JP2017002212A - Latent heat storage material composition - Google Patents

Latent heat storage material composition Download PDF

Info

Publication number
JP2017002212A
JP2017002212A JP2015118851A JP2015118851A JP2017002212A JP 2017002212 A JP2017002212 A JP 2017002212A JP 2015118851 A JP2015118851 A JP 2015118851A JP 2015118851 A JP2015118851 A JP 2015118851A JP 2017002212 A JP2017002212 A JP 2017002212A
Authority
JP
Japan
Prior art keywords
chemical formula
latent heat
sodium
composition
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015118851A
Other languages
Japanese (ja)
Other versions
JP5854490B1 (en
Inventor
義信 山口
Yoshinobu Yamaguchi
義信 山口
美智子 山口
Michiko Yamaguchi
美智子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015118851A priority Critical patent/JP5854490B1/en
Application granted granted Critical
Publication of JP5854490B1 publication Critical patent/JP5854490B1/en
Publication of JP2017002212A publication Critical patent/JP2017002212A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a latent heat storage material composition for heating which is a coordination type and requires effect of heat storing and radiating with conducting heat absorbing and radiation of latent heat at a temperature setting in a range of transition point of 40°C to 50°C by a suspension of a blend effectively affecting on heat resistance and ion exchange capacity of cation, anion or the like.SOLUTION: There is provided a latent heat storage material composition containing a transition point adjusting assistant, proper amount of ethylene glycol and double salt, suspension for preventing phase separation, a broken overcooling promotion catalyst and a surfactant material in an inclusion with molar weight ratio in 100 wet% range in a rage of mixing ratio of (A) an eutectic salt of a sodium acetate hydrate having a composition of the chemical formula CH3COONa, nH2O (n is 2.8 to 3.3) and (B) a three dimensional composition of sodium thiosulfate of the chemical formula Na2S2O3, nH2O (n is 4.8 to 5.3) and sodium sulfate anhydride of the chemical formula Na2SO4nH2O (n is 0) and proper amount of water of 9/1 to 1/9, especially 3/1 to 1/1.SELECTED DRAWING: Figure 1

Description

本発明は潜熱蓄熱材に関するものである。更に詳しくは、太陽熱のパッシブな熱エネルギーの活用に於いて、無作為に発生する熱エネルギーの温度差異とタイムラグを補い、住宅、ビル、農業施設等の暖房や給湯の温度域で調和する35℃〜50℃の範囲で転移点を自在に調整した潜熱蓄熱材組成物を提供する。 The present invention relates to a latent heat storage material. More specifically, in the use of solar thermal passive thermal energy, it compensates for the temperature difference and time lag of randomly generated thermal energy, and harmonizes with the temperature range of heating and hot water supply in houses, buildings, agricultural facilities, etc. Provided is a latent heat storage material composition having a transition point freely adjusted in a range of -50 ° C.

融解と凝固の過程で、一定の温度伝熱に大量の潜熱を吸放熱する物質は、温度変化を伴わずにこの潜熱を蓄熱して、これを必要時に温度変化を伴わずに熱を放出又は、吸収させて、有効に利用できる。太陽熱、排気熱など循環型再生可能な熱エネルギーと電力、ガス、石油、等との併用で、効率的な熱サイクルに用いる潜熱蓄熱材組成物に関する。 A substance that absorbs and dissipates a large amount of latent heat at a constant temperature transfer during the melting and solidification process stores this latent heat without causing a temperature change, and releases the heat without changing the temperature when necessary. It can be absorbed and used effectively. The present invention relates to a latent heat storage material composition used for an efficient thermal cycle by using a combination of heat energy such as solar heat and exhaust heat that can be recycled and electric power, gas, petroleum, and the like.

係る潜熱蓄熱材組成物には、一般的に各種の有機、無機電解水和物があり、その構成は包晶型が多くを成し、融解過程で調和を示す融点のそれよりも高温を要した。この状況は組成構成分子に係る温度負荷を増大し、融解時に無機固体と飽和水溶液に解離して、比重差により重い質量は水溶液中を沈降する物理的現象と水和ヒドロニウムのイオン化傾向に起因する分子間の溶相で2相化を促進する。即ち、単体組成物には発生しない二層化の分離現象により、係る状態で冷却しても、水和物の再生(包晶)は成立せずに凝固に係る潜熱の放熱は発生しない態様があった。 Such latent heat storage material compositions generally include various types of organic and inorganic electrolytic hydrates, and their composition is mostly peritectic and requires a higher temperature than that of the melting point that shows harmony in the melting process. did. This situation increases the temperature load related to the constituent molecules, dissociates into an inorganic solid and a saturated aqueous solution at the time of melting, and the heavy mass due to the difference in specific gravity results from the physical phenomenon of sedimentation in the aqueous solution and the ionization tendency of hydronium hydrate Accelerates biphasic formation by intermolecular solution phase. That is, due to the two-layered separation phenomenon that does not occur in a single composition, even when cooled in such a state, the hydrate regeneration (peritectic) is not established, and the heat release of latent heat related to solidification does not occur. there were.

これらの物質の融解−凝固に係る処置技術と利用開発の一環として、融点降下剤に因る転移点の変更、等が検討実施されてきた。結果に於いて、実施態様の組成物は、2つの転移点が発生して、熱量の減少や放熱温度が一定化しないなど潜熱の利用効果が不充分で不都合を生じていた。又、潜熱蓄熱材の融解潜熱を有効に利用するには、係る組成物が所要の融解−凝固で、過冷却で発生する温度差を回避する潜熱利用が熱効率上所望されていた。 As part of the treatment technology and utilization development related to melting and solidification of these substances, changes in the transition point due to the melting point depressant have been studied. In the results, the composition of the embodiment had two transition points, resulting in inconvenience because the effect of using latent heat was insufficient, such as a decrease in the amount of heat and a fixed heat radiation temperature. Further, in order to effectively use the latent heat of fusion of the latent heat storage material, it has been desired from the viewpoint of thermal efficiency that the composition is required to be melted and solidified to avoid a temperature difference caused by supercooling.

本発明は潜熱蓄熱材の応用で有効性が一般的な酢酸ナトリウムn水和物(ここでのnは3)は融解点及び凝固点が57.5℃、単斜晶、潜熱量は264Jkcal/kg、密度1.44の組成物であり、その共晶材に化学式Na・nHO(nは5)のチオ硫酸ナトリウム水和物の融点48.2℃、単斜晶、密度1.74、熱量205Jkcal/kg及び、化学式NaSO・nHO(nは0)の硫酸ナトリウム無水結晶又は10水和物、融点32.4℃、単斜晶、密度1.46、熱量は245Jkal/kgと結晶格子構造は安定した共通点を有し、三元系組成物(三成分系ともいう)の調和試行プロセスで融点変更に係る転移温度設定で所望の蓄熱材とする可能性を見出した。 In the present invention, sodium acetate n-hydrate (where n is 3), which is generally effective for application of latent heat storage materials, has a melting point and a freezing point of 57.5 ° C., monoclinic crystal, and the latent heat amount is 264 Jkcal / kg. , A melting point of 48.2 ° C. of a sodium thiosulfate hydrate having a chemical formula of Na 2 S 2 O 3 .nH 2 O (n is 5), a monoclinic crystal, Density 1.74, calorie 205 Jkcal / kg and chemical formula Na 2 SO 4 .nH 2 O (n = 0) anhydrous sodium sulfate or decahydrate, melting point 32.4 ° C., monoclinic crystal, density 1.46 In addition, the calorific value is 245 Jkal / kg, and the crystal lattice structure has a stable common point, and the desired heat storage material is obtained by setting the transition temperature according to the melting point change in the harmonized trial process of the ternary composition (also called ternary system). I found a possibility.

再生可能なパッシブなエネルギー等は一般的に生活に適宣とされる温度域と係る温度差は40℃±3℃の範囲が利用上効果的である。然し、酢酸ナトリウム水和物やチオ硫酸ナトリウム水和物、硫酸ナトリウム水和物の各系とも包晶型組成物であり、特に酢酸ナトリウム水和物の融解加熱温度は融点57℃のそれより高温の80℃≧を要し、同様にチオ硫酸や硫酸ナトリウムは融点が示す如く、所望の温度範囲を超えた単独での融点≧の温度コントロールは不可能である、又、熱的ダメージと熱コントロールロスに係る難点があった。 A temperature range of 40 ° C. ± 3 ° C. is effective for use as a temperature difference related to a temperature range generally suitable for daily life for renewable passive energy and the like. However, each of sodium acetate hydrate, sodium thiosulfate hydrate, and sodium sulfate hydrate is a peritectic composition, and the melting heating temperature of sodium acetate hydrate is higher than that of melting point 57 ° C. 80 ° C ≧ of thiosulfuric acid and sodium sulfate are required, and similarly, as the melting point shows, it is impossible to control the temperature of melting point ≧ exceeding the desired temperature range alone, and thermal damage and thermal control There was a difficulty related to loss.

この改善策に酢酸ナトリウム水和物の包晶組成物に係る課題を解消し、△℃の温度差を調和する改質手段にチオ硫酸ナトリウム組成物及び硫酸ナトリウム組成物との融合による温度調和へ導く三元系共晶組成物とする良好な態様の結論に至った。 With this improvement measure, the problem related to the peritectic composition of sodium acetate hydrate is eliminated, and the reforming means that harmonizes the temperature difference of Δ ° C is combined with the sodium thiosulfate composition and sodium sulfate composition to achieve temperature harmony. It came to the conclusion of the favorable aspect which is set as the leading ternary eutectic composition.

酢酸ナトリウム水和物を主剤とすると共晶物の後者二元系の基礎パラメータと比較データに於いて結晶化成長速度に差異があり、係る測定値(△℃)時、酢酸ナトリウム水和物は「2.4×10−1cm/sec」と後の二系の結晶化速度「2.5×10−1cm/sec」に比べ、概ね100倍(cm/sec)速い結晶成長差を示した。 When sodium acetate hydrate is the main ingredient, there is a difference in the crystallization growth rate in the basic parameters and comparative data of the latter binary system of eutectic. At such measured value (△ ° C), sodium acetate hydrate is Compared to “2.4 × 10 −1 cm / sec” and the subsequent crystallization rate of “2.5 × 10 −1 cm / sec”, the crystal growth difference is about 100 times faster (cm / sec). It was.

当該、酢酸ナトリウムの結晶物の熱伝導率は、氷の熱伝導率0℃で「λs=2.2×10−1J/sec.m.℃」の概ね32%≦と低くい。尚、当該膨張係数は氷と逆数の11volである。尚、チオ硫酸ナトリウム、硫酸ナトリウムは氷と同様に酢酸ナトリウム水和物とは逆の凝固で膨張を示す。この性状を共晶体とする事で係る熱量を損なわずに融解で膨張に導く解消法が、潜熱蓄熱材組成物とするに好ましい。この膨張率の軽減と相分離阻止技術に架橋重合体化する過程でvol=±0を達成する抑制手段が、特開昭62−25188号公報で公知である。然しながら、結果的に係る膨張係数の変更は潜熱蓄熱材の保有熱量の低下に著しい影響を与えることは、これまでの実施例データから明らかで、この対処法は効果に於いて万全とは言えなかった。 The thermal conductivity of the sodium acetate crystal is as low as approximately 32% ≦ “λs = 2.2 × 10 −1 J / sec.m. ° C.” at 0 ° C. of ice. The expansion coefficient is 11 vol which is the reciprocal of ice. In addition, sodium thiosulfate and sodium sulfate show expansion by coagulation opposite to sodium acetate hydrate, as with ice. The elimination method that leads to expansion by melting without impairing the amount of heat by using this property as an eutectic is preferable for the latent heat storage material composition. Japanese Patent Application Laid-Open No. 62-25188 discloses a suppression means for achieving vol = ± 0 in the process of reducing the expansion coefficient and the phase separation preventing technique into a cross-linked polymer. However, as a result, it is clear from the example data so far that the change in the expansion coefficient has a significant effect on the decrease in the amount of heat stored in the latent heat storage material, and this countermeasure is not perfect in effect. It was.

結晶化成長に係る速度差は格子構造の粘度強弱の相違と推測され、分子移動が融液中を抵抗なく進行できる溶液の透明性で決定される。この結晶化速度の相違点を潜熱蓄熱材の伝熱機能の変更に着目、基調の異なる結晶系を用い、伝熱調和に好ましい実施態様を構築するものである。然しながら、更に係る各系が所要の相分離や過冷却現象に係る対処法も明確にして、解決するものである。 The difference in speed related to crystallization growth is presumed to be a difference in the strength and weakness of the lattice structure, and is determined by the transparency of the solution in which molecular movement can proceed through the melt without resistance. This difference in crystallization speed is focused on changing the heat transfer function of the latent heat storage material, and a preferred embodiment is constructed for heat transfer harmony using crystal systems with different fundamentals. However, each system further clarifies and solves the necessary countermeasures for the phase separation and supercooling phenomenon.

特にチオ硫酸ナトリウム組成物(融点47℃)の過冷却現象(準安定化)は他の水和物に比較して大きく、通常の物理的刺激を含む非均質核生や結晶生成の開放手段でも、退転態様を示す性状が大きい。硫酸ナトリウム水和物も結晶化速度もチオ硫酸ナトリウム水和物と同様な性状を示す低速現象を前記、酢酸ナトリウム水和物の短所である伝熱効率に係る吸放熱を格子構造上の調和で、目的改善にある。この現象は該系の所要する物質格子に起因し、異なる各系が所要する前記性状を調和に活用するものである。 In particular, the supercooling phenomenon (meta-stabilization) of the sodium thiosulfate composition (melting point 47 ° C) is larger than that of other hydrates. The property which shows a regression aspect is large. The sodium sulfate hydrate and crystallization rate are the same as the sodium thiosulfate hydrate, and the slow phenomenon is the harmony of the lattice structure to absorb and release heat related to the heat transfer efficiency, which is a disadvantage of sodium acetate hydrate. The goal is to improve. This phenomenon is caused by the required material lattice of the system, and uses the properties required by different systems in harmony.

特開昭52−11181号公報Japanese Patent Laid-Open No. 52-11118 特開昭57−153078号公報JP 57-153078 A 特開昭58−99696号公報(特登録第14233329号)JP 58-99696 A (Special Registration No. 14233329) 特開昭59−000543号公報JP 59-000543 A 特開昭59−051974号公報(特登録第1646850号)Japanese Patent Laid-Open No. 59-051974 (Japanese Patent Registration No. 1646850) 特開平01−258784号公報Japanese Patent Laid-Open No. 01-258784 特開平01−006084号公報(特登録第1928471号)Japanese Unexamined Patent Publication No. 01-006084 (Japanese Patent Registration No. 1928471) 特開平02−194083号公報(特登録第2890197号)Japanese Patent Laid-Open No. 02-194083 (Japanese Patent Registration No. 2890197) 特開2001−31956号公報JP 2001-31956 A 新東北化学工業技術資料、コープケミカル技術資料New Tohoku Chemical Industry Technical Data, Corp Chemical Technical Data

酢酸ナトリウム水和物に係る過冷却解消の手段を主旨とする技術手法は、従来から数多くの研究と開発技術が開示されてきた。又、従来から硫酸ナトリウム10水和物の固定増粘剤にアタパルジャイトや結晶化促進触媒に四ホウ酸ナトリウム水和物や各種のリン酸ナトリウム水和物を用いる技術の有効性が公知されて久しい。 A number of research and development techniques have been disclosed in the past as a technical method mainly intended to eliminate supercooling related to sodium acetate hydrate. In addition, the effectiveness of a technique using attapulgite as a fixed thickener for sodium sulfate decahydrate and sodium tetraborate hydrate or various sodium phosphate hydrates as a crystallization promoting catalyst has been known for a long time. .

酢酸ナトリウム3水和物とチオ硫酸ナトリウム組成物の混合組成物の過冷却防止として開示されているが、前記を効果的に解決するに至らない課題を抱えていた。融点変更に関し,特開平2−194083号公報に酢酸ナトリウム水和物とアンモニウム塩、等に因る手段が開示され、相分離阻止剤にセピオライトの提案があり、該セピオライトが保有の水分子安定抑制作用、イオン化溶液中で水分子吸着機能と耐久性の有効性が示されていた。 Although disclosed as preventing overcooling of a mixed composition of sodium acetate trihydrate and sodium thiosulfate composition, it has a problem that does not lead to the above-mentioned problem being solved effectively. Regarding the melting point change, Japanese Patent Application Laid-Open No. 2-194083 discloses means based on sodium acetate hydrate, ammonium salt, etc., and there is a proposal of sepiolite as a phase separation inhibitor, which suppresses the stability of water molecules possessed by the sepiolite. The effectiveness of water molecule adsorption function and durability in the action and ionization solution was shown.

本発明は前記の性状に鑑み、酢酸ナトリウム水和物とチオ硫酸ナトリウム水和物、硫酸ナトリウム組成になる三元系混晶物とする優位点を柱に融点降下調整に加水とエチレングリコールと塩類を補助材とし、表2及び放熱曲線図2を解決する手段及び、潜熱蓄熱組成物の固相−液化に係る熱媒体(水)との熱伝達を改善に良好な手段で、温度伝熱効率の向上を図るものである。 In view of the above-mentioned properties, the present invention is based on the advantages of sodium acetate hydrate, sodium thiosulfate hydrate, and a ternary mixed crystal having a sodium sulfate composition. Is a means for solving Table 2 and the heat radiation curve diagram 2 and a means for improving the heat transfer with the heat medium (water) related to the solid phase-liquefaction of the latent heat storage composition. It is intended to improve.

当該、水和物は100℃≦に融点を固有する組成物の大半が概ね、包晶型であり、課題の第1、包晶に係る加熱温度差と融解膨張での調和、第2、高温融解に係るシード剤技術の安定と過冷却及び相分離発生の抑止、第3、要求しない2次転移点発生の抑止、第4、融解温度と潜熱量の確保と伝熱性の向上、第5、耐熱熱履歴における性状の安定と安全性及び低廉なコストの達成である。 Most of the compositions having a melting point of 100 ° C. are mostly peritectic, and the hydrate is first, the harmony of heating temperature difference and melt expansion related to peritectic, second, high temperature Stabilization of seeding technology related to melting and suppression of supercooling and phase separation generation, third, suppression of non-required secondary transition point generation, fourth, ensuring melting temperature and latent heat amount and improving heat transfer, fifth, Achievement of stability and safety of properties in heat and heat history and low cost.

酢酸ナトリウム無水に尿素と加水の三成分とする温度調和に係る開示技術に特開昭60−15665号公報の代表例があり、この開示に基づく実証に酢酸ナトリウム水和物(57.5℃)の融点変更剤(降下)に尿素を添合する転移点変更組成物について、利用温度を一次転移点45℃の設定に尿素を10モル重量配合試料は47℃と30.2℃の2つの転移点を示し、同様に混合割合を20モル重量に倍増に係る転移点は43℃と30.2℃の2か所の転移点が発生した。尚、両試料とも2次転移点は同じ温度を確認した。 There is a representative example of Japanese Patent Application Laid-Open No. Sho 60-15665 in the disclosed technology relating to temperature conditioning in which sodium acetate is anhydrous and three components of urea and water. Sodium hydrate (57.5 ° C.) is demonstrated based on this disclosure. For the transition point changing composition in which urea is added to the melting point changing agent (decrease) of the sample, the use temperature is set to the primary transition point 45 ° C., and urea is mixed at 10 molar weight. Similarly, two transition points, 43 ° C. and 30.2 ° C., occurred when the mixing ratio was doubled to 20 molar weight. In both samples, the same temperature was confirmed for the secondary transition point.

包晶型の酢酸ナトリウム組成物は、その包晶組成に起因し、全融解には融点を超えた70℃≧の加熱を要した。従って、加熱温度による過飽和と係る過冷却の複相現象の外、2つの転移点が発生した。この場合、所望の一次転移温度での放熱パターンは持続できなかつた。係る三成分が目的とする転移点に係る調和の手段では本発明の目的は達成できなかった。尚、当該は融解温度が70℃≧で過冷却が発生した。 The peritectic type sodium acetate composition was caused by its peritectic composition, and all melting required heating at 70 ° C. ≧ the melting point. Therefore, in addition to the supersaturation due to heating temperature and the supercooling double phase phenomenon, two transition points occurred. In this case, the heat radiation pattern at the desired primary transition temperature could not be sustained. The object of the present invention could not be achieved by means of harmony related to the transition point of the three components. In this case, overcooling occurred when the melting temperature was 70 ° C. ≧.

本系に於ける尿素配合率による転移点変更の試みや、他系のアンモニウム塩を使用した配合の実証から、該組成系に於ける融点変更では、転移点をアンモニウム塩の基調均衡モル量に調合の場合を除き、全試料は2か所の転移点が発生した。この現象は化合形態(包晶)の主因と推察され各系の比重、格子、構成の融点の温度差やイオン傾向化の影響を受け露呈したと想定できる。当該構成に使用のアンモニア系の均衡点は30.4℃≦に設定した配合率を除き、それより高い均衡点での定温は得られず実証できなかった。 From the trial of changing the transition point by the urea blending ratio in this system and the demonstration of blending using other system ammonium salts, the transition point was changed to the basic equilibrium molar amount of the ammonium salt when changing the melting point in the composition system. Except for the case of formulation, all the samples had two transition points. This phenomenon is presumed to be the main cause of the compound form (peritectic), and it can be assumed that it was exposed to the influence of the specific gravity of each system, the temperature difference of the melting point of the structure and the composition, and the ion tendency. The equilibrium point of the ammonia system used in this configuration, except for the blending ratio set to 30.4 ° C., could not be verified because a constant temperature at a higher equilibrium point could not be obtained.

特にアンモニア系による融点降温調整材を包含する混合組成物の場合、高温度70℃≧の雰囲気中での加熱溶解は、過冷却阻止シード剤の例えば、ピロリン酸ナトリウムは、高温雰囲気での実施に於いて、溶液中の溶解(ミセル化)現象で、温熱材の融点降下剤にアンモニア系の採用は過冷却を促進する。またアンモニアの遊離現象が顕著で、適宣な手段方法を要する課題を抱えていた。特開昭61−429957号公報を始め多くの開示がある。 In particular, in the case of a mixed composition including an ammonia-based melting point temperature-decreasing material, heating and dissolution in an atmosphere at a high temperature of 70 ° C. ≧ can be performed in a high-temperature atmosphere by using a supercooling prevention seed agent such as sodium pyrophosphate. However, due to the dissolution (micellar) phenomenon in the solution, the use of ammonia as the melting point depressant of the thermal material promotes supercooling. In addition, the phenomenon of ammonia liberation was remarkable, and there was a problem that required an appropriate means. There are many disclosures including Japanese Patent Application Laid-Open No. 61-429957.

性能に係る課題として尿素、硝酸、硫酸系、等のアンモニア系を温熱用潜熱蓄熱組成物に使用する場合、前項のごとく、加熱温度の作用により、前記添加物アンモニア系の許容温度をこえると同系の組成分離により、アンモニアの解離現象を誘発する。系から解離したアンモニアは容器内で急激な熱吸収を誘発し気化膨張の拡大を誘発する。その間、加熱停止など温度管理上で何らかの阻止手段を講じなければ、体積膨張により、容器破壊等で蓄熱機能を喪失し、有毒な気化アンモニアの発生が健康上好ましくない。 When using an ammonia system such as urea, nitric acid, sulfuric acid system, etc., in the latent heat storage composition for warm heat as a problem related to performance, as described in the previous section, if the temperature exceeds the allowable temperature of the additive ammonia system due to the action of the heating temperature, The compositional separation of ammonia induces the phenomenon of ammonia dissociation. Ammonia dissociated from the system induces rapid heat absorption in the container and induces expansion of vaporization expansion. Meanwhile, unless any preventive measures are taken for temperature control such as stopping heating, the heat storage function is lost due to volume expansion due to volume expansion, and the generation of toxic vaporized ammonia is unfavorable for health.

従って、該混合組成物の利用は安全面から転移点付近での加熱は制限を受ける事になる。少なくともその有効性を損なう事が、幾多の実証に於いて判明していた。然るに本発明が目的とする系はその融点調和を40℃±3℃を基準に複合混成組成物を対象とする融点降下に於いて、アンモニア塩系の合成材を除く方法で課題解決を図るものである。 Therefore, the use of the mixed composition is limited in heating near the transition point from the viewpoint of safety. It has been found in numerous demonstrations that at least its effectiveness is impaired. However, the system aimed at by the present invention is to solve the problem by eliminating the ammonia salt-based synthetic material in the melting point depression for the composite hybrid composition based on the melting point harmony of 40 ° C. ± 3 ° C. It is.

主材の該水和物は単独、混成物に限らず一般的な物性として、融解による過飽和で過冷却しやすく、又、系の密度の違いで相分離が著しい。従来の開示された過冷却防止の手段は、相変化を繰返す度に該水和物は水分子の分離が拡大し、潜熱蓄熱機能の喪失に至る。 The hydrate of the main material is not limited to a single compound and is a general physical property, and is easily supercooled due to supersaturation due to melting, and phase separation is remarkable due to the difference in system density. Conventionally disclosed means for preventing supercooling each time the phase change is repeated, the hydrate expands the separation of water molecules, leading to the loss of the latent heat storage function.

主因は包晶融点の二相のうち、低融点側の融解に係る限界温度を超えた加熱に起因し、包晶系の成因範囲を超えた熱履歴に係る物理的現象である。前述の如く融解状態時に成分密度の違いによる2層階比重による固体分子が水溶液中を解離する分離現象が進行する。一旦、解離が始まると界面を介し均衡した包晶水和結晶は得られず、潜熱に係るバランス機能を喪失し本発明が目的とする潜熱活用の蓄熱効果は期待できなかった。 The main cause is a physical phenomenon related to the thermal history exceeding the range of origin of peritectic system due to heating exceeding the limit temperature related to melting on the low melting point side of the two phases of peritectic melting point. As described above, a separation phenomenon occurs in which solid molecules dissociate in an aqueous solution due to a two-layer specific gravity due to a difference in component density in a molten state. Once dissociation has started, a peritectic hydrated crystal balanced through the interface cannot be obtained, and the balance function related to latent heat is lost, so that the heat storage effect utilizing latent heat, which is the purpose of the present invention, cannot be expected.

加熱、降温、放熱の転移点で一定温度を一定時間、質量に応じた熱履歴に対応する潜熱放熱蓄熱材を得るには、該組成系の融解に係る適正温度と、耐熱耐経年性で安定して使用できる潜熱蓄熱材の共晶組成物の調和割合と良好なサスペンションの適宣な選択が重要である。 In order to obtain a latent heat radiation heat storage material corresponding to the heat history according to the mass at a constant temperature for a certain time at the transition point of heating, cooling, and heat radiation, it is stable at the appropriate temperature related to melting of the composition system and heat resistant aging resistance Therefore, the proper proportion of the eutectic composition of the latent heat storage material that can be used and a good suspension are important.

サスペンション機能の一環として、ヒドロゲルにポリビニールアルコール類、ポリアクリル酸ナトリウム、ステアリン酸等の高分子や多糖類のDEAEセルローズ、グリセリン等の有機物、チキソトロピー性を示す無機物鉱物の粘土類にカオリナイト、ハロサイト、粉末シリカ(200メッシュの範囲)、珪藻土(無結晶二酸化珪素600メッシュ)、ベントナイト、アタパルジャイト粉末(60メッシュの範囲)でPH5.0〜7.7の範囲が用いられ、該用途技術に於いては一般的である。 As part of the suspension function, the hydrogel is a polymer such as polyvinyl alcohol, sodium polyacrylate, stearic acid, etc., polysaccharides such as DEAE cellulose, glycerin and other organic substances, and thixotropic inorganic mineral clays such as kaolinite and halo. The range of PH 5.0 to 7.7 is used for sites, powdered silica (200 mesh range), diatomaceous earth (amorphous silicon dioxide 600 mesh), bentonite, and attapulgite powder (60 mesh range). It is common.

組成の構成にもよるが、これらのサスペンションはイオン交換能が大きく、熱履歴と分解能において、加水分解又は、菌糸や経年劣化によりチキソトロピーの流動性変化が、サスペンションへの必然的要求機能の吸着力、増粘力を喪失させる危険度が大きく、機能の喪失を起こし易い欠点を有し、潜熱蓄熱材としての本来の目的が未達成であった。 Depending on the composition of the suspension, these suspensions have a large ion exchange capacity, and in thermal history and resolution, changes in thixotropy fluidity due to hydrolysis or hyphae and aging deterioration, the adsorptive power of the required function to the suspension However, the risk of losing the thickening power is high, and there is a defect that the function is easily lost, and the original purpose as a latent heat storage material has not been achieved.

酢酸ナトリウム水和物の相分離阻止のサスペンションにセピオライトの添加実施で、水分子吸着機能による相分離と過冷却の阻止効果に於いて良好な実証例が開示されている。 A good demonstration of the effect of preventing phase separation and supercooling by the water molecule adsorption function by adding sepiolite to the suspension for preventing phase separation of sodium acetate hydrate is disclosed.

然しながら、セピオライトの産出地と鉱物種で、特定の同質材にクリソタイル(アスベスト成分)が微量ながら成因する事が判明している。係るクリソタイルの含有量は該セピオライト100モル重量%当り、3%≦と微量であることが公的に公表されている。サスペンションとして、組成材からの住環境や健康上に及ぼす影響は皆無であるが、一般的な社会通念から安全上の風評に対処し、当該機能の代替物質に微粉末ゼオライト及びアタパルジャイトを併用した化合物に代替の手段で、対応効果を得るものである。 However, it has been found that chrysotile (asbestos component) is formed in a specific homogenous material in a small amount at the origin and mineral species of sepiolite. It is publicly announced that the content of such chrysotile is as small as 3% ≦ per 100 mol% of the sepiolite. As a suspension, there is no impact on the living environment and health from the composition material, but it is a compound that deals with safety reputation from general social wisdom and uses fine powdered zeolite and attapulgite as substitute substances for the function By using alternative means, a corresponding effect can be obtained.

しかし、実施に於いて、ゼオライト及びアタパルジャイト併用の混合物は水溶液と混合過程でチキソトロビー性の影響を受け、粉玉化し易く分散性と組成界面の活性に課題があった。 However, in practice, a mixture of zeolite and attapulgite used in combination with an aqueous solution was affected by thixotropic properties in the process of mixing, and was easily powdered and had problems with dispersibility and compositional interface activity.

本発明は系が所要する転移点付近の潜熱放熱温度は35℃〜53℃範囲で△℃に調和の温度の活用を目的としている。尚、酢酸ナトリウム水和物と係る共晶物のチオ硫酸ナトリウム水和物、硫酸ナトリウム無水物の係る三元系共晶温度の調整成材にエチレングリコールと複塩類を適宣添加した共晶組成物とするものである。 The purpose of the present invention is to utilize a temperature harmonized to Δ ° C in the range of the latent heat release temperature near the transition point required by the system in the range of 35 ° C to 53 ° C. A eutectic composition in which ethylene glycol and double salts are appropriately added to a ternary eutectic temperature adjusting component of sodium thiosulfate hydrate of eutectic related to sodium acetate hydrate and sodium sulfate anhydride. It is what.

前記の如く、三元系共晶組成は、転移点温度変更と熱量維持に有効であるが、従来の実施態様では包晶化合物は、成分の分子密度や格子の違から加熱融解時に発生する二層化現象、下層に無水結晶物、上層に飽和水溶液の分子間分離現象にあり、分離と過冷却は潜熱材にとって致命的な現象であり、係る融点降下変調剤単独での温調達成効果は不充分であった。 As described above, the ternary eutectic composition is effective for changing the transition temperature and maintaining the amount of heat. However, in the conventional embodiment, the peritectic compound is generated at the time of heating and melting due to the difference in the molecular density and lattice of the components. There is a layering phenomenon, an anhydrous crystal in the lower layer, and an intermolecular separation phenomenon in a saturated aqueous solution in the upper layer. Separation and supercooling are fatal phenomena for the latent heat material. It was insufficient.

酢酸ナトリウム水和物の凝固に係る結晶化の相違点は硫酸系のチオ硫酸ナトリウム、硫酸ナトリウムの各組成物の格子の異なる性状値が結晶化成長速度と温度の調和に良好に作用し、転移点の設定に良好な態様の効果を実証したものである。従来から提案されている各種増粘材は特有の退転(変化)要因(例えば耐熱、耐薬品、反応性、耐菌性、分散適合性、水含量)等で該機能維持に変化を起こし易い欠点を有し、その対応効果が不充分で適用上の課題があった。 The difference in crystallization related to the solidification of sodium acetate hydrate is that the different properties of the lattice of sulfuric acid-based sodium thiosulfate and sodium sulfate compositions have a good effect on the harmony between crystallization growth rate and temperature. The effect of a favorable aspect is demonstrated for the setting of a point. Various previously proposed thickeners are prone to changes in maintaining their functions due to their specific regression (change) factors (eg heat resistance, chemical resistance, reactivity, microbial resistance, dispersion compatibility, water content). There was a problem in application due to insufficient response effect.

クリソタイル(アスベスト)を成因する一部のセピオライトに代わる解決手段にゼオライト、スメクタイト、パリゴルスカイトを含有するアタパルジャイト、等にクリソタイルの成因がなく、これらを化合併用効果が、セピオライトに近似の実施態様とする事が有効である。 There is no chrysotile component in zeolite, smectite, attapulgite containing palygorskite, etc. as a solution to replace some sepiolites that form chrysotile (asbestos), and these combined effects make the embodiment similar to sepiolite Things are valid.

因にゼオライトが保有する結晶構造の特徴はセピオライトの千鳥格子状連鎖と類似し、水分子や窒素分子よりも大きく、概ね8.0×5.0Åの断面を保有の微細孔がトンネル状のチャンネルの存在にある。係るチャンネルには交換性イオン及び成分に配置した水分子の存在が確認され、表面体はモデルナイト型構造体である。 The crystal structure of zeolite is similar to that of sepiolite's staggered lattice, larger than water molecules and nitrogen molecules, and has pores with tunnels of approximately 8.0 x 5.0 mm. In the presence of the channel. In such a channel, the presence of exchangeable ions and water molecules arranged in the components are confirmed, and the surface body is a model knight structure.

その形状配置はフィロシリケートの表面と類似の結晶端とされて、この構成はチャンネルに沿って、活性点の無数が吸着機能であり、改良材として、使用の実績を所要している。係るパリゴルスカイト、アタパルジャイトはラス状粒子を有するヒドロゲル(ゲル状粘性)であり、係る組合せ効果にある。 The configuration is a crystal edge similar to the surface of the phyllosilicate, and this structure has an adsorption function with an infinite number of active sites along the channel, and requires a track record of use as an improved material. Such palygorskite and attapulgite are hydrogels having a lath-like particle (gel-like viscosity) and have such a combination effect.

これ等の素養性、特に水分子に係る吸着―離脱、機能や耐熱及び耐薬品性、耐保全性の経済性について、潜熱蓄熱材に供する実施態様で、セピオライト構造体に鑑み、機能性に於いて、近似機能を保有するゼオライト、スメクタイト、パリゴルスカイト構造を包含のアタパルジャイト、等固有の機能を補う複合体を用い共晶組成物の分離阻止技術の確実性を試みた。 This is an embodiment that is used for latent heat storage materials with regard to these nutrients, especially water molecule adsorption-desorption, function, heat resistance, chemical resistance, and maintenance resistance, and in terms of functionality in view of the sepiolite structure. In addition, we tried to make sure the eutectic composition separation prevention technology using a complex that complements the specific functions such as zeolite, smectite having approximate functions, attapulgite including palygorskite structure, and the like.

予め、水溶液化状態にある該組成物に前記サスペンションの粉末を混合に際して、粉玉化の解消と界面活性に作用する硫酸ドデシルナトリウム、エトキシル化アミン酸から単独又は複合物を0.01−10モル重量%の適量を用いる効果で混晶系に均一に分散と表面張力と界面活性の濡れを成因し、サスペンションの効果と分子間伝熱を増幅の作用を促進する。 When the suspension powder is mixed with the composition in an aqueous solution in advance, 0.01-10 mol of dodecyl sodium sulfate or ethoxylated amic acid, which acts to eliminate powder formation and surface activity, is used. The effect of using an appropriate amount by weight% causes uniform dispersion, surface tension and interfacial activity wetting in the mixed crystal system, and promotes the effect of suspension and the amplification of intermolecular heat transfer.

一定温度で相変化する酢酸ナトリウム混晶系の水分子を均衡にサスペンションのチャンネル内で吸着し、水分子の離合を阻止しセピオライトに近似した水溶液吸着機能を発揮し、混合による阻害現象は認めなかった。 Water molecules of sodium acetate mixed crystals that change phase at a constant temperature are adsorbed in the suspension channels in a balanced manner, preventing water molecules from separating and exhibiting an aqueous solution adsorption function similar to sepiolite, and no inhibition phenomenon due to mixing is observed. It was.

従来のサスペンションに係る手段で採用のセピオライト繊維タルク状粉末は、その増粘性と吸着機能の相乗効果で該共晶系の相分離と過冷却阻止の双方に対応する適宣な機能の所要を確認していたが、過冷却時の凝固開始温度を更に最少差に留める為には、凝固促進の結晶癖変調の確実安定面で充足できなかったことに鑑み、次項を試みた。 Sepiolite fiber talc-like powder used in the conventional suspension system confirms the necessity of proper function corresponding to both phase separation and prevention of supercooling due to the synergistic effect of thickening and adsorption function However, in order to keep the solidification start temperature at the time of supercooling to a minimum difference, the following item was tried in view of the fact that the solid crystal growth modulation for promoting solidification could not be satisfied.

該混晶組成物の結晶化促進の触媒に氷晶石、ピロリン酸四ナトリウム、ピロリン酸カリウムやキレート化合物例えば、エチレンジアミン4酢酸二水素2ナトリウム水和物と同類の化学式EDTA4Na−4HO、EDTA−3Na・2HO、EDTA−2Na、2HO、EDTA−H・3Na、3HO、NTA−3Na、HO(ニトリロ三酢酸ナトリウム)、等から選ばれる適宣な2種以上の化合物を用いる。 As a catalyst for promoting crystallization of the mixed crystal composition, cryolite, tetrasodium pyrophosphate, potassium pyrophosphate and chelate compounds such as EDTA4Na-4H 2 O, EDTA similar to ethylenediaminetetraacetic acid dihydrogen disodium hydrate are used. -3Na · 2H 2 O, EDTA-2Na, 2H 2 O, EDTA-H · 3Na, 3H 2 O, NTA-3Na, H 2 O (sodium nitrilotriacetate), etc. Use compounds.

破過冷却促進の触媒として、0.1−30モル重量%で構成物を前記三元系組成物100モル重量%への添加により、過剰な加熱沸騰点での耐熱性を所要し、設定の転移点で過冷却を開放し、係る温度範囲で、一定の潜熱放熱機能を発揮する良好な潜熱蓄熱組成物であることを特徴するものである。 As a catalyst for promoting breakthrough cooling, by adding 0.1 to 30 mol% of the composition to 100 mol% of the ternary composition, heat resistance at an excessive boiling point is required. It is characterized by being a good latent heat storage composition that releases supercooling at the transition point and exhibits a constant latent heat radiation function in such a temperature range.

本発明では凝固促進の触媒としてのサスペンション機能を有するシード材と水溶液の界面活性に硫酸ドデシルナトリウム及び、エトキシル化アミン酸を適宣量用いて、水溶液中の晶癖の変調に良好な触媒作用を促進する実施態様である。 In the present invention, an appropriate amount of sodium dodecyl sulfate and ethoxylated amic acid are used for the surface activity of a seed material having a suspension function as a catalyst for promoting solidification and the aqueous solution, and a good catalytic action is obtained for the modulation of crystal habit in the aqueous solution. This is an embodiment to promote.

即ち、本発明に於いて、化学式CHCOONa・nHO(nは2.8〜3.3)の組成を有する酢酸ナトリウム水和物の共晶塩に化学式Na・nHO(nは4.8〜5.3)の組成を有するチオ硫酸ナトリウム水和物に化学式NaSO.nHO(nは通常10)硫酸ナトリウムの適宣量と係る有効な水の増減に調整した100重量%の温度調整補助材にエチレングリコールと塩類(カリウム、ナトリウム)を適宣量用いると効果的である。 That is, in the present invention, an eutectic salt of sodium acetate hydrate having a composition of the chemical formula CH 3 COONa · nH 2 O (n is 2.8 to 3.3) is converted to a chemical formula Na 2 S 2 O 3 · nH. 2 O (n is 4.8-5.3) and the chemical formula Na 2 SO 4 . Effective use of ethylene glycol and salts (potassium, sodium) in 100% by weight temperature control auxiliary material adjusted to increase or decrease in effective water with the appropriate amount of nH 2 O (n is usually 10) sodium sulfate Is.

組成分離阻止剤に合成スメクタイト・アタパルジャイト合成物・ゼオライトの類から選ばれる2種以上から成る混合物を0.1〜30モル重量%と過冷却促進シード材に化学式NaALF・6フッ化アルミン酸ナトリウム(氷晶石)、化学式Na10H0・四ホウ酸ナトリウム、化学式Na10HO・ピロリン酸ナトリウム水和物、化学式KHPO・ピロリン酸カリウム、化学式EDTA−4Na・4HO、EDTA2H2Na.2HO、等のキレートの内から選ばれる2種以上で構成の化合触媒を0.1〜30モル重量%使用する好適な実施態様である。 Formula Na 3 ALF 6, 6 fluorinated aluminate mixtures of two or more to 0.1 to 30 mol% and supercooling promoting seed material chosen composition separation inhibitor from the class of synthetic smectite attapulgite composite zeolite Sodium phosphate (cryolite), chemical formula Na 2 B 4 O 7 10H 2 0 · sodium tetraborate, chemical formula Na 4 P 2 O 7 10H 2 O · sodium pyrophosphate hydrate, chemical formula KH 2 PO 4 · pyrophosphate Potassium, chemical formula EDTA-4Na.4H 2 O, EDTA 2 H 2 Na. This is a preferred embodiment in which 0.1 to 30 mol% of a combination catalyst composed of two or more selected from chelates such as 2H 2 O is used.

相分離防止剤サスペンション(シックナー)に合成スメクタイト・パリゴルスカイト・アタパルジャイト・ゼオライトから選ばれるゼオライトと他の3種で構成の化合物との混合比(モル重量%)の割合が、9/1〜1/9、特に3/1〜1/1の混合物を0.1〜20モル重量%がより少量の添加で効果を上げる事ができるので好ましい実施態様である。 The ratio of the mixing ratio (mole weight%) of the zeolite selected from synthetic smectite, palygorskite, attapulgite, and the other three compounds to the phase separation inhibitor suspension (thickener) is 9/1 to 1/9. In particular, the mixture of 3/1 to 1/1 is a preferred embodiment because 0.1 to 20 mol% by weight can increase the effect by adding a smaller amount.

本発明の潜熱蓄熱材組成物は酢酸ナトリウム共晶水和物に合成スメクタイト、パリゴルスカイト、アタパルジャイト、ゼオライトの単独又は複数から成る複合体で、融解温度を60℃に調和した低温度域で容易に融解し蓄熱する。シックナーの適宣量添加により、該混晶組成物の相分離を回避する安定した網目構造体を構築する。 The latent heat storage material composition of the present invention is a composite composed of sodium acetate eutectic hydrate, synthetic smectite, palygorskite, attapulgite, or zeolite alone, and easily melts in a low temperature range in which the melting temperature is adjusted to 60 ° C. And store heat. By adding a proper amount of thickener, a stable network structure that avoids phase separation of the mixed crystal composition is constructed.

更に表示の氷晶石、四ホウ酸ナトリウム水和物、ピロリン酸ナトリウム、ピロリン酸カリウム、及びEDTA−4Na4HO、等の各種キレートの複合物触媒化合物から選ばれる破過冷却手段について、熱履歴に係る触媒作用効果の試みで、その全てに於いて、前記の雰囲気温度域で有効な結果と効果を確認できた。 Furthermore, the thermal history of the breakthrough cooling means selected from the composite catalyst compounds of various chelates such as cryolite, sodium tetraborate hydrate, sodium pyrophosphate, potassium pyrophosphate, and EDTA-4Na4H 2 O In all of the trials of the catalytic effect, effective results and effects were confirmed in the above-mentioned ambient temperature range.

従来から提案のセピオライト単独の成果の比較に於いて、実施上の遜色は皆無であった。この結果は過冷却を5℃≦の温度較差内で確実に作用する様に調整し、エントロピーに係るヒートロスの軽減と潜熱放熱は38℃で過冷却を破り、転移点35℃から54℃の範囲で転移点を任意に設定し、一定の潜熱放熱を確保して信頼性を高める結果を得た。 In comparison with the results of the conventional sepiolite alone, there has been no practical discoloration. This result shows that the supercooling is adjusted to work reliably within the temperature range of 5 ° C ≦, the reduction of entropy heat loss and the latent heat release breaks the supercooling at 38 ° C, and the transition point ranges from 35 ° C to 54 ° C. As a result, the transition point was arbitrarily set, and a certain latent heat radiation was ensured to improve reliability.

係る所要熱量は233JKcal/kgと容積当りの密度及び所要熱量が大きく、伝熱効果も概ね30%≧向上の潜熱蓄熱材を提供するものである。 The required heat quantity is 233 JKcal / kg, and the density per volume and the required heat quantity are large, and the heat transfer effect is approximately 30% ≧ providing a latent heat storage material.

本発明の潜熱蓄熱素材の主材として用いる酢酸ナトリウム水和物は、化学式CHCOONa・nHO(nは3.0)で表される。所謂、酢酸ナトリウム水和物のそれよりも結晶水の量が若干増減したものを含む。n=3の場合は酢酸ナトリウム無水物又は酢酸ナトリウム水和物に化学式Na・nHO(nは4.8〜5.3)チオ硫酸ナトリウム水和物と化学式NaSO硫酸ナトリウムを添加による複合混晶水和物に加水1〜20モル重量%を添加して、転移点範囲の調整と熱量維持に好適な実施態様であるが、これ以上に水分子が多く、又、少なくても過冷却と蓄熱量に悪影響を与える。 Sodium acetate hydrate used as the main material of the latent heat storage material of the present invention is represented by the chemical formula CH 3 COONa.nH 2 O (n is 3.0). The so-called sodium acetate hydrate contains a slightly increased or decreased amount of crystal water. When n = 3, sodium acetate anhydrous or sodium acetate hydrate is added to the chemical formula Na 2 S 2 O 3 .nH 2 O (n is 4.8 to 5.3) sodium thiosulfate hydrate and the chemical formula Na 2 SO 4 was added to hydrolyze 1 to 20 mol% by weight in the composite mixed crystal hydrate by addition of sodium sulfate is a preferred embodiment to adjust the amount of heat maintained in the transition range, more in many water molecules, Moreover, even if it is at least, it will have a bad influence on supercooling and a heat storage amount.

本発明で採用の主材とする酢酸ナトリウム水和混晶組成物100モル重量%に対するサスペンションにスメクタイト、パリゴルスカイト及びアタパルジャイト(60メッシュ≧)、ゼオライト200メッシュ≧微粉末の添加量は該混晶組成材100モル重量%に対して、ゼオライトとその他の無機鉱物の微粉末の複合が0.5〜30重量%である。 The addition amount of smectite, palygorskite and attapulgite (60 mesh ≧), zeolite 200 mesh ≧ fine powder is added to the suspension with respect to 100 mol% by weight of the sodium acetate hydrated mixed crystal composition used as the main material in the present invention. The composite of zeolite and fine powders of other inorganic minerals is 0.5 to 30% by weight with respect to 100% by weight.

添加量がこれよりも多いと融解溶液は高粘度になり過ぎて実用的ではない。一方、添加量がこの範囲より少ないと本発明が目的とするような機能材は得られない。上記範囲に於いて、その添加量は潜熱蓄熱材を使用する温度域により任意に選択する事ができる。 If the amount added is larger than this, the molten solution becomes too viscous to be practical. On the other hand, if the addition amount is less than this range, a functional material as intended by the present invention cannot be obtained. In the above range, the amount added can be arbitrarily selected depending on the temperature range in which the latent heat storage material is used.

一般的に電解水和物系は、融解過程の過飽和の雰囲気下で過冷却と係る相分離現象を起こしやすく、融解と凝固を繰返すことにより、蓄熱効果が徐々に低下していた。そのため本発明においては、更に相分離抑制のサスペンションに、合成スメクタイト・ゼオライト・パリゴルスカイト・又はアタパルジャイトを0.1〜30モル重量%添加するのが好ましい。 In general, the electrolytic hydrate system is likely to cause a phase separation phenomenon related to supercooling in a supersaturated atmosphere in the melting process, and the heat storage effect is gradually reduced by repeating melting and solidification. Therefore, in the present invention, it is preferable to add 0.1 to 30 mol% of synthetic smectite, zeolite, palygorskite, or attapulgite to the suspension for suppressing phase separation.

即ち本発明のより好ましい実施態様は、主剤である酢酸ナトリウム水和物の共晶体とするチオ硫酸ナトリウム、硫酸ナトリウムの組成物で構成の混晶組成物100モル重量%に対して、合成スメクタイト・ゼオライト・パリゴルスカイト又はアタパルジャイト粉末を0.1〜15モル重量%を混合し添加の潜熱蓄熱材組成物は実施に於いて、例えば、太陽熱の如き、四季変化や気象状況で無作為に発生する温度差異(上限80℃−下限25℃)の利用範囲に対応可能な耐熱性を所要し、相変化に於いて、設定の転移点(38℃−53℃)の範囲で調和して、所要熱量の低下をきたす事無く、確実に固−液の作用する良好な態様を特徴とするものである。 That is, in a more preferred embodiment of the present invention, the synthetic smectite / sodium salt is mixed with 100 mol% by weight of a mixed crystal composition composed of sodium thiosulfate and sodium sulfate as a main crystal eutectic of sodium acetate hydrate. Zirconium palygorskite or attapulgite powder mixed with 0.1 to 15 mol% by weight, and the latent heat storage material composition added in practice is, for example, the temperature difference randomly generated due to seasonal changes and weather conditions such as solar heat Heat resistance that can correspond to the range of use (upper limit 80 ° C-lower limit 25 ° C) is required, and in the phase change, the required heat amount is reduced in harmony with the set transition point (38 ° C-53 ° C). It is characterized by a good mode in which the solid-liquid acts without fail.

ここにアタパルジャイトとは化学式(Mg・AL)SI10(OH)・4HOの構造式を所要するパリゴルスカイト構造で含水珪酸マグネシウム系セラミックスである。天然に産する繊維状粘土鉱物の造形であり、多孔質の繊維状構造と層間カチオンのイオン交換性が、水分子や有機分子を抱え込む機能を有するラス状粒子によるヒドロゲルを成因とする。 Here, attapulgite is a hydrous magnesium silicate-based ceramic having a palygorskite structure that requires a structural formula of chemical formula (Mg.AL) 2 SI 4 O 10 (OH) .4H 2 O. It is a model of a naturally occurring fibrous clay mineral, and the porous fibrous structure and the ion exchange properties of the interlayer cations are attributed to a hydrogel composed of lath-shaped particles having a function of incorporating water molecules and organic molecules.

ゼオライトは産出地による成因で構造に違いがあるが資源的に豊富で低廉である。構造式の組合せは2000組≧の改良合成があり、例えば、水の吸着や石油合成で重要な触媒に実績を有する各種の合成で知られるマグネシュウムシリケート系無機生成物である。 Zeolite is abundant and inexpensive in terms of resources, although there are differences in structure due to origin. The combination of structural formulas is an improved synthesis of 2000 pairs ≧, for example, a magnesium silicate-based inorganic product known for various syntheses that have a proven track record as an important catalyst in water adsorption and petroleum synthesis.

その構造は極めて微細な多孔性結晶物からなり、微小孔径のトンネル状細孔が無数に存在する。水分子や格子と同様な形状孔を有するトンネルによる特異な吸着効果が結晶水や水分子を抱え込んで水分子や格子の分離を阻止し沈降を強力に抑制し組成物の分離防止剤として作用し、この特徴的な性状作用が熱履歴で安定した持続性を発揮し、係る成因と特徴がセピオライトと近似的作用を確認している。 The structure consists of extremely fine porous crystals, and there are innumerable tunnel-like pores having a micropore diameter. The unique adsorption effect by the tunnel having the same shape pores as water molecules and lattices prevents the separation of water molecules and lattices by holding the crystal water and water molecules, and acts as an anti-separation agent for the composition. This characteristic property action shows a stable persistence in the thermal history, and the origin and characteristics of this characteristic have confirmed the approximate action with sepiolite.

縦軸に温度、横軸に所要時間を表し、発明の潜熱蓄熱組成物が熱を吸収した該潜熱蓄熱材は固有の融点A1点で横軸への放物線変化は固形から液状化への相変化を示す。横軸に従って全融解を示す。概ね、全融解が完了すると図示するように素材温度は急激に顕熱に変化して、温度上昇を示す。凝固に係る可逆を示す矢印は凝固潜熱の放熱温度である。凝固潜熱放熱と融解熱吸収の値は雰囲気に於いて、一定の放射放物曲線で移動状態を示す。The vertical axis represents temperature, the horizontal axis represents the required time, and the latent heat storage material of the invention has absorbed heat. The latent heat storage material has a unique melting point A1 and the parabolic change on the horizontal axis is a phase change from solid to liquefaction. Indicates. Total melting is shown according to the horizontal axis. In general, when the total melting is completed, the material temperature rapidly changes to sensible heat as shown in the figure, indicating a temperature increase. An arrow indicating reversibility related to solidification is a heat radiation temperature of latent heat of solidification. The values of solidification latent heat release and melting heat absorption show the moving state with a constant parabolic curve in the atmosphere. 1図と同様な条件下で、比較試料に融点降下剤(尿素)等を調合した系の熱吸収と放熱曲線を示す比較図である。異なる二つの温度転移点が発生し、熱利用上安定しない吸放熱の発生を示す。It is a comparison figure which shows the heat absorption and heat dissipation curve of the type | system | group which mix | blended melting | fusing point depressant (urea) etc. with the comparative sample on the conditions similar to FIG. Two different temperature transition points occur, indicating the occurrence of heat absorption / release that is not stable in terms of heat utilization.

合成スメクタイト・ゼオライト・パリゴルスカイト・アタパルジャイトは粘土粒状の粉体のまま、又はこれを更に不純物を取り除いて、純粋に生成(200メッシュ≧)したもので、これらを混合物として、使用する事もできる。 Synthetic smectite, zeolite, palygorskite, and attapulgite can be used as a mixture, either in the form of a granular clay or by removing impurities further and purely (200 mesh ≧).

一般的にこれらの素材は純度90%以上、70〜90%、70%以下に製品化され高重度、普通純度、低純度に分けて純粋粉状、通常粉状、粘土粒状に分類されている。本発明に使用するパリゴルスカイトはアタパルジャイトを主成因の構成物で不純物を除去したパリゴルスカイトや雲母から分離のスメクタイトの純度基準から選定をすることが望ましい実施態様である。 Generally, these materials are commercialized to a purity of 90% or more, 70 to 90%, 70% or less, and are classified into high powder, normal powder, and low powder, and are classified into pure powder, normal powder, and clay particles. . The palygorskite used in the present invention is preferably selected from the purity standards of palygorskite from which attapulgite is a main component and impurities are removed and smectite separated from mica.

以下実施例を挙げて、本発明を具体的に説明する。然し、本発明はこれらの実施例に限定されるものではない。試料の測定にJIS(K)7122測定と示差走査熱量計測定による。
酢酸ナトリウム水和物に水を添加した化学式CHCOONa・nHO(nは2.8〜5.3)にチオ硫酸ナトリウム水和物の化学式Na・nHO(nは4.8〜5.3)、硫酸ナトリウム化学式NaSO・nHO(nは0)の三元系組成を以下のように化合した共晶型複合水和物を調整した。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. The sample is measured by JIS (K) 7122 measurement and differential scanning calorimeter measurement.
Formula Na 2 S 2 O 3 · nH 2 O of sodium thiosulfate hydrate sodium acetate hydrate was added water chemical formula CH 3 COONa · nH 2 O ( n is from 2.8 to 5.3) (n 4.8-5.3), a eutectic complex hydrate was prepared by combining the ternary composition of sodium sulfate chemical formula Na 2 SO 4 .nH 2 O (n is 0) as follows.

酢酸ナトリウム水和物とチオ硫酸ナトリウム水和物、硫酸ナトリウム無水物で構成する三元系混晶水和物:100モル重量%に対して、スメクタイト・アタパルジャイト(パリゴルスカイト含む):1.0〜3.5モル重量%、ゼオライト:1.0〜3.5モル重量%の混合物に対し、四ホウ酸ナトリウム水和物・ピロリン酸ナトリウム水和物・ピロリン酸カリウム・EDTA−4Na4HOの組合せの合成物を一定量(3.0モル重量%)に調整した表1記載の各添加重量に従って、潜熱蓄熱材組成物の試料を4体/組として5組(20試料)を調整し、これを−20℃〜125℃計測の恒温器内(イスズ製)で、試料温度の凝固点42℃での温度持続曲線に準じ計測、転移点の変化と放熱量の1類の平均値を表1に示す。 Ternary mixed crystal hydrate composed of sodium acetate hydrate, sodium thiosulfate hydrate, and sodium sulfate anhydrous: 100 mol% by weight, smectite attapulgite (including palygorskite): 1.0-3 .5 mol% by weight, zeolite: a combination of sodium tetraborate hydrate / sodium pyrophosphate hydrate / potassium pyrophosphate / EDTA-4Na4H 2 O with respect to a mixture of 1.0 to 3.5 mol% by weight According to each added weight shown in Table 1 in which the composition was adjusted to a constant amount (3.0 mol% by weight), 5 sets (20 samples) were prepared with 4 samples / set of the latent heat storage material composition. Table 1 shows the average value of one class of changes in transition point and heat dissipation in a thermostat (made by Isuzu) measured at −20 ° C. to 125 ° C. according to a temperature duration curve at a freezing point of 42 ° C. of the sample temperature. .

加熱終了後、順調に相変化が起こり、38℃で過冷却を破り42℃まで上昇した後、相変化が完了するまでの繰返しを連続して500回の実施に於いて試料に転移点に何らかの変化は確認しなかった。尚、実施1における転移点の潜熱放物曲線を「図1」に示す。 After the heating is completed, the phase change occurs smoothly. After the supercooling is broken at 38 ° C. and the temperature rises to 42 ° C., the process is repeated 500 times continuously until the phase change is completed. No change was confirmed. The latent heat parabolic curve at the transition point in Example 1 is shown in FIG.

酢酸ナトリウム水和混成化合物100モル重量%に対して、尿素又はアンモニウム塩を10〜40重量%の範囲で混合した100モル重量%に対し、化学式Na.10HOピロリン酸ナトリウム10水和物、化学式KPピロリン酸カリウムの複合物又は単独に3重量%を添加のパリゴルスカイト・アタパルジャイト・ゼオライトを表2に示す様に調整した試料各5組(重量20g)を実施例1と同様に凝固点の測定を試み、相の転移点(融解−凝固)の実施比較例2潜熱放熱曲線図を「図2」に示す。 The chemical formula Na 4 P 2 O 7 .100 is 100 mol% mixed with urea or ammonium salt in a range of 10 to 40 wt% with respect to 100 mol% of sodium acetate hydrated compound. 10H 2 O sodium pyrophosphate decahydrate, chemical compound of KP 2 O 7 potassium pyrophosphate, or 5 samples each of palygorskite attapulgite zeolite added with 3% by weight alone as shown in Table 2 ( An attempt was made to measure the freezing point in the same manner as in Example 1 for a weight of 20 g), and FIG. 2 shows a latent heat radiation curve of Comparative Example 2 of the phase transition point (melting-solidification).

一般的な生活温度域で利用35−52℃の範囲で1.0℃の単位で固体−液体の転移点を設定が可能な潜熱蓄熱組成物である。太陽熱や排熱などのパッシブな熱エネルギー(25℃〜80℃)の範囲で凝固潜熱と融解顕熱を活用し、低廉な動力でタイムラグを補う小型で大熱量を所要の蓄熱装置用素材として各設備に提供を目的とするものである。 It is a latent heat storage composition in which a solid-liquid transition point can be set in units of 1.0 ° C within a general living temperature range of 35-52 ° C. Utilizing solidification latent heat and melting sensible heat in a range of passive heat energy (25 ° C to 80 ° C) such as solar heat and exhaust heat, each of which is a small and large amount of heat as a required heat storage device material that compensates for the time lag with low-cost power It is intended to provide equipment.

Figure 2017002212
Figure 2017002212
Figure 2017002212
Figure 2017002212

Claims (3)

化学式CHCOONa、nHO(nは2.8〜3.3)の(A)組成を有する酢酸ナトリウム水和物の共晶塩に化学式Na、nHO(nは4.8〜5.3)のチオ硫酸ナトリウムと化学式NaSOnHO(nは0)硫酸ナトリウム無水物と適宣量の加水になる三元系組成物(B)の混合比が、9/1〜1/9、特に3/1〜1/1の割合の範囲にある100wet%範囲のモル重量比の含有物に転移点調整補助材と適宣量のエチレングリコール及び復塩と相分離防止用サスペンション、破過冷却促進触媒と界面活性材が含まれる事を特徴とする特許請求記載の潜熱蓄熱材組成物。 An eutectic salt of sodium acetate hydrate having the composition (A) of the chemical formula CH 3 COONa, nH 2 O (n is 2.8 to 3.3) is converted to a chemical formula Na 2 S 2 O 3 , nH 2 O (n is 4.8-5.3) sodium thiosulfate and the chemical formula Na 2 SO 4 nH 2 O (n is 0) sodium sulfate anhydride and a suitable amount of water-containing ternary composition (B) , 9/1 to 1/9, in particular 3/1 to 1/1 in the range of 100 wt% molar weight ratio containing transition point adjusting aids and proper amounts of ethylene glycol and salt. The latent heat storage material composition according to claim 1, further comprising a suspension for preventing phase separation, a breakthrough cooling promoting catalyst, and a surfactant. 水素イオン濃度(PH7.5〜10)の範囲に属する塩化組成物の分離阻止担持剤に化学式(Mg・AL)SI10(OH)、4HOパリゴルスカイト又はパリゴルスカイトを成因とする化学式MgSi[O20(OH)]・8HOのアタパルジャイト群(A)、化学式Me/nO、xSiO、yHOのゼオライト(B)のA/Bの混合比(モル重量比)が、9/1〜1/9、特に3/1〜1/1の割合の範囲にある100モル重量%に相分離阻止サスペンションを0.1から30モル重量比が含まれることを特徴とする特許請求の範囲第1項記載の潜熱蓄熱材組成物。 The chemical formula (MgSi) having a chemical formula (Mg.AL) 2 SI 4 O 10 (OH), 4H 2 O palygorskite or palygorskite as a separation inhibiting carrier for chloride compositions belonging to the range of hydrogen ion concentration (PH 7.5 to 10 ) 8 [O 20 (OH) 2 ] · 8H 2 O attapulgite group (A), A / B mixing ratio (molar weight ratio) of zeolite (B) of chemical formula Me 2 / nO 3 , xSiO 2 , yH 2 O However, 100 mol% in the range of 9/1 to 1/9, particularly 3/1 to 1/1, includes 0.1 to 30 mol weight ratio of the phase separation preventing suspension. The latent heat storage material composition according to claim 1. 酢酸ナトリウム共晶組成になる三元系組成物の破過冷却促進触媒として、化学式Na、10HOピロリン酸ナトリウム水和物と化学式KP2Oピロリン酸カリウムの複合物(A)及び化学式EDTA−4Na・4HO、エチレンジアミン四酢酸ナトリウムのキレート化合物(B)で、A/Bの混合比(モル重量%)が9/1〜1/9、特に3/1〜1/1の割合で範囲100wet%に含まれる0.1〜30モル重量比と界面活性に化学式CH(CH10CHCHSONaドデシルベンゼンスルホン酸ナトリウム、0.1〜10wet%の範囲のモル重量比が含まれる事を特徴とする特許請求の範囲第項1記載の潜熱蓄熱材組成物。 As a breakthrough cooling accelerating catalyst for a ternary composition having a sodium acetate eutectic composition, a composite of a chemical formula Na 4 P 2 O 7 , 10H 2 O sodium pyrophosphate hydrate and a chemical formula K 2 P2O 7 potassium pyrophosphate ( A) and a chelate compound (B) of the chemical formula EDTA-4Na · 4H 2 O and sodium ethylenediaminetetraacetate, wherein the A / B mixing ratio (mol%) is 9/1 to 1/9, particularly 3/1 to 1 / 0.1-30 molar weight ratios 1 at a rate within the scope 100Wet% and a surfactant in the formula CH 3 (CH 2) 10 CH 2 CH 4 SO 3 Na sodium dodecylbenzenesulfonate, 0.1~10wet% The latent heat storage material composition according to claim 1, wherein a molar weight ratio in the range of 1 is included.
JP2015118851A 2015-06-12 2015-06-12 Latent heat storage material composition Expired - Fee Related JP5854490B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118851A JP5854490B1 (en) 2015-06-12 2015-06-12 Latent heat storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118851A JP5854490B1 (en) 2015-06-12 2015-06-12 Latent heat storage material composition

Publications (2)

Publication Number Publication Date
JP5854490B1 JP5854490B1 (en) 2016-02-09
JP2017002212A true JP2017002212A (en) 2017-01-05

Family

ID=55269157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118851A Expired - Fee Related JP5854490B1 (en) 2015-06-12 2015-06-12 Latent heat storage material composition

Country Status (1)

Country Link
JP (1) JP5854490B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137654B1 (en) 2021-03-11 2022-09-14 東邦瓦斯株式会社 Latent heat storage material composition
JP7246787B1 (en) 2022-05-20 2023-03-28 大和化成商事株式会社 Magnetic sheet, whiteboard, and method for manufacturing magnetic sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890197B2 (en) * 1989-01-24 1999-05-10 義信 山口 Latent heat storage material
JP3442155B2 (en) * 1994-08-25 2003-09-02 三菱化学株式会社 Heat storage material composition
JP2000119643A (en) * 1998-10-16 2000-04-25 Matsushita Electric Ind Co Ltd Heat storage composition and heat storage container
JP2000345147A (en) * 1999-06-02 2000-12-12 Asahi Denka Kogyo Kk Latent heat accumulation material composition
JP2006131856A (en) * 2004-11-05 2006-05-25 Michiko Yamaguchi Latent heat cold storage material composition
JP2007314741A (en) * 2006-05-29 2007-12-06 Michiko Yamaguchi Latent heat storage material composition
JP2006307235A (en) * 2006-06-26 2006-11-09 Sumitomo Chemical Co Ltd Absorptive type supercooling prevention agent for salt hydrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137654B1 (en) 2021-03-11 2022-09-14 東邦瓦斯株式会社 Latent heat storage material composition
JP2022138874A (en) * 2021-03-11 2022-09-26 東邦瓦斯株式会社 Latent heat storage material composition
JP7246787B1 (en) 2022-05-20 2023-03-28 大和化成商事株式会社 Magnetic sheet, whiteboard, and method for manufacturing magnetic sheet
JP2023171076A (en) * 2022-05-20 2023-12-01 大和化成商事株式会社 Magnetic sheet, white board, and method for manufacturing magnetic sheet

Also Published As

Publication number Publication date
JP5854490B1 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
Dixit et al. Salt hydrate phase change materials: Current state of art and the road ahead
US3986969A (en) Thixotropic mixture and method of making same
KR101620112B1 (en) Thermal energy storage materials
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
Kimura et al. Phase change stability of sodium acetate trihydrate and its mixtures
JP5946163B1 (en) Latent heat storage material composition
JP5854490B1 (en) Latent heat storage material composition
JP2004307772A (en) Eutectic crystal composition for latent cold heat storage
JP2018030924A (en) Heat storage material composition and heating pack containing the same
EP0478637A4 (en) Calcium chloride hexahydrate formulations for low temperature heat storage applications
Zheng et al. Improvement of comprehensive properties of Na2HPO4· 12H2O‐Na2SO4· 10H2O hydrate composite
WO1994004630A1 (en) Phase change material formulations for low temperature heat storage applications
JPH0446994B2 (en)
JP3471469B2 (en) Latent heat storage material composition
JP2007314741A (en) Latent heat storage material composition
JP6923378B2 (en) Heat storage material composition
JP2013116947A (en) Powder mixture for coolant, and coolant
JP2006131856A (en) Latent heat cold storage material composition
JPH08245953A (en) Composition for thermal storage
Sahu et al. A review on thermal and mechanical properties of concrete containing phase change material
CN109370533A (en) A kind of new application of houghite
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
CN112175582A (en) Oxalic acid dihydrate/alum salt eutectic phase-change material and preparation method thereof
JP7137654B1 (en) Latent heat storage material composition
JPS6256912B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5854490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees