JP2017003293A - Shock tube - Google Patents

Shock tube Download PDF

Info

Publication number
JP2017003293A
JP2017003293A JP2015114561A JP2015114561A JP2017003293A JP 2017003293 A JP2017003293 A JP 2017003293A JP 2015114561 A JP2015114561 A JP 2015114561A JP 2015114561 A JP2015114561 A JP 2015114561A JP 2017003293 A JP2017003293 A JP 2017003293A
Authority
JP
Japan
Prior art keywords
pressure
shock wave
pressure part
shock
normal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015114561A
Other languages
Japanese (ja)
Other versions
JP6492987B2 (en
Inventor
和夫 島村
Kazuo Shimamura
和夫 島村
坂本 和之
Kazuyuki Sakamoto
和之 坂本
隆央 長尾
Takao Nagao
隆央 長尾
進也 福重
Shinya Fukushige
進也 福重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015114561A priority Critical patent/JP6492987B2/en
Publication of JP2017003293A publication Critical patent/JP2017003293A/en
Application granted granted Critical
Publication of JP6492987B2 publication Critical patent/JP6492987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock tube capable of generating a negative pressure and capable of controlling a waveform.SOLUTION: A shock tube 1 is provided with a first normal pressure part 12, a low pressure part 13, a high pressure part 14, and a second normal pressure part 15 from a first end part to a second end part in a straight pipe 10. The first normal pressure part 12, the low pressure part 13, the high pressure part 14, and the second normal pressure part 15 are separated from a first diaphragm, a second diaphragm, and a third diaphragm which are openable to the atmosphere, and are openable to the atmosphere at the same time as the first diaphragm, the second diaphragm, and the third diaphragm, and generates a shock wave making the second normal pressure part 15 advance toward the second end part.SELECTED DRAWING: Figure 2

Description

本発明は、圧力波形を制御可能な衝撃波管に関し、詳しくは、負圧を生成することができるとともに圧力波形を制御可能な衝撃波管に関する。   The present invention relates to a shock wave tube capable of controlling a pressure waveform, and more particularly to a shock wave tube capable of generating a negative pressure and controlling a pressure waveform.

近年、衝撃波の生体に与える影響に関する研究が活発化している。衝撃波には、空気中を伝播する圧縮波と、圧縮波の背後にできる波形構造を含む負圧から構成され、伝播速度が音速以上であり、波面が不連続で波面の前後で密度と圧力の急激な変化があり、衝撃波の圧縮波の後には負圧を伴うという特徴を持つものがある。   In recent years, research on the impact of shock waves on living bodies has become active. A shock wave is composed of a compression wave propagating in the air and a negative pressure including a wave structure formed behind the compression wave, the propagation velocity is higher than the sound velocity, the wave front is discontinuous, and the density and pressure before and after the wave front. There is an abrupt change, and there is a characteristic that a negative pressure is accompanied after the compression wave of the shock wave.

生体の細胞は、正圧に対してはある程度耐えられるが、負圧に対して細胞壁が崩壊したり、キャビテーションが生じたりする性質がある。このため、衝撃波の中でも特に負圧の影響に対して注目が集まっている。   Living cells can tolerate to some extent against positive pressure, but have the property that the cell wall collapses or cavitation occurs against negative pressure. For this reason, attention is focused on the influence of negative pressure among shock waves.

図1は、衝撃波による圧力の時間依存性を説明するグラフである。空中で発生した衝撃波は、正圧継続時間tに負圧継続時間tが続き、これらを併せて継続時間tとする。正圧力積Iを有する正圧継続時間tにおいて、圧力は最大値Pmaxから0まで単調に減少し、負圧力積Iを有する負圧継続時間tにおいて、圧力は0から最小値Pminまで単調に減少した後で0まで単調に増加する。 FIG. 1 is a graph illustrating time dependency of pressure due to a shock wave. A shock wave generated in the air has a positive pressure duration time t p followed by a negative pressure duration time t n , and these are collectively referred to as a duration t 1 . In positive pressure duration t p having a positive pressure product I p, the pressure decreases monotonically to zero from the maximum value P max, in a negative pressure duration t n with negative pressure product I n, the pressure is the minimum value from 0 After decreasing monotonously to P min, it increases monotonically to 0.

従来、衝撃波の研究にはレーザー誘起衝撃波が用いられることが多かった(非特許文献1を参照)。最近では、衝撃波の生体に与える研究に用いられる衝撃波管の開発に関する研究も増えている。衝撃波管は、衝撃波の研究に用いる1次元の直管であり、一端に高圧部を設け、その圧力を急速に解放させ、直管内を伝播する過程で衝撃波を作りだすものである。   Conventionally, laser-induced shock waves have often been used for research on shock waves (see Non-Patent Document 1). Recently, research related to the development of shock tubes used for research that gives shock waves to living bodies is also increasing. A shock tube is a one-dimensional straight tube used for shock wave research. A shock wave is created in the process of providing a high pressure portion at one end, rapidly releasing the pressure, and propagating through the straight tube.

例えば、小径の高圧部から大径で常圧の直管に拡幅する形状とすることで正圧部に続き負圧部を生成する衝撃波管が開示されている(非特許文献2を参照)。また、直管の1次元衝撃波が大空間に解放される際の膨張に伴う負圧を利用する衝撃波管が開示されている(非特許文献3を参照)。   For example, a shock wave tube that generates a negative pressure portion following a positive pressure portion by widening from a small diameter high pressure portion to a large diameter and normal pressure straight tube is disclosed (see Non-Patent Document 2). Also, a shock wave tube that uses a negative pressure accompanying expansion when a one-dimensional shock wave of a straight tube is released to a large space is disclosed (see Non-Patent Document 3).

佐藤、レーザー誘起衝撃波の生体作用:Pros & Cons、平成24年度衝撃波シンポジウムSato, Biological action of laser-induced shock waves: Pros & Cons, 2012 Shockwave Symposium Nicholas N. Kleinschmit, A shock tube technique for blast wave simulation and studies of flow structure interaction in shock tube blast experiments, Thesis of the graduate college at the University of Nebraska, 2011Nicholas N. Kleinschmit, A shock tube technique for blast wave simulation and studies of flow structure interaction in shock tube blast experiments, Thesis of the graduate college at the University of Nebraska, 2011 Neveen Awad, Study of blast-induced mild traumatic brain injury - Laboratory simulation of blast shock wave, Thesis of doctor of philosophy at the McMaster University, 2014Neveen Awad, Study of blast-induced mild traumatic brain injury-Laboratory simulation of blast shock wave, Thesis of doctor of philosophy at the McMaster University, 2014

しかしながら、レーザー誘起衝撃波は、圧力波形が不明であり、負圧を生成することができなかった。また、衝撃波管を利用する場合には、負圧を生成することができるものの十分に波形を制御することができなかった。   However, the laser-induced shock wave has an unknown pressure waveform and cannot generate a negative pressure. In addition, when a shock tube is used, a negative pressure can be generated, but the waveform cannot be controlled sufficiently.

この発明は、上述の実情に鑑みて提案されるものであって、負圧を生成することができるとともに波形を制御可能な衝撃波管を提供することを目的とする。   The present invention has been proposed in view of the above circumstances, and an object thereof is to provide a shock tube capable of generating a negative pressure and controlling the waveform.

上述の課題を解決するために、この出願に係る衝撃波管は、直管内に第1の端部から第2の端部に向けて、第1の常圧部と、低圧部と、高圧部と、第2の常圧部とが設けられ、前記第1の常圧部、前記低圧部、前記高圧部及び前記第2の常圧部は開放可能な複数の隔壁により分離されたものである。   In order to solve the above-described problem, a shock tube according to the present application includes a first normal pressure portion, a low pressure portion, and a high pressure portion in a straight pipe from the first end portion toward the second end portion. And a second normal pressure part, and the first normal pressure part, the low pressure part, the high pressure part and the second normal pressure part are separated by a plurality of openable partition walls.

前記複数の隔壁を同時に開放し、前記第2の常圧部を前記第2の端部に向けて進む衝撃波を生成してもよい。前記衝撃波は、正圧部と、正圧部に続く負圧部とを含んでもよい。   The plurality of partition walls may be simultaneously opened to generate a shock wave that travels toward the second end portion of the second normal pressure portion. The shock wave may include a positive pressure part and a negative pressure part following the positive pressure part.

前記直管は、内径が一定であってもよい。前記直管は、前記低圧部及び前記高圧部の内径が前記第1及び第2の常圧部の内径より小さくてもよい。   The straight pipe may have a constant inner diameter. In the straight pipe, the inner diameters of the low-pressure part and the high-pressure part may be smaller than the inner diameters of the first and second normal pressure parts.

前記低圧部及び前記高圧部は、前記第1の端部から前記第2の端部に向けた方向に略同じ長さを有してもよい。前記第2の常圧部は、被検体を設置して観察することができる観察部を含んでもよい。   The low-pressure part and the high-pressure part may have substantially the same length in a direction from the first end part toward the second end part. The second normal pressure unit may include an observation unit that can be installed and observed.

前記複数の隔壁は、フィルム状の隔膜によって形成され、針状部材によって破断して開放されてもよい。前記複数の隔壁は、開閉可能な弁によって形成されてもよい。   The plurality of partition walls may be formed by a film-like diaphragm, and may be broken and opened by a needle-like member. The plurality of partition walls may be formed by openable and closable valves.

前記第2の端部に接続され、前記第2の端部に到達した圧力変化を緩衝させる第2のダンプタンクをさらに含んでもよい。前記第1の端部に接続され、前記第1の端部に到達した圧力変化を緩衝させる第1のダンプタンクをさらに含んでもよい。   A second dump tank connected to the second end portion and buffering a pressure change reaching the second end portion may be further included. A first dump tank connected to the first end portion and buffering a pressure change reaching the first end portion may be further included.

前記直管は、円状の断面形状を有してもよい。前記直管は、矩形状の断面形状を有してもよい。   The straight pipe may have a circular cross-sectional shape. The straight pipe may have a rectangular cross-sectional shape.

本発明の衝撃波管は、負圧を生成することができるとともに波形を制御可能である。   The shock tube of the present invention can generate a negative pressure and can control the waveform.

衝撃波による圧力の時間依存性を説明するグラフである。It is a graph explaining the time dependence of the pressure by a shock wave. 本実施の形態の衝撃波管を組み込んだ衝撃波試験装置の全体の構成を示す概観図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a general-view figure which shows the whole structure of the shock wave testing apparatus incorporating the shock wave tube of this Embodiment. 本実施の形態の衝撃波管の構成を説明する模式図である。It is a schematic diagram explaining the structure of the shock wave tube of this Embodiment. 本実施の形態の衝撃波管のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the shock wave tube of this Embodiment. 比較例1の衝撃波管のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the shock wave tube of the comparative example 1. 比較例2の衝撃波管のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the shock wave tube of the comparative example 2. 比較例3の衝撃波管のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the shock wave tube of the comparative example 3.

以下、この発明に係る衝撃波管の実施の形態について図面を参照して詳細に説明する。なお、図面は説明のために供するものであり、図面中の寸法や比率は一例を示すものである。   Embodiments of a shock tube according to the present invention will be described below in detail with reference to the drawings. In addition, drawing is provided for description and the dimension and ratio in drawing show an example.

図2は、本実施の形態の衝撃波管を組み込んだ衝撃波試験装置の全体の構成を示す概観図である。図3は、本実施の形態の衝撃波管を説明する模式図である。   FIG. 2 is an overview diagram showing the overall configuration of a shock wave testing apparatus incorporating the shock wave tube of the present embodiment. FIG. 3 is a schematic diagram for explaining the shock tube of the present embodiment.

衝撃波試験装置は、この衝撃波試験装置の略中央に設置された衝撃波管1と、衝撃波管1を支持する基台2と、衝撃波管1を含むこの衝撃波試験装置の全体を制御する制御装置3と、衝撃波管1の状態などを表示する表示装置4とを含んでいる。   The shock wave test apparatus includes a shock wave tube 1 installed at substantially the center of the shock wave test apparatus, a base 2 that supports the shock wave tube 1, and a control device 3 that controls the entire shock wave test apparatus including the shock wave tube 1. And a display device 4 for displaying the state of the shock wave tube 1 and the like.

衝撃波管1は、直管10と、直管10の第1の端部11に接続された第1のダンプタンク21と、直管10の第2の端部19に接続された第2のダンプタンク22とを含んでいる。衝撃波管1は、鋼鉄製で内面が滑らかに仕上げられ、内径は長手方向に一定であってもよい。   The shock wave tube 1 includes a straight pipe 10, a first dump tank 21 connected to the first end 11 of the straight pipe 10, and a second dump connected to the second end 19 of the straight pipe 10. And a tank 22. The shock tube 1 may be made of steel and the inner surface thereof may be smoothly finished, and the inner diameter may be constant in the longitudinal direction.

衝撃波管1は、直管10の内部に、第1の端部11から第2の端部19に向けた長手方向に、第1の常圧部12と、低圧部13と、高圧部14と、第2の常圧部15とを含んでいる。低圧部13と高圧部14は、衝撃波管1の長手方向に、略同一の長さを有している。   The shock wave tube 1 includes a first normal pressure portion 12, a low pressure portion 13, a high pressure portion 14 in the longitudinal direction from the first end portion 11 to the second end portion 19 inside the straight tube 10. And a second normal pressure part 15. The low pressure part 13 and the high pressure part 14 have substantially the same length in the longitudinal direction of the shock wave tube 1.

第1の常圧部12と低圧部13は、直管10において第1のフランジ41の内側に設けられた第1の隔膜31によって分離されている。同様に、低圧部13と高圧部14は第2のフランジ42の内側に設けられた第2の隔膜32によって分離され、高圧部14と第2の常圧部15は第3のフランジ43の内側に設けられた第3の隔膜33によって分離されている。   The first normal pressure portion 12 and the low pressure portion 13 are separated by a first diaphragm 31 provided inside the first flange 41 in the straight pipe 10. Similarly, the low pressure portion 13 and the high pressure portion 14 are separated by a second diaphragm 32 provided inside the second flange 42, and the high pressure portion 14 and the second normal pressure portion 15 are inside the third flange 43. It is separated by a third diaphragm 33 provided in the.

第1の隔膜31、第2の隔膜32、第3の隔膜33は、フィルム状であり、図示しない針状部材によって破断して開放することができる。第1の隔膜31、第2の隔膜32、第3の隔膜33は、第1のフランジ41、第2のフランジ42、第3のフランジ43の部分で直管10を切り離して交換することができる。   The first diaphragm 31, the second diaphragm 32, and the third diaphragm 33 are in the form of a film and can be broken and opened by a needle-like member (not shown). The first diaphragm 31, the second diaphragm 32, and the third diaphragm 33 can be replaced by separating the straight pipe 10 at the first flange 41, the second flange 42, and the third flange 43. .

なお、本実施の形態においては、開放可能な複数の隔壁にはフィルム状の第1の隔膜31、第2の隔膜32、第3の隔膜33を用いたが、代わりに開閉可能な弁などを使用することもできる。   In the present embodiment, the first diaphragm 31, the second diaphragm 32, and the third diaphragm 33 are used for the plurality of partitions that can be opened. It can also be used.

第2の常圧部15は、被検体を設置して観察することができる観察部16を含んでいる。この観察部16は、第4のフランジ44と第5のフランジ45の部分で直管10を切り離して取り外すことができる。観察部16には、直管10の外側から被検体を観察できるように窓17が形成されている。   The second normal pressure unit 15 includes an observation unit 16 that can set and observe a subject. The observation unit 16 can be detached by removing the straight pipe 10 at the fourth flange 44 and the fifth flange 45. A window 17 is formed in the observation unit 16 so that the subject can be observed from the outside of the straight tube 10.

第1のダンプタンク21は、直管10の第1の端部11に接続され、直管10の管内から第1の端部11に到来した圧力変化を減衰させる。第1のダンプタンク21の内部には、圧力変化を吸収する緩衝材27が内貼りされている。   The first dump tank 21 is connected to the first end 11 of the straight pipe 10, and attenuates the pressure change that has arrived at the first end 11 from within the straight pipe 10. Inside the first dump tank 21, a buffer material 27 that absorbs pressure changes is attached.

第2のダンプタンク22は、直管10の第2の端部19に接続され、直管10の管内から第2の端部19に到来した圧力変化を減衰させる。第2のダンプタンク22の内部には、圧力変化を吸収する緩衝材28が内貼りされている。   The second dump tank 22 is connected to the second end 19 of the straight pipe 10, and attenuates the pressure change that has arrived at the second end 19 from within the straight pipe 10. Inside the second dump tank 22, a cushioning material 28 that absorbs pressure changes is attached.

基台2は、衝撃波管1が所定の高さにおいて水平方向に延びるように支持している。制御装置3は、所定のシーケンスに従い、衝撃波管1の動作の監視や関連するバルブ操作などの各種の制御を行う。表示装置4には、例えば液晶ディスプレイが用いられ、この衝撃波試験装置のオペレータに対して各種情報を提供する。   The base 2 supports the shock wave tube 1 so as to extend in the horizontal direction at a predetermined height. The control device 3 performs various controls such as monitoring of the operation of the shock wave tube 1 and related valve operations according to a predetermined sequence. As the display device 4, for example, a liquid crystal display is used, and various information is provided to an operator of the shock wave test device.

例えば、制御装置3は、衝撃波管1に取り付けられた図示しない圧力センサなどの各種のセンサからの測定結果を常に監視するとともに、低圧部13と高圧部14へのバルブ操作、第1の隔膜31、第2の隔膜32、第3の隔膜33の開放など、衝撃波管1における動作が適切に実施されるように制御する。   For example, the control device 3 constantly monitors the measurement results from various sensors such as a pressure sensor (not shown) attached to the shock wave tube 1, operates the valves to the low pressure part 13 and the high pressure part 14, and the first diaphragm 31. Control is performed so that the operation in the shock wave tube 1 is appropriately performed, such as opening the second diaphragm 32 and the third diaphragm 33.

また、衝撃波試験装置は、衝撃波管1に所定の圧力の空気を供給する圧力発生装置5と、建屋から電源の供給を受ける分電盤6とを有している。圧力発生装置5は、制御装置3から制御を受け、衝撃波管1の低圧部13と高圧部14に所定の圧力の空気を供給する。分電盤6は、ブレーカなどを備え、衝撃波試験装置に電力を供給する。   The shock wave testing apparatus has a pressure generator 5 that supplies air of a predetermined pressure to the shock wave tube 1 and a distribution board 6 that receives power supply from the building. The pressure generator 5 is controlled by the controller 3 and supplies air having a predetermined pressure to the low pressure part 13 and the high pressure part 14 of the shock wave tube 1. The distribution board 6 includes a breaker and the like, and supplies power to the shock wave testing apparatus.

衝撃波試験装置は、図示はしていないシュリーレン装置や高速度カメラなど衝撃波を可視化して測定する測定装置を含んでもよい。また、衝撃波管1の第2の端部19に第2のダンプタンク22に代えて、被検体を観察するための観察室を設けてもよい。   The shock wave testing device may include a measuring device that visualizes and measures shock waves, such as a schlieren device or a high-speed camera, not shown. Further, instead of the second dump tank 22, an observation chamber for observing the subject may be provided at the second end 19 of the shock wave tube 1.

なお、本実施の形態においては、直管10の断面形状は矩形状であるとしたが、これに限られず断面形状は円状など他の形状であってもよい。また、直管10の内径は長手方向に一定としたが、これに限られず、例えば低圧部13と高圧部14の内径を第1の常圧部12と第2の常圧部15の内径より小さくしてもよい。   In the present embodiment, the straight pipe 10 has a rectangular cross-sectional shape, but is not limited thereto, and the cross-sectional shape may be other shapes such as a circular shape. The straight pipe 10 has a constant inner diameter in the longitudinal direction. However, the present invention is not limited to this. For example, the inner diameters of the low pressure part 13 and the high pressure part 14 are larger than the inner diameters of the first normal pressure part 12 and the second normal pressure part 15. It may be small.

図4は、本実施の形態の衝撃波管のシミュレーション結果を示す図である。このシミュレーションは、図4(a)に示すように、衝撃波管1の直管10の第1の端部11から第2の端部19に向かう長手方向を1次元の方向として、数値流体力学(CFD)により行った。   FIG. 4 is a diagram showing a simulation result of the shock tube according to the present embodiment. In this simulation, as shown in FIG. 4A, the longitudinal direction from the first end 11 to the second end 19 of the straight tube 10 of the shock wave tube 1 is set as a one-dimensional direction. CFD).

このシミュレーションでは、衝撃波管1の各部の寸法は、例えば、直管10の第1の端部11から第2の端部19に向かう長手方向に、第1の常圧部12は14m、低圧部13は0.5m、高圧部14は0.5m、第2の常圧部15は15mとしてもよい。また圧力の初期状態は、例えば、第1の常圧部12と第2の常圧部15は1気圧、低圧部13は0.5気圧、高圧部14は8気圧で0.5mとしてもよい。   In this simulation, the dimensions of each part of the shock tube 1 are, for example, 14 m for the first normal pressure part 12 in the longitudinal direction from the first end part 11 to the second end part 19 of the straight pipe 10, and the low pressure part. 13 may be 0.5 m, the high pressure portion 14 may be 0.5 m, and the second normal pressure portion 15 may be 15 m. The initial state of the pressure may be, for example, 1 atm for the first normal pressure part 12 and the second normal pressure part 15, 0.5 atm for the low pressure part 13, and 0.5 m for the high pressure part 14 at 8 atm. .

初期状態に設定した衝撃波管1において、第1の常圧部12、低圧部13、高圧部14、第2の常圧部15を同時に解放して圧力の変化を求めた。なお、実際には、第1の常圧部12、低圧部13、高圧部14、第2の常圧部15の解放は、第1の常圧部12、低圧部13、高圧部14、第2の常圧部15を分離する第1の隔膜31、第2の隔膜32、第3の隔膜33を図示しない針状部材で同時に破断して開放することにより実現できる。   In the shock wave tube 1 set to the initial state, the first normal pressure part 12, the low pressure part 13, the high pressure part 14, and the second normal pressure part 15 were simultaneously released to obtain a change in pressure. Actually, the first normal pressure part 12, the low pressure part 13, the high pressure part 14, and the second normal pressure part 15 are released by the first normal pressure part 12, the low pressure part 13, the high pressure part 14, This can be realized by simultaneously breaking and opening the first diaphragm 31, the second diaphragm 32, and the third diaphragm 33 separating the two normal pressure portions 15 with a needle-like member (not shown).

図4(b)は、直管の各位置における圧力の時間変化を示すグラフである。横軸は、0秒において第1の常圧部12、低圧部13、高圧部14、第2の常圧部15を解放してから経過した時間である。図中の曲線pは、第2の常圧部15において高圧部14との境界から第2の端部19の方向に0m進んだ位置Pにおける圧力を示している。同様に、曲線pは0.1m進んだ位置P、pは0.2m進んだ位置P、pは0.3m進んだ位置P、pは0.4m進んだ位置P、pは0.5m進んだ位置P、pは0.6m進んだ位置P、pは0.7m進んだ位置Pにおける圧力を示している。 FIG. 4B is a graph showing the time change of pressure at each position of the straight pipe. The horizontal axis represents the time elapsed since the first normal pressure part 12, the low pressure part 13, the high pressure part 14, and the second normal pressure part 15 were released in 0 seconds. A curve p 1 in the figure indicates the pressure at a position P 1 that has advanced 0 m in the direction of the second end 19 from the boundary with the high pressure portion 14 in the second normal pressure portion 15. Similarly, the curve p 2 is a position P 2 advanced 0.1 m, the p 3 is a position P 3 advanced 0.2 m, the p 4 is a position P 4 advanced 0.3 m, and the p 5 is a position P advanced 0.4 m. 5 and p 6 indicate pressures at a position P 6 advanced by 0.5 m, p 7 indicates a pressure at a position P 7 advanced by 0.6 m, and p 8 indicates a pressure at a position P 8 advanced by 0.7 m.

このグラフに見られるように、第2の常圧部15においては、正圧部と、この正圧部に続く負圧部を含む衝撃波が第2の端部19に向けて進んでいることが見られる。この衝撃波は、正圧部と負圧部の形状は乱れが少なく滑らかであり、波形はよく制御されている。   As can be seen from this graph, in the second normal pressure portion 15, a shock wave including a positive pressure portion and a negative pressure portion following the positive pressure portion is traveling toward the second end portion 19. It can be seen. The shock wave is smooth with little distortion in the shape of the positive pressure part and the negative pressure part, and the waveform is well controlled.

また、この衝撃波は、正圧部において最大値から0まで単調に減少し、正圧部に続く負圧部において0から最小値まで単調に減少した後で0まで単調に増加する形状を示している。したがって、この衝撃波は、図1に示したような衝撃波の特徴をよく再現し、衝撃波の生体に与える影響に関する基礎研究に適用することができる。   In addition, this shock wave shows a shape that monotonously decreases from the maximum value to 0 in the positive pressure portion, and monotonously decreases from 0 to the minimum value in the negative pressure portion following the positive pressure portion, and then increases in a monotonous manner to 0. Yes. Therefore, this shock wave reproduces the characteristics of the shock wave as shown in FIG. 1 and can be applied to basic research on the influence of the shock wave on the living body.

なお、このシミュレーションでは、直管10の長手方向に、第1の常圧部12は14m、低圧部13は0.5m、高圧部14は0.5m、第2の常圧部は15mとしたが、これに限られず、第1の常圧部12と第2の常圧部15の長さが低圧部13と高圧部14の長さに対して十分大きければよい。   In this simulation, the first normal pressure portion 12 is 14 m, the low pressure portion 13 is 0.5 m, the high pressure portion 14 is 0.5 m, and the second normal pressure portion is 15 m in the longitudinal direction of the straight pipe 10. However, the present invention is not limited to this, and it is sufficient that the lengths of the first normal pressure part 12 and the second normal pressure part 15 are sufficiently larger than the lengths of the low pressure part 13 and the high pressure part 14.

図5は、比較例1の衝撃波管のシミュレーション結果を示す図である。比較例1では、第1の端部が閉じた断面の内径が長手方向に一定である直管において、第1の端部から所定長さにわたる高圧部を設け、高圧部を解放して高圧部から直管の第2の端部まで続く常圧部を進む衝撃波を生成した。   FIG. 5 is a diagram illustrating a simulation result of the shock tube of the first comparative example. In the first comparative example, in a straight pipe whose inner diameter of the cross section with the first end closed is constant in the longitudinal direction, a high pressure portion extending from the first end to a predetermined length is provided, and the high pressure portion is released to release the high pressure portion. A shock wave is generated that travels through the normal pressure section that continues from the first pipe to the second end of the straight pipe.

図5(a)は、高圧部を解放した直後の圧力分布を示している。図5(b)は、所定時間が経過した後の圧力分布を示している。図(a)と図5(b)を比較すると、衝撃波が直管の第2の端部に向けて進んでいることが見られる。   FIG. 5A shows the pressure distribution immediately after releasing the high pressure part. FIG. 5B shows a pressure distribution after a predetermined time has elapsed. Comparing FIG. 5 (a) and FIG. 5 (b), it can be seen that the shock wave is traveling toward the second end of the straight pipe.

図5(c)は、直管の各位置における圧力の時間変化を示すグラフである。横軸は、0秒において解放してから経過した時間である。図中の曲線p11は、常圧部において高圧部14の境界から第2の端部の方向に2m進んだ位置P11における圧力を示している。同様に、曲線p12は2.5m進んだ位置P12、p13は3m進んだ位置P13、p14は3.5m進んだ位置P14、p15は4m進んだ位置P15、p16は4.5m進んだ位置P16、p17は5m進んだ位置P17における圧力を示している。 FIG.5 (c) is a graph which shows the time change of the pressure in each position of a straight pipe | tube. The horizontal axis is the time elapsed since release at 0 seconds. A curve p 11 in the figure indicates the pressure at a position P 11 that is advanced 2 m from the boundary of the high pressure part 14 toward the second end in the normal pressure part. Similarly, curve p 12 position P 12, p 13 position P 14 position P 13, p 14 advanced 3m is advanced 3.5 m, p 15 the position P 15 advanced 4m advanced 2.5 m, p 16 Indicates a pressure at a position P 16 advanced by 4.5 m, and p 17 indicates a pressure at a position P 17 advanced by 5 m.

図5(c)の波形に見られるように、比較例1の衝撃波は、正圧部において最大値から0まで単調に減少する衝撃波の正圧部の形状が再現されているものの、負圧部は再現されていない。   As seen in the waveform of FIG. 5 (c), the shock wave of Comparative Example 1 reproduces the shape of the positive pressure portion of the shock wave that monotonously decreases from the maximum value to 0 in the positive pressure portion, but the negative pressure portion. Has not been reproduced.

図6は、比較例2の衝撃波管のシミュレーション結果を示す図である。比較例2は、非特許文献2に開示された技術を適用し、小径の高圧部から大径で常圧部に拡幅する形状とすることで正圧部に続き負圧部を生成するものである。   FIG. 6 is a diagram illustrating a simulation result of the shock wave tube of Comparative Example 2. In Comparative Example 2, the technique disclosed in Non-Patent Document 2 is applied, and a negative pressure portion is generated following the positive pressure portion by forming a shape that widens from a high pressure portion having a small diameter to a normal pressure portion having a large diameter. is there.

図6(a)は、高圧部を解放した直後の圧力分布を示している。第1の端部が閉じた直管において、第1の端部から所定長さにわたる小径の高圧部が設けられ、第2の端部に至る常圧部は高圧部の小径を大径に拡幅するテーパー部を含んでいる。   FIG. 6A shows the pressure distribution immediately after releasing the high-pressure part. In the straight pipe with the first end closed, a small-diameter high-pressure part extending from the first end to a predetermined length is provided, and the normal-pressure part reaching the second end is widened to increase the small-diameter of the high-pressure part. The taper part to be included is included.

図6(b)は、直管の各位置における圧力を示すグラフである。図中の曲線p21は、常圧部において高圧部との境界から第2の端部の方向に3m離れた位置 21 における圧力を示している。同様に、曲線p22は5m、p23は7m、p24は9mの位置における圧力を示している。 FIG. 6B is a graph showing the pressure at each position of the straight pipe. A curve p 21 in the figure indicates the pressure at a position P 21 that is 3 m away from the boundary with the high pressure portion in the direction of the second end in the normal pressure portion. Similarly, curve p 22 is 5 m, p 23 is 7m, p 24 represents the pressure at the location of 9m.

図6(b)の波形に見られるように、比較例2の衝撃波は、正圧部において最大値から0まで単調に減少する衝撃波の正圧部の形状が再現されている。負圧部も形成されているが、高周波成分が多く、急速に正圧に戻ってその後乱れ、波形はよく制御されていない。   As shown in the waveform of FIG. 6B, the shock wave of Comparative Example 2 reproduces the shape of the positive pressure portion of the shock wave that monotonously decreases from the maximum value to 0 in the positive pressure portion. Although a negative pressure part is also formed, there are many high-frequency components, the pressure rapidly returns to positive pressure and then turbulent, and the waveform is not well controlled.

図7は、比較例3の衝撃波管のシミュレーション結果を示す図である。比較例3は、非特許文献3に開示された技術であり、直管の1次元衝撃波が大空間に解放される際の膨張に伴う負圧を利用するものである。   FIG. 7 is a diagram showing a simulation result of the shock tube of Comparative Example 3. Comparative Example 3 is a technique disclosed in Non-Patent Document 3, and uses a negative pressure accompanying expansion when a one-dimensional shock wave of a straight pipe is released into a large space.

図7(a)は、高圧部を解放する前の圧力分布を示している。第1の端部が閉じた直管において、第1の端部から所定長さにわたる小径の高圧部が設けられている。また、第2の端部は大空間に突き出している。図7(b)は高圧部を解放後に衝撃波が直管の第2の端部から大空間に到達した直後の圧力分布、図7(c)は所定時間が経過して衝撃波が大空間を進む時点での圧力分布を示している。   FIG. 7A shows the pressure distribution before the high-pressure part is released. In the straight pipe with the first end closed, a small-diameter high-pressure part extending from the first end to a predetermined length is provided. The second end protrudes into the large space. FIG. 7 (b) shows the pressure distribution immediately after the shock wave reaches the large space from the second end of the straight pipe after releasing the high pressure portion, and FIG. 7 (c) shows the shock wave traveling through the large space after a predetermined time. The pressure distribution at the time is shown.

図7(d)は、直間の端部から50mmの距離における圧力の時間変化を示すグラフである。曲線p31は、直管内で高圧部を常圧部から分離する隔膜の鋼鉄の厚さが0.127mmの圧力を示している。同様に、曲線p32は0.076mm、p33は0.025mmの場合の圧力を示している。 FIG.7 (d) is a graph which shows the time change of the pressure in the distance of 50 mm from the edge part in between. Curve p 31, the thickness of the steel diaphragm that separates the high-pressure portion from the atmospheric pressure section straight tube indicates the pressure of 0.127 mm. Similarly, the curve p 32 indicates the pressure in the case of 0.076 mm, and p 33 indicates the pressure in the case of 0.025 mm.

図7(d)の曲線p31に見られるように、隔膜の厚さによっては衝撃波には高圧の部分に続いて低圧の部分が続いて形成される。しかしながら、図7(c)の圧力分布に見られるように、直管から大空間に進む衝撃波は球面波状に広がるため、圧力に空間分布ができてしまう。 As seen in curve p 31 in FIG. 7 (d), the low pressure portion is subsequently formed following the high-pressure portion in the shock wave by the thickness of the membrane. However, as can be seen from the pressure distribution in FIG. 7C, the shock wave traveling from the straight pipe to the large space spreads in a spherical wave shape, resulting in a spatial distribution of pressure.

本実施の形態の衝撃波管は、衝撃波の生体に与える影響の基礎研究に利用することができる。   The shock wave tube of the present embodiment can be used for basic research on the influence of shock waves on a living body.

1 衝撃波管
2 基台
10 直管
11 第1の端部
12 第1の常圧部
13 低圧部
14 高圧部
15 第2の常圧部
19 第2の端部
DESCRIPTION OF SYMBOLS 1 Shock wave tube 2 Base 10 Straight pipe 11 1st end part 12 1st normal pressure part 13 Low pressure part 14 High pressure part 15 2nd normal pressure part 19 2nd end part

Claims (10)

直管内に第1の端部から第2の端部に向けて、
第1の常圧部と、
低圧部と、
高圧部と、
第2の常圧部と
が設けられ、前記第1の常圧部、前記低圧部、前記高圧部及び前記第2の常圧部は開放可能な複数の隔壁により分離された衝撃波管。
From the first end to the second end in the straight pipe,
A first normal pressure section;
A low pressure section,
A high pressure section;
And a second normal pressure part, wherein the first normal pressure part, the low pressure part, the high pressure part and the second normal pressure part are separated by a plurality of openable partition walls.
前記複数の隔壁を同時に開放し、前記第2の常圧部を前記第2の端部に向けて進む衝撃波を生成する請求項1に記載の衝撃波管。   The shock wave tube according to claim 1, wherein the plurality of partition walls are simultaneously opened to generate a shock wave that advances the second normal pressure portion toward the second end portion. 前記直管は、内径が一定である請求項1又は2に記載の衝撃波管。   The shock tube according to claim 1 or 2, wherein the straight tube has a constant inner diameter. 前記直管は、前記低圧部及び前記高圧部の内径が前記第1及び第2の常圧部の内径より小さい請求項1又は2に記載の衝撃波管。   The shock tube according to claim 1 or 2, wherein the straight pipe has inner diameters of the low-pressure part and the high-pressure part smaller than inner diameters of the first and second normal pressure parts. 前記低圧部及び前記高圧部は、前記第1の端部から前記第2の端部に向けた方向に略同じ長さを有する請求項1から4のいずれか一項に記載の衝撃波管。   The shock wave tube according to any one of claims 1 to 4, wherein the low-pressure part and the high-pressure part have substantially the same length in a direction from the first end part toward the second end part. 前記第2の常圧部は、被検体を設置して観察することができる観察部を含む請求項1から5のいずれか一項に記載の衝撃波管。   The shock wave tube according to any one of claims 1 to 5, wherein the second normal pressure part includes an observation part capable of observing by installing a subject. 前記複数の隔壁は、フィルム状の隔膜によって形成され、針状部材によって破断して開放される請求項1から6のいずれか一項に記載の衝撃波管。   The shock wave tube according to any one of claims 1 to 6, wherein the plurality of partition walls are formed by a film-shaped diaphragm, and are broken and opened by a needle-like member. 前記複数の隔壁は、開閉可能な弁によって形成された請求項1から6のいずれか一項に記載の衝撃波管。   The shock tube according to any one of claims 1 to 6, wherein the plurality of partition walls are formed by openable and closable valves. 前記第2の端部に接続され、前記第2の端部に到達した圧力変化を緩衝させる第2のダンプタンクをさらに含む請求項1から8のいずれか一項に記載の衝撃波管。   The shock wave tube according to any one of claims 1 to 8, further comprising a second dump tank connected to the second end portion and buffering a pressure change that has reached the second end portion. 前記第1の端部に接続され、前記第1の端部に到達した圧力変化を緩衝させる第1のダンプタンクをさらに含む請求項1から9のいずれか一項に記載の衝撃波管。   The shock wave tube according to any one of claims 1 to 9, further comprising a first dump tank that is connected to the first end portion and cushions a pressure change that has reached the first end portion.
JP2015114561A 2015-06-05 2015-06-05 Shock tube Active JP6492987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114561A JP6492987B2 (en) 2015-06-05 2015-06-05 Shock tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114561A JP6492987B2 (en) 2015-06-05 2015-06-05 Shock tube

Publications (2)

Publication Number Publication Date
JP2017003293A true JP2017003293A (en) 2017-01-05
JP6492987B2 JP6492987B2 (en) 2019-04-03

Family

ID=57751974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114561A Active JP6492987B2 (en) 2015-06-05 2015-06-05 Shock tube

Country Status (1)

Country Link
JP (1) JP6492987B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442931A (en) * 2020-04-28 2020-07-24 北华航天工业学院 Supercritical fuel combustion test equipment
CN117723261A (en) * 2024-02-18 2024-03-19 中国科学技术大学 Shock driving system, shock driving method and shock tube
CN117760679A (en) * 2024-02-20 2024-03-26 中国科学技术大学 Shock wave convergence structure and shock wave tube

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979938A (en) * 1995-09-18 1997-03-28 Chugoku Kayaku Kk Method for generating high-speed flow in shock wind tunnel and method for breaking diaphragm of this wind tunnel
JPH11148881A (en) * 1997-11-18 1999-06-02 Mitsubishi Heavy Ind Ltd Calibration apparatus for pressure converter
JP2004045202A (en) * 2002-07-11 2004-02-12 Central Glass Co Ltd Generator for blast wave
US6763696B1 (en) * 2001-01-17 2004-07-20 Baker Engineering And Risk Consultants, Inc. Shock tube
JP2006046916A (en) * 2004-07-30 2006-02-16 Chiba Univ Shock wave generating apparatus and spectroscopic system using it
JP2010024395A (en) * 2008-07-23 2010-02-04 Tokyo Univ Of Agriculture & Technology Pressure-sensitive coating material, object, and method for measuring surface pressure of object
US20130042665A1 (en) * 2011-08-15 2013-02-21 Ora, Inc. Shock Tube Apparatus for Blast Wave Simulation
US20130247646A1 (en) * 2012-03-21 2013-09-26 The Johns Hopkins University System and Method for Simulating Primary and Secondary Blast

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979938A (en) * 1995-09-18 1997-03-28 Chugoku Kayaku Kk Method for generating high-speed flow in shock wind tunnel and method for breaking diaphragm of this wind tunnel
JPH11148881A (en) * 1997-11-18 1999-06-02 Mitsubishi Heavy Ind Ltd Calibration apparatus for pressure converter
US6763696B1 (en) * 2001-01-17 2004-07-20 Baker Engineering And Risk Consultants, Inc. Shock tube
JP2004045202A (en) * 2002-07-11 2004-02-12 Central Glass Co Ltd Generator for blast wave
JP2006046916A (en) * 2004-07-30 2006-02-16 Chiba Univ Shock wave generating apparatus and spectroscopic system using it
JP2010024395A (en) * 2008-07-23 2010-02-04 Tokyo Univ Of Agriculture & Technology Pressure-sensitive coating material, object, and method for measuring surface pressure of object
US20130042665A1 (en) * 2011-08-15 2013-02-21 Ora, Inc. Shock Tube Apparatus for Blast Wave Simulation
US20130247646A1 (en) * 2012-03-21 2013-09-26 The Johns Hopkins University System and Method for Simulating Primary and Secondary Blast

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442931A (en) * 2020-04-28 2020-07-24 北华航天工业学院 Supercritical fuel combustion test equipment
CN117723261A (en) * 2024-02-18 2024-03-19 中国科学技术大学 Shock driving system, shock driving method and shock tube
CN117723261B (en) * 2024-02-18 2024-05-03 中国科学技术大学 Shock driving system, shock driving method and shock tube
CN117760679A (en) * 2024-02-20 2024-03-26 中国科学技术大学 Shock wave convergence structure and shock wave tube
CN117760679B (en) * 2024-02-20 2024-05-10 中国科学技术大学 Shock wave convergence structure and shock wave tube

Also Published As

Publication number Publication date
JP6492987B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
Han et al. Dynamics of laser-induced bubble pairs
JP6492987B2 (en) Shock tube
Sapozhnikov et al. A mechanistic analysis of stone fracture in lithotripsy
Gai et al. Sound absorption of microperforated panel mounted with helmholtz resonators
Vos et al. Nonspherical shape oscillations of coated microbubbles in contact with a wall
Tayong et al. Experimental investigation of holes interaction effect on the sound absorption coefficient of micro-perforated panels under high and medium sound levels
KR101180986B1 (en) Moving Model Rig for Ultra-Speed Tube Train
Nguyen et al. Controlling blast wave generation in a shock tube for biological applications
Kononenko et al. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator
Akamine et al. Experimental study on acoustic phenomena of supersonic jet impinging on inclined flat plate
Vidal et al. Acoustic signal associated with the bursting of a soap film which initially closes an overpressurized cavity: Experiment and theory
Thangadurai et al. Experimental study on a compressible vortex ring in collision with a wall
Ohl et al. Lithotripter shock wave interaction with a bubble near various biomaterials
Hahn Design and validation of the new jet facility and anechoic chamber
JP2014217813A (en) Gas introduction device and gas introduction method
Sugimoto et al. Verification of acoustic solitary waves
JP2019039820A (en) Shock wave testing device
US8910505B2 (en) System and method for simulating primary and secondary blast
Cheer et al. The effect of structural-acoustic coupling on the active control of noise in vehicles
Low et al. Investigation of different active flow control strategies for high speed jets using synthetic jet actuators
Medvedev et al. Influence of diaphragm fragments on the flow in a conical shock tube
Tarnopolsky et al. Flow structures generated by pressure-controlled self-oscillating reed valves
Phong et al. Acoustic transmission loss of perforated plates
Doutres et al. Improving the sound absorbing efficiency of closed-cell foams using shock waves
Ramachandran et al. Miniature shock tube actuators for flow control applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6492987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151