JP2017005175A - Semiconductor package substrate, semiconductor package and manufacturing method of the same - Google Patents
Semiconductor package substrate, semiconductor package and manufacturing method of the same Download PDFInfo
- Publication number
- JP2017005175A JP2017005175A JP2015119670A JP2015119670A JP2017005175A JP 2017005175 A JP2017005175 A JP 2017005175A JP 2015119670 A JP2015119670 A JP 2015119670A JP 2015119670 A JP2015119670 A JP 2015119670A JP 2017005175 A JP2017005175 A JP 2017005175A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor package
- semiconductor
- package substrate
- underfill
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 195
- 239000000758 substrate Substances 0.000 title claims abstract description 88
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229910000679 solder Inorganic materials 0.000 claims description 41
- 239000011347 resin Substances 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 239000000945 filler Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
Description
本発明は、半導体パッケージ基板、半導体パッケージおよびその製造方法に関する。 The present invention relates to a semiconductor package substrate, a semiconductor package, and a manufacturing method thereof.
半導体チップとマザーボードとの間の電気的接続のために半導体パッケージ基板が使用されている。また、半導体パッケージ基板には半導体チップと半導体パッケージが実装されるプリント配線板との熱膨張係数の相違の橋渡しを行い、システムの実装の接合信頼性を高める役割もある。このような役割から半導体パッケージ基板は、インターポーザ基板などと呼ばれる。 A semiconductor package substrate is used for electrical connection between the semiconductor chip and the motherboard. The semiconductor package substrate also serves to bridge the difference in thermal expansion coefficient between the semiconductor chip and the printed wiring board on which the semiconductor package is mounted, thereby increasing the bonding reliability of the system mounting. Because of this role, the semiconductor package substrate is called an interposer substrate.
また、半導体パッケージ基板は、基板内の配線幅、ピッチを各層で変化させることで、半導体チップ、マザーボード相互の線幅、ピッチに変換し電気的接続を得ている。 In addition, the semiconductor package substrate is converted into a line width and pitch between the semiconductor chip and the mother board by changing the wiring width and pitch in the substrate in each layer to obtain electrical connection.
一方、半導体パッケージ基板と半導体チップとの接続・実装方式は使用する状況により様々あるが半導体チップと半導体パッケージ基板とをはんだや金等の金属接合で接続するフリップチップ接続・実装が多用されている。フリップチップ接続は半導体チップの端子面を基板側の端子面に配置することにより多くの端子を半導体パッケージ基板と接続できるため、高性能の半導体パッケージに多く用いられている。 On the other hand, there are various connection / mounting methods between the semiconductor package substrate and the semiconductor chip depending on the use situation, but flip chip connection / mounting is often used in which the semiconductor chip and the semiconductor package substrate are connected by metal bonding such as solder or gold. . Flip chip connection is often used in high performance semiconductor packages because many terminals can be connected to the semiconductor package substrate by arranging the terminal surface of the semiconductor chip on the terminal surface on the substrate side.
しかし、フリップチップ実装後には、半導体チップと半導体パッケージ基板とははんだなどの微小な金属のみで保持されており、半導体パッケージが高低温の環境下では半導体チップとパッケージ基板との線膨張係数の差によりはんだバンプに応力が集中し、はんだにクラックや基板の界面剥離が発生し、半導体パッケージの故障に繋がるおそれがある。 However, after flip-chip mounting, the semiconductor chip and the semiconductor package substrate are held only by a minute metal such as solder, and the difference in linear expansion coefficient between the semiconductor chip and the package substrate is high and low temperature. As a result, stress concentrates on the solder bumps, and cracks and interfacial peeling of the substrate occur in the solder, which may lead to failure of the semiconductor package.
そこで従来から、半導体チップと基板との空隙部にアンダーフィルと呼ばれる樹脂を毛細管現象を利用して流し込み、はんだバンプの応力を緩和し、接続信頼性を確保している。 Therefore, conventionally, a resin called underfill is poured into the gap between the semiconductor chip and the substrate by utilizing the capillary phenomenon to relieve the stress of the solder bumps and ensure the connection reliability.
また、近年では高性能なシステムを短期間で開発するために従来のSoC(System on a Chip)だけでなく、1つのパッケージ上で大規模なシステムを構築するSiP(System in Package)が用いられている。例えば、CPU・GPUと大容量メモリ等の複数の半導体チップを1つのパッケージ基板上に隣同士に配置する場合やチップ同士をスタックし、3次元に配置する形態もある。 In recent years, not only the conventional SoC (System on a Chip) but also SiP (System in Package) for building a large-scale system on one package is used to develop a high-performance system in a short period of time. ing. For example, there are cases where a plurality of semiconductor chips such as a CPU / GPU and a large-capacity memory are arranged next to each other on a single package substrate, or chips are stacked and arranged three-dimensionally.
さらに、2、3次元に複数の半導体チップを配置する形態において、パッケージ全体の小型化のため、近年では半導体チップの低消費電力化や信号伝送の広帯域化により、チップ間の信号の減衰を抑えるために配置する半導体チップ間の距離は小さくすることが求められている。 Furthermore, in a form in which a plurality of semiconductor chips are arranged in two or three dimensions, in order to reduce the overall size of the package, in recent years, by reducing the power consumption of the semiconductor chip and increasing the bandwidth of signal transmission, the signal attenuation between the chips is suppressed. Therefore, it is required to reduce the distance between the semiconductor chips to be arranged.
図4は従来技術に係る半導体パッケージの構成を示す断面図である。フリップチップ実装方式を用いて2つの半導体チップ1を半導体パッケージ基板2に配置した構造の例である。半導体チップ1と半導体パッケージ基板2とがはんだバンプ3を介して接合されている。また、半導体チップ1と半導体パッケージ基板2との間にはアンダーフィル4が挿入されている。 FIG. 4 is a cross-sectional view showing a configuration of a semiconductor package according to the prior art. This is an example of a structure in which two semiconductor chips 1 are arranged on a semiconductor package substrate 2 using a flip chip mounting method. The semiconductor chip 1 and the semiconductor package substrate 2 are joined via solder bumps 3. An underfill 4 is inserted between the semiconductor chip 1 and the semiconductor package substrate 2.
図5は従来技術に係る半導体パッケージ基板の構造を示す断面図である。半導体パッケージ基板の中心部にはガラスエポキシ樹脂やガラス、シリコン板を用いたコア基材5を形成している。またコア基材5の上下に配線パターン6、絶縁樹脂層7の順に積層されている。さらに各配線パターン6の導通のため、コア基材5およびビルドアップ層にスルーホール電極8またはビア9を設けている。 FIG. 5 is a sectional view showing the structure of a semiconductor package substrate according to the prior art. A core base material 5 using glass epoxy resin, glass, or silicon plate is formed at the center of the semiconductor package substrate. Further, the wiring pattern 6 and the insulating resin layer 7 are laminated in this order on the top and bottom of the core substrate 5. Further, through-hole electrodes 8 or vias 9 are provided in the core base material 5 and the buildup layer for the conduction of each wiring pattern 6.
また、最上部または最下部の絶縁樹脂層7上にはソルダーレジスト層10が形成され、ソルダーレジスト層10がない部分は電極パッド11が形成されている。 Further, a solder resist layer 10 is formed on the uppermost or lowermost insulating resin layer 7, and an electrode pad 11 is formed in a portion where the solder resist layer 10 is not present.
図6は2つの半導体チップを半導体パッケージ基板に配置した場合における従来技術に係るアンダーフィル挿入工程の断面図である。半導体チップ1と半導体パッケージ基板2とを互いに接続端子を有する面を向かい合わせマウントし(図6の(a)参照)、その後加熱してはんだバンプ3を接合する(図6の(b)参照)。その後アンダーフィル4を半導体チップと半導体パッケージ基板との間に挿入する(図6の(c)参照)。 FIG. 6 is a cross-sectional view of an underfill insertion process according to the prior art when two semiconductor chips are arranged on a semiconductor package substrate. The semiconductor chip 1 and the semiconductor package substrate 2 are mounted with their surfaces having connection terminals facing each other (see FIG. 6A), and then heated to join the solder bumps 3 (see FIG. 6B). . Thereafter, the underfill 4 is inserted between the semiconductor chip and the semiconductor package substrate (see FIG. 6C).
その際半導体チップ同士の隙間がアンダーフィル端部に発生するフィレット幅以下になると互いのフィレットが一体となる(図6の(c)参照)。その後、アンダーフィルを加熱し、硬化する。その際チップ間に存在するアンダーフィルの硬化収縮によりパッケージ基板がチップ搭載面を上に凹形状に反りが発生する(図4の(b)参照)。反りの形状・大きさは2次実装工程等の実装性や接続信頼性低下に大きく影響する。そのため、反りの低減や接続信頼性の確保が必要になる。 At that time, when the gap between the semiconductor chips becomes equal to or smaller than the fillet width generated at the end of the underfill, the mutual fillets are integrated (see FIG. 6C). Thereafter, the underfill is heated and cured. At this time, the package substrate is warped in a concave shape with the chip mounting surface facing upward due to curing shrinkage of the underfill existing between the chips (see FIG. 4B). The shape and size of the warp greatly affects the mountability in the secondary mounting process and the like and the decrease in connection reliability. For this reason, it is necessary to reduce warpage and ensure connection reliability.
これらの問題の解決案として、半導体チップ間においてアンダーフィルを弾く非接着部位を半導体パッケージ基板上に形成することが提案されている(特許文献1)。この方法ではアンダーフィルの一体化を防止することにより実装の耐久性を向上することができる。しかしながら、半導体チップがある程度離れている場合はアンダーフィルが非接着部位によって弾かれるが半導体チップ間の距離が狭くなり非接着部の幅が小さくなった場合や、アンダーフィル量が多い場合は非接着部を超過して隣接するアンダーフィルが一体化し、実装の耐久性を確保することが困難となる。 As a solution to these problems, it has been proposed to form a non-adhesion site that repels underfill between semiconductor chips on a semiconductor package substrate (Patent Document 1). In this method, the durability of mounting can be improved by preventing the underfill from being integrated. However, if the semiconductor chip is separated to some extent, the underfill is repelled by the non-adhered part, but if the distance between the semiconductor chips is narrowed and the width of the non-adhered part is reduced, or if the amount of underfill is large, non-adhesive It is difficult to secure the durability of the mounting because the underfill adjacent to each other is integrated.
また、硬化後のフィレットとパッケージ基板界面にはアンダーフィルと半導体パッケージ基板との線膨張係数(CTE)や弾性率の差により応力が発生しており、高低温環境下ではさらに応力の方向や量が変化しソルダーレジスト層の剥離やソルダーレジスト層直下の配線が断線するおそれがある。 In addition, stress is generated at the interface between the fillet and the package substrate after curing due to the difference in the coefficient of linear expansion (CTE) and elastic modulus between the underfill and the semiconductor package substrate. May change, and the solder resist layer may be peeled off or the wiring just under the solder resist layer may be disconnected.
本発明は、以上の事情の下になされ、2、3次元に複数の半導体チップを配置する半導体パッケージにおいて、半導体パッケージの反りを低減し、さらに高低温環境下においてアンダーフィルのフィレット部の半導体パッケージ基板の剥離や断線を防止する半導体パッケージ基板、および半導体パッケージを提供することを目的とする。 The present invention has been made under the circumstances described above, and in a semiconductor package in which a plurality of semiconductor chips are arranged two- or three-dimensionally, the warpage of the semiconductor package is reduced, and the underfill fillet portion of the semiconductor package in a high-temperature environment. It is an object of the present invention to provide a semiconductor package substrate and a semiconductor package that prevent the substrate from peeling and disconnection.
本発明の一態様は、半導体パッケージ基板と、半導体パッケージ基板に配置された複数の半導体チップとを含む半導体パッケージの製造方法であって、少なくとも1組の互いに隣接する半導体チップ間に、パッケージ基板から突出する突起部位を形成する工程と、半導体パッケージ基板と半導体チップとの間に、突起部位によって隔てられるように、アンダーフィルを挿入する工程とを含む。 One embodiment of the present invention is a method of manufacturing a semiconductor package including a semiconductor package substrate and a plurality of semiconductor chips arranged on the semiconductor package substrate, and includes at least one set of adjacent semiconductor chips from the package substrate. Forming a projecting projecting portion, and inserting an underfill between the semiconductor package substrate and the semiconductor chip so as to be separated by the projecting portion.
また、本発明の別の一態様は、コア基材と、コア基材に積層される少なくとも2層以上の絶縁樹脂層と、絶縁樹脂層の間または絶縁樹脂層の表面に形成される配線パターンと、配線パターンの少なくとも一部と接続する電極パッドと、絶縁樹脂層の内、コア基材から最も離れている絶縁樹脂層に積層され、かつ少なくとも電極パッドが露出する開口部を有するソルダーレジスト層と、ソルダーレジスト層に積層された突起部位とを含む、半導体パッケージ基板である。 Another embodiment of the present invention is a wiring pattern formed between a core base material, at least two or more insulating resin layers laminated on the core base material, or between the insulating resin layers or on the surface of the insulating resin layer. And an electrode pad connected to at least a part of the wiring pattern, and a solder resist layer that is laminated on the insulating resin layer farthest from the core substrate among the insulating resin layers and has an opening at least exposing the electrode pad And a protruding portion laminated on the solder resist layer.
本発明によると、半導体チップが互いに隣接する部位直下の半導体パッケージ基板の搭載面に突起部位を形成することにより、半導体チップ間のアンダーフィル加熱時の硬化収縮量を低減させることで半導体パッケージの反りを低減でき、また、突起部位を形成することで高低温環境下において半導体パッケージ基板とフィレット界面に発生する応力を緩和することができ、ソルダーレジスト層の剥離や配線の断線を防止することができる導体パッケージ基板および半導体パッケージを提供できる。 According to the present invention, by forming a protruding portion on the mounting surface of the semiconductor package substrate immediately below the portion where the semiconductor chips are adjacent to each other, the amount of cure shrinkage during underfill heating between the semiconductor chips is reduced, thereby warping the semiconductor package. In addition, it is possible to relieve stress generated at the interface between the semiconductor package substrate and the fillet in a high and low temperature environment by forming the protruding portion, and it is possible to prevent the peeling of the solder resist layer and the disconnection of the wiring. A conductor package substrate and a semiconductor package can be provided.
以下に本発明の実施形態に係る半導体パッケージについて説明するが、本発明はこれに限定されるわけではない。 A semiconductor package according to an embodiment of the present invention will be described below, but the present invention is not limited to this.
図1は本実施形態の各例に係る半導体パッケージ100の上面図である。半導体パッケージ100は、半導体パッケージ基板2上に2つ以上の半導体チップ1を2次元に配置する。例えば図1の(a)、(b)のように同じ寸法の半導体チップ1を配置してもよいし、図1の(c)のように異なる寸法の半導体チップ1を配置してもよい。また、予め3次元に配置した半導体チップ1を2つ以上2次元に配置してもよい。なお半導体チップ1厚は同じ寸法でもよいし異なってもよい。また、半導体チップ1の間隔は0.1mm以上5mm以下が好適である。少なくとも1組の隣接する半導体チップ1間には、半導体パッケージ基板2から突出する、突起部位12が形成されている。 FIG. 1 is a top view of a semiconductor package 100 according to each example of the present embodiment. In the semiconductor package 100, two or more semiconductor chips 1 are two-dimensionally arranged on a semiconductor package substrate 2. For example, semiconductor chips 1 having the same dimensions may be arranged as shown in FIGS. 1A and 1B, or semiconductor chips 1 having different dimensions may be arranged as shown in FIG. Further, two or more semiconductor chips 1 previously arranged in three dimensions may be arranged in two dimensions. The thickness of the semiconductor chip 1 may be the same or different. The interval between the semiconductor chips 1 is preferably 0.1 mm or more and 5 mm or less. Between at least one pair of adjacent semiconductor chips 1, protruding portions 12 that protrude from the semiconductor package substrate 2 are formed.
図2は半導体パッケージ100の製造工程を示す断面図である。 FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor package 100.
はじめに、図2の(a)に示すような、半導体パッケージ基板2と、半導体チップ1とを作製する。 First, the semiconductor package substrate 2 and the semiconductor chip 1 as shown in FIG.
半導体パッケージ基板2は、コア基材、コア基材の両面に形成されたビア、ランド、その両面に配線パターンを有している(不図示)。なお、コア基材には各配線パターンを接続するために厚み方向にスルーホール電極を有している。また、配線パターン上には絶縁樹脂を積層したビルドアップ層を有している(不図示)。 The semiconductor package substrate 2 has a core base material, vias and lands formed on both surfaces of the core base material, and wiring patterns on both surfaces (not shown). The core substrate has through-hole electrodes in the thickness direction for connecting each wiring pattern. The wiring pattern has a build-up layer in which an insulating resin is laminated (not shown).
ビルドアップ層はビルドアップ工法により形成され、絶縁樹脂層と配線パターンとを有する。絶縁樹脂層は例えばエポキシ系、ポリイミド系樹脂が用いられ、樹脂にフィラーを添加した材料も用いることができる。また、配線パターン材料には例えば銅を用いる。なお、各層の配線パターンはビアにより相互に電気的に接続されている。 The buildup layer is formed by a buildup method and has an insulating resin layer and a wiring pattern. For example, an epoxy resin or a polyimide resin is used for the insulating resin layer, and a material obtained by adding a filler to the resin can also be used. Further, for example, copper is used as the wiring pattern material. Note that the wiring patterns of each layer are electrically connected to each other by vias.
さらに、最上層、最下層の配線パターンには電気信号を外部に接続するために電極パッドが形成されている。また、最表面には電極パッド上に開口するようにソルダーレジスト層10が形成される。なお、ソルダーレジスト層10の材料は例えば、感光性エポキシ樹脂や樹脂にフィラーを添加した材料も用いることができる。電極パッド上には印刷法やはんだボール振込み法などを用いてはんだバンプ3を形成する。なお、以上の構成は、例えば図5に示した従来の半導体パッケージ基板と同様に構成することができる。 Further, electrode pads are formed on the uppermost and lowermost wiring patterns to connect electrical signals to the outside. A solder resist layer 10 is formed on the outermost surface so as to open on the electrode pad. In addition, the material which added the filler to the photosensitive epoxy resin and resin can also be used for the material of the soldering resist layer 10, for example. Solder bumps 3 are formed on the electrode pads using a printing method, a solder ball transfer method, or the like. The above configuration can be configured similarly to the conventional semiconductor package substrate shown in FIG. 5, for example.
半導体パッケージ基板2上には突起部位12を形成する。半導体チップ1配置時に半導体チップ1同士が隣接する領域直下の半導体パッケージ基板2のソルダーレジスト層10上に突起部位12を形成する。突起部位12の長さはアンダーフィル4の半導体チップ1端部からのフィレットの一体化を防ぐため半導体チップ1の隣接距離以上にすることが好ましい。また突起部位12の断面形状は矩形型とすることができる。なお、半導体チップ1の隣接距離とは、他の半導体チップに隣接する辺に沿った隣接範囲の長さをいう。 A protruding portion 12 is formed on the semiconductor package substrate 2. A protruding portion 12 is formed on the solder resist layer 10 of the semiconductor package substrate 2 immediately below the region where the semiconductor chips 1 are adjacent to each other when the semiconductor chip 1 is disposed. The length of the protruding portion 12 is preferably equal to or longer than the adjacent distance of the semiconductor chip 1 in order to prevent the integration of the fillet from the end of the semiconductor chip 1 of the underfill 4. Further, the cross-sectional shape of the protruding portion 12 can be a rectangular shape. Note that the adjacent distance of the semiconductor chip 1 refers to the length of the adjacent range along the side adjacent to another semiconductor chip.
また、突起部位12の幅は半導体チップ1と突起部位12とを接しない程度に近づけることが好ましく、0.1mm以上5mm以下が好適である。 Further, the width of the protruding portion 12 is preferably close to the extent that the semiconductor chip 1 and the protruding portion 12 do not contact each other, and is preferably 0.1 mm or more and 5 mm or less.
また、突起部位12の線膨張係数は後述するアンダーフィルよりも小さくする。材料としては例えばエポキシ樹脂、ポリイミド樹脂、銅、ステンレス鋼、アルミニウム等を用いる。 Moreover, the linear expansion coefficient of the projection part 12 is made smaller than the underfill described later. For example, epoxy resin, polyimide resin, copper, stainless steel, aluminum or the like is used as the material.
また、突起部位12の厚さ(半導体パッケージ基板2からの突出量)は半導体チップ1の厚み、隣接する半導体チップ1同士の間隔、および後述するアンダーフィルの量から適宜隣接する半導体チップ1下部のアンダーフィル4が一体化しない厚さにすることが好ましく、例えば0.01mm以上5mm以下が好ましい。 Further, the thickness of the projecting portion 12 (the amount of protrusion from the semiconductor package substrate 2) is determined as appropriate between the thickness of the semiconductor chip 1, the interval between adjacent semiconductor chips 1, and the amount of underfill described later as appropriate. The thickness is preferably such that the underfill 4 is not integrated, for example, 0.01 mm to 5 mm.
突起部位12の形成方法としては、予めフォルム材料や金属片を突起部位12の寸法に裁断し、半導体パッケージ基板2に接着する。その他の方法としてスクリーン印刷法や写真法を用いてソルダーレジスト層10上に突起部位12を形成しても良い。なお、突起部位12の形成ははんだバンプ3形成後に限定されず、ソルダーレジスト層10上に突起部位12が形成できれば、各工程の順序は変更してもよい。 As a method of forming the protruding portion 12, a form material or a metal piece is cut in advance to the size of the protruding portion 12 and bonded to the semiconductor package substrate 2. As another method, the projection portion 12 may be formed on the solder resist layer 10 by using a screen printing method or a photographic method. The formation of the protruding portion 12 is not limited to after the solder bump 3 is formed, and the order of the steps may be changed as long as the protruding portion 12 can be formed on the solder resist layer 10.
次に、図2の(b)に示すように、半導体パッケージ基板2上にフラックスを塗布した後フリップチップ実装を行い、半導体パッケージ基板2と半導体チップ1とを電気的に接続する。 Next, as shown in FIG. 2B, a flux is applied on the semiconductor package substrate 2 and then flip chip mounting is performed to electrically connect the semiconductor package substrate 2 and the semiconductor chip 1.
次に、図2の(c)に示すように、半導体パッケージ基板2と半導体チップ1との間のはんだバンプ3が存在しない空間である空隙にアンダーフィル4を挿入する。まず、アンダーフィル樹脂を実装領域付近の1辺あるいは2辺に配置する。その後毛細管現象によりアンダーフィルが上記空隙に挿入される。このとき、突起部位12側のはんだバンプ3にアンダーフィル4が最後に挿入されるように、アンダーフィル樹脂の配置位置は突起部位12の反対側あるいは対角側に設定するのが好ましい。 Next, as shown in FIG. 2C, the underfill 4 is inserted into a gap that is a space where the solder bumps 3 do not exist between the semiconductor package substrate 2 and the semiconductor chip 1. First, the underfill resin is arranged on one side or two sides near the mounting region. Thereafter, an underfill is inserted into the gap by capillary action. At this time, it is preferable to set the arrangement position of the underfill resin on the opposite side or the diagonal side of the protruding portion 12 so that the underfill 4 is finally inserted into the solder bump 3 on the protruding portion 12 side.
突起部位12を設けることで半導体チップ1間のアンダーフィル4は突起部位12を境にして形成される。その後加熱しアンダーフィル4を硬化させる。以上のようにして、半導体パッケージ100を製造することができる。 By providing the projecting portion 12, the underfill 4 between the semiconductor chips 1 is formed with the projecting portion 12 as a boundary. Thereafter, the underfill 4 is cured by heating. The semiconductor package 100 can be manufactured as described above.
アンダーフィル4の硬化の際、アンダーフィル4の硬化収縮が起こるが半導体チップ1間にあるアンダーフィル4の量は突起部位12の体積分低減され、収縮量が減少する。そのためアンダーフィル4と半導体パッケージ基板2界面とに発生する応力が抑制され、反り量は突起部位12がない場合と比較して小さくなる。 When the underfill 4 is cured, the underfill 4 is cured and contracted. However, the amount of the underfill 4 between the semiconductor chips 1 is reduced in the volume of the protruding portion 12 and the contraction amount is decreased. Therefore, the stress generated at the interface between the underfill 4 and the semiconductor package substrate 2 is suppressed, and the amount of warpage is smaller than that in the case where there is no protruding portion 12.
ここで、高低温環境下ではフィレットと半導体パッケージ基板2上のソルダーレジスト層10との間の線膨張係数差により界面に応力が発生し、ソルダーレジスト層10の剥離やソルダーレジスト層10直下の配線が断線するおそれがある。 Here, in a high and low temperature environment, stress is generated at the interface due to a difference in coefficient of linear expansion between the fillet and the solder resist layer 10 on the semiconductor package substrate 2, and peeling of the solder resist layer 10 and wiring immediately below the solder resist layer 10 are performed. May break.
半導体パッケージ100においては突起部位12の線膨張係数はアンダーフィル4よりも小さいため、半導体チップ1間領域の複合的な線膨張係数は減少する。そうすることで半導体チップ1間領域の半導体パッケージ基板2との線膨張係数差が低減され、高低温環境下において半導体チップ1と半導体パッケージ基板2界面に発生する応力を抑制することができる。そのようにしてソルダーレジスト層10の剥離や配線の断線を防止することができる。 In the semiconductor package 100, since the linear expansion coefficient of the projecting portion 12 is smaller than that of the underfill 4, the composite linear expansion coefficient in the region between the semiconductor chips 1 decreases. By doing so, the difference in linear expansion coefficient with the semiconductor package substrate 2 in the region between the semiconductor chips 1 is reduced, and the stress generated at the interface between the semiconductor chip 1 and the semiconductor package substrate 2 can be suppressed in a high and low temperature environment. In this way, peeling of the solder resist layer 10 and disconnection of the wiring can be prevented.
図3に本発明の他の実施形態に係る半導体パッケージ101の構造を示す断面図を示す。半導体パッケージ101は、突起部位12をソルダーレジスト層10下の配線層に形成する点において、半導体パッケージ100と異なる。半導体パッケージ101においては、半導体パッケージ基板2作製時に突起部位12形成位置のソルダーレジスト層10を除去しておき、配線層を露出させる。その後電気めっき法などにより配線層上に金属の突起部位12を形成する。こうすることにより突起部位12がソルダーレジスト層10上に形成が困難であっても突起部位12を形成することができる。 FIG. 3 is a sectional view showing the structure of a semiconductor package 101 according to another embodiment of the present invention. The semiconductor package 101 is different from the semiconductor package 100 in that the protruding portion 12 is formed in the wiring layer under the solder resist layer 10. In the semiconductor package 101, when the semiconductor package substrate 2 is manufactured, the solder resist layer 10 at the position where the protruding portion 12 is formed is removed to expose the wiring layer. Thereafter, a metal protrusion 12 is formed on the wiring layer by electroplating or the like. In this way, even if it is difficult to form the protruding portion 12 on the solder resist layer 10, the protruding portion 12 can be formed.
以下に本発明の一実施例を説明するが、本発明はこれに限定されるわけではない。 An embodiment of the present invention will be described below, but the present invention is not limited to this.
半導体パッケージ基板2として、コア基材5上に絶縁樹脂層7にフィラーを添加したエポキシ系樹脂を用い、配線パターン6の材質に銅を用い、配線パターン6が3層形成された多層ビルドアッププリント配線板を用いた。また、半導体素子接合部にはんだボール搭載法により、0.150mmピッチのはんだバンプ3を形成している。なお、半導体チップ1実装領域を4箇所設けており、配置間隔は0.5mmとした(図1の(a)参照)。また、プリント配線板の大きさは50mm角、厚さは0.35mmである。また厚さ0.725mm、0.150mmピッチのはんだバンプ3を有する外形20mm角の半導体チップ1を4個用意した。 As a semiconductor package substrate 2, a multilayer build-up print in which an epoxy resin in which a filler is added to an insulating resin layer 7 is used on a core substrate 5, copper is used as the material of the wiring pattern 6, and three wiring patterns 6 are formed. A wiring board was used. Also, solder bumps 3 having a pitch of 0.150 mm are formed on the semiconductor element joint portion by a solder ball mounting method. In addition, four semiconductor chip 1 mounting regions are provided, and the arrangement interval is 0.5 mm (see FIG. 1A). The printed wiring board has a size of 50 mm square and a thickness of 0.35 mm. Also, four semiconductor chips 1 having an outer shape of 20 mm square having solder bumps 3 with a thickness of 0.725 mm and a pitch of 0.150 mm were prepared.
次に半導体パッケージ基板2の半導体チップ1同士が隣接するソルダーレジスト層10(4箇所)上にエポキシ樹脂を硬化させた幅0.3mm、厚さ0.4mmの突起部位12を積層した。積層方法は接着剤を半導体パッケージ基板2のソルダーレジスト層10上に塗布し形成した(図1の(a)参照)。 Next, a protrusion portion 12 having a width of 0.3 mm and a thickness of 0.4 mm obtained by curing an epoxy resin was laminated on the solder resist layer 10 (four places) where the semiconductor chips 1 of the semiconductor package substrate 2 are adjacent to each other. The laminating method was formed by applying an adhesive on the solder resist layer 10 of the semiconductor package substrate 2 (see FIG. 1A).
次に、半導体パッケージ基板2にディスペンサを用いてフラックスを半導体チップ1接続範囲にスプレー塗布した。その後マウンターを用いて半導体チップ1の端子面を半導体パッケージ基板2の実装領域に配置した。 Next, the semiconductor package substrate 2 was spray-applied to the semiconductor chip 1 connection range using a dispenser. Thereafter, the terminal surface of the semiconductor chip 1 was arranged in the mounting region of the semiconductor package substrate 2 using a mounter.
その後、最高温度が260℃となるようなリフロー炉を用いて、半導体パッケージ基板2と半導体チップ1とを接合した。 Thereafter, the semiconductor package substrate 2 and the semiconductor chip 1 were joined using a reflow furnace in which the maximum temperature was 260 ° C.
その後、フラックス洗浄機を用いて、フラックスを洗浄した。なお、フラックス洗浄液はアルカリ系溶剤を用いた。 Thereafter, the flux was cleaned using a flux cleaner. The flux cleaning liquid used was an alkaline solvent.
プレベーキングを行った後、プラズマ発生装置を用いてはんだ接合部付近の表面の改質を行った。その後、ディスペンサを用いて接合された半導体チップ1と半導体パッケージ基板2との間にナミックス社製のエポキシ樹脂にフィラーを添加したアンダーフィル4を挿入し、加熱して硬化させた。なお、挿入方法は突起部位対角の2辺からアンダーフィル4配置位置に一定の時間間隔で複数回挿入し、加熱硬化条件は165℃、2時間とした。 After pre-baking, the surface of the solder joint was modified using a plasma generator. Thereafter, an underfill 4 in which a filler was added to an epoxy resin manufactured by Namics Co., Ltd. was inserted between the semiconductor chip 1 and the semiconductor package substrate 2 bonded using a dispenser, and was cured by heating. In addition, the insertion method was inserted several times from the two sides of the projecting portion diagonally into the underfill 4 arrangement position at regular time intervals, and the heat curing conditions were 165 ° C. and 2 hours.
その後、半導体チップ1を接合し、アンダーフィル4を挿入した状態で半導体パッケージ基板2を下側にして配置し反り測定を行った。シャドーモアレ測定装置を用いて、平坦面から半導体パッケージ基板2の最高点までの高さを反り量とし計測した。測定の結果、反り量が105μmであった。 Thereafter, the semiconductor chip 1 was bonded, and the semiconductor package substrate 2 was placed on the lower side with the underfill 4 inserted, and the warpage was measured. Using a shadow moire measuring device, the height from the flat surface to the highest point of the semiconductor package substrate 2 was measured as the amount of warpage. As a result of the measurement, the amount of warpage was 105 μm.
また、半導体パッケージ100に熱冷衝撃試験機を用いて−55℃〜125℃の範囲で温度を交互に変動させ、1000サイクル行った後、半導体チップ1間付近の剥離の有無を観測した。検査の結果、各層での剥離、配線の断線は見られなかった。 Further, the semiconductor package 100 was subjected to 1000 cycles by alternately changing the temperature in the range of −55 ° C. to 125 ° C. using a thermal cold shock tester, and then the presence or absence of peeling between the semiconductor chips 1 was observed. As a result of the inspection, no peeling at each layer and no disconnection of the wiring were observed.
<比較例>
また、比較例として、半導体パッケージ基板に突起部位を形成しない基板を用いて、図6に示す従来技術に係る半導体パッケージの製造工法で半導体パッケージを作製した。
<Comparative example>
Further, as a comparative example, a semiconductor package was manufactured by a semiconductor package manufacturing method according to the related art shown in FIG.
作製した半導体パッケージを下側にして配置し反り測定を行った。シャドーモアレ測定装置を用いて、平坦面から半導体パッケージ基板の最高点までの高さを反り量とし計測した。測定の結果、反り量が230μmであった。 The produced semiconductor package was placed on the lower side and the warpage was measured. Using a shadow moire measuring device, the height from the flat surface to the highest point of the semiconductor package substrate was measured as the amount of warpage. As a result of the measurement, the amount of warpage was 230 μm.
また、作製した半導体パッケージに熱冷衝撃試験機を用いて−55℃〜125℃の範囲で温度を交互に変動させ、1000サイクル行った後、半導体チップ間付近の剥離の有無を観測した。検査の結果、半導体チップ間下のソルダーレジスト層にクラックおよび配線の断線が観測された。 Moreover, the temperature of the manufactured semiconductor package was alternately changed in a range of −55 ° C. to 125 ° C. using a thermal cold shock tester, and after 1000 cycles, the presence or absence of peeling between the semiconductor chips was observed. As a result of the inspection, cracks and wire breakage were observed in the solder resist layer below the semiconductor chip.
比較例に対して実施例では、本発明の構造を用いることで半導体パッケージの反りを低減し、さらに高低温環境下において半導体チップ間部の半導体パッケージ基板の剥離や配線の断線を防止できることを確認した。 In comparison with the comparative example, in the example, it was confirmed that the warp of the semiconductor package can be reduced by using the structure of the present invention, and further, the peeling of the semiconductor package substrate between the semiconductor chips and the disconnection of the wiring can be prevented in a high and low temperature environment. did.
本発明は、半導体パッケージ等に有用である。 The present invention is useful for semiconductor packages and the like.
1 半導体チップ
2 半導体パッケージ基板
3 はんだバンプ
4 アンダーフィル
5 コア基材
6 配線パターン
7 絶縁樹脂層
8 スルーホール電極
9 ビア
10 ソルダーレジスト層
11 電極パッド
12 突起部位
100、101 半導体パッケージ
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Semiconductor package board | substrate 3 Solder bump 4 Underfill 5 Core base material 6 Wiring pattern 7 Insulating resin layer 8 Through-hole electrode 9 Via 10 Solder resist layer 11 Electrode pad 12 Protruding part 100, 101 Semiconductor package
Claims (10)
少なくとも1組の互いに隣接する前記半導体チップ間に、前記パッケージ基板から突出する突起部位を形成する工程と、
前記突起部位を形成する工程の後に、前記半導体パッケージ基板と前記半導体チップとの間にアンダーフィルを挿入する工程とを含む、半導体パッケージの製造方法。 A semiconductor package manufacturing method comprising a semiconductor package substrate and a plurality of semiconductor chips disposed on the semiconductor package substrate,
Forming a projecting portion protruding from the package substrate between at least one set of the adjacent semiconductor chips;
A method of manufacturing a semiconductor package, comprising a step of inserting an underfill between the semiconductor package substrate and the semiconductor chip after the step of forming the protruding portion.
前記コア基材に積層される少なくとも2層以上の絶縁樹脂層と、
前記絶縁樹脂層の間または前記絶縁樹脂層の表面に形成される配線パターンと、
前記配線パターンの少なくとも一部と接続する電極パッドと、
前記絶縁樹脂層の内、前記コア基材から最も離れている前記絶縁樹脂層に積層され、かつ少なくとも電極パッドが露出する開口部を有するソルダーレジスト層と、前記ソルダーレジスト層に積層された突起部位とを含む、半導体パッケージ基板。 A core substrate;
At least two or more insulating resin layers laminated on the core substrate;
A wiring pattern formed between the insulating resin layers or on the surface of the insulating resin layer;
An electrode pad connected to at least a part of the wiring pattern;
Of the insulating resin layer, a solder resist layer laminated on the insulating resin layer farthest from the core base material and having an opening through which at least an electrode pad is exposed, and a protruding portion laminated on the solder resist layer And a semiconductor package substrate.
前記電極パッドを介して、前記半導体パッケージ基板に接続された半導体チップと、
前記半導体パッケージ基板と前記半導体チップとの間に挿入されたアンダーフィルとを含む、半導体パッケージ。 A semiconductor package substrate according to claim 9;
A semiconductor chip connected to the semiconductor package substrate via the electrode pad;
A semiconductor package including an underfill inserted between the semiconductor package substrate and the semiconductor chip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119670A JP6592977B2 (en) | 2015-06-12 | 2015-06-12 | Semiconductor package substrate, semiconductor package and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119670A JP6592977B2 (en) | 2015-06-12 | 2015-06-12 | Semiconductor package substrate, semiconductor package and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017005175A true JP2017005175A (en) | 2017-01-05 |
JP6592977B2 JP6592977B2 (en) | 2019-10-23 |
Family
ID=57754460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015119670A Active JP6592977B2 (en) | 2015-06-12 | 2015-06-12 | Semiconductor package substrate, semiconductor package and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6592977B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190050620A (en) * | 2017-11-03 | 2019-05-13 | 삼성전기주식회사 | Semiconductor package comprising organic interposer |
US10978409B2 (en) | 2017-12-28 | 2021-04-13 | Samsung Electronics Co., Ltd. | Semiconductor package |
WO2021081943A1 (en) * | 2019-10-31 | 2021-05-06 | 华为技术有限公司 | Chip stack packaging structure, packaging method thereof and electronic device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03228355A (en) * | 1990-02-02 | 1991-10-09 | Toshiba Lighting & Technol Corp | Substrate of hybrid ic |
JP2006140327A (en) * | 2004-11-12 | 2006-06-01 | Matsushita Electric Ind Co Ltd | Wiring board and method for mounting electronic component using the same |
JP2007134540A (en) * | 2005-11-11 | 2007-05-31 | Murata Mfg Co Ltd | Semiconductor device and manufacturing method thereof |
JP2009043765A (en) * | 2007-08-06 | 2009-02-26 | Denso Corp | Electronic apparatus |
JP2010034431A (en) * | 2008-07-31 | 2010-02-12 | Renesas Technology Corp | Method of manufacturing semiconductor device |
JP2010080732A (en) * | 2008-09-26 | 2010-04-08 | Panasonic Corp | Semiconductor module and method of manufacturing the same |
JP2011119609A (en) * | 2009-12-07 | 2011-06-16 | Fujitsu Semiconductor Ltd | Semiconductor device and method of manufacturing the same |
JP2013102143A (en) * | 2011-10-13 | 2013-05-23 | Sumitomo Bakelite Co Ltd | Semiconductor package and semiconductor device |
JP2014075477A (en) * | 2012-10-04 | 2014-04-24 | Shinko Electric Ind Co Ltd | Manufacturing method of wiring board |
-
2015
- 2015-06-12 JP JP2015119670A patent/JP6592977B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03228355A (en) * | 1990-02-02 | 1991-10-09 | Toshiba Lighting & Technol Corp | Substrate of hybrid ic |
JP2006140327A (en) * | 2004-11-12 | 2006-06-01 | Matsushita Electric Ind Co Ltd | Wiring board and method for mounting electronic component using the same |
JP2007134540A (en) * | 2005-11-11 | 2007-05-31 | Murata Mfg Co Ltd | Semiconductor device and manufacturing method thereof |
JP2009043765A (en) * | 2007-08-06 | 2009-02-26 | Denso Corp | Electronic apparatus |
JP2010034431A (en) * | 2008-07-31 | 2010-02-12 | Renesas Technology Corp | Method of manufacturing semiconductor device |
JP2010080732A (en) * | 2008-09-26 | 2010-04-08 | Panasonic Corp | Semiconductor module and method of manufacturing the same |
JP2011119609A (en) * | 2009-12-07 | 2011-06-16 | Fujitsu Semiconductor Ltd | Semiconductor device and method of manufacturing the same |
JP2013102143A (en) * | 2011-10-13 | 2013-05-23 | Sumitomo Bakelite Co Ltd | Semiconductor package and semiconductor device |
JP2014075477A (en) * | 2012-10-04 | 2014-04-24 | Shinko Electric Ind Co Ltd | Manufacturing method of wiring board |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190050620A (en) * | 2017-11-03 | 2019-05-13 | 삼성전기주식회사 | Semiconductor package comprising organic interposer |
KR102039709B1 (en) * | 2017-11-03 | 2019-11-01 | 삼성전자주식회사 | Semiconductor package comprising organic interposer |
US10541187B2 (en) | 2017-11-03 | 2020-01-21 | Samsung Electronics Co., Ltd. | Semiconductor package including organic interposer |
US10854528B2 (en) | 2017-11-03 | 2020-12-01 | Samsung Electronics Co., Ltd. | Semiconductor package including organic interposer |
US10978409B2 (en) | 2017-12-28 | 2021-04-13 | Samsung Electronics Co., Ltd. | Semiconductor package |
US11664330B2 (en) | 2017-12-28 | 2023-05-30 | Samsung Electronics Co., Ltd. | Semiconductor package |
WO2021081943A1 (en) * | 2019-10-31 | 2021-05-06 | 华为技术有限公司 | Chip stack packaging structure, packaging method thereof and electronic device |
CN114631179A (en) * | 2019-10-31 | 2022-06-14 | 华为技术有限公司 | Chip stacking and packaging structure, packaging method thereof and electronic equipment |
CN114631179B (en) * | 2019-10-31 | 2023-09-22 | 华为技术有限公司 | Chip stacking and packaging structure, packaging method thereof and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6592977B2 (en) | 2019-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330184B2 (en) | Electronic component equipment | |
JP4926692B2 (en) | WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE | |
TWI257832B (en) | Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure having semiconductor element, intermediate substrate and substrate | |
JP5265183B2 (en) | Semiconductor device | |
JP2010263192A (en) | Package on package to prevent circuit pattern lift defect and method of fabricating the same | |
JP2005310946A (en) | Semiconductor device | |
JP2008034570A (en) | Semiconductor device, and its manufacturing method | |
JP2018113414A (en) | Semiconductor device and method of manufacturing the same | |
JP6064705B2 (en) | Semiconductor device manufacturing method and semiconductor mounting substrate | |
JP2007109790A (en) | Flip-chip semiconductor device | |
JP5290215B2 (en) | Semiconductor device, semiconductor package, interposer, and manufacturing method of interposer | |
JP2010245509A (en) | Semiconductor device | |
JP6592977B2 (en) | Semiconductor package substrate, semiconductor package and manufacturing method thereof | |
JP2017224672A (en) | Semiconductor package substrate, semiconductor package, and manufacturing method thereof | |
JP2006303364A (en) | Bga type multilayer circuit wiring board | |
JP2017130521A (en) | Semiconductor package substrate with stiffener, semiconductor package, and method for manufacturing the same | |
KR101440342B1 (en) | Supporting device and method for manufacturing semiconductor package using the same | |
JP2018186121A (en) | Semiconductor package substrate, semiconductor package, and semiconductor device | |
WO2011021364A1 (en) | Semiconductor device and manufacturing method therefor | |
JP6464762B2 (en) | Semiconductor package substrate, semiconductor package, semiconductor package substrate manufacturing method, and semiconductor package manufacturing method | |
KR101374144B1 (en) | Semiconductor device for preventing warpage | |
KR102050011B1 (en) | Interconnect structure for semiconductor package and method of fabricating the interconnect structure | |
JP2007173862A (en) | Structure comprising relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate, and substrate | |
KR102207273B1 (en) | Package substrate | |
JP2007067129A (en) | Mounting structure of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6592977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |