structure in Example 1, and required reaction time.

(実施形態1)
次に、ハニカム構造体の製造方法について、好ましい実施形態を、図面に基づいて説明する。図2に示すように、ハニカム構造体1は、円筒状の外皮内に、セル壁11で区画された多数のセル12を有する。多数のセル12は、ハニカム構造体1の軸方向に平行な方向を、図中にXで示すセル伸長方向として、互いに平行に形成され、セル12の両端部は、ハニカム構造体1の両端面に開口する。ハニカム構造体1は、酸素吸蔵能を有するセリア−ジルコニア複合酸化物を含む材料で構成され、貴金属触媒に対する助触媒としての作用を有する。セル壁11は多孔質であり、貴金属触媒の担持に適している。ハニカム構造体1は、図3に示す自動車用の触媒コンバータ10に適用される。
(Embodiment 1)
Next, a preferred embodiment of the method for manufacturing a honeycomb structure will be described with reference to the drawings. As shown in FIG. 2, the honeycomb structure 1 has a large number of cells 12 partitioned by cell walls 11 in a cylindrical outer skin. A large number of cells 12 are formed in parallel with each other, with the direction parallel to the axial direction of the honeycomb structure 1 being the cell extension direction indicated by X in the figure, and both ends of the cells 12 are both end faces of the honeycomb structure 1. Open to. The honeycomb structure 1 is made of a material containing a ceria-zirconia composite oxide having oxygen storage capacity, and has a function as a promoter for a noble metal catalyst. The cell wall 11 is porous and suitable for supporting a noble metal catalyst. The honeycomb structure 1 is applied to an automobile catalytic converter 10 shown in FIG.

このようなハニカム構造体1は、母材原料を含む坏土をハニカム状に押出成形する成形工程と、ハニカム成形体を焼成する焼成工程とを経て製造される。成形工程は、セリア−ジルコニア複合酸化物を主成分とする原料粒子(以下、CZ粒子という)に、該CZ粒子同士を接合する無機バインダを混合し、有機成分からなる坏土調整材を添加、混錬して得た坏土を、押出成形して、ハニカム成形体とする工程である。また、焼成工程は、得られたハニカム成形体を、乾燥させた後、低酸素雰囲気下で焼結させて、ハニカム構造体1とする工程である。   Such a honeycomb structure 1 is manufactured through a forming process in which a clay containing a base material is extruded into a honeycomb shape and a firing process in which the honeycomb formed body is fired. In the forming step, raw material particles mainly composed of ceria-zirconia composite oxide (hereinafter referred to as CZ particles) are mixed with an inorganic binder that joins the CZ particles, and a clay conditioner composed of organic components is added. In this step, the kneaded material obtained by kneading is extruded to form a honeycomb formed body. The firing step is a step in which the obtained honeycomb formed body is dried and then sintered in a low oxygen atmosphere to obtain the honeycomb structure 1.

CZ粒子は、ハニカム構造体1の母材を構成するとともに、主成分であるセリア−ジルコニア複合酸化物が、酸素吸蔵能を有して、触媒性能を高める。CZ粒子は、セリア−ジルコニア固溶体粒子、または、La、Y等の希土類元素がさらに固溶した固溶体粒子を含む。母材原料には、CZ粒子に加えて、ハニカム構造体1のセル壁11を補強するための粒子、例えば、アルミナ粒子を添加することができる。好適には、比表面積が大きいθ−アルミナ粒子を用いることが望ましい。   The CZ particles constitute the base material of the honeycomb structure 1, and the ceria-zirconia composite oxide as the main component has an oxygen storage capacity to enhance the catalyst performance. The CZ particles include ceria-zirconia solid solution particles or solid solution particles in which a rare earth element such as La or Y is further solid-solved. In addition to the CZ particles, particles for reinforcing the cell walls 11 of the honeycomb structure 1, such as alumina particles, can be added to the base material. It is preferable to use θ-alumina particles having a large specific surface area.

母材原料であるCZ粒子とアルミナ粒子の配合比率は、求められる酸素吸蔵能に対し、任意の値となるように調整することができる。触媒性能の観点からは、酸素吸蔵能を最大化するために、アルミナ粒子に対するCZ粒子の添加質量比率が高い方が好ましく、強度保障の観点からは、アルミナ粒子に対するCZ粒子の添加質量比率が低い方が好ましい。   The blending ratio of CZ particles and alumina particles, which are base material materials, can be adjusted to an arbitrary value with respect to the required oxygen storage capacity. From the viewpoint of catalyst performance, in order to maximize the oxygen storage capacity, it is preferable that the addition mass ratio of CZ particles to alumina particles is high. From the viewpoint of ensuring strength, the addition mass ratio of CZ particles to alumina particles is low. Is preferred.

また、CZ粒子を、平均粒径の異なるCZ粒子の組み合わせとすることもできる。平均粒径は、レーザ回折・散乱法によって求めた粒度分布における体積積算値50%での粒径を意味する。このとき、平均粒径が相対的に小さい粒子が、平均粒径が相対的に大きい粒子間に入り込んで、焼結性が向上する。また、平均粒径が相対的に小さい粒子の配合割合を大きくすると、母材原料の比表面積が大きくなる一方、焼結反応が進んで焼結後の比表面積の低下が大きくなる。このため、焼結後に所望の比表面積となるように、平均粒径や配合割合を調整するとよい。   Further, the CZ particles can be a combination of CZ particles having different average particle diameters. The average particle diameter means a particle diameter at a volume integrated value of 50% in a particle size distribution obtained by a laser diffraction / scattering method. At this time, particles having a relatively small average particle diameter enter between particles having a relatively large average particle diameter, thereby improving the sinterability. Further, when the blending ratio of particles having a relatively small average particle size is increased, the specific surface area of the base material is increased, while the sintering reaction proceeds to decrease the specific surface area after sintering. For this reason, it is good to adjust an average particle diameter and a mixture ratio so that it may become a desired specific surface area after sintering.

無機バインダは、焼成時に母材原料の粒子を固定して、セル壁11の三次元構造を保持する。無機バインダとしては、金属酸化物または焼結後に金属酸化物となる無機バインダ粒子を含むゾル、例えば、ゾル状の水酸化アルミニウムを含むアルミナゾルが用いられる。無機バインダの添加量は、例えば、母材原料に対して5〜20体積%とすることが望ましい。この範囲で、ハニカム構造体1の焼結後の強度をより向上させることができるとともに、ハニカム構造体1の酸素吸蔵能を十分大きくすることができる。   The inorganic binder retains the three-dimensional structure of the cell walls 11 by fixing the particles of the base material material during firing. As the inorganic binder, a sol containing metal oxide or inorganic binder particles that become a metal oxide after sintering, for example, an alumina sol containing sol-like aluminum hydroxide is used. The amount of the inorganic binder added is desirably 5 to 20% by volume with respect to the base material, for example. Within this range, the strength of the honeycomb structure 1 after sintering can be further improved, and the oxygen storage capacity of the honeycomb structure 1 can be sufficiently increased.

成形工程においては、これら母材原料の粒子と無機バインダを混合した材料に、さらに坏土調整材を加えて混練し、坏土を作製する。坏土調整材は、溶媒となる水と、有機バインダと、滑剤等を含み、坏土の成形性を向上させる。有機バインダや滑剤は、焼成時の昇温過程で、熱分解または焼失可能な有機成分からなる。有機成分の添加量は、例えば、母材原料に対して8〜20質量%とすることが望ましい。この範囲で、坏土の保形性、流動性、接着性をより向上させて、押出成形に適した坏土特性を良好に保つことができる。   In the molding step, a clay adjusting material is further added and kneaded to a material obtained by mixing these base material particles and an inorganic binder to prepare a clay. The clay adjusting material includes water as a solvent, an organic binder, a lubricant, and the like, and improves the moldability of the clay. Organic binders and lubricants are composed of organic components that can be thermally decomposed or burned off during the heating process during firing. The addition amount of the organic component is desirably 8 to 20% by mass with respect to the base material, for example. Within this range, the shape retention property, fluidity, and adhesiveness of the clay can be further improved, and the clay characteristics suitable for extrusion molding can be maintained well.

坏土は、押出成形機を用いてハニカム形状に形成され、所望の形状とサイズを有するハニカム成形体となる。坏土を作製するに際しては、ハニカム構造体1の気孔率を調整するための気孔調整材として、公知の造孔材を添加することもできる。   The clay is formed into a honeycomb shape using an extrusion molding machine, and becomes a honeycomb formed body having a desired shape and size. In producing the kneaded material, a known pore former can be added as a pore adjusting material for adjusting the porosity of the honeycomb structure 1.

焼成工程は、図1に示すように、第1工程S1〜第5工程S5からなる。第1工程S1は、ハニカム成形体の脱脂工程であり、大気雰囲気よりも酸素濃度の低い、所定の第1低酸素雰囲気A1に雰囲気を調整しつつ、坏土調整材中の有機成分が熱分解可能な第1温度域T1に昇温する。第1工程では、予め窒素ガス等の不活性ガスを用いて、焼成炉の雰囲気を置換することにより、雰囲気中の酸素濃度を低下させる。第1低酸素雰囲気A1は、例えば、酸素濃度が0.5体積%以下の雰囲気であり、好適には、酸素濃度の検出限界以下、すなわち0.1体積%以下の雰囲気とするのがよい。また、第1温度域T1は、坏土調整材中の有機成分が熱分解を開始する温度以上、例えば、200〜500℃程度の範囲で適宜設定され、ここでは、250℃程度とする。   As shown in FIG. 1, the firing process includes a first process S1 to a fifth process S5. The first step S1 is a honeycomb formed body degreasing step, in which the organic component in the clay adjusting material is thermally decomposed while adjusting the atmosphere to a predetermined first low oxygen atmosphere A1 having an oxygen concentration lower than that of the air atmosphere. The temperature is raised to a possible first temperature range T1. In the first step, the oxygen concentration in the atmosphere is lowered by substituting the atmosphere of the firing furnace with an inert gas such as nitrogen gas in advance. The first low oxygen atmosphere A1 is, for example, an atmosphere having an oxygen concentration of 0.5% by volume or less, and is preferably an atmosphere having an oxygen concentration below the detection limit, that is, 0.1% by volume or less. Moreover, 1st temperature range T1 is suitably set in the range more than the temperature which the organic component in a clay adjusting material starts thermal decomposition, for example, about 200-500 degreeC, and is about 250 degreeC here.

昇温開始から第1温度域T1への昇温速度R1は、図示するように、2段階で昇温しながら第1温度域T1に到達するようにしても、あるいは、第1温度域T1まで段階的または連続的に昇温後、一定の時間保持するようにしてもよい。前者の場合は、例えば、昇温速度R1を、150℃までは大きくし(例えば、60℃/時間)、それ以降、250℃までは小さくして(例えば、30℃/時間)、緩やかに第1温度域T1に向けて昇温させながら、脱脂するとよい。いずれの場合も、第1温度域T1近傍での保持時間が十分長くなるように調整する。このように、ごく低い酸素濃度に保持して、CZ粒子の触媒活性を抑制し、昇温速度等を調整することで、有機成分の熱分解を良好に制御できる。そのため、第1工程S1において、ハニカム成形体に発熱による温度分布が生じて、熱衝撃によりクラック等の破損が生じるのを防止できる。   The temperature increase rate R1 from the start of temperature increase to the first temperature range T1 may reach the first temperature range T1 while increasing the temperature in two stages, as shown in the figure, or until the first temperature range T1. You may make it hold | maintain for a fixed time after temperature rising in steps or continuously. In the former case, for example, the temperature rising rate R1 is increased up to 150 ° C. (for example, 60 ° C./hour), and thereafter decreased to 250 ° C. (for example, 30 ° C./hour). It is good to degrease, raising temperature toward 1 temperature range T1. In either case, the holding time in the vicinity of the first temperature range T1 is adjusted to be sufficiently long. As described above, the thermal decomposition of the organic component can be favorably controlled by maintaining the extremely low oxygen concentration, suppressing the catalytic activity of the CZ particles, and adjusting the temperature rising rate and the like. Therefore, in the first step S1, it is possible to prevent a temperature distribution due to heat generation from occurring in the honeycomb formed body and damage such as cracks due to thermal shock.

第2工程S2は、ハニカム成形体の焼結工程であり、第1低酸素雰囲気A1下で、第1温度域T1から第2温度域T2に昇温する。通常は、第2温度域T2にて所定の時間保持するが、第2温度域T2に到達するまでの時間が十分長い場合は、必ずしもその限りではない。第2温度域T2は、ハニカム成形体が焼結可能な温度、例えば、700〜1200℃の範囲で適宜設定され、ここでは、1050℃程度とする。第1温度域T1から第2温度域T2への昇温速度R2は、第2温度域T2の近傍までは、速やかに昇温させて昇温に要する時間を短縮することができる。例えば、図示するように、昇温速度R2を、800℃までは大きくし(例えば、60℃/時間)、800〜1050℃までは、これより小さくして(例えば、30℃/時間)、2段階で昇温する。第2温度域T2での保持時間H1は、ハニカム成形体がハニカム焼結体となるのに十分な時間、例えば、10時間程度とすることができる。   The second step S2 is a sintering step of the honeycomb formed body, and the temperature is raised from the first temperature range T1 to the second temperature range T2 under the first low oxygen atmosphere A1. Usually, it is held for a predetermined time in the second temperature region T2, but this is not necessarily the case when the time until it reaches the second temperature region T2 is sufficiently long. The second temperature range T2 is appropriately set within a temperature at which the honeycomb formed body can be sintered, for example, in a range of 700 to 1200 ° C., and is about 1050 ° C. here. The temperature increase rate R2 from the first temperature range T1 to the second temperature range T2 can be quickly increased to the vicinity of the second temperature range T2 to shorten the time required for the temperature increase. For example, as shown in the figure, the temperature rising rate R2 is increased up to 800 ° C. (for example, 60 ° C./hour), and is decreased from 800 to 1050 ° C. (for example, 30 ° C./hour). Raise the temperature in stages. The holding time H1 in the second temperature region T2 can be set to a time sufficient for the honeycomb formed body to become a honeycomb sintered body, for example, about 10 hours.

第3工程S3は、ハニカム焼結体の放冷工程であり、第1低酸素雰囲気A1下で、第2温度域T2から第3温度域T3まで降温する。第3温度域T3は、ハニカム成形体中の有機成分に起因する残留炭素成分、すなわちハニカム焼結体中に残留する炭素成分が、酸化燃焼可能な温度以上、例えば、500〜800℃の範囲で適宜設定され、ここでは、600℃程度とする。第3工程S3において、第2温度域T2から第3温度域T3への降温速度R3は、例えば、30℃/時間とする。第1工程S1において、ハニカム成形体中の有機成分が分解焼失せずに、タール状または炭化した状態で残留することがあり、これら残留炭素成分を、続く第4工程S4で除去する。   The third step S3 is a step for cooling the honeycomb sintered body, and the temperature is lowered from the second temperature range T2 to the third temperature range T3 under the first low oxygen atmosphere A1. The third temperature range T3 is equal to or higher than a temperature at which the carbon component remaining due to the organic component in the honeycomb molded body, that is, the carbon component remaining in the honeycomb sintered body can be oxidized and burned, for example, in a range of 500 to 800 ° C. It is set appropriately, and here, it is about 600 ° C. In the third step S3, the rate of temperature decrease R3 from the second temperature range T2 to the third temperature range T3 is, for example, 30 ° C./hour. In the first step S1, the organic components in the honeycomb formed body may remain in a tar-like or carbonized state without being decomposed and burned, and these residual carbon components are removed in the subsequent fourth step S4.

第4工程S4は、ハニカム焼結体の脱炭・酸素吸蔵工程であり、第3温度域T3を保持したまま、第1低酸素雰囲気A1から徐々に酸素濃度を上昇させて、残留炭素成分を酸化燃焼させるとともに、ハニカム焼結体のCZ粒子に酸素を吸蔵させる。この酸素吸蔵反応は、発熱反応であり、過度な発熱を回避するために、所定の第2低酸素雰囲気A2を設定する。そして、この第2低酸素雰囲気A2を超えないように、段階的または連続的に酸素濃度を上昇させる。第2低酸素雰囲気A2は、第1低酸素雰囲気A1よりも酸素濃度が高く、かつ大気雰囲気よりも酸素濃度の低い雰囲気である。好適には、低酸素雰囲気A2は、ハニカム焼結体への酸素吸蔵が可能な範囲で、比較的酸素濃度の低い雰囲気、例えば、酸素濃度が5体積%以下の雰囲気であり、ここでは、酸素濃度が2体積%の雰囲気とする。   The fourth step S4 is a decarburization / oxygen storage step of the honeycomb sintered body, and while maintaining the third temperature range T3, the oxygen concentration is gradually increased from the first low oxygen atmosphere A1, and the residual carbon component is removed. While oxidizing and burning, oxygen is stored in the CZ particles of the honeycomb sintered body. This oxygen storage reaction is an exothermic reaction, and a predetermined second low oxygen atmosphere A2 is set in order to avoid excessive heat generation. Then, the oxygen concentration is increased stepwise or continuously so as not to exceed the second low oxygen atmosphere A2. The second low oxygen atmosphere A2 is an atmosphere having an oxygen concentration higher than that of the first low oxygen atmosphere A1 and lower than that of the air atmosphere. Preferably, the low oxygen atmosphere A2 is an atmosphere having a relatively low oxygen concentration, for example, an atmosphere having an oxygen concentration of 5% by volume or less within a range in which oxygen can be stored in the honeycomb sintered body. The atmosphere has a concentration of 2% by volume.

第1低酸素雰囲気A1から第2低酸素雰囲気A2への、酸素濃度の上昇タイミングや上昇率は、ハニカム焼結体に過度な発熱が生じないように、適宜調整される。例えば、単位時間ごとのハニカム焼結体の発熱量、すなわち、ハニカム焼結体の酸素吸蔵反応による発熱量と、ハニカム焼結体中の残留炭素成分の酸化反応による発熱量との和が、ハニカム焼結体から放熱可能な熱量と同等程度またはそれ以下となるように調整されるのがよい。   The timing and rate of increase in the oxygen concentration from the first low oxygen atmosphere A1 to the second low oxygen atmosphere A2 are appropriately adjusted so that excessive heat generation does not occur in the honeycomb sintered body. For example, the calorific value of the honeycomb sintered body per unit time, that is, the sum of the calorific value due to the oxygen storage reaction of the honeycomb sintered body and the calorific value due to the oxidation reaction of the residual carbon component in the honeycomb sintered body is It is preferable that the amount of heat that can be dissipated from the sintered body is approximately equal to or less than that.

第4工程S4においては、酸素濃度を徐々に上昇させつつ、第3温度域T3にて所定の時間保持することで、急激な発熱を抑制しながら、ハニカム焼結体の脱炭処理と酸素吸蔵処理を実施できる。このとき、導入する雰囲気ガス中の酸素濃度は、ハニカム焼結体の熱容量やCZ粒子の配合量等に基づいて、予め設定しておくとよい。第3温度域T3での保持時間H2は、導入雰囲気において酸素吸蔵反応が終了可能な時間以上、好適には、酸素吸蔵反応が終了可能な時間に対して十分な余裕のある長さとし、例えば、20時間程度とする。ハニカム焼結体の酸素吸蔵は、第3温度域T3での保持時間H2にてほぼ完了しており、このとき、設定された保持時間H2中に、第2低酸素雰囲気A2まで酸素濃度を上昇させなくてもよい。その場合は、例えば、続く第5工程S5にかけて、第2低酸素雰囲気A2まで酸素濃度を上昇させることで、ハニカム焼結体の酸素吸蔵がほぼ完了し、放熱量が発熱量を上回る条件下で、より安全に酸素導入することができる。   In the fourth step S4, the honeycomb sintered body is decarburized and oxygen occluded while suppressing rapid heat generation by gradually increasing the oxygen concentration and holding it in the third temperature region T3 for a predetermined time. Processing can be performed. At this time, the oxygen concentration in the introduced atmospheric gas is preferably set in advance based on the heat capacity of the honeycomb sintered body, the blending amount of CZ particles, and the like. The holding time H2 in the third temperature region T3 is not less than the time during which the oxygen storage reaction can be completed in the introduction atmosphere, and preferably has a sufficient length with respect to the time during which the oxygen storage reaction can be completed. About 20 hours. Oxygen occlusion of the honeycomb sintered body is almost completed at the holding time H2 in the third temperature region T3, and at this time, the oxygen concentration is increased to the second low oxygen atmosphere A2 during the set holding time H2. You don't have to. In that case, for example, by increasing the oxygen concentration to the second low oxygen atmosphere A2 through the subsequent fifth step S5, the oxygen storage of the honeycomb sintered body is almost completed, and the heat release amount exceeds the heat generation amount. Oxygen can be introduced more safely.

具体的には、図中に示すように、時点aにおいて、酸素濃度0.5体積%の雰囲気ガスを導入した後、一定時間ごとに、段階的に酸素濃度を上昇させ、時点bにおいて、酸素濃度0.7体積%、時点cにおいて、酸素濃度1.0体積%の雰囲気ガスを導入する。さらに、第5工程S5における、時点dにおいて、酸素濃度2.0体積%の雰囲気ガスを導入して、第2低酸素雰囲気A2とする。このように、第4工程における酸素濃度が、1体積%前後の時間を長くし、2体積%を超えないように保つことで、ハニカム構造体1の品質を向上する効果が高い。   Specifically, as shown in the figure, after introducing an atmospheric gas having an oxygen concentration of 0.5% by volume at time point a, the oxygen concentration is increased step by step at regular intervals, and at time point b, oxygen concentration is increased. At a concentration of 0.7% by volume and at time point c, an atmospheric gas having an oxygen concentration of 1.0% by volume is introduced. Further, at the time point d in the fifth step S5, an atmosphere gas having an oxygen concentration of 2.0 vol% is introduced to form a second low oxygen atmosphere A2. Thus, the effect of improving the quality of the honeycomb structure 1 is high by keeping the oxygen concentration in the fourth step longer than about 1% by volume and not exceeding 2% by volume.

第5工程S5は、ハニカム焼結体の大気開放工程であり、第3温度域T3から、これより温度が低い所定の第4温度域T4となるまで、さらに降温させる。その間に、第2低酸素雰囲気A2から大気雰囲気となるまで、酸素濃度を上昇させる。第4温度域T4は、ハニカム構造体の取出しにより、室温との温度差で急激な冷却による破損が生じない温度域であればよく、例えば、常温〜100℃程度とする。第5工程S5において、第3温度域T3から第3温度域T4への降温速度R4は、例えば、60℃/時間とする。その後、第4温度域T4に達した時点において、ハニカム構造体の取出し作業を行う。   The fifth step S5 is a step of releasing the honeycomb sintered body to the atmosphere, and the temperature is further lowered from the third temperature range T3 until the temperature reaches a predetermined fourth temperature range T4 lower than the third temperature range T3. Meanwhile, the oxygen concentration is increased from the second low oxygen atmosphere A2 to the air atmosphere. The fourth temperature range T4 may be a temperature range in which breakage due to rapid cooling does not occur due to a temperature difference from room temperature due to removal of the honeycomb structure, and is, for example, about room temperature to about 100 ° C. In the fifth step S5, the rate of temperature decrease R4 from the third temperature region T3 to the third temperature region T4 is, for example, 60 ° C./hour. Thereafter, when the temperature reaches the fourth temperature range T4, the honeycomb structure is taken out.

上記のような焼成プロファイルとすることにより、第1工程S1での脱脂を制御性よく行い、また、第4工程S4において、残留炭素成分を確実に除去するとともに、酸素吸蔵処理を完了させることができる。つまり、第4工程S4では、酸素濃度を徐々に上昇させて、ハニカム焼結体の自己発熱を抑制しながら、酸素を急増させ、次いで、上記第5工程S5において、第2低酸素雰囲気A2を保ったまま、第4温度域T4まで放冷しているので、この時点で一気に大気が導入されても、酸素の急激な取り込みやそれに伴う発熱は生じない。したがって、ハニカム焼結体の冷却後に、酸素吸蔵や残留炭素成分の燃焼によって、急激な昇温が起こり、破損を生じるおそれは小さい。   By using the firing profile as described above, degreasing in the first step S1 is performed with good controllability, and in the fourth step S4, the residual carbon component is surely removed and the oxygen storage treatment is completed. it can. In other words, in the fourth step S4, the oxygen concentration is gradually increased to rapidly increase oxygen while suppressing self-heating of the honeycomb sintered body, and then in the fifth step S5, the second low oxygen atmosphere A2 is changed. Since it is allowed to cool to the fourth temperature range T4 while keeping it, even if the air is introduced at a time at this time, rapid oxygen uptake and heat generation associated therewith do not occur. Therefore, after the honeycomb sintered body is cooled, there is little possibility that a rapid temperature rise occurs due to oxygen storage or combustion of residual carbon components, causing damage.

このようにして得られたハニカム焼結体、すなわちハニカム構造体1は、次いで、図3に示す触媒コンバータ10に搭載される。触媒コンバータ10は、円筒管状の排ガス管路に接続されてその一部となる筒状ケース21を有し、その内部にハニカム構造体1を収容している。筒状ケース21とハニカム構造体1の間には、キャニング用の保護マット22が介設される。自動車の排ガス管路は、ここでは、図の左端側を排ガス流れの上流側、右端側を下流側とし、保持マット22は、例えばアルミナ繊維などの無機繊維からなるシート状のマットである。   The honeycomb sintered body thus obtained, that is, the honeycomb structure 1 is then mounted on the catalytic converter 10 shown in FIG. The catalytic converter 10 has a cylindrical case 21 which is connected to a cylindrical tubular exhaust pipe and becomes a part thereof, and the honeycomb structure 1 is accommodated therein. A canning protective mat 22 is interposed between the cylindrical case 21 and the honeycomb structure 1. Here, the left side of the figure is the upstream side of the exhaust gas flow and the right side is the downstream side, and the holding mat 22 is a sheet-like mat made of inorganic fibers such as alumina fibers.

触媒コンバータ10に搭載されるハニカム構造体1は、予め貴金属触媒を担持させて、ハニカム触媒体とする。貴金属触媒は、例えばPt、Rh、Pdから選ばれる少なくとも1種の貴金属である。ハニカム構造体1は、セル壁11を構成する材料自体が、助触媒機能を有するため、貴金属の触媒性能を効果的に発揮させることができる。このとき、部分的に担持する貴金属の種類を変えたり、あるいは、貴金属の量を変更したりすることもできる。一例として、PdとRhを担持させる場合には、まず、ハニカム構造体1に、Pdを含む水溶液を含浸させた後、ウォッシュコートによりRhを含むコート層を形成する。さらに必要により、Pdを含む水溶液を再含浸させ、乾燥させた後、焼付を行ってハニカム触媒体とする。その後、キャニングを行って、得られたハニカム触媒体の外周に保持マット22を巻き付けた状態で、筒状ケース21内に圧入することにより、図3に示す触媒コンバータ10とすることができる。   The honeycomb structure 1 mounted on the catalytic converter 10 carries a noble metal catalyst in advance to form a honeycomb catalyst body. The noble metal catalyst is at least one kind of noble metal selected from, for example, Pt, Rh, and Pd. In the honeycomb structure 1, since the material constituting the cell wall 11 itself has a promoter function, the catalytic performance of the noble metal can be effectively exhibited. At this time, it is possible to change the kind of the precious metal partially supported or change the amount of the precious metal. As an example, when Pd and Rh are supported, first, the honeycomb structure 1 is impregnated with an aqueous solution containing Pd, and then a coat layer containing Rh is formed by wash coating. Further, if necessary, an aqueous solution containing Pd is re-impregnated and dried, followed by baking to obtain a honeycomb catalyst body. Thereafter, canning is performed, and the catalytic converter 10 shown in FIG. 3 can be obtained by press-fitting into the cylindrical case 21 with the holding mat 22 wound around the outer periphery of the obtained honeycomb catalyst body.

図4、図5により、無機バインダとしてのアルミナゾルを用いた粒子接合反応と、ハニカム構造体1の焼結組織について説明する。ここで、図4左図の焼成前の坏土は、坏土調整材に加えて、気孔調整材として造孔材を含んだ例としている。図4左図に示すように、混錬後の坏土(すなわち、焼成前)は、母材原料であるCZ粒子とアルミナ粒子3、さらに造孔材5が、無機バインダ4中に分散した状態となっている。一方、図5に示すように、アルミナゾルに含まれる水酸化アルミニウムは、焼結時に脱水縮合によりアルミナ化し、その際に隣接する粒子同士を接合する。つまり、焼結組織への移行過程において、液相を形成しない。このとき、図4左図の坏土を焼成すると、造孔材5の揮発前に、粒界成分であるアルミナゾルがゲル化し、坏土内の立体配置が固定化する。次いで、焼結過程において、脱水縮合によるアルミナ化が進む。その結果、図4右図に焼成後組織を示すように、粒子形状が保持され、固定された粒配置のまま圧縮された状態で焼結する。   4 and 5, the particle bonding reaction using alumina sol as an inorganic binder and the sintered structure of the honeycomb structure 1 will be described. Here, the clay before firing shown in the left diagram of FIG. 4 is an example including a pore former as a pore adjuster in addition to the clay adjuster. As shown in the left diagram of FIG. 4, the kneaded clay (that is, before firing) is a state in which the CZ particles and alumina particles 3 as the base material, and the pore former 5 are dispersed in the inorganic binder 4. It has become. On the other hand, as shown in FIG. 5, the aluminum hydroxide contained in the alumina sol is aluminized by dehydration condensation during sintering, and the adjacent particles are joined together at that time. That is, a liquid phase is not formed in the transition process to the sintered structure. At this time, when the clay shown in the left diagram of FIG. 4 is fired, the alumina sol that is a grain boundary component gels before the pore former 5 volatilizes, and the three-dimensional configuration in the clay is fixed. Next, aluminization by dehydration condensation proceeds in the sintering process. As a result, as shown in the right figure of FIG. 4, the sintered product is sintered in a compressed state with the particle shape maintained and the fixed grain arrangement as shown in the right figure.

このように、ハニカム構造体1の焼結組織は、母材原料の粒界に気孔が形成されやすく、また、一次粒子間に粒子内細孔が形成されて、造孔材5を用いなくても比較的気孔率を高くすることが可能となる。これに対し、図6に示すように、例えばコージェライト等の従来の基材焼成は、通常、液相焼結となる。つまり、図6左図のように、焼成前の坏土は、原料粒子71、72と、造孔材5と、液相形成成分6を含み、図6右図のように、造孔材5の揮発後、高温状態で液相が発生する。このとき、液相形成成分6が、原料粒子71、72の表面に広がり、造孔材の欠損で生じる空間を利用して、粒子の流動と再配列を伴いながら焼結が進行する。このため、粒子間の気孔が小さくなり、また、液相形成成分6の濡れにより、粒子内細孔も減少しやすい。   Thus, in the sintered structure of the honeycomb structure 1, pores are easily formed at the grain boundaries of the base material, and the pores 5 are not used because the intraparticle pores are formed between the primary particles. However, it is possible to relatively increase the porosity. On the other hand, as shown in FIG. 6, conventional base material baking such as cordierite is usually liquid phase sintering. That is, as shown in the left diagram of FIG. 6, the clay before firing includes the raw material particles 71 and 72, the pore former 5, and the liquid phase forming component 6, and as shown in the right diagram of FIG. 6, the pore former 5. After volatilization, a liquid phase is generated at high temperature. At this time, the liquid phase forming component 6 spreads on the surfaces of the raw material particles 71 and 72, and sintering proceeds with the flow and rearrangement of the particles using the space generated by the loss of the pore former. For this reason, the pores between the particles become small, and the pores in the particles tend to decrease due to the wetting of the liquid phase forming component 6.

したがって、上記方法によって得られるハニカム構造体1は、酸素吸蔵能を有する助触媒成分を主体とする多孔質体となり、触媒担持性、ガス拡散性に優れる。そして、ハニカム成形体の焼成雰囲気中の酸素濃度と雰囲気温度を、第1工程S1〜第5工程S5に従い、高度に制御することにより、酸素吸蔵能を有するハニカム構造体1を、自己発熱を制御しながら製造することができる。したがって、セリア−ジルコニア複合酸化物の配合割合が比較的大きく、また、比較的大口径のハニカム構造体1であっても、急激な発熱を生じることなく焼成可能であり、クラック等の破損を防止して所望の機械的強度を保持することができる。そのため、一体型の非セグメント構造のハニカム構造体1として、自動車用触媒コンバータに搭載することができ、触媒性能を高めることができる。   Therefore, the honeycomb structure 1 obtained by the above method becomes a porous body mainly composed of a promoter component having an oxygen storage ability, and is excellent in catalyst carrying ability and gas diffusibility. Then, the honeycomb structure 1 having the oxygen storage ability is controlled by controlling the oxygen concentration and the atmospheric temperature in the firing atmosphere of the honeycomb formed body according to the first step S1 to the fifth step S5. Can be manufactured. Therefore, even if the mixture ratio of the ceria-zirconia composite oxide is relatively large and the honeycomb structure 1 has a relatively large diameter, it can be fired without causing rapid heat generation, and prevents breakage such as cracks. Thus, a desired mechanical strength can be maintained. Therefore, the honeycomb structure 1 having an integral non-segment structure can be mounted on an automobile catalytic converter, and the catalytic performance can be improved.

具体的には、第1工程S1を、酸素濃度0.5体積%以下の第1低酸素雰囲気A1で、200〜500℃の第1温度域T1で行うことで、有機成分の熱分解を良好に行う。また、第2工程S2において、700〜1200℃の第2温度域T2で、ハニカム焼結体を得た後、第3工程S3において、500〜800℃の第3温度域T3に降温するので、第4工程S4において、酸素濃度0.5〜2.0体積%以下の第2低酸素雰囲気A2に制限して、徐々に酸素導入し、十分な保持時間H2とすることで、酸素吸蔵反応を終了させ、残留炭素成分を除去できる。そして、常温〜100℃の第4温度域T4に降温させた後、第5工程S5において、安全に大気雰囲気とすることができる。   Specifically, the first step S1 is performed in the first temperature range T1 of 200 to 500 ° C. in the first low oxygen atmosphere A1 having an oxygen concentration of 0.5% by volume or less, so that the thermal decomposition of the organic component is good. To do. In addition, after obtaining the honeycomb sintered body in the second temperature range T2 of 700 to 1200 ° C. in the second step S2, the temperature is lowered to the third temperature range T3 of 500 to 800 ° C. in the third step S3. In the fourth step S4, the oxygen storage reaction is limited by restricting the oxygen concentration to the second low oxygen atmosphere A2 having an oxygen concentration of 0.5 to 2.0% by volume or less, gradually introducing oxygen, and setting the retention time to H2. And the residual carbon component can be removed. And after lowering to 4th temperature range T4 of normal temperature-100 degreeC, it can be set as air atmosphere safely in 5th process S5.

また、ハニカム構造体1は、母材原料となるCZ粒子が、ナノサイズの一次粒子が凝集した二次粒子であり、一次粒子間に形成される気孔が、粒界に形成される気孔と互いに連通して、排ガスの拡散に寄与する。このとき、平均粒径の異なる2種類のCZ粒子を用いると、比表面積および焼結性の向上に有利である。   Further, in the honeycomb structure 1, CZ particles as a base material are secondary particles in which nano-sized primary particles are aggregated, and pores formed between the primary particles are mutually connected to pores formed at the grain boundaries. It communicates and contributes to the diffusion of exhaust gas. At this time, using two types of CZ particles having different average particle diameters is advantageous in improving the specific surface area and sinterability.

(実施例1)
次に、上記した方法により、坏土を形成するための材料を準備し、ハニカム構造体1を製造した。ここで、ハニカム構造体1は円柱体形状で、大きさはφ103mm×L105mmであり、内部に断面四角形状のセル12が多数形成されている。
Example 1
Next, a material for forming clay was prepared by the above-described method, and the honeycomb structure 1 was manufactured. Here, the honeycomb structure 1 has a cylindrical shape, and has a size of φ103 mm × L105 mm, and a large number of cells 12 having a square cross section are formed therein.

まず、原料粒子となる2種類のCZ粒子と、平均粒子径20μmのアルミナ粒子を母材原料とし、無機バインダとして、一次粒子の平均粒子径が20nmのアルミナゾルを添加した混合材料を準備した。2種類のCZ粒子は、平均粒子径14μmのCZ粒子(以下、CZ1という)と平均粒子径2μmのCZ粒子(以下、CZ2という)とし、これらの配合割合は、CZ1:CZ2=80:20(単位:質量%)とした。   First, a mixed material was prepared in which two types of CZ particles serving as raw material particles and alumina particles having an average particle diameter of 20 μm were used as a base material, and an alumina sol having an average primary particle diameter of 20 nm was added as an inorganic binder. The two types of CZ particles are CZ particles having an average particle diameter of 14 μm (hereinafter referred to as CZ1) and CZ particles having an average particle diameter of 2 μm (hereinafter referred to as CZ2), and the blending ratio thereof is CZ1: CZ2 = 80: 20 ( (Unit: mass%).

成形工程において、この材料に、溶媒となる水と、有機バインダと、滑剤とを混合し、混練機(例えば、(株)モリヤマ製の「MS加圧ニーダ DS3−10」)により、混合物を90分間混練することにより坏土を形成した。次いで、公知の押出成形機により、坏土をハニカム形状に成形した。成形圧力は10MPaとした。その後、所定長に切断して、ハニカム成形体を得た。   In the molding step, water as a solvent, an organic binder, and a lubricant are mixed with this material, and the mixture is mixed with a kneader (for example, “MS pressure kneader DS3-10” manufactured by Moriyama Co., Ltd.). A clay was formed by kneading for a minute. Next, the kneaded material was formed into a honeycomb shape by a known extruder. The molding pressure was 10 MPa. Then, it cut | disconnected to predetermined length and obtained the honeycomb molded object.

ここで、母材原料100体積部に対して、無機バインダであるアルミナゾル(例えば、日産化学工業(株)製の「AS−520」)の配合割合は、固形分量で12体積部とした。また、母材原料100質量部に対して、水の配合割合は37質量部であり、有機バインダの配合割合は13.5質量部であり、滑剤の配合割合は1質量部とした。有機バインダとしては、メチルセルロース(例えば、松本油脂製薬(株)製の「65MP4000」)を用い、滑剤としては、日油(株)製の「ユニルーブ 50MB26」を用いた。なお、本例における原料粒子は、セリアにジルコニウムが固溶されたCZ粒子であるが、ジルコニウムの他にさらに希土類元素であるLaやYが固溶している。   Here, the mixing ratio of alumina sol which is an inorganic binder (for example, “AS-520” manufactured by Nissan Chemical Industries, Ltd.) with respect to 100 parts by volume of the base material was 12 parts by volume in solid content. In addition, with respect to 100 parts by mass of the base material, the mixing ratio of water was 37 parts by mass, the mixing ratio of the organic binder was 13.5 parts by mass, and the mixing ratio of the lubricant was 1 part by mass. Methylcellulose (for example, “65MP4000” manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) was used as the organic binder, and “Unilube 50MB26” manufactured by NOF Corporation was used as the lubricant. The raw material particles in this example are CZ particles in which zirconium is solid-dissolved in ceria, but in addition to zirconium, rare earth elements La and Y are also solid-dissolved.

焼成工程において、上記のようにして得たハニカム成形体を、マイクロ波乾燥機及び熱風乾燥機により、十分に乾燥させた後、上記第1工程S1〜第5工程S5に従い、焼成を行った。図7に示すように、まず、第1工程S1として、図7の時間0において、焼成炉内に窒素導入を開始することにより、酸素濃度が検出限界以下(すなわち、0.1体積%以下)の不活性雰囲気(すなわち、第1低酸素雰囲気A1)とした後、昇温を開始した。昇温速度R1は、例えば、室温〜150℃までは、60℃/時間、その後は昇温速度をやや低くして、250℃(すなわち、第1温度域T1)に到達させ、一定時間(例えば、10時間)保持することにより、ハニカム成形体の脱脂を行った。   In the firing step, the honeycomb formed body obtained as described above was sufficiently dried by a microwave dryer and a hot air dryer, and then fired according to the first step S1 to the fifth step S5. As shown in FIG. 7, first, as the first step S1, introduction of nitrogen into the firing furnace is started at time 0 in FIG. 7, so that the oxygen concentration is below the detection limit (ie, 0.1% by volume or less). After the inert atmosphere (that is, the first low oxygen atmosphere A1) was set, the temperature was raised. The temperature rising rate R1 is, for example, 60 ° C./hour from room temperature to 150 ° C., and then slightly lowering the temperature rising rate to reach 250 ° C. (that is, the first temperature range T1) for a certain time (for example, 10 hours), the honeycomb formed body was degreased.

第2工程S2として、ハニカム成形体を焼結させるため、再び昇温し、1050℃(すなわち、第2温度域T2)で、所定の時間保持した。昇温速度R2は、例えば、250〜800℃までは、30〜100℃/時間、その後は30℃/時間とした。保持時間H1は、例えば、10時間とした。   In the second step S2, in order to sinter the honeycomb formed body, the temperature was raised again and held at 1050 ° C. (that is, the second temperature range T2) for a predetermined time. The temperature rising rate R2 was, for example, 30 to 100 ° C./hour up to 250 to 800 ° C., and then 30 ° C./hour thereafter. The holding time H1 is, for example, 10 hours.

第3工程S3として、雰囲気温度を、600℃(すなわち、第3温度域T3)まで降温させた。降温速度R3は、30℃/時間とした、次いで、第4工程S4として、雰囲気温度を第3温度域T3に保ったまま、予め設定した所定の時間保持した。保持時間H2は、例えば、20時間とした。また、雰囲気温度を600℃に降温し、第4工程S4を開始する時点で、導入する雰囲気中の酸素濃度を0.5体積%に上昇させた。その後も一定時間ごとに、酸素濃度を0.7体積%、1.0体積%と段階的に上昇させた。さらに、所定の保持時間H2の終了前に、雰囲気中の酸素濃度を2体積%に向けて上昇させた。この2体積%への上昇は、例えば、まず1.8体積%程度まで上昇させ、その後は徐々に酸素導入して緩やかに上昇させた。その途中で、第5工程S5の降温を開始した。   As 3rd process S3, atmospheric temperature was temperature-fallen to 600 degreeC (namely, 3rd temperature range T3). The temperature lowering rate R3 was set to 30 ° C./hour. Next, as the fourth step S4, the temperature was maintained in the third temperature range T3 and held for a predetermined time. The holding time H2 is 20 hours, for example. Further, the temperature of the atmosphere was lowered to 600 ° C., and when the fourth step S4 was started, the oxygen concentration in the atmosphere to be introduced was increased to 0.5% by volume. Thereafter, the oxygen concentration was gradually increased to 0.7% by volume and 1.0% by volume at regular time intervals. Further, the oxygen concentration in the atmosphere was increased to 2% by volume before the end of the predetermined holding time H2. The increase to 2% by volume was, for example, first increased to about 1.8% by volume, and then gradually introduced by gradually introducing oxygen. In the middle of this, the temperature reduction in the fifth step S5 was started.

第5工程S5として、200℃(すなわち、第4温度域T4)まで降温させた後、酸素濃度を2体積%から大気雰囲気に上昇させた。降温速度R4は、例えば、60℃/時間とした。ここで、第4工程S4における保持時間H2と、第4、第5工程S4、S5において導入する酸素濃度の設定について、図8により説明する。   As the fifth step S5, the temperature was lowered to 200 ° C. (that is, the fourth temperature range T4), and then the oxygen concentration was raised from 2% by volume to the air atmosphere. The temperature decrease rate R4 was set to 60 ° C./hour, for example. Here, the setting of the holding time H2 in the fourth step S4 and the oxygen concentration introduced in the fourth and fifth steps S4 and S5 will be described with reference to FIG.

図8は、焼成工程の第4工程S4について、本実施例で製造するハニカム構造体1の酸素吸蔵に伴う発熱量と、ハニカム構造体1の熱容量に基づく放熱量の関係から、ハニカム構造体1の発熱温度に対する必要反応時間を調べた結果を示している。図中の発熱温度は、ハニカム構造体1の母材原料に含まれるセリアの割合から、酸素未吸蔵のセリアが酸素吸蔵反応によって単位時間ごとに発熱する温度を算出したものであり、セリアの配合割合が大きいほど、温度は高くなる。また、導入する酸素濃度によって制御することが可能である。そこで、ハニカム構造体1の重量と比熱から算出される熱容量(すなわち、温度が1℃上昇するために必要な熱量)に基づいて、実質的に、発熱温度=放熱可能温度、となる熱量消費速度を算出し、ハニカム構造体1中の発熱総量を消費するのに必要な時間を、必要反応時間とした。   FIG. 8 shows the honeycomb structure 1 in the fourth step S4 of the firing process, based on the relationship between the amount of heat generated by the occlusion of oxygen in the honeycomb structure 1 manufactured in this example and the amount of heat released based on the heat capacity of the honeycomb structure 1. The result of having investigated the required reaction time with respect to the exothermic temperature of is shown. The exothermic temperature in the figure is the temperature at which oxygen-unoccluded ceria generates heat per unit time due to the oxygen occlusion reaction, based on the ratio of ceria contained in the base material of the honeycomb structure 1. The higher the percentage, the higher the temperature. Further, it can be controlled by the oxygen concentration to be introduced. Therefore, based on the heat capacity calculated from the weight and specific heat of the honeycomb structure 1 (that is, the amount of heat necessary for the temperature to rise by 1 ° C.), the heat consumption rate at which the heat generation temperature = the heat radiation temperature is substantially satisfied. The time required to consume the total amount of heat generated in the honeycomb structure 1 was defined as the required reaction time.

図示されるように、発熱温度が大きいほど、ハニカム構造体1の全体に酸素吸蔵させるための、必要反応時間は短くなり、生産性は高くなる。ただし、発熱温度が大きくなると、ハニカム構造体1の温度上昇が制御できなくなり、熱衝撃によるクラック等の破損のおそれが大きくなる。このため、好適には、ハニカム構造体1の温度が、第4工程S4における第3温度域T3を、大きく外れて上昇しない範囲で、必要反応時間が許容範囲となるように、発熱温度を調整する。例えば、酸素濃度は1.0体積%未満であり、発熱温度が2.0K/分のとき、必要反応時間は、10時間となるので、これを保持時間H2とすればよい。   As shown in the figure, the higher the heat generation temperature, the shorter the required reaction time for storing oxygen in the entire honeycomb structure 1 and the higher the productivity. However, when the heat generation temperature increases, the temperature rise of the honeycomb structure 1 cannot be controlled, and the risk of damage such as cracks due to thermal shock increases. For this reason, preferably, the exothermic temperature is adjusted so that the required reaction time is within an allowable range within a range where the temperature of the honeycomb structure 1 does not greatly deviate from the third temperature range T3 in the fourth step S4. To do. For example, when the oxygen concentration is less than 1.0% by volume and the exothermic temperature is 2.0 K / min, the required reaction time is 10 hours, so this may be set as the holding time H2.

このようにして得られたハニカム構造体1は、外皮にも内部にもクラック等の破損は生じていなかった。また、内部に変色等は見られなかった。これら結果から、上記焼成プロファイルに基づく焼成工程により、ハニカム成形体中の有機成分の分解除去、さらに、残留炭素成分の酸化除去が良好に行われたことが確認された。   The honeycomb structure 1 obtained in this way had no damage such as cracks in the outer skin or in the inner part. Further, no discoloration or the like was observed inside. From these results, it was confirmed that the organic component in the honeycomb formed body was decomposed and removed and the residual carbon component was oxidized and removed satisfactorily by the firing step based on the firing profile.

このように、本発明の方法によれば、酸素吸蔵能を有するハニカム構造体1の焼成工程において、脱脂、脱炭を制御性よく実施することができる。したがって、ハニカム構造体1の破損や破損片の飛散等を生じることがなく、品質の高いハニカム構造体1を得ることができる。   Thus, according to the method of the present invention, degreasing and decarburization can be performed with good controllability in the firing step of the honeycomb structure 1 having oxygen storage capacity. Therefore, the honeycomb structure 1 with high quality can be obtained without causing breakage of the honeycomb structure 1 or scattering of broken pieces.

本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を超えない範囲で、種々の変更が可能である。例えば、上記実施形態1、実施例1においては、製造するハニカム構造体1の外皮形状を、円筒体状としたが、例えば四角筒等の多角筒状にすることができる。また、ハニカム構造体1のセル形状は、四角形以外に、三角形、六角形、八角形等の多角形とし、または円形にすることもできる。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the first embodiment and the first embodiment, the outer shape of the honeycomb structure 1 to be manufactured is a cylindrical shape, but may be a polygonal cylinder shape such as a square cylinder. Further, the cell shape of the honeycomb structure 1 may be a polygon such as a triangle, a hexagon, an octagon or the like in addition to the quadrangle, or may be a circle.

また、ハニカム構造体1の製造方法は、使用する材料や成形方法その他の条件等、その一部を変更することもできる。例えば、ハニカム構造体1の材料は、少なくともセリア−ジルコニア複合酸化物を主成分とする原料粒子と無機バインダを含んでいればよく、必ずしもアルミナ粒子等の他のセラミック粒子を添加しなくてもよい。   Moreover, the manufacturing method of the honeycomb structure 1 can also change a part, such as a material to be used, a shaping | molding method, and other conditions. For example, the material of the honeycomb structure 1 only needs to include at least raw material particles mainly composed of a ceria-zirconia composite oxide and an inorganic binder, and other ceramic particles such as alumina particles may not necessarily be added. .

1 ハニカム構造体
21 筒状ケース
22 保持マット
3 アルミナ粒子
4 無機バインダ
10 自動車用触媒コンバータ
11 セル壁
12 セル
CZ セリア−ジルコニア固溶体粒子(すなわち、原料粒子)
DESCRIPTION OF SYMBOLS 1 Honeycomb structure 21 Cylindrical case 22 Holding mat 3 Alumina particle 4 Inorganic binder 10 Automotive catalytic converter 11 Cell wall 12 Cell CZ Ceria-zirconia solid solution particle (namely, raw material particle)

Claims (9)

ハニカム構造体(1)の製造方法であって、
セリア−ジルコニア複合酸化物を主成分とする原料粒子(CZ)と、該原料粒子(CZ)同士を接合する無機バインダ(4)とを混合し、有機成分よりなる坏土調整材を添加、混錬して得た坏土を、押出成形して、ハニカム成形体とする成形工程と、
得られたハニカム成形体を、乾燥させた後、焼結させて、上記ハニカム構造体(1)を得る焼成工程と、を備えており、
上記焼成工程は、
上記ハニカム成形体を、大気雰囲気よりも酸素濃度の低い第1低酸素雰囲気(A1)下で、上記坏土調整材中の上記有機成分が熱分解可能な第1温度域(T1)に昇温する第1工程(S1)と、
上記第1低酸素雰囲気(A1)下で、上記第1温度域(T1)から、上記ハニカム成形体が焼結可能な第2温度域(T2)まで昇温する第2工程(S2)と、
上記第1低酸素雰囲気(A1)下で、上記第2温度域(T2)から、上記有機成分に起因する残留炭素成分が酸化燃焼可能な第3温度域(T3)まで降温する第3工程(S3)と、
上記第3温度域(T3)に保持しながら、上記第1低酸素雰囲気(A1)よりも酸素濃度が高く、かつ大気雰囲気よりも酸素濃度の低い第2低酸素雰囲気(A2)を超えない範囲で、徐々に酸素濃度を上昇させる第4工程(S4)と、
上記第3温度域(T3)より温度が低い第4温度域(T4)に降温させ、上記第2低酸素雰囲気(A2)に到達させた後、大気雰囲気まで酸素濃度を上昇させる第5工程(S5)と、を有する、ハニカム構造体(1)の製造方法。
A method for manufacturing a honeycomb structure (1), comprising:
The raw material particles (CZ) mainly composed of ceria-zirconia composite oxide and the inorganic binder (4) for joining the raw material particles (CZ) are mixed, and a clay adjusting material composed of organic components is added and mixed. The molding process obtained by extruding the clay obtained by smelting into a honeycomb formed body,
The obtained honeycomb formed body is dried and then sintered to obtain the honeycomb structure (1).
The firing step is
The honeycomb formed body is heated to a first temperature region (T1) in which the organic component in the clay adjusting material can be thermally decomposed under a first low oxygen atmosphere (A1) having an oxygen concentration lower than that of the air atmosphere. The first step (S1)
A second step (S2) of raising the temperature from the first temperature range (T1) to the second temperature range (T2) at which the honeycomb formed body can be sintered under the first low oxygen atmosphere (A1);
A third step of lowering the temperature from the second temperature range (T2) to the third temperature range (T3) in which the residual carbon component caused by the organic component can be oxidized and combusted in the first low oxygen atmosphere (A1) ( S3)
A range that does not exceed the second low oxygen atmosphere (A2) having a higher oxygen concentration than the first low oxygen atmosphere (A1) and a lower oxygen concentration than the air atmosphere while maintaining the third temperature range (T3). In the fourth step (S4) of gradually increasing the oxygen concentration,
A fifth step of lowering the temperature to a fourth temperature range (T4) lower than the third temperature range (T3), reaching the second low oxygen atmosphere (A2), and then increasing the oxygen concentration to the air atmosphere ( And (5) a manufacturing method of the honeycomb structure (1).
上記第1工程(S1)において、上記第1低酸素雰囲気(A1)は、雰囲気中の酸素濃度が0.5体積%以下の低酸素雰囲気であり、上記第1温度域(T1)は、200〜500℃の範囲から選択される所定の温度域である、請求項1に記載のハニカム構造体(1)の製造方法。   In the first step (S1), the first low oxygen atmosphere (A1) is a low oxygen atmosphere in which the oxygen concentration in the atmosphere is 0.5% by volume or less, and the first temperature range (T1) is 200%. The method for manufacturing a honeycomb structured body (1) according to claim 1, wherein the temperature is in a predetermined temperature range selected from a range of ~ 500 ° C. 上記第2工程(S2)において、上記第2温度域(T2)は、700〜1200℃の範囲から選択される所定の温度域である、請求項1または2に記載のハニカム構造体(1)の製造方法。   The honeycomb structure (1) according to claim 1 or 2, wherein, in the second step (S2), the second temperature range (T2) is a predetermined temperature range selected from a range of 700 to 1200 ° C. Manufacturing method. 上記第3工程(S3)において、上記第3温度域(T3)は、500〜800℃の範囲から選択される所定の温度域である、請求項1〜3のいずれか1項に記載のハニカム構造体(1)の製造方法。   The honeycomb according to any one of claims 1 to 3, wherein in the third step (S3), the third temperature range (T3) is a predetermined temperature range selected from a range of 500 to 800 ° C. Manufacturing method of structure (1). 上記第4工程(S4)において、上記第2低酸素雰囲気(A2)は、雰囲気中の酸素濃度が0.5〜2.0体積%の範囲から選択される所定の低酸素雰囲気である、請求項1〜4のいずれか1項に記載のハニカム構造体(1)の製造方法。   In the fourth step (S4), the second low-oxygen atmosphere (A2) is a predetermined low-oxygen atmosphere selected from a range where the oxygen concentration in the atmosphere is 0.5 to 2.0% by volume. Item 5. The method for manufacturing a honeycomb structured body (1) according to any one of Items 1 to 4. 上記第4工程(S4)において、上記第3温度域(T3)における保持時間(H2)は、上記ハニカム構造体(1)の酸素吸蔵反応が終了する時間以上である、請求項1〜5のいずれか1項に記載のハニカム構造体(1)の製造方法。   In the fourth step (S4), the holding time (H2) in the third temperature range (T3) is equal to or longer than the time when the oxygen storage reaction of the honeycomb structure (1) is completed. A method for manufacturing a honeycomb structured body (1) according to any one of the preceding claims. 上記第5工程(S5)において、上記第4温度域(T4)は、常温〜100℃の範囲から選択される所定の温度域である、請求項1〜6のいずれか1項に記載のハニカム構造体(1)の製造方法。   The honeycomb according to any one of claims 1 to 6, wherein in the fifth step (S5), the fourth temperature range (T4) is a predetermined temperature range selected from a range of room temperature to 100 ° C. Manufacturing method of structure (1). 上記母材原料において、上記原料粒子(CZ)は、一次粒子が凝集した二次粒子である、請求項1〜7のいずれか1項に記載のハニカム構造体(1)の製造方法。   The method for manufacturing a honeycomb structured body (1) according to any one of claims 1 to 7, wherein the raw material particles (CZ) in the base material raw material are secondary particles in which primary particles are aggregated. 上記母材原料において、上記原料粒子(CZ)は、平均粒径の異なる2種類の粒子からなる、請求項1〜8のいずれか1項に記載のハニカム構造体(1)の製造方法。   The method for manufacturing a honeycomb structured body (1) according to any one of claims 1 to 8, wherein in the base material, the raw material particles (CZ) are composed of two kinds of particles having different average particle diameters.
JP2015123114A 2015-06-18 2015-06-18 Manufacturing method of honeycomb structure Expired - Fee Related JP6380249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123114A JP6380249B2 (en) 2015-06-18 2015-06-18 Manufacturing method of honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123114A JP6380249B2 (en) 2015-06-18 2015-06-18 Manufacturing method of honeycomb structure

Publications (2)

Publication Number Publication Date
JP2017006828A true JP2017006828A (en) 2017-01-12
JP6380249B2 JP6380249B2 (en) 2018-08-29

Family

ID=57760954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123114A Expired - Fee Related JP6380249B2 (en) 2015-06-18 2015-06-18 Manufacturing method of honeycomb structure

Country Status (1)

Country Link
JP (1) JP6380249B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143958A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Honeycomb filter
JP2018143959A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Honeycomb structure
WO2019026645A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Method for producing honeycomb structure, and honeycomb structure
JP2019026547A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Method for manufacturing honeycomb structure
JP2019042635A (en) * 2017-08-30 2019-03-22 イビデン株式会社 Manufacturing method of honeycomb structure
JP2019150754A (en) * 2018-03-01 2019-09-12 イビデン株式会社 Method for producing honeycomb structure
JP2020040034A (en) * 2018-09-12 2020-03-19 イビデン株式会社 Method for producing honeycomb structure
WO2020105667A1 (en) * 2018-11-22 2020-05-28 イビデン株式会社 Honeycomb structure
EP3593885A4 (en) * 2017-03-06 2021-01-13 Ibiden Co., Ltd. Honeycomb filter
EP3593884A4 (en) * 2017-03-06 2021-01-13 Ibiden Co., Ltd. Honeycomb filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073123A (en) * 2001-08-30 2003-03-12 Toyota Central Res & Dev Lab Inc Compound oxide and method for producing the same, and auxiliary catalyst for cleaning flue gas
JP2005104799A (en) * 2003-10-01 2005-04-21 Toyota Central Res & Dev Lab Inc Compound oxide and catalyst for cleaning exhaust gas
WO2009118865A1 (en) * 2008-03-27 2009-10-01 イビデン株式会社 Honeycomb structure
JP2009255029A (en) * 2008-03-27 2009-11-05 Ibiden Co Ltd Honeycomb structure
JP2012519067A (en) * 2009-02-27 2012-08-23 コーニング インコーポレイテッド Ceria-zirconia-zeolite catalyst body
JP2015077543A (en) * 2013-10-16 2015-04-23 株式会社日本自動車部品総合研究所 Honeycomb structure, method of manufacturing the same, and exhaust emission control catalyst
JP2016055233A (en) * 2014-09-08 2016-04-21 株式会社デンソー Honeycomb structure and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073123A (en) * 2001-08-30 2003-03-12 Toyota Central Res & Dev Lab Inc Compound oxide and method for producing the same, and auxiliary catalyst for cleaning flue gas
JP2005104799A (en) * 2003-10-01 2005-04-21 Toyota Central Res & Dev Lab Inc Compound oxide and catalyst for cleaning exhaust gas
WO2009118865A1 (en) * 2008-03-27 2009-10-01 イビデン株式会社 Honeycomb structure
JP2009255029A (en) * 2008-03-27 2009-11-05 Ibiden Co Ltd Honeycomb structure
JP2012519067A (en) * 2009-02-27 2012-08-23 コーニング インコーポレイテッド Ceria-zirconia-zeolite catalyst body
JP2015077543A (en) * 2013-10-16 2015-04-23 株式会社日本自動車部品総合研究所 Honeycomb structure, method of manufacturing the same, and exhaust emission control catalyst
JP2016055233A (en) * 2014-09-08 2016-04-21 株式会社デンソー Honeycomb structure and method for manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593885A4 (en) * 2017-03-06 2021-01-13 Ibiden Co., Ltd. Honeycomb filter
JP2018143959A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Honeycomb structure
US11213778B2 (en) 2017-03-06 2022-01-04 Ibiden Co., Ltd. Honeycomb filter
JP2018143958A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Honeycomb filter
EP3593884A4 (en) * 2017-03-06 2021-01-13 Ibiden Co., Ltd. Honeycomb filter
JP2019026547A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Method for manufacturing honeycomb structure
WO2019026645A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Method for producing honeycomb structure, and honeycomb structure
JP2019042635A (en) * 2017-08-30 2019-03-22 イビデン株式会社 Manufacturing method of honeycomb structure
JP2019150754A (en) * 2018-03-01 2019-09-12 イビデン株式会社 Method for producing honeycomb structure
JP7112212B2 (en) 2018-03-01 2022-08-03 イビデン株式会社 Manufacturing method of honeycomb structure
JP2020040034A (en) * 2018-09-12 2020-03-19 イビデン株式会社 Method for producing honeycomb structure
WO2020105667A1 (en) * 2018-11-22 2020-05-28 イビデン株式会社 Honeycomb structure
JP2020081954A (en) * 2018-11-22 2020-06-04 イビデン株式会社 Honeycomb structure
JP7304147B2 (en) 2018-11-22 2023-07-06 イビデン株式会社 honeycomb structure

Also Published As

Publication number Publication date
JP6380249B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6380249B2 (en) Manufacturing method of honeycomb structure
EP1364928B1 (en) Honeycomb structure
US7011803B2 (en) Honeycomb structure and method for its manufacture
US8187525B2 (en) Method of firing green bodies into porous ceramic articles
EP3024798B1 (en) Fast firing method for high porosity ceramics
US8530030B2 (en) Honeycomb structure
JP5189832B2 (en) Silicon carbide based porous material
JP2009536603A5 (en)
US20200222891A1 (en) Electrically heated catalyst
JP2010001184A (en) Method for manufacturing exhaust gas filter
EP2964587B1 (en) Fast firing method for ceramics
JP4826439B2 (en) Method for firing ceramic honeycomb formed body
EP2105424A1 (en) Method for manufacturing honeycomb structured body
JP2013158678A (en) Exhaust gas purifying filter and method of manufacturing the same
JP2012504092A (en) Method for producing porous SiC material
JP7153684B2 (en) Manufacturing method of honeycomb structure containing silicon carbide
JP2008110896A (en) Method of manufacturing ceramic honeycomb structure
JP2014501684A (en) Method for forming porous ceramic articles using inert gas
JP2000218165A (en) Honeycomb filter and its preparation
JP6542549B2 (en) Method of manufacturing honeycomb structure
JP5916255B2 (en) Ceramic filter
JP2009256175A (en) Method for producing honeycomb structure
WO2018008623A1 (en) Honeycomb structure and method for producing honeycomb structure
JP2016183062A (en) Honeycomb structure, and manufacturing method of honeycomb structure
JP6985854B2 (en) Honeycomb structure manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6380249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees