JP2014217813A - Gas introduction device and gas introduction method - Google Patents

Gas introduction device and gas introduction method Download PDF

Info

Publication number
JP2014217813A
JP2014217813A JP2013099287A JP2013099287A JP2014217813A JP 2014217813 A JP2014217813 A JP 2014217813A JP 2013099287 A JP2013099287 A JP 2013099287A JP 2013099287 A JP2013099287 A JP 2013099287A JP 2014217813 A JP2014217813 A JP 2014217813A
Authority
JP
Japan
Prior art keywords
gas
gas introduction
container
discharge
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013099287A
Other languages
Japanese (ja)
Inventor
義博 清宮
Yoshihiro Kiyomiya
義博 清宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Gakuen
Original Assignee
Meisei Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Gakuen filed Critical Meisei Gakuen
Priority to JP2013099287A priority Critical patent/JP2014217813A/en
Publication of JP2014217813A publication Critical patent/JP2014217813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • B01F1/00
    • B01F11/02
    • B01F15/02
    • B01F3/04
    • B01F5/06
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To micronize bubbles in a solution when a gas is introduced into the solution.SOLUTION: A gas introduction device 10 includes: a discharge part 110; a pipeline 130; and an ultrasonic wave application part 140. The discharge part 110 is made of a porous material. The pipeline 130 is connected with the discharge part 110 and guides a gas to the discharge part 110. The ultrasonic wave application part 140 applies ultrasonic vibrations to the discharge part 110. The frequency of the applied ultrasonic vibrations is, for example, 20 kHz or higher. The gas introduction device 10 may include a first container 160 for retaining a solution to which the gas is introduced.

Description

本発明は、気体導入装置及び気体導入方法に関する。   The present invention relates to a gas introduction device and a gas introduction method.

近年、微細な気泡を溶液内で発生させることにより、気体を溶液に溶解させる技術が注目されている。例えば非特許文献1には、気体が通過可能な中空の超音波ホーンを用いて微細な気泡を溶液内で発生させることが記載されている。非特許文献1において、中空部の開放端は一つの孔になっている。   In recent years, attention has been paid to a technique for dissolving a gas in a solution by generating fine bubbles in the solution. For example, Non-Patent Document 1 describes that fine bubbles are generated in a solution using a hollow ultrasonic horn through which gas can pass. In Non-Patent Document 1, the open end of the hollow portion is a single hole.

中尾高明、他1名、「超音波を用いたマイクロバブル発生装置の開発」、日本機械学会流体工学部門講演会講演論文集、2010年10月31日〜31日、P121−122Takao Nakao, 1 other, “Development of microbubble generator using ultrasonic waves”, Proceedings of the Japan Society of Mechanical Engineers Fluid Engineering Division, October 31-31, 2010, P121-122

本発明者は、溶液内の気泡をさらに微細化する方法を検討した。   The inventor studied a method for further miniaturizing bubbles in the solution.

本発明によれば、多孔質材料からなる排出部と、
前記排出部に接続され、気体を前記排出部に案内する配管と、
前記排出部に超音波振動を印加する超音波印加部と、
を備える気体導入装置が提供される。
According to the present invention, a discharge part made of a porous material;
A pipe connected to the discharge part and guiding gas to the discharge part;
An ultrasonic application unit for applying ultrasonic vibration to the discharge unit;
A gas introduction device is provided.

本発明によれば、多孔質材料からなる排出部と、前記排出部に接続されていて気体を前記排出部に案内する配管と、を備える装置を準備し、
前記排出部を溶液内に浸漬させた状態で、前記配管に気体を供給しつつ前記排出部に超音波振動を印加する気体導入方法が提供される。
According to the present invention, a device comprising a discharge portion made of a porous material and a pipe connected to the discharge portion and guiding gas to the discharge portion is prepared,
There is provided a gas introduction method for applying ultrasonic vibration to the discharge part while supplying gas to the pipe in a state where the discharge part is immersed in a solution.

本発明によれば、気体を溶液に導入させる際に、溶液内の気泡を微細化することができる。   According to the present invention, when the gas is introduced into the solution, the bubbles in the solution can be miniaturized.

第1の実施形態に係る気体導入装置10の構成を示す図である。It is a figure showing the composition of gas introducing device 10 concerning a 1st embodiment. 第2の実施形態に係る気体導入装置10の構成を示す図である。It is a figure which shows the structure of the gas introduction apparatus 10 which concerns on 2nd Embodiment. 第3の実施形態に係る気体導入装置10の構成を示す図である。It is a figure which shows the structure of the gas introduction apparatus 10 which concerns on 3rd Embodiment. 実施例1,2及び比較例1,2のそれぞれにおける、製造過程における酸素の溶存量の経時変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured the time-dependent change of the dissolved amount of oxygen in the manufacture process in each of Examples 1 and 2 and Comparative Examples 1 and 2. 実施例1において、装置を停止してからの溶存酸素量の経時変化を測定した結果を示すグラフである。In Example 1, it is a graph which shows the result of having measured the time-dependent change of the dissolved oxygen amount after stopping an apparatus.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る気体導入装置10の構成を示す図である。本図に示す気体導入装置10は、排出部110、配管130、及び超音波印加部140を備えている。排出部110は多孔質材料からなる。配管130は排出部110に接続されており、気体を排出部110に案内する。そして超音波印加部140は、排出部110に超音波振動を印加する。ここで加えられる超音波振動の周波数は、例えば20kHz以上である。以下詳細に説明する。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a gas introduction device 10 according to the first embodiment. The gas introduction device 10 shown in the figure includes a discharge unit 110, a pipe 130, and an ultrasonic wave application unit 140. The discharge part 110 is made of a porous material. The pipe 130 is connected to the discharge unit 110 and guides gas to the discharge unit 110. The ultrasonic application unit 140 applies ultrasonic vibrations to the discharge unit 110. The frequency of the ultrasonic vibration applied here is, for example, 20 kHz or more. This will be described in detail below.

排出部110には、例えばエアーストーンとして販売されている材料を用いることができる。排出部110には、他の多孔質材料を用いても良い。排出部110を構成する多孔質材料の平均空孔径は、300μm以下であるのが好ましい。なお、この平均空孔径は、例えば多孔質材料の断面を観察することにより測定される。   The material sold as an air stone can be used for the discharge part 110, for example. Other porous materials may be used for the discharge unit 110. The average pore diameter of the porous material constituting the discharge part 110 is preferably 300 μm or less. In addition, this average void | hole diameter is measured by observing the cross section of a porous material, for example.

超音波印加部140には、振動子142が取り付けられている。振動子142は制御部150からの制御信号に基づいて、超音波領域の周波数で振動する。振動子142で発生した振動は、超音波印加部140を介して排出部110に伝達する。   A vibrator 142 is attached to the ultrasonic wave application unit 140. Based on a control signal from the control unit 150, the vibrator 142 vibrates at a frequency in the ultrasonic region. The vibration generated by the vibrator 142 is transmitted to the discharge unit 110 via the ultrasonic wave application unit 140.

気体導入装置10は、第1容器160を備えている。第1容器160は、気体が導入される溶液を保持している。そして排出部110は、第1容器160内の溶液に浸漬される。この状態で、超音波印加部140を用いて排出部110に超音波振動を加え、さらに配管130を介して排出部110に気体を供給する。すると、気体は、排出部110を介して溶液内に排出される。この際、排出部110は多孔質であるため、気体は、溶液に排出される際に、微細な気泡になる。さらにこの排出時において、排出部110には超音波振動が加えられている。このため、気体は、溶液に排出される際に、さらに微細な気泡になる。   The gas introduction device 10 includes a first container 160. The first container 160 holds a solution into which gas is introduced. The discharge unit 110 is immersed in the solution in the first container 160. In this state, ultrasonic vibration is applied to the discharge unit 110 using the ultrasonic wave application unit 140, and gas is supplied to the discharge unit 110 via the pipe 130. Then, the gas is discharged into the solution via the discharge unit 110. At this time, since the discharge part 110 is porous, the gas becomes fine bubbles when discharged into the solution. Furthermore, during this discharge, ultrasonic vibration is applied to the discharge unit 110. For this reason, when the gas is discharged into the solution, it becomes finer bubbles.

なお、気体導入装置10が用いる溶媒は、例えば水であるが、他の液体であってもよい。また、気体導入装置10が溶媒に溶かす気体は、例えば酸素又はオゾンであるが、アンモニア、窒素、又は水素などの他の気体であっても良い。   The solvent used by the gas introducing device 10 is, for example, water, but may be other liquids. The gas dissolved in the solvent by the gas introduction device 10 is, for example, oxygen or ozone, but may be other gas such as ammonia, nitrogen, or hydrogen.

例えば溶媒が水であり、気体がオゾンである場合、気体導入装置10を用いることにより、オゾン水を製造できる。オゾン水内におけるオゾンの溶存量は、一般的に急激に低下する。従って、オゾン水の保存可能期間は短い。しかし、本実施形態の方法を用いると、オゾン水内のオゾンは非常に微細な気泡として水の中に導入されているため、オゾン水の保存可能期間を長くすることができる。また、気体導入装置10は小型であるため、容易に持ち運びすることができる。   For example, when the solvent is water and the gas is ozone, ozone water can be produced by using the gas introduction device 10. The dissolved amount of ozone in ozone water generally decreases rapidly. Therefore, the storage period of ozone water is short. However, when the method of the present embodiment is used, the ozone in the ozone water is introduced into the water as very fine bubbles, so that the storable period of the ozone water can be extended. Moreover, since the gas introducing device 10 is small, it can be easily carried.

また、第1容器160には、溶液の導入口及び排出口が設けられていても良い。この場合、気体が導入された(例えば溶解した)溶液を連続的に製造することができる。   Further, the first container 160 may be provided with a solution inlet and outlet. In this case, a solution in which a gas is introduced (for example, dissolved) can be continuously produced.

(第2の実施形態)
図2は、第2の実施形態に係る気体導入装置10の構成を示す図である。本実施形態に係る気体導入装置10は、第2容器170を有している点を除いて、第1の実施形態に係る気体導入装置10と同様の構成である。
(Second Embodiment)
FIG. 2 is a diagram illustrating a configuration of the gas introduction device 10 according to the second embodiment. The gas introducing device 10 according to the present embodiment has the same configuration as the gas introducing device 10 according to the first embodiment, except that the second container 170 is provided.

第2容器170の内部には冷媒、例えば冷却水が導入される。この冷媒は、導入管172から第2容器170の内部に導入され、さらに排出管174を介して第2容器170から排出される。冷媒は循環していても良い。そして、第1容器160は、第2容器170の内部に配置される。   A coolant such as cooling water is introduced into the second container 170. The refrigerant is introduced into the second container 170 from the introduction pipe 172 and further discharged from the second container 170 via the discharge pipe 174. The refrigerant may be circulated. The first container 160 is disposed inside the second container 170.

本実施形態によっても、第1の実施形態と同様の効果が得られる。また、排出部110には超音波振動が加えられるため、第1容器160内において溶媒の温度が上昇する可能性が出てくる。溶媒の温度が上昇すると、溶媒内の気体の溶存量は減少しやすくなる。これに対して本実施形態では、第1容器160は第2容器170内の冷媒によって冷却される。従って、第1容器160内の溶媒の温度が上昇することを抑制できる。   According to this embodiment, the same effect as that of the first embodiment can be obtained. In addition, since ultrasonic vibration is applied to the discharge unit 110, the temperature of the solvent in the first container 160 may increase. When the temperature of the solvent rises, the dissolved amount of gas in the solvent tends to decrease. On the other hand, in the present embodiment, the first container 160 is cooled by the refrigerant in the second container 170. Therefore, it can suppress that the temperature of the solvent in the 1st container 160 rises.

(第3の実施形態)
図3は、第3の実施形態に係る気体導入装置10の構成を示す図である。本実施形態に係る気体導入装置10は、超音波印加部140の位置を除いて、第1または第2の実施形態に係る気体導入装置10と同様の構成である。本図は、第2の実施形態と同様の場合を示している。
(Third embodiment)
FIG. 3 is a diagram illustrating a configuration of the gas introduction device 10 according to the third embodiment. The gas introduction device 10 according to the present embodiment has the same configuration as the gas introduction device 10 according to the first or second embodiment except for the position of the ultrasonic wave application unit 140. This figure shows a case similar to that of the second embodiment.

本実施形態において、超音波印加部140は、配管130のうち接続部120の近傍に位置する部分に接している。すなわち本実施形態では、超音波印加部140は、排出部110を直接振動させるのではなく、配管130及び接続部120を介して排出部110を振動させる。   In the present embodiment, the ultrasonic wave application unit 140 is in contact with a portion of the pipe 130 that is located near the connection unit 120. That is, in the present embodiment, the ultrasonic wave application unit 140 does not directly vibrate the discharge unit 110 but vibrates the discharge unit 110 via the pipe 130 and the connection unit 120.

本実施形態によっても、第1または第2の実施形態と同様の効果が得られる。また、排出部110に超音波印加部140を接触させる必要がないため、排出部110と溶媒の界面の面積を広くすることができる。従って、溶媒にさらに多くの気体を溶解させることができる。   According to this embodiment, the same effect as that of the first or second embodiment can be obtained. In addition, since it is not necessary to bring the ultrasonic wave application unit 140 into contact with the discharge unit 110, the area of the interface between the discharge unit 110 and the solvent can be increased. Therefore, more gas can be dissolved in the solvent.

第2の実施形態に示した気体導入装置10を用いて、水に酸素を導入した。この際、超音波振動の出力を第1の出力とした場合(実施例1)と、第1の出力の50%とした場合(実施例2)の2通りの方法で酸素水を製造した。   Oxygen was introduced into water using the gas introduction device 10 shown in the second embodiment. At this time, oxygen water was produced by two methods: the case where the output of the ultrasonic vibration was the first output (Example 1) and the case where the output was 50% of the first output (Example 2).

また、比較例として、超音波印加部140を動作させなかった場合(比較例1)と、気体導入装置10を動作させずに酸素を全く導入しなかった場合(比較例2)のそれぞれにおいてもサンプルを作成した。   Further, as comparative examples, the case where the ultrasonic wave application unit 140 is not operated (Comparative Example 1) and the case where oxygen is not introduced at all without operating the gas introduction device 10 (Comparative Example 2) are also provided. A sample was created.

図4は、実施例1,2及び比較例1,2のそれぞれにおける、製造過程における酸素の溶存量の経時変化を測定した結果を示している。本図から、気体導入装置10を用いることにより、水中の溶存酸素量が非常に多くなることが分かった。   FIG. 4 shows the results of measuring the change over time in the dissolved amount of oxygen in the production process in each of Examples 1 and 2 and Comparative Examples 1 and 2. From this figure, it was found that the amount of dissolved oxygen in the water was greatly increased by using the gas introducing device 10.

なお、本実施例で用いた溶存酸素の測定機器における測定可能範囲は、20mg/lであった。このため、実施例1において、2分以降の酸素溶存量の実際の値は、本グラフよりも大きいと推定される。   In addition, the measurable range in the measuring apparatus of dissolved oxygen used in the present example was 20 mg / l. For this reason, in Example 1, it is estimated that the actual value of oxygen dissolved amount after 2 minutes is larger than this graph.

図5は、実施例1において、装置を停止してからの溶存酸素量の経時変化を測定した結果を示す。本図から、気体導入装置10を用いて製造された酸素水は、溶存酸素量が低下しにくいことがわかった。   FIG. 5 shows the results of measuring the change over time in the amount of dissolved oxygen after the apparatus was stopped in Example 1. From this figure, it was found that the oxygen water produced using the gas introduction device 10 is less likely to have a decreased amount of dissolved oxygen.

なお、上述した傾向は、酸素以外の気体を用いた場合でも同様である、と推定される。   In addition, it is estimated that the tendency mentioned above is the same also when using gases other than oxygen.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

10 気体導入装置
110 排出部
120 接続部
130 配管
140 超音波印加部
142 振動子
150 制御部
160 第1容器
170 第2容器
172 導入管
174 排出管
DESCRIPTION OF SYMBOLS 10 Gas introduction apparatus 110 Discharge part 120 Connection part 130 Pipe 140 Ultrasonic application part 142 Vibrator 150 Control part 160 1st container 170 2nd container 172 Introduction pipe 174 Discharge pipe

Claims (6)

多孔質材料からなる排出部と、
前記排出部に接続され、気体を前記排出部に案内する配管と、
前記排出部に超音波振動を印加する超音波印加部と、
を備える気体導入装置。
A discharge part made of a porous material;
A pipe connected to the discharge part and guiding gas to the discharge part;
An ultrasonic application unit for applying ultrasonic vibration to the discharge unit;
A gas introducing device comprising:
請求項1に記載の気体導入装置において、
前記気体が導入する溶液を保持する第1容器を備え、
前記排出部は前記第1容器内に配置されている気体導入装置。
The gas introduction device according to claim 1,
A first container for holding a solution introduced by the gas;
The exhaust unit is a gas introduction device arranged in the first container.
請求項2に記載の気体導入装置において、
冷媒が導入される第2容器を備え、
前記第1容器は前記第2容器内に配置されている気体導入装置。
The gas introduction device according to claim 2,
A second container into which the refrigerant is introduced;
The first container is a gas introduction device disposed in the second container.
請求項2又は3に記載の気体導入装置において、
前記溶液は水であり、
前記気体はオゾンである気体導入装置。
In the gas introducing device according to claim 2 or 3,
The solution is water;
The gas introducing device, wherein the gas is ozone.
請求項1〜5のいずれか一項に記載の気体導入装置において、
前記多孔質材料の平均空孔径は、300μm以下である気体導入装置。
In the gas introduction device according to any one of claims 1 to 5,
The gas introducing device, wherein the porous material has an average pore diameter of 300 μm or less.
多孔質材料からなる排出部と、前記排出部に接続されていて気体を前記排出部に案内する配管と、を備える装置を準備し、
前記排出部を溶液内に浸漬させた状態で、前記配管に気体を供給しつつ前記排出部に超音波振動を印加する気体導入方法。
Preparing an apparatus comprising: a discharge portion made of a porous material; and a pipe connected to the discharge portion and guiding gas to the discharge portion,
A gas introduction method of applying ultrasonic vibration to the discharge part while supplying gas to the pipe in a state where the discharge part is immersed in the solution.
JP2013099287A 2013-05-09 2013-05-09 Gas introduction device and gas introduction method Pending JP2014217813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099287A JP2014217813A (en) 2013-05-09 2013-05-09 Gas introduction device and gas introduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099287A JP2014217813A (en) 2013-05-09 2013-05-09 Gas introduction device and gas introduction method

Publications (1)

Publication Number Publication Date
JP2014217813A true JP2014217813A (en) 2014-11-20

Family

ID=51936812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099287A Pending JP2014217813A (en) 2013-05-09 2013-05-09 Gas introduction device and gas introduction method

Country Status (1)

Country Link
JP (1) JP2014217813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179468A (en) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung Hydrogen-rich water generator
JP2017196546A (en) * 2016-04-25 2017-11-02 学校法人明星学苑 Gas introduction device and gas introduction method
JP2019181335A (en) * 2018-04-04 2019-10-24 中西金属工業株式会社 Nanosize bubble generator, gas introduction retaining device, nanosize bubble generating method, and gas introduction retaining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644036A (en) * 1979-09-19 1981-04-23 Kansai Paint Co Ltd Cooling method in agitator
JPS57171414A (en) * 1981-04-14 1982-10-22 Matsushita Electric Ind Co Ltd Gas scrubbing apparatus
JP2003220331A (en) * 2002-01-31 2003-08-05 Jfe Engineering Kk Method for treating porous body by sound wave, method for changing phase condition by sound wave, method for generating bubbles and change-over device of phase condition, bubble generator
JP3178958U (en) * 2012-07-19 2012-10-11 新科産業有限会社 Liquid mixing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644036A (en) * 1979-09-19 1981-04-23 Kansai Paint Co Ltd Cooling method in agitator
JPS57171414A (en) * 1981-04-14 1982-10-22 Matsushita Electric Ind Co Ltd Gas scrubbing apparatus
JP2003220331A (en) * 2002-01-31 2003-08-05 Jfe Engineering Kk Method for treating porous body by sound wave, method for changing phase condition by sound wave, method for generating bubbles and change-over device of phase condition, bubble generator
JP3178958U (en) * 2012-07-19 2012-10-11 新科産業有限会社 Liquid mixing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179468A (en) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung Hydrogen-rich water generator
US10265665B2 (en) * 2015-03-09 2019-04-23 Hsin-Yung Lin Hydrogen rich water generator
JP2017196546A (en) * 2016-04-25 2017-11-02 学校法人明星学苑 Gas introduction device and gas introduction method
JP2019181335A (en) * 2018-04-04 2019-10-24 中西金属工業株式会社 Nanosize bubble generator, gas introduction retaining device, nanosize bubble generating method, and gas introduction retaining method

Similar Documents

Publication Publication Date Title
JP5122662B2 (en) Surface cleaning method and apparatus
JP2006231304A (en) Method and apparatus for generating microbubble
JP2014217813A (en) Gas introduction device and gas introduction method
US9662686B2 (en) Ultrasonic cleaning method and apparatus
JP2008021672A (en) Ultrasonic cleaning method and cleaning device using gas supersaturation solution
Yasui Temperature in multibubble sonoluminescence
JP5523783B2 (en) Substrate ultrasonic cleaning condition determination method and substrate cleaning apparatus using the same
JP2012081430A (en) Ultrasonic cleaning apparatus
JP2017196546A (en) Gas introduction device and gas introduction method
JP2009226230A (en) Device of generating microbubble, and method of generating microbubble
Szmechta et al. Frequency and time-frequency analysis of acoustic cavitation noise in insulating oils
JP2007147192A (en) Thermoacoustic refrigerating machine
JP2013247185A (en) Ultrasonic cleaning method and ultrasonic cleaning device
Keswani et al. Measurement of hydroxyl radicals in wafer cleaning solutions irradiated with megasonic waves
CN109791899B (en) Substrate cleaning method and cleaning device
Gubaidullin et al. Experimental study of nonlinear oscillations of aerosols in tubes in the shock-free mode near resonance.
JP2005254043A (en) Removal method and apparatus for gaseous substance contained in gas
JP5811761B2 (en) Porous material evaluation method and porous material evaluation apparatus
Gâmbuțeanu et al. Principles and effects of acoustic cavitation.
JP2015126167A (en) Substrate cleaning device and substrate cleaning method
JP2011183300A (en) Ultrasonic cleaning apparatus
YAMASHITA et al. Progress in ultrasonic cleaning research
JP6443992B2 (en) Cleaning device and cleaning method
Suzuki et al. Stability and dancing dynamics of acoustic single bubbles in aqueous surfactant solution
JP6043084B2 (en) Semiconductor substrate cleaning method and cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150629

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201