JP2016529645A - X線検出 - Google Patents

X線検出 Download PDF

Info

Publication number
JP2016529645A
JP2016529645A JP2016515963A JP2016515963A JP2016529645A JP 2016529645 A JP2016529645 A JP 2016529645A JP 2016515963 A JP2016515963 A JP 2016515963A JP 2016515963 A JP2016515963 A JP 2016515963A JP 2016529645 A JP2016529645 A JP 2016529645A
Authority
JP
Japan
Prior art keywords
ray
ray tube
focal spot
detector
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016515963A
Other languages
English (en)
Other versions
JP6073524B2 (ja
Inventor
カルル オットー ベーリング,ロルフ
カルル オットー ベーリング,ロルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2016529645A publication Critical patent/JP2016529645A/ja
Application granted granted Critical
Publication of JP6073524B2 publication Critical patent/JP6073524B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/586Detection of faults or malfunction of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/46Combined control of different quantities, e.g. exposure time as well as voltage or current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • X-Ray Techniques (AREA)

Abstract

回転陽極X線管は時間とともに劣化する。電子ビームの作用が回転陽極の焦点スポット領域の表面を変えるからである。これは、その源が撮像用途に使われるときの結果として得られるオブジェクト画像の劣化を引き起こす。そのような効果の補正を許容するX線管収容アセンブリーが論じられる。特に、撮像のためには使われない、前記X線放射の追加的なビームが、そのような効果を補正するために使用されうる。

Description

本発明はX線検出に関する。
回転陽極管X線源では、電子は陰極と回転陽極との間で、キロボルト電位差をかけて加速され、回転陽極の焦点トラック上に衝突する。この過程で、X線が生成され、このX線は回転陽極上の電子ビーム衝突の点における「焦点スポット」から発すると言われる。衝突において散逸されるエネルギーのため、この過程で回転陽極の表面が修正されることがあり、小さな穴や傷が生じはじめることがある。
結果として、管のX線収率およびスペクトルは管の寿命の経過とともに変わることがあり、これは管が使用される用途に影響をもつことがある。現代のX線管用途の傾向は、(CTシステムにおける)ガントリー速度の増大に相応して回転陽極に加えられる瞬時パワーが増すというものである。
さらに、(よりよい空間解像度を許容するための)検出器セルおよび焦点スポットの縮小および(広げられた検出器カバー範囲のための)陽極角の広角化(widening)は、回転陽極X線管の焦点スポットにおける増大したパワー密度につながる。電子ビームによって引き起こされる回転陽極の表面の変更のレートが増すことは、今後、大いにありうることである。
特許文献1では、陽極上に配置された構造が焦点スポットを通る場合に検出されることができる、スリットを有する構造をもつ回転陽極が記述されている。このように、焦点スポットの属性は、X線管の動作の間の検出された信号の変化から決定されることができる。
米国特許出願公開第2009/0067578号
スペクトル検出CTシステムは、回転陽極の標的材料における変化によって引き起こされる回転陽極X線源の未知のスペクトル変動性を被ることがある。回転陽極X線源では、スペクトル変動性は、粗くされた標的が電子ビームの下で焦点スポットを通って動く際に、10から100msの間の特徴的な時間変動性をもって生じうる。標的は、回転陽極に衝突し、多数回の曝露サイクルにわたって陽極の表面の一部を押しのける電子ビームの反復された作用を通じて粗くされる。これは、X線スペクトルの高周波数変更を作り出すことがあり、それは撮像されるオブジェクトの画質を劣化させることがある。
減速する電子によって引き起こされる熱エネルギーが陽極中に散逸する際の回転陽極の熱膨張のため、回転陽極上の焦点スポットの位置がその所望される位置からドリフトして離れていくことがありうることが示されている。結果として得られるビームのサイズおよびX線強度分布も望まれない仕方で変わりうる。熱陽極加熱の効果の補正を許容することが有益であろう。
最後に、キーとなる技術因子としての管電圧および/または電流は通例、高価で大がかりな抵抗性分圧器を使ってX線システムにおいて測定される。向上されたコンパクトさおよび低減された測定コストが望ましいであろう。
このように、X線画像を補正するために使用できる情報を含む補正信号を提供するX線源であって、補正信号自身は撮像されるオブジェクトによって影響されていないものが必要とされている。
本発明の目的は、独立請求項の主題によって解決される。ここで、さらなる実施形態が従属請求項に組み込まれる。本発明の以下の記述される側面はX線撮像システムおよび方法にも当てはまることを注意しておくべきである。
本発明によれば、信号を提供するよう動作可能なX線管収容アセンブリーが提供される。該X線管収容アセンブリーは、焦点スポットからのX線放射を生成するX線管と、参照フィルタと、参照検出器と、コントローラとを有する。X線放射は、主要部分および参照部分を含み、主要部分は参照部分とは区別される。主要部分および参照部分は、基面(base plane)を基準に測られる、焦点スポットにある頂点からの仰角である最小および最大取り出し角(take-off angle)の間にある。参照部分および主要部分の最小取り出し角は互いに等しく、参照部分および主要部分の最大取り出し角は互いに等しい。参照フィルタは、参照検出器による参照部分の検出前に参照部分をフィルタリングするよう構成される。さらに、参照検出器は、参照部分を検出して参照信号を与えるよう構成され、コントローラは、該参照信号に基づいて信号を計算するよう構成される。
そのようなX線源は、回転陽極に対する変更によって引き起こされるX線源よって放出されるX線の変動が測定され、補正されることを許容する。参照検出器がX線の参照部分からのX線を検出し、それが、撮像されるべきオブジェクト、たとえばCTスキャナ内の患者を照射するために使用できるX線の主要部分と同じスペクトル特性および空間強度プロファイルをもつからである。
参照部分からのX線が、主要部分におけるX線放射を補正するために使用できる理由は、放射の両方の部分が同じX線管から取られており、同じ型の参照フィルタおよび検出器を通過し、諸部分がX線管の回転陽極から取られる「取り出し」および「ファン」角も同じだということである。
X線管アセンブリーからこのようにして提供される信号は、先述した効果の補正を許容する情報を与えることができる。先述した効果とは、ビーム標的の粗さによって引き起こされるスペクトル変動性、回転陽極の加熱によって引き起こされる焦点スポットのドリフトおよび管電圧および他の重要な技術因子の測定などだがそれに限られない。
本発明のある例示的実施形態によれば、X線管収容アセンブリーが、参照X線窓および主要X線窓をもつX線筐体を有しており、それにより、動作においては、参照X線窓が参照ビームを提供し、主要X線窓が主要ビームを提供する。
この実施形態では、窓(または開口)は、それぞれ参照検出器および標的をねらうための、参照および主要X線部分からのよく定義されたビームを形成する。
本発明のもう一つの例示的実施形態によれば、X線管収容アセンブリーは、X線を参照ビームと主要ビームに分離するよう、真空管内部に配置されたX線に対して不透明なオブジェクトを有する。
この実施形態では、X線管収容アセンブリー自身のケーシング内に追加のハードウェアを必要とすることなく、よく定義された参照ビームおよび主要ビームが生成されることができる。ビームを参照および主要ビームに分割する手段は、X線管内に設けられる。
本発明のもう一つの例示的実施形態によれば、X線管収容アセンブリーはさらに、参照検出器と参照フィルタとの中間に配置された減衰器を有する。
減衰器は、参照検出器要素の飽和を防止する。参照検出器要素は典型的には光子カウンタ内のピクセルである。したがって、参照検出器は、X線フラックスを正確に検出できる。減衰器は、限られたX線フィルタリング効果をもつが有意なX線減衰効果をもつ、テフロン(登録商標)またはベリリウムのような低原子番号の材料でできていてもよい。
本発明のもう一つの例示的実施形態によれば、参照フィルタは曝露と曝露の間に置換されることができる。
CTスキャナのある例示的応用では、異なるオブジェクト撮像レジームは、たとえば患者のサイズに依存して、X線の異なるパワーを使う。これは、撮像されるオブジェクト側でフィルタの置換を必要とする。参照フィルタをも置換して、どの時点でも患者フィルタにマッチするようにできることが便利であろう。このようにして、参照検出器に到達する参照ビームは、主要ビームと同じ型のフィルタを通過していることになる。
本発明のあるさらなる例示的実施形態によれば、X線管収容アセンブリーはさらに、参照検出器と減衰器の中間に位置され、前記焦点スポットに焦点を合わされる、散乱防止グリッドを有する。
散乱防止グリッドを設けることで、中心から外れたX線が参照検出器に到達することが防がれる。これは、参照信号の品質を改善する。そのような中心を外れた放射は、撮像されるべきオブジェクトを通過する前に発された放射の真の表現としての参照ビームの品質をも劣化させることがあり、よって、参照信号から導出される補正信号の品質を劣化させることがある。
本発明のあるさらなる例示的実施形態によれば、X線ブロッカーが設けられる。これは、空間解像スリットを有しており、よって参照検出器と一緒になって空間強度分布の端から焦点スポットの位置を検出する一次元焦点スポット・スリット・カメラを形成するよう構成される。
本発明のある実施形態によれば、参照検出器の前面に不透明なワイヤが配置されて空間解像ストライプを形成する、X線管アセンブリーが提供される。該空間解像ストライプは、よって参照検出器と一緒になって強度分布のパターンから焦点スポットの位置を検出するよう構成される。
本発明のもう一つの例示的実施形態によれば、二つの空間解像スリットが直交に位置されて、二次元焦点スポット・スリット・カメラを形成する。該カメラは、動作において、測定された参照ビームのパターンから焦点スポットの位置を検出するよう構成される。
ファン・ビームを横断して位置される二つの直交スリット・カメラの存在は、基面に沿ったおよび基面の上下の焦点スポットのドリフトが検出されることを許容する。このことは、焦点スポットのドリフトが二次元的に同定されることを許容する。この意味における基面は、回転陽極の回転の平面を指す。
あるさらなる実施形態によれば、X線管収容アセンブリーの参照フィルタは、異なるフィルタ値をもつ複数のフィルタを有する。前記一次元または二次元の焦点スポット・スリット・カメラは、異なる減衰器値をもつさらなる複数の減衰器を有する。それにより、スリット・カメラの参照検出器は減衰器およびフィルタの複数の組み合わせの背後の参照ビームを検出する。
この実施形態では、参照検出器は、異なるフィルタ値および異なる減衰器の諸組み合わせを通じてフィルタリングされた参照ビームを受領する。光子フラックスはX線システムの用途プロトコルに応じて変わりうるので、たとえば、患者のような撮像されるべきオブジェクトのサイズに依存して異なる画像フィルタが使用されてもよく、過剰放射も過小放射もされていない、ファン・ビームを横断するフィルタおよび減衰器の諸組み合わせに沿って、常に、参照検出器ピクセルのよく照射された線アレイがあることが保証される。各「セクター」は、フィルタおよび減衰器組み合わせによって定義される。
本発明のさらなる例示的実施形態によれば、フィルタおよび減衰器の組み合わせは参照ビーム全体(β)をカバーする。
この実施形態では、使用されるビームにおける各可能なフィルタについて、参照ビームにおいて対応するフィルタがある。したがって、スペクトルは、たとえ大きく異なる値のX線強度が適用されるときでも、ビームの幅にわたって測定されることができる。
あるさらなる実施形態によれば、基づくX線管収容アセンブリーが、一次元または二次元の焦点スポット・スリット・カメラの複数を設けられる。一緒になって、これらはマルチ・スリット焦点スポット・カメラをなす。一次元または二次元の焦点スポット・スリット・カメラの前記複数のうち少なくとも第一および第二のスリットが、参照検出器のピクセル境界に対してオフセットされている。
したがって、この実施形態によれば、焦点スポットの動きまたは形状の変化の際、これら複数のスリット・カメラは、異なる信号比を生成する。最適な信号比が、歪みの検出のために使われてもよい。これは、より大きなサイズのピクセルが検出器において使われることを許容する。
本発明のあるさらなる例示的実施形態によれば、前記コントローラは、少なくとも一つの参照検出器の少なくとも一つの出力から:スペクトル変動性、管電圧、焦点スポットの位置、焦点スポットのサイズ、焦点スポットの強度、管電流、管加齢、動的陽極回転不安定性、周期的陽極回転不安定性、焦点スポットの位置もしくは形状の磁気歪みおよび焦点スポットの位置もしくは形状の重力歪みからなる群からの少なくとも一つのパラメータを計算するよう構成される。
したがって、参照ビームを特徴付ける信号が計算されることができる。これらの信号は、少なくとも三つのカテゴリーにはいりうる。
第一に、電子ビームによって引き起こされる回転陽極損傷に関連する高周波数で起こる不完全性が、参照ビームを横断して測定され、記録されてもよい。これは、オブジェクト画像において、回転陽極不完全性によって引き起こされる高周波数不完全性が、リアルタイムでまたは画像後処理において補正されることを許容する。
第二に、主として回転陽極加熱に起因する、より低いレートで生じる変化が追跡されてもよい。そのようなより低いレートの効果は主として、加熱または冷却に起因する回転陽極の膨張または収縮によって引き起こされる、数秒にわたる焦点スポットの位置の逸脱の形で現われうる。熱膨張に関係する信号は、熱ドリフトを補償するために、制御ループにおいてX線管内の電極に「フィードバック」されてもよい。
あるいはまた、そのような熱ドリフト信号は、オブジェクト画像についての追加的な補正信号を提供してもよい。
最後に、X線検査装置の動作のために重要な、管電圧または管電流に関係したパラメータが捕捉されてもよい。したがって、これらのパラメータは、通例必要とされるような高価な追加回路なしに捕捉されうる。
さらに、参照ビームを使って電流測定をするとき、X線管収容アセンブリーにはいる全電流ではなく、参照ビームにおける電流のみが測定される(主要ビームにおける電流は参照ビームにおける電流と相関している)。
あるさらなる例示的実施形態によれば、参照フィルタおよび参照検出器は真空管内に含まれる。
参照検出器および参照フィルタを真空管内に配置することで、参照ビーム配置がよりコンパクトにできる。
本発明によれば、複数の参照ビームが提供される。複数の参照ビームのそれぞれは、参照検出器に関連付けられ、管収容アセンブリーは、動作において、該複数の参照ビームからの信号を選択するまたは組み合わせるよう構成される。
したがって、最も強い参照信号を選択する、あるいは諸ビームからの情報を組み合わせることによって、計算された信号の信号対雑音比を改善することが可能である。
本発明によれば、X線管収容アセンブリーと;変更可能なオブジェクト前のX線フィルタと;オブジェクト後の検出器と;処理ユニットとをもつX線撮像システムも提供される。X線管収容アセンブリーは、先述したX線管収容アセンブリーである。オブジェクト前のX線フィルタは、X線管収容アセンブリーにおける少なくとも一つの参照フィルタ値にマッチする。オブジェクト後の検出器は、X線管収容アセンブリー内の参照検出器と同じ型である。さらに、処理ユニットは、X線管収容アセンブリーからの信号を受領し、それらをオブジェクト後の検出器からのデータを補正するために使う。
記載したX線撮像システムにおいて、参照ビームは、撮像ビーム(主要ビーム)と同じ型の要素にさらされる。したがって、回転陽極劣化によって引き起こされるビーム品質の劣化が正確に測定され、補償されることができる。
本発明のある例示的実施形態によれば、X線撮像システムが提供される。オブジェクト前のX線フィルタは、X線管収容アセンブリー内の前記少なくとも一つの参照フィルタとは異なる。
X線撮像システムが患者前の側および患者後の側で異なるフィルタ値を使うとき、システムは簡略化される。各露出についてそれらのフィルタがマッチされることを保証する必要がないからである。
本発明によれば、X線管のX線放出特性の変化を判別する方法も提供される。本方法は、
a)X線管の焦点スポットからのX線放射を生成する段階であって、前記X線放射は主要部分および参照部分を含み、前記主要部分は前記参照部分とは相異なり、前記主要部分および前記参照部分は、基面(base plane)を基準に測られる、焦点スポットにおける頂点からの仰角である最小(αmin,MAIN、αmin,REF)および最大(αmax,MAIN、αmax,REF)取り出し角(take-off angle)の間にあり、前記X線放射は主要部分および参照部分を含み、前記参照部分と主要部分の最小取り出し角(αmin,MAIN、αmin,REF)は互いに等しく、前記参照部分と主要部分の最大取り出し角は互いに等しい(αmax,MAIN、αmax,REF)、段階と;
b)参照フィルタを使って前記参照部分をフィルタリングする段階と;
c)前記参照部分を検出する段階と;
d)前記参照部分の特性を表わす参照信号を出力する段階と;
e)補正信号を計算する段階と;
f)前記補正信号を出力する段階とを含む。
上記で定義した方法により、回転陽極加齢または加熱のX線オブジェクト画像に対する効果を補償するために使用されることができる補正信号を提供できる。さらに、この方法により得られる補正信号は、管電流および管電圧のような重要な動作情報を導出するために使用できる。
本発明によれば、X線管における不完全性が、X線管からの明確に区別される参照部分(ビーム)を使って特徴付けられる。参照ビームは、オブジェクトを撮像するために使われるX線部分(ビーム)とは相異なる。(回転陽極の方位角φによって定義される)基面のまわりの参照検出器の任意の位置が、該位置がオブジェクト撮像のために使われる主要ビームと異なっている限り、可能である。
参照検出器の二次元領域と、二次元焦点スポット領域とが、参照部分を定義する。参照ビームの最小取り出し角およびファン角は、撮像ビームのものに等しいべきである。これは、回転陽極から放出される光子のスペクトルおよび強度分布が、焦点スポットが位置する面への法線のまわりに極対称性をもつからである。
主要ビームにおけるのと同じフィルタが参照ビームにおいて使われる場合には、これは等しいビーム品質を保証する。
上記の議論において、源からのX線の主要部分および参照部分への分割が論じられた。「主要部分」という用語は単に、回転陽極から発されたX線のうち、関心対象のオブジェクトのほうに向けられ、その後測定側の検出器によって測定されるセクターを指すということは理解しておくべきである。
同様に、「参照部分」という用語は単に、放出されたX線のうち、参照検出器によって検出される別のセクターを定義するということを理解しておくべきである。X線の参照部分および主要部分は互いに異なるものである。
さらに、二つ以上の参照検出器がX線管収容アセンブリー内部に配置されてもよいことを理解しておくべきである。この場合、各参照検出器について一つずつで、二つ以上の参照部分があることになる。複数の参照部分(および参照ビーム)が提供される場合、そのそれぞれは異なるフィルタを有していてもよい。このようにして、主要ビームにおいて使われるフィルタにマッチしたフィルタが、ユーザー介入なしに自動的に選択されてもよい。
さらに、「最小取り出し角」という用語は、主要部分もしくは参照部分のいずれかの端と、回転陽極の基面との間の角を定義することを理解しておくべきである。さらに、「最大取り出し角」は、参照部分もしくは主要部分の反対側の端と、回転陽極の基面との間の角を定義する。参照部分の最小および最大取り出し角は、焦点スポットに位置している頂点からの仰角である。
さらに、以上の議論から、参照ビームおよび主要ビームは、X線管の容器内のまたはX線管収容アセンブリー内の窓に従って定義されることを理解しておくべきである。
基面は、回転陽極の円錐台状の(斜角面にされた)表面に接する面として定義されることを理解しておくべきである。この面上に焦点スポットが位置される。換言すれば、基面は、電子ビームが向けられる回転陽極の斜角面の角(chamfer angle)と同じ面にある。焦点スポットの面積および焦点スポットが動きうる面積は、通例、円錐台セクションの面積と比べて非常に小さいので、焦点スポットの動きは平坦な面上の中心位置(頂点)のまわりで起こるというのが良好な近似である。この近似の効果は、本発明の動作に著しく影響しないが、この近似は、幾何構成のより簡単な視覚化を許容する役に立つ。
むろん、X線管アセンブリーは、CTシステム内部で使われてもよい。CTシステムでは、X線管アセンブリーは患者のまわりで回転し、X線のファン・ビームを生成する。撮像されるオブジェクトによって減衰されたX線を電気信号に変換する検出器システムは、それと対向したまま、ガントリー上で回転する。次いで、コンピュータ・システムが患者の解剖学的構造の画像を再構成する。
むろん、論じられている一般的技法は単にCTシステムに適用可能なだけではない。他の多くの型のX線システムが、X線管において生じる不完全性を補正するための参照ビームの適用から裨益しうる。たとえばCアーム・システムである。
本技法は、工業製造システムにおいてまたは旅客荷物システムにおいて使われるX線スキャナのようなシステムにも適用できる。用途は、単に医療撮像システムに限定されると考えられるべきではない。
本発明のこれらおよび他の側面は、以下に記述される実施形態を参照することから明白になり、明快にされるであろう。
本発明の例示的実施形態が以下の図面において記載される。
X線管収容アセンブリーの例を概略的に示す図である。 さらなる例に基づくX線管収容アセンブリーを通じた断面を概略的に示す図である。 Aは、回転陽極の上から見たときの主要ビームおよび参照ビームの例であり、Bは、ある例に基づく回転陽極X線管における関連する角の間の幾何学的関係の例であり、Cは、焦点スポットを示す、回転陽極の概括的なビューである。 代替的な参照部分位置のさらなる例である。 Aは、斜角面にされた端(chamfered edge)をもつ回転陽極の代表ビューであり、Bは、X線放出特性を示す回転陽極の表現である。 回転陽極から放出される参照部分および主要部分を示す図である。 参照検出器構成を概略的に示す図である。 ある例示的実施形態に基づくX線検出のさらなる側面を示す図である。 参照検出器構成の例示的実施形態の概略表現である。 ある例に基づく参照検出器によるX線検出のさらなる側面を示す図である。 Aは、ある例に基づく一次元焦点スポット・スリット・カメラの概略表現であり、Bは、横から示される図11のBの一次元焦点スポット・スリット・カメラのさらなる側面を示す図である。 Aは、二次元焦点スポット・スリット・カメラの第一の代替的な実施形態を示し、Bは、二次元焦点スポット・スリット・カメラの第二の代替的な実施形態を示す。 Aは、図12のAの二次元焦点スポット・スリット・カメラを使用において示し、Bは、図12のBの代替的な実施形態の二次元焦点スポット・スリット・カメラを使用において示す。 ある例示に基づく参照フィルタを示す。該参照フィルタは、複数の、異なるフィルタ値をもつフィルタおよび異なる減衰器を有する。フィルタおよび減衰器の組み合わせがファン・ビーム全体をカバーする。 オフセット・スリットをもつ一次元のマルチ・スリット焦点スポット・カメラの例を示す図である。 CアームX線撮像システムの例を示す図である。 ある例に基づくX線撮像方法を示す図である。
図1は、本発明に基づくX線管収容アセンブリー132を概略的に示す。X線管収容アセンブリー132は、源内部に含まれるX線管102を有する。X線管は、内部で真空を維持する密封された容器をもつ。管内には、回転陽極130に近接して配置された陰極128がある。
陰極と回転陽極との間に適切な電圧が加えられるとき、電子ビームは真空中を進み、回転陽極130に衝突する。CTシステムで使われるような回転陽極は、円錐台(円錐のセグメント)の形をもつ。その一例が図3のCに示されている。X線ビームが回転陽極130に衝突する点は焦点スポット104として知られている。焦点スポットは、円錐台の形の傾いた側面(斜角面)上に位置する。電子の急激な減速および加速が制動放射の放出につながる結果として、X線が焦点スポットから放出される。
X線管収容アセンブリー132内部には、参照フィルタ106および参照検出器108が配置されている。参照検出器は、参照フィルタ106を通して、焦点スポット104に対するX線ビューをもつ。
参照検出器108は、参照検出器のピクセルに入射するX線フラックスのレベルにリンクされている参照信号125を出力する。
コントローラは、参照信号を受領し、計算を実行して、参照信号に基づく信号126を出力するよう構成されている。
動作において、陰極128は回転陽極上の標的領域に向けて電子を放出することを注意しておく。
電子は標的領域に衝突し、それによりX線放射(X線)を生成する。X線光子はランダムな仕方で放出されて、焦点スポットの上の半空間中に広がる強度分布を引き起こす。図1では、このことは、二つの部分112および110によって示されている。部分112は、「参照部分」とも称され、部分110は「主要部分」とも称される。主要部分110は典型的には、X線管収容アセンブリー132から放出され、X線システムにおいて、撮像されるべきオブジェクトに入射するよう配置される。
参照部分112は、参照フィルタ106を通じてX線管102から放出され、参照検出器108によって受領される。図のように、基面114は、主要部分と参照部分を定義する仰角を測る基準となる。基面は、焦点スポットが位置している回転陽極の円錐台セクションの端に接する面である。
焦点スポットの表面は、微視的には、斜角面の部分の非常に小さな割合をカバーする。すなわち、回転陽極の円錐台部分のごく一部である。図6の基面は焦点スポットに接する面である。静的な陽極は通例平坦である。この場合、本発明が適用される場合、基面は単に焦点スポット面である。
読者は、図の簡単のため、基面および結果として生じる角度は図1に示されるように水平であるとしてモデル化されることができることを理解するであろう。基面が水平としてモデル化されるのと円錐台(斜角面にされた)端の接平面に傾けられるのとから生じる差異は、本発明に影響しない。
参照部分112は、参照検出器108の前面が占める二次元領域と、焦点スポットが占める領域との間に定義されるものと考えることができる。
主要部分110は、焦点スポットと、この実施形態では請求されず図1には示していない撮像検出器の前面との間の領域において定義されるものと考えてもよい。読者は、この定義によれば、参照部分と撮像部分が相異なることを理解するであろう。これは、参照検出器は、物理的に、撮像検出器が置かれているところの前面または背後の空間を占めることができないからである。そんなことをすれば、撮像検出器を隠蔽してしまう。
図1に示されるように、参照部分112は最小(αmin,REF)および最大(αmax,REF)の取り出し角をもつ。参照部分の取り出し角は、基面114を基準に測られる、焦点スポットに位置される頂点からの仰角として定義される。
参照部分の境界を定義する最小の取り出し角および参照取り出し角があることが理解されるであろう。最小の参照取り出し角を最大の参照取り出し角から引くと、ファン角β′が得られる。
やはり図1に示されるように、主要部分も最小および最大の取り出し角をもつ。同様に、主要部分の最大および最小の取り出し角が互いに減算されて、主要ファン角βを得ることができる。参照部分ファン角β′が参照検出器108の面積および焦点スポット104の面積に関係していることが理解されるであろう。同様に、主要部分のファン角βが焦点スポットの面積および最終的な撮像検出器の面積によって定義されることも理解されるであろう。
参照部分の最小取り出し角(αmin,REF)および主要部分の最小取り出し角(αmin,MAIN)が等しいことが本発明の本質的な側面である。同様に、参照部分のファン角β′が主要部分のファン角βに等しいことが本発明の本質的な側面である。これは、陽極表面が平面(たとえば曲がっていないまたは他の仕方で歪んでいない)として近似できるとすると、(極対称性のため)スペクトルが陽極表面との取り出し角にのみ依存するからである。したがって、先の条件が満たされる限り、参照部分は、有用なビームの外部の任意の位置に置いて取り出されることができる。
電子が回転陽極に衝突する際、X線が生成される。医療X線およびタングステン標的について、管電圧に依存して、電子の相互作用の平均深さは2ないし10マイクロメートルの間である。したがって、X線は回転陽極標的の素材を通り抜ける必要がある。回転陽極のまわりの強度分布は「ヒール効果(heel effect)」を示す。その特性は、陽極の陰に近い光子フラックスの欠如である。これは、図5のBにおいて例示される。陽極の表面は、焦点スポットの熱サイクリングのために粗くなる。粗さは、10ないし100マイクロメートルの範囲にあることができ、粗くなる効果は、管が加齢するとともに悪化する。これは相応してヒール効果の増大を引き起こす。この効果が悪化するレートは管パワーが増すにつれて増大する。したがって、X線ビームの光子フラックスおよびスペクトルは、取り出し角、管履歴および回転陽極管ではさらに方位角平面を通じた陽極回転の位相にも依存する。電子ビームを通って進む陽極材料の局所的な条件が時間的に変化するからである。
ある例示的実施形態では、参照フィルタ106は、撮像されるべきオブジェクト(たとえば患者)を最終的に通過するX線の主要部分におけるのと同じ型であることを注意しておく。参照部分の最小取り出し角およびファン角は、主要部分の最小取り出し角およびファン角に等しく、参照部分からのX線が主要部分からの放射と同じ型のフィルタを通っていることになるので、参照検出器108に到達するビーム品質の劣化は、主要ビームにおける検出器に到達するビーム品質の劣化と等しい。これについてはこれ以上示さない。
ある代替的な実施形態では、参照フィルタ106は、主要部分において使われるフィルタとは異なる型のものである。
したがって、参照ビームは、X線管の回転陽極の条件についての追加的な情報を提供し、それが、主要部分を使って撮像される画像情報を補正するために使用されることができる。この構成は、X線管102によって引き起こされるX線ビームにおける変動が、測定され、補正されることを許す。参照検出器は参照部分からのX線を検出し、該X線は主要ビームと参照ビームの取り出し角およびファン角の等しい値のため、たとえば撮像されるべきオブジェクト(患者)を照射するために使用できるX線の主要部分と同じスペクトル特性をもつからである。
参照検出器108は、瞬時フラックスのスペクトルを検出できる、エネルギー分解する光子カウンタを有していてもよい。光子計数検出器において、X線光子は個々に計数され、それらのエネルギーが測定される。個々の光子を計数するために、直接変換材料および高速計数ASICが使われ、直接変換材料において個々のX線光子によって形成された電荷雲の処理を可能にする。光子計数は、より低い線量を使うことを許容することが知られている。計数は、電子的なノイズにそれほど敏感ではないからである。むろん、参照検出器のために、通常のシンチレーター光検出器検出手段のような、他のX線検出技術が使われることもできる。
図示した実施形態において、参照検出器は二次元ピクセル・マトリクスであることは理解されるであろう。しかしながら、代替的な実施形態では、参照検出器は、ピクセル・ライン・アレイであることができる。ライン・アレイは単に、参照部分の一つの平面を横断してX線フラックスを測定する。
本発明のある例示的実施形態によれば、X線管収容アセンブリー132は、複数の参照ビームを有する。この場合、各参照ビームは、測定レジームに応じておよび/または参照ビームの品質パラメータを最適化するために電子的に選択されることができる参照検出器108を有していてもよい。
本発明のある例示的実施形態によれば、参照検出器は、主要部分を測定するために撮像側で適用される検出器と同じ型である。参照ビーム(単数または複数)におけるフィルタが主要部分を測定するために撮像側で適用される検出器と同じ型であり、撮像および参照検出器側の検出器も同じであれば、参照検出器108において受領される参照信号が主要ビームをより正確に特徴付けることになる。
本発明のある例示的実施形態によれば、参照検出器の一部または参照検出器全体が、X線フィルタおよび減衰器の組み合わせの背後に位置される。ある例では、単一のフィルタ値が使用できる。しかしながら、異なる値の諸フィルタおよび諸減衰器の諸組み合わせが規定されることもできる。そのような例についてはのちに述べる。
典型的には、参照検出器は焦点スポットから5ないし10cmの間だけ離れて位置される。つまり、参照検出器に到達するX線は、主要部分によって撮像されるべきオブジェクトの背後に置かれた撮像検出器に到達するX線フラックスより、かなり多くのX線フラックスをもつことになる。
したがって、本発明のある代替的な例示的実施形態では、この効果を考慮に入れるために減衰器が挿入されてもよい。減衰器は、電圧のような変化する技法因子にもかかわらずよく照射される検出器のラインの適正な選択を許容する。
参照検出器108は、高い周波数で源のスペクトル特性をサンプリングできることは理解されるであろう。そのような周波数は、回転陽極の角回転速度に関係している。現代の回転陽極管では、標準的な回転数は3000回転毎秒から12000回転毎秒までの間の範囲であることができる。通過する陽極材料上での電子ビームの特徴的な滞在時間は数十マイクロ秒の範囲である。したがって、源のスペクトル特性のサンプリングは、この周波数に対応し、それにより参照ビームから有用な情報が導出できる。
そのような高い周波数でスペクトルにおいて検出可能な変動は、高い強度で回転陽極に電子ビームが繰り返し当てられることによる回転陽極の表面に引き起こされる穴や傷により生じうる。
ある代替的な実施形態では、あるいはそのような欠陥の追跡に加えて、参照検出器は、回転陽極の加熱によって引き起こされる熱効果をも検出してもよい。回転陽極の加熱は、露出の間の電子ビームの適用後数秒の時間フレームにわたって起こることが期待されうる。加熱は、回転陽極に幾何構成を変えさせる。
したがって、放出されたX線フラックスは、しかるべく主要部分および参照部分を通じたトラックを動かす。この効果は、追跡されてもよく、それにより、補正されることができる。参照部分は主要部分と同じ回転陽極から取られているので、参照部分の取り出し角およびファン角が主要部分の取り出し角およびファン角に等しいという想定のもとでは、参照部分を横断したX線フラックスの動きとして表出する回転陽極の熱修正によって引き起こされる不都合な効果は、主要部分において補償されることができ、実際、露出の継続時間にわたって追跡されることができる。補償は、X線管における電子ビーム偏向手段を通じて、あるいは生の投影データからの画像の再構成(後処理)の間に数学的に、あるいはその両方で、与えられることができる。
むろん、回転陽極の熱的加熱に起因する焦点スポット位置の変動の補正は、X線管内の制御ループおよびさらなるビーム位置決め電極を使ってリアルタイムで実行されてもよく、あるいはまた、焦点スポット位置の変動は、露出後に、参照信号の記録されたバージョンを使って画像の後処理において補正されてもよい。
あるさらなる例示的実施形態によれば、参照X線窓134および主要X線窓136を有するX線管収容アセンブリー132が提供される。それにより、動作では、参照X線窓134は参照ビーム138を与え、主要X線窓136は主要ビーム140を与える。図2が上から見た回転陽極102を示していることが見て取れるであろう。回転陽極はX線管102の内部に含まれる。回転陽極130は、図2において円形の点線によって区別される斜角面にされた側面を有していてもよい。斜角面は、要素142としても示されている。陰極(この図には示していない)は、焦点スポット104において回転陽極の斜角面にされた側面に与えるよう、電子のビームを放出し、それにより、X線を放出させる。「ヒール効果」のため、放射は、広い領域にわたって生成されることは理解されるであろう。この放射の一部が図2では陰を付けた領域によって示されている。
先述したように、焦点スポット104から放出される放射は、少なくとも参照部分112および主要部分110に分けられると考えられてもよいこと、参照検出器および患者検出器が共通の取り出し角およびファン角を使ってX線をサンプリングする限り、参照部分におけるスペクトル特性と主要部分におけるスペクトル特性が同じになることは理解されるであろう。
図2に示されるように、X線管102は、少なくとも主要窓(開口)136および参照窓(開口)134を例外として、X線に対して不透明であるX線管収容部〔ハウジング〕132によって囲まれている。主要窓136および参照窓134は、主要部分および参照部分のX線をそれぞれ主要ビーム140および参照ビーム138に整形する。したがって、当技術分野において開口としても知られるこれらの窓は、X線を参照検出器および撮像されるべきオブジェクト(患者)に向けるためのよく定義されたビームを形成する。
当業者の読者は、ビームがそのように定義されることは本質的ではないことを理解するであろう。実際、先に論じた条件、すなわち参照部分が主要部分と等しい取り出し角をもち、参照部分が主要部分と等しいファン角をもつということが満たされる限り、参照部分は主要部分からの情報を補正するために使用されうる。
図3のAは、上からの回転陽極を示している。この場合、主要ビームは焦点スポット104から回転陽極の外側の方向に放出され、参照ビーム138は焦点スポットから主要ビーム110とは反対方向に、X線管の内側に向かって放出される。これは、原理において、参照ビームの参照部分116の最小取り出し角が主要部分110または参照ビーム140の最小取り出し角に等しく、かつ参照部分138と主要部分140のファン角βが等しい限り、参照ビームまたは参照部分の位置決めは柔軟であることを示すことが意図されている。
図3のBはさらに、ある例示的実施形態に基づく本発明の幾何学的側面を示している。基面114は焦点領域と共平面であり、方位角は焦点スポットの中心を通る焦点領域への法線として定義される。基面114に直交して、入射する電子ビーム144を表わす線がある。104には、電子ビームが回転陽極に当たる焦点スポットの位置を表わす頂点がある。図の左側には、中線および参照部分の広がりを定義する外側線148がある。したがって、角度αmin,REFは参照ビームまたは参照部分の最小取り出し角である。角度αmax,REFは参照部分の最大取り出し角である。これらの角は基面114を基準として測られる。αmin,REFをαmax,REFから引くと、βREFが与えられる。同様の定義は、図3のBに示されるように、主要部分または主要ビームの角度に当てはまる。主要部分または主要ビームおよび参照部分または参照ビームの位置のさらなる例が図4に示されている。
図4は、図3のAでも論じた、回転陽極130を見下ろす上面図である。この場合、参照ビームまたは参照部分112および138は焦点スポット104のまわりの任意的な諸位置に示される。これらが参照部分または参照ビームについての任意的な位置であり、参照ビームもしくは部分の最小取り出し角が主要ビームもしくは主要部分の最小取り出し角に等しく、かつ参照ビームもしくは部分のファン角が主要ビームもしくは部分のファン角に等しい限り、使用されうることが理解されるであろう。
ある実施形態によれば、複数参照検出器108が与えられる場合、複数参照ビームが使われてもよい。
参照ビームもしくは参照部分の正確な形は参照検出器またはX線収容部の窓132の位置および形状にそれぞれ依存する。
図5のAに示されるさらなる例示的な例では、斜角面にされた側面をもつ回転陽極130が断面図で示されている。陰極128は斜角面にされた側面に電子のビームを加える。電子の急激な減速によりX線が陽極上方のあらゆる方向に放出される。X線が斜角面にされた側面において物質を通って異なる距離を貫通するという事実のため、X線の放出はランダムであり、図5のBに示される半球状の強度分布が引き起こされる。焦点トラック表面に関してより大きな角度では等方的でありヒールにおける小角度では急激に低下する、焦点トラックの表面上方のこの腎臓型の強度分布150は、「ヒール効果(heel effect)」と称される。
図5のBに示されるように、主要部分および参照部分は腎臓型のヒール特性150および151において定義される。
ある代替的な実施形態では、代替的な参照幾何構造が考慮されてもよいが、これは関わっている物理的な原理には影響をもたず、単に円錐台状の(斜角面をもつ)陽極が使われるときに幾何構造を議論するより便利な方法であることは理解されるであろう。図6は、斜角面にされた側面上に位置される焦点スポットをもつ回転陽極130を示している。主要部分110および参照部分112は焦点スポット104から放出される。
図7は、図1において定義され、関連する記述において記述されたのと同じであるX線管収容アセンブリー132に、参照フィルタと参照検出器108の中間に位置された減衰器158を加えたものの例を示している。
減衰器158は、焦点スポットから撮像されるオブジェクト(および像側検出器)までと焦点スポットから参照オブジェクト108までとの近接性の差によって引き起こされるX線フラックスの差を補償する。参照検出器108を飽和させることを避けるために、光子フラックスは減衰器によって低減される。
減衰器は低原子番号をもつ材料、たとえば炭素、ベリリウムまたはテフロン(登録商標)から構成される。これらの材料は低いX線濾波(filtration)効果をもつが、有意なX線減衰効果をもつ。
このように、参照検出器108における光子計数器または他の検出器のピクセルにおける積み上がり(pile-up)、よって飽和が防止され、こうしてX線フラックス、ひいては管電圧、電流、空間X線特性およびスペクトルが正確に検出できる。
あるさらなる例示的実施形態によれば、X線管収容アセンブリー132は、露出と露出の間に交換されることができる参照フィルタ106を有していてもよい。交換は、X線管収容アセンブリー132内の参照フィルタ・スライドを変えることによってオペレーターによって手動で実行されてもよい。
さらに、参照フィルタ106の交換は、フィルタ・ホイールまたは線形フィルタ・スライドのようなフィルタ変更機構によって自動的に実行されることができる。
異なる測定レジームは、たとえば撮像されるべきオブジェクトの体積に依存して、異なる露出パワーを使う。オブジェクト撮像フィルタの交換により、患者線量を最小にしつつ受け入れ可能なオブジェクト画像が記録されることが許容される。
先述したように、撮像側のフィルタが参照フィルタ106にマッチし、それにより参照ビームおよび主要ビームが可能な限り同一の条件に曝露されることが本発明のある実施形態の一つの側面である。したがって、撮像されるオブジェクトに応答して撮像フィルタが変更されることができることが構想される任意のシステムにおいて、参照フィルタ106を交換するための備えがあるべきである。
代替的な実施形態によれば、参照フィルタ106は撮像側で使われるフィルタとは異なっていてもよい。X線管と参照検出器および撮像側との間の異なる距離によって引き起こされるX線フラックスの差を補償するためである。
減衰器158は、その背後の参照検出器108のそれぞれのピクセルにおける積み上がりを避けるはたらきをする。適切な計算が適用されたあとの参照検出器からの信号は、患者後の検出器からのデータを補正するための参照である。患者後の検出器からのデータは、患者がX線フラックスの強度を低下させるため、過剰放射を受けない。
図8は、上からの、斜角面にされた端142をさらに有する参照陽極130の一部を示す、先述した実施形態のさらなる例示的な例である。焦点スポット104からは、主要部分110および参照部分112が放出され、これらも図示しない収容部における開口によって主要ビームおよび参照ビームに整形されてもよい。参照部分の経路には、参照フィルタ106、減衰器158および最終的には参照検出器108がある。
図9は、参照検出器108と減衰器158との中間に位置され、さらに焦点スポットに焦点を合わされている散乱防止グリッド160を有するX線管収容アセンブリー132の例を示すさらなる例示的実施形態を示している。散乱防止グリッド160は金属の葉またはシートからできていてもよい。散乱防止グリッドの機能は、減衰器を出た後に参照ビームを集束することである。散乱防止グリッドは、焦点スポットから直接放出されたビームのみが参照検出器に入射することを許容する。
図10は、動作中の散乱防止グリッド160をさらに示している。図10は、斜角面142および焦点スポット104をもつ回転陽極130の一部を見下ろす図を示している。焦点スポット104から主要部分110および参照部分112が放出される。次いで参照部分112は参照フィルタ106および減衰器158を通過する。参照フィルタおよび減衰器の散乱効果により、156と160の間の線162によって示されるように、参照ビームのX線が散乱される。散乱されたX線が参照検出器まで通されたとしたら、回転陽極の不完全性によって直接引き起こされたのでない望ましくないアーチファクトが参照信号に残り、よって参照信号から計算された信号を使って補正された任意の画像の品質を損なうことがある。
したがって、減衰器158と参照検出器108との中間に設けられる散乱防止グリッドは、散乱された放射が参照検出器108に達することを防止する。
本発明のある例示的実施形態によれば、図11のAは、X線管収容アセンブリー132において使うための一次元焦点スポット・スリット・カメラを示している。
一次元焦点スポット・スリット・カメラはさらに、X線ブロッカー170を有する。X線ブロッカー170は、空間解像スリット164を有しており、よって参照検出器108と一緒になって、参照ビームの強度分布の端から焦点スポット104の位置を検出するための一次元焦点スポット・スリット・カメラ174を形成するよう構成されている。
X線ブロッカー170は典型的には、スリットをもつ金属シートを使って実装される。ただし、X線に対して不透明な任意の材料がX線ブロッカーを形成できることは理解されるであろう。
あるさらなる実施形態によれば、X線ブロッカーは追加的または代替的に不透明なワイヤ(単数または複数)を有していてもよい。
あるさらなる実施形態によれば、X線ブロッカーは追加的または代替的に、空間解像スリットおよびワイヤの組み合わせを有していてもよい。
あるさらなる実施形態によれば、一次元焦点スポット・スリット・カメラは、参照検出器上に所望されるスペクトルを生成するために追加のX線フィルタを有していてもよい。
二次元ピクセル・アレイ168がX線ブロッカー170の背後に位置される。図11のBに示されるように、減衰器におけるギャップ164の下にある二次元ピクセル・アレイ168のエリアは、X線管収容アセンブリー132の焦点スポットへの直接的な視線をもつ。したがって、一次元焦点スポット・スリット・カメラは、一方向の焦点スポットの相対的な変位位置を測ることができる。
さらに、一次元焦点スポット・スリット・カメラはフィルタ減衰器165を有していてもよい。フィルタ減衰器165は炭素、ベリリウムまたはテフロン(登録商標)のような低原子番号をもつ材料のシートである。これらの材料は低いX線濾波効果をもつが、有意な減衰効果をもつ。フィルタ減衰器は、先の実施形態と同様に、X線源からの過剰な光子フラックスを低減するために必要とされる。さらに、参照ビームのファン角方向を横断したスペクトル特性は、いまだ一次元スリットを用いて測られることができる。焦点スポット位置情報は、スリット・エリア内のピクセルから導出されることができる。ビーム・スペクトル情報または光子フラックスは、いまだ、スリット・エリアの下にないピクセルから導出されることができる。
スリット164の下の諸中心ピクセルは高い全光子フラックスでの過剰放射を受けることがありうるものの、焦点スポットはスリットより幅広く、十分に読み取り可能な信号をもつピクセルがあり、それにより強度分布の端から一次元方向における焦点スポットの位置の検出が許容される。
焦点スポットの位置が強度分布の端のみから導出される必要はないことは理解されるであろう。
代替的な実施形態によれば、参照検出器108によって検出された参照ビームの強度分布のパターンの解析がコントローラによって実行されてもよい。この解析を使って、焦点スポットの位置が追跡されてもよい。異なる強度の諸エリアを焦点スポット位置に解像することのできるいかなる好適な解析方法が使われてもよい。あるいはまた、コントローラは、解析が後処理において実行されうるよう前記パターンを出力してもよい。
本発明のあるさらなる例示的な実施形態によれば、強度分布のパターンが強度分布の端として定義されてもよい。
ある例示的実施形態によれば、ピクセル・アレイ168は一次元ピクセル・ストリップで置換され、一次元方向のみにおいて焦点スポットの位置の逸脱を検出し、ビームの他のエリアからスペクトル情報を導出しない、より基本的な検出器において使われることができる。
本発明のある実施形態によれば、X線管アセンブリーは、空間解像ストライプをなすために参照検出器の前面に置かれた不透明なワイヤを設けられることができる。こうして、空間解像ストライプは、参照検出器と一緒になって、強度分布のパターンから焦点スポットの位置を検出するよう構成されることができる。
本発明のあるさらなる実施形態によれば、X線管収容アセンブリー132の例が、X線ブロッカー170において二つの空間解像スリット176、178を設けられてもよい。これらの空間解像スリットは、二次元焦点スポット・スリット・カメラ180を形成するよう直交して位置される。該二次元焦点スポット・スリット・カメラ180は、動作において、測定された参照ビームのパターンから焦点スポットの位置を検出するよう構成される。
この実施形態の第一の代替が図12のAに示されている。図11のAにおいて開示され先に述べた一次元焦点スポット・スリット・カメラが、さらなる一次元焦点スポット・スリット・カメラの隣に位置される。これらのカメラは図11のAで述べた焦点スポット・スリット・カメラと同じ構成である。各一次元焦点スポット・スリット・カメラは、ピクセル・アレイ168の前面に位置されたX線ブロッカー170を有する。各X線ブロッカーは中央スリット164をもつ。
二次元焦点スポット・スリット・カメラの第一の代替によれば、二つの一次元焦点スポット・スリット・カメラが隣り合わせに配置され、第一のカメラのスリット176が第二の一次元焦点スポット・スリット・カメラのスリット178と垂直であってもよい。当業者は、図12のAの配置は単に例であり、スリット176とスリット178が互いに直交である限り、第二の一次元焦点スポット・スリット・カメラは第一の一次元焦点スポット・スリット・カメラの他の三つの側部のどれに位置されてもよい。
図12のAに示した実施形態では、回転陽極の側面に沿った動径方向および軸方向における焦点スポットの変動が検出されることができる。さらに、ビーム全体を横断するスペクトル情報が検出されることができる。そのような配置は、焦点スポットの位置およびサイズを検出できる。換言すれば、ファン・ビームを横断して位置される二つの直交するスリット・カメラの存在が、方位角に沿ったおよび方位角の上下の焦点スポットのドリフトが検出できるようにし、それにより焦点スポットの位置が二次元的に同定できる。
代替的な実施形態が図12のBに示されている。この場合、焦点スポット・スリット・カメラは、二次元ピクセル・アレイ168の一つだけを使って提供される。二つの直交するスリットはこの場合、X線ブロッカー170を先述したように取り、第一のスリットに直交する追加のスリットを加えることによって、単一のピクセル・アレイ168の上方に設けられる。正しい位置決めにより、そのような単一の二次元焦点スポット・スリット・カメラが、図12のAに開示された実施形態におけるように二つの検出器を使う必要なしに、焦点スポットの動径および軸方向位置を検出しうることは理解されるであろう。このようにして、焦点スポットの位置の検出はより効率的に実行されることができる。二つの二次元ピクセル・アレイ168を提供する必要はない。
図13のAは、動作における二次元焦点スポット・スリット・カメラの前記第一の代替を示している。線180は、該二次元焦点スポット・スリット・カメラに入射するX線ビーム・パターンのエネルギー輪郭を表わす。この輪郭の形状は、焦点スポットの形状および位置に依存する。
回転陽極上での焦点スポットの純粋に動径方向の逸脱は、主要ビームおよび参照ビームの仰角における相応する変化を引き起こす。これは、二次元焦点スポット・スリット・カメラ上に投影される。図13のAの二次元焦点スポット・スリット・カメラの左部分は、そのような動径方向の逸脱を、X線ビームの輪郭の検出器の上下方向への動きとして検出する。
同様に、軸方向における回転陽極上での焦点スポットの純粋に軸方向の逸脱は、輪郭の横方向の逸脱につながり、それは図13のAの右側のカメラによって検出できる。
二次元焦点スポット・スリット・カメラの注意深い位置決めにより、焦点スポットの位置における任意の逸脱が検出されることができる。
図13のBは、動作における二次元焦点スポット・スリット・カメラ設計の前記第二の代替を示している。ここでもまた、ビーム輪郭180が二次元焦点スポット・スリット・カメラの前記第二の代替に重畳されて示されている。先述したのと同じプロセスが、二次元焦点スポット・スリット・カメラの表面上の輪郭の同様の逸脱を生じさせ、それがやはりピクセル・アレイ168によって検出されることができる。
あるさらなる実施形態によれば、X線管収容アセンブリー132の前記参照フィルタは、異なるフィルタ値をもつ複数のフィルタ185(185;A,B,C)をもつ参照フィルタ106をもち、一次元もしくは二次元参照スポット・スリット・カメラは、それぞれある範囲の異なる減衰器値をもって構成されているさらなる複数の減衰器184(XおよびY)を有する。それにより、スリット・カメラの前記参照検出器は、減衰器およびフィルタ値の複数の組み合わせの背後で参照ビームを検出する。
図14では、複数のフィルタおよび減衰器をもつ焦点スポット・スリット・カメラの配向が、カメラの配向を示す軸に関して示されている。減衰器およびフィルタの配置が仰角方向において参照ビーム全体をカバーすることが見て取れる。すなわち、検出器は、ピクセル・アレイが仰角αmin,REFおよびαmax,REFに交わり、ピクセル・アレイがファン角β全体にわたって照射されるよう、位置される。
(基面内の)方位角方向φでは、フィルタおよび減衰器値の諸組み合わせの範囲がX線参照ビームによって照射される。方位角方向では、先述した焦点スポット・スリット・カメラにおけるように、スリット164が存在する。したがって、ファン・ビームβ全体をカバーするフィルタおよび減衰器の諸組み合わせが提供される。M個の異なるフィルタ185とN個の異なる減衰器184とのMかけるN通りの組み合わせがありうる。先述したように、撮像のために使われる主要ビームにおける諸フィルタは、変更可能である。この実施形態によれば、主要ビームにおいて使われる各可能なフィルタについて、参照ビームによって照射される対応する参照フィルタがある。図14では、文字A、BまたはCがフィルタ値を表わし、文字XまたはYが減衰器値を表わす。
X線源からの光子フラックスがX線システムの適用プロトコルに応じて変わりうるので、追加的な減衰器値が提案される。この解決策は、過剰放射されも過小放射されもしない、参照ファン・ビームβ′に沿って位置される参照検出器のよく照射されるライン・アレイが常にあることを保証する。その際、よく照射される検出器ラインはコントローラによって選択されることができる。
したがって、追加的な減衰器は、広く変動する技法因子にもかかわらず、よく照射される検出器のラインの適正な選択を許容する。
ある実施形態によれば、スペクトル情報が、いまだ、現在の測定技法因子に関係しないフィルタ値によってカバーされるピクセルから導出されうる。ただし、この場合、異なるフィルタおよび減衰器値の組み合わせについて斟酌することがコントローラによって必要とされる。
本発明のあるさらなる実施形態によれば、X線管収容アセンブリー132であって、フィルタ(A,B,C)および減衰器の組み合わせ(X,Y)が参照ファン・ビームβ′全体をカバーするものが提供される。使用されるビームにおける各可能なフィルタについて、参照ビームにおける対応するフィルタがある。スペクトルはビームの幅を横断して測定されることができる。
あるさらなる例示的実施形態によれば、X線管収容アセンブリーであって、複数の一次元または二次元焦点スポット・スリット・カメラを有するものが提供される。それらのカメラは一緒になってマルチ・スリット焦点スポット・カメラをなす。前記複数の一次元または二次元の焦点スポット・スリット・カメラのスリットのうち少なくとも第一および第二のスリットが、参照検出器108のピクセル境界に対してオフセットされている。
この実施形態は、(撮像されるべきオブジェクトと焦点スポットとの間のより大きな距離に比べて)参照検出器と焦点スポットとの間のずっと小さい距離が考慮に入れられるとき、参照検出器108のピクセルが比較的幅広いピッチを有することがありうるという事実を考慮に入れる。
この実施形態は、一次元または二次元のスリット・カメラ実施形態に適用されうる。キーとなる発想は、少なくとも一つのスリットが検出器108のピクセル境界に対してオフセットしているということである。
源に近い大きなピクセル幅をもつピクセルを使うために、焦点スポット・カメラのスリットは検出器ピクセルの境界近くに位置されるべきである。
このようにして、焦点スポットの動きが、両方のピクセルの間の信号比の変化として、検出されることができる。複数の一次元または二次元焦点スポット・スリット・カメラが設けられ、各スリットが背後の検出器ピクセルの位置に関してスリットの異なる相対位置をもつ場合には、さまざまな実際的な位置において焦点スポット位置を測定することがより容易である。焦点スポットの動きに対して最も高い感度をもつ「サブカメラ」が選択される。サブカメラの諸出力は、隣接する検出器ピクセルの間の信号の比だけ異なる。
図15は、この実施形態に基づく三つの一次元焦点スポット・スリット・カメラを示している。この実施形態の参照検出器108は、比較的大きなピクセル・ピッチをもつ。X線ブロッカー190aは、中央ピクセル行の上の境界近くのスリットをもつ。X線ブロッカー190bは、参照検出器の中央ピクセル行の中央に近いスリットをもつ。X線ブロッカー190cは、参照検出器の中央のピクセル行の下の境界近くのスリットをもつ。
本発明のあるさらなる例示的実施形態によれば、複数のスリットが参照検出器の前面に置かれることができる。これら複数のスリットは背後のピクセル境界に対して異なる空間位置をもち、よって「マルチ・スリット焦点スポット・カメラ」をなす。静止している焦点スポットの中心から取られる各スリットの投影は、検出器ピクセルの間の根底にある境界線に対する異なる位置に位置される。換言すれば、検出器ピクセル・ピッチは、焦点スポットから検出器に投影されたスリット・ピッチとは異なりうる。
焦点スポットの動きまたは変化する形状に対し、これら複数のスリット・カメラは、異なる信号比を生成し、それらが出力される。最適な信号比が歪みの検出のために使用されてもよい。
あるさらなる例示的実施形態によれば、X線管収容アセンブリー132のコントローラ124は、少なくとも一つの参照検出器108の少なくとも一つの出力125から、スペクトル変動性、管電圧、焦点スポットの位置、焦点スポットのサイズ、焦点スポットの強度、管電流、管加齢、動的陽極回転不安定性、周期的陽極回転不安定性、焦点スポットの位置もしくは形状の磁気歪みおよび焦点スポットの形状もしくは位置の重力歪みからなる群からの少なくとも一つのパラメータを計算するよう構成される。
この実施形態によれば、回転陽極損傷によって通例引き起こされる、高い周波数で発生する回転陽極の不完全性を考慮に入れることができる、スペクトル検出のための較正信号が計算されることができる。参照ビーム全体にわたるスペクトル検出は、同じ源から取られる主要ビームから導出される画像を補正するために使用できる。
さらに、主として回転陽極における加熱に起因する、よりゆっくりしたレートで生じる変化が追跡されてもよい。こうして、主要ビームから検出され、再構成された画像において、焦点スポットのドリフトが補償されうる。さらに、陽極加熱に起因する焦点スポットの動きを定義する信号も閉ループ制御システムにフィードバックされてもよい。この信号は、焦点スポット・ドリフトを補正するためにX線管内部の電極または磁気双極子のような追加的な位置決め手段を使って、電子ビームの方向を補正しうる。
本発明のある実施形態によれば、過剰なフラックスまたは積み上がりの補正は、投影データの補正のための参照検出器ピクセルを選択することによって実行されてもよい。投影データは、それについて当該データが補正されなければならないところの主要ビーム後のピクセルへと同様のフラックス・レートを、減衰器のため、経験する。
この場合、参照検出器ピクセルまたはピクセル群が主要ビームからのデータの補正のために選択される。このピクセルまたはピクセル群は、それについて当該データが補正されなければならないところのピクセルと同じ取り出し角に位置されるべきである。
このアプローチの恩恵は、スペクトル検出のためのコンパクトな高い周波数の較正信号、トラック浸食およびアーク生成によって引き起こされる管加齢の検出および焦点スポット特性が検出できることである。1mA以下でありうる小さな管電流は、X線管収容アセンブリー132において測定されることができる。X線生成に寄与しない電流は除外される。さらに、現状技術において必要とされるようなかさばる抵抗性の分圧器が必要とされない。
この測定システムのもう一つの利点は、焦点を外れた電界放出(off-focal field emission)、ケーブル絶縁の伝導および分極ならびにX線管内での微小放電といった、寄生的な劣化効果が定量化できるということである。
さらに、検出ユニットが源に取り付けられるので、信号伝達のための十分なX線フラックスがある。さらに、参照ビームは、主要ビームより著しくよい信号対雑音比(SNR)をもちうる。
先に論じたように、空間解像アレイ検出器と組み合わされる場合、本ユニットは、並列に焦点スポット・サイズおよび強度分布をも測定し、キー・パラメータ、焦点スポット・サイズおよび管電流の安定化を許容することができる。
先述した実施形態に基づくX線管収容アセンブリー132は、標的オブジェクトの背後で記録された主要ビームにおける投影されたデータを較正することができる。
本発明のあるさらなる例示的実施形態によれば、X線管収容アセンブリー132は、X線管収容アセンブリー132の真空管内に参照フィルタ106および参照検出器108を含んでいてもよい。
参照検出器および参照フィルタを真空管内に配置することにより、参照ビーム配置がよりコンパクトにできる。
本発明のある例示的実施形態によれば、上記のいずれかの請求項記載のX線管収容アセンブリーであって、複数の参照ビームが提供され、前記複数の参照ビームのそれぞれが参照検出器に関連付けられ、前記管収容アセンブリーが、動作において、前記複数の参照ビームからの信号を選択するまたは組み合わせるよう構成されている、ものが提供される。
本発明のあるさらなる例示的実施形態によれば、X線管収容アセンブリー202と;変更可能なオブジェクト前のX線フィルタ204と;オブジェクト後の検出器206と;処理ユニット208とをもつX線撮像システム200が提供される。X線管収容アセンブリー202は、先述した実施形態の一つに基づくX線管収容アセンブリーである。オブジェクト前のX線フィルタ204は、X線管収容アセンブリー202における少なくとも一つの参照フィルタ値にマッチする。オブジェクト後の検出器206は、X線管収容アセンブリー202内の参照検出器108と同じ型である。さらに、処理ユニット124、208は、X線管収容アセンブリー202、100からの信号を受領し、それらをオブジェクト後の検出器206からのデータを補正するために使う。
この実施形態では、参照ビームは、撮像のために使われる主要ビームと同じ要素にさらされる。換言すれば、X線管収容アセンブリー202の参照フィルタは、オブジェクト前のX線フィルタ204にマッチする。さらに、X線源100内の参照検出器108の検出器型は、オブジェクト後の検出器206と同じ設計である。処理ユニット208は、撮像されるオブジェクト210の背後の主要ビームから受領されるデータを較正する。補正は、過剰なフラックス・レートを考慮に入れる(積み上げ(pile-up)補正)。ここで、それについてデータが補正されなければならないところの患者後ピクセルと同様のフラックス・レートを減衰器の背後で経験する投影されたデータの補正のために、参照検出器ピクセルが選択される。
撮像されるべきオブジェクトによって影響されない参照ビームを取り、該参照ビームから、オブジェクト後の検出器によって撮像されるべきオブジェクト210の背後から受領される信号の補正のために使われる信号を導出することとして要約できる先述した技法は、Cアーム撮像システムのみに適用される必要はないことは理解されるであろう。実際、原理的には、この技法は、X線を使う任意のシステムにも適用可能である。たとえば、マンモグラフィーX線、CTスキャナおよびX線透視システムはみなこの技法を使うことから恩恵を受けることができる。
X線撮像システム200の代替的な実施形態によれば、X線管収容アセンブリー202の参照フィルタはオブジェクト前のX線フィルタ204にマッチしない。
この場合、撮像のためのオブジェクトおよび(参照検出器のX線管への近接性によって引き起こされる)ビーム・フラックスの差が補償されることができる。
本発明のもう一つの例示的な実施形態によれば、X線管のX線放出特性の変化を判別する方法300が提供される。本方法は、
・回転陽極上の焦点スポットに当たるよう陰極から電子を放出することによってX線放射を生成する段階。前記X線放射は主要部分および参照部分を含み、前記主要部分は前記参照部分とは相異なり、前記主要部分および前記参照部分は、基面(base plane)を基準に測られる、焦点スポットにおける頂点からの仰角である最小(αmin,MAIN、αmin,REF)および最大(αmax,MAIN、αmax,REF)取り出し角(take-off angle)の間にある。前記参照部分と主要部分の最小および最大取り出し角は互いに等しい。
・本方法は、次いで、参照フィルタを使って前記参照部分をフィルタリングする段階304を含む。
・次いで、前記参照部分を検出する段階306がある。
・本方法は次いで、前記参照部分の特性を表わす参照信号を出力する段階308を含む。
・次いで、本方法は、前記参照信号から信号を計算する段階310を含む。
・最後に、本方法は、前記信号を出力する段階312を含む。
上記の生成する段階302は段階a)とも称される。フィルタリングする段階304は段階b)とも称される。検出する段階306は段階c)とも称される。参照信号を出力する段階308は段階d)とも称される。計算する段階310は段階e)とも称される。補正信号を出力する段階312は段階f)とも称される。
X線管収容アセンブリーによって引き起こされるX線の変動が測定され、補正されることができることが理解されるであろう。これはたとえば患者を照射するために使われることのできるX線の主要部分と同じスペクトル特性をもつX線の参照部分を検出する段階306のためである。これは、主要部分および参照部分が同じ源から取られ、源陽極の基面からの仰角およびファン角が同じだからである。
本発明の諸実施形態は、種々の主題を参照して記述されていることを注意しておく必要がある。特に、いくつかの実施形態は方法型の請求項を参照して記述され、他の実施形態は装置型の請求項を参照して記述される。しかしながら、当業者は、上記および下記の記述から、特に断わりのない限り、ある型の主題に属する特徴の任意の組み合わせに加えて、異なる主題に関する特徴の間の任意の組み合わせも本願で開示されていると考えられることを理解するであろう。しかしながら、特徴の単なる寄せ集め以上の相乗効果を提供するすべての特徴が組み合わされることができる。
本発明は図面および以上の記述において詳細に図示され、記述されているが、そのような図示および記述は制約ではなく例解または例示するものと考えられるべきである。本発明は開示されている実施形態に限定されるものではない。開示されている実施形態に対する他の変形が、図面、本開示および付属の請求項の吟味から、特許請求される発明を実施する際に当業者によって理解され、実施されることができる。
請求項において、「有する/含む」の語は他の要素やステップを排除するものではない。単数表現は複数を排除するものではない。単一のプロセッサまたは他のユニットが請求項において記述されているいくつかの項目の機能を充足してもよい。ある種の施策が互いに異なる従属請求項において記載されているというだけの事実が、これらの施策の組み合わせが有利に使用できないことを示すものではない。請求項に参照符号があったとしても、範囲を限定するものと解釈するべきではない。
本発明によれば、信号を提供するよう動作可能なX線管収容アセンブリーが提供される。該X線管収容アセンブリーは、焦点スポットからのX線放射を生成するためのX線管と、参照フィルタと、参照検出器と、コントローラとを有する。X線放射は、主要部分および参照部分を含み、主要部分は参照部分とは区別される。主要部分および参照部分は、基面(base plane)を基準に測られる、焦点スポットにある頂点からの仰角である最小および最大取り出し角(take-off angle)の間にある。参照部分および主要部分の最小取り出し角は互いに等しく、参照部分および主要部分の最大取り出し角は互いに等しい。参照フィルタは、参照検出器による参照部分の検出前に参照部分をフィルタリングするよう構成される。さらに、参照検出器は、参照部分を検出して参照信号を与えるよう構成され、コントローラは、該参照信号に基づいて信号を計算するよう構成される。

Claims (18)

  1. 信号を提供するよう動作可能なX線管収容アセンブリーであって、当該X線管収容アセンブリーは:
    ・焦点スポットからのX線放射を生成するX線管と;
    ・参照フィルタと;
    参照検出器と;
    ・コントローラとを有しており、
    前記X線放射は、主要部分および参照部分を含み、前記主要部分は前記参照部分とは相異なり、
    前記主要部分および前記参照部分は、基面を基準に測られる、前記焦点スポットにある頂点からの仰角である最小および最大取り出し角の間にあり、
    前記参照部分および前記主要部分の最小取り出し角は互いに等しく、前記参照部分および前記主要部分の最大取り出し角は互いに等しく、
    前記参照フィルタは、前記参照検出器による前記参照部分の検出の前に前記参照部分をフィルタリングするよう構成され、
    前記参照検出器は、前記参照部分を検出して参照信号を与えるよう構成され、
    前記コントローラは、前記参照信号に基づいて信号を計算するよう構成されている、
    X線管収容アセンブリー。
  2. 当該X線管収容アセンブリーが、参照X線窓および主要X線窓をもつX線収容部(132)を有しており、それにより、動作においては、前記参照X線窓が参照ビームを提供し、前記主要X線窓が主要ビームを提供する、請求項1記載のX線管収容アセンブリー(132)。
  3. 当該X線管収容アセンブリーは、X線を前記参照ビームと前記主要ビームに分離するよう、回転陽極X線管内部に配置されたX線に対して不透明なオブジェクトを有する、請求項1または2記載のX線管収容アセンブリー。
  4. 当該X線管収容アセンブリーがさらに、前記参照検出器と前記参照フィルタとの中間に配置された減衰器を有する、請求項1ないし3のうちいずれか一項記載のX線管収容アセンブリー。
  5. 前記参照フィルタは曝露と曝露の間に交換されることができる、請求項1ないし4のうちいずれか一項記載のX線管収容アセンブリー。
  6. 前記参照検出器と前記減衰器の中間に位置され、前記焦点スポットに焦点を合わされた散乱防止グリッドを有する、請求項4または5記載のX線管収容アセンブリー。
  7. X線ブロッカーをさらに有しており、前記X線ブロッカーは空間解像スリットをもち、よって前記参照検出器と一緒になって強度分布の端から前記焦点スポットの位置を検出する一次元焦点スポット・スリット・カメラを形成するよう構成される、請求項1ないし6のうちいずれか一項記載のX線管収容アセンブリー。
  8. 前記参照検出器の前面に配置されて空間解像ストライプを形成する不透明なワイヤをさらに有しており、該空間解像ストライプは、よって前記参照検出器と一緒になって強度分布のパターンから前記焦点スポットの位置を検出するよう構成される、請求項1ないし7のうちいずれか一項記載のX線管収容アセンブリー。
  9. 二つの空間解像スリットが直交に位置されて、二次元焦点スポット・スリット・カメラを形成し、該カメラは、動作において、測定された参照ビームのパターンから前記焦点スポットの位置を検出するよう構成される、請求項7または8記載のX線管収容アセンブリー。
  10. 前記参照フィルタが異なるフィルタ値をもつ複数のフィルタを有しており、前記一次元または二次元の焦点スポット・スリット・カメラは、異なる減衰器値をもつさらなる複数の減衰器を有しており、それにより、前記スリット・カメラの前記参照検出器は減衰器およびフィルタの複数の組み合わせの背後で前記参照ビームを検出する、請求項7ないし9のうちいずれか一項記載のX線管収容アセンブリー。
  11. 前記フィルタおよび前記さらなる減衰器の諸組み合わせが前記参照ビームの全体をカバーする、請求項10記載のX線管収容アセンブリー。
  12. 複数の一次元または二次元の焦点スポット・スリット・カメラが設けられ、一緒になってマルチ・スリット焦点スポット・カメラをなし、前記複数の一次元または二次元の焦点スポット・スリット・カメラのスリットのうち少なくとも第一および第二のスリットが、前記参照検出器のピクセル境界に対してオフセットされている、請求項7ないし11のうちいずれか一項記載音X線管収容アセンブリー。
  13. 前記コントローラは、少なくとも一つの参照検出器の少なくとも一つの出力から:スペクトル変動性、管電圧、前記焦点スポットの位置、前記焦点スポットのサイズ、前記焦点スポットの強度、管電流、管加齢、動的陽極回転不安定性、周期的陽極回転不安定性、前記焦点スポットの位置もしくは形状の磁気歪みおよび前記焦点スポットの形状もしくは位置の重力歪みからなる群からの少なくとも一つのパラメータを計算するよう構成されている、請求項1ないし12のうちいずれか一項記載のX線管収容アセンブリー。
  14. 前記参照フィルタおよび前記参照検出器が前記回転陽極X線管の容器内に配置される、請求項1記載のX線管収容アセンブリー。
  15. 複数の参照ビームが提供され、前記複数の参照ビームのそれぞれは参照検出器に関連付けられ、当該管収容アセンブリーは、動作において、前記複数の参照ビームからの信号を選択するまたは組み合わせるよう構成されている、請求項1ないし14のうちいずれか一項記載のX線管収容アセンブリー。
  16. ・X線管収容アセンブリーと;
    ・変更可能なオブジェクト前のX線フィルタと;
    ・オブジェクト後の検出器と;
    ・処理ユニットとをもつX線撮像システムであって、
    前記X線管収容アセンブリーは、請求項1ないし15のうちいずれか一項記載のX線管収容アセンブリーであり、
    前記オブジェクト前のX線フィルタは、前記X線管収容アセンブリーにおける少なくとも一つの参照フィルタ値にマッチし、
    前記オブジェクト後の検出器は、前記X線管収容アセンブリー内の前記参照検出器と同じ型であり、
    前記処理ユニットは、前記X線管収容アセンブリーから前記補正信号を受領し、該補正信号を前記オブジェクト後の検出器からのデータを補正するために使う、
    X線撮像システム。
  17. 前記オブジェクト前のX線フィルタは、前記X線管収容アセンブリー内の前記少なくとも一つの参照フィルタとは異なる、請求項15記載のX線撮像システム。
  18. X線管収容アセンブリーのX線放出特性の変化を表わす信号を決定する方法であって:
    a)X線管の焦点スポットからのX線放射を生成する段階であって、前記X線放射は主要部分および参照部分を含み、前記主要部分は前記参照部分とは相異なり、前記主要部分および前記参照部分は、基面を基準に測られる、前記焦点スポットにある頂点からの仰角である最小および最大取り出し角の間にあり、前記X線放射は主要部分および参照部分を含み、前記参照部分と主要部分の最小取り出し角は互いに等しく、前記参照部分と主要部分の最大取り出し角は互いに等しい、段階と;
    b)参照フィルタを使って前記参照部分をフィルタリングする段階と;
    c)前記参照部分を検出する段階と;
    d)前記参照部分の特性を表わす参照信号を出力する段階と;
    e)信号を計算する段階と;
    f)前記信号を出力する段階とを含む、
    方法。
JP2016515963A 2013-09-05 2014-08-27 X線検出 Expired - Fee Related JP6073524B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13183089.5 2013-09-05
EP13183089 2013-09-05
PCT/EP2014/068141 WO2015032664A1 (en) 2013-09-05 2014-08-27 X-ray detection

Publications (2)

Publication Number Publication Date
JP2016529645A true JP2016529645A (ja) 2016-09-23
JP6073524B2 JP6073524B2 (ja) 2017-02-01

Family

ID=49084923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016515963A Expired - Fee Related JP6073524B2 (ja) 2013-09-05 2014-08-27 X線検出

Country Status (5)

Country Link
US (1) US9538979B2 (ja)
EP (1) EP3001880B1 (ja)
JP (1) JP6073524B2 (ja)
CN (1) CN105580102B (ja)
WO (1) WO2015032664A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504438B2 (en) * 2012-10-12 2016-11-29 Koninklijke Philips N.V. Radiographic imaging apparatus and method
EP3359045B1 (en) * 2015-10-06 2020-04-08 Koninklijke Philips N.V. Device for determining spatially dependent x-ray flux degradation and photon spectral change
EP3384737B1 (en) 2015-12-01 2019-09-18 Koninklijke Philips N.V. Determining a status of an x-ray tube of an x-ray system
CN108158597B (zh) * 2016-12-07 2021-08-06 北京东软医疗设备有限公司 确定原始x射线能量数据的方法、装置及ct设备
DE102017208557B4 (de) * 2017-05-19 2022-10-13 Siemens Healthcare Gmbh Untersuchungs- oder Behandlungseinrichtung umfassend einen C-Bogen
EP3413691A1 (en) 2017-06-08 2018-12-12 Koninklijke Philips N.V. Apparatus for generating x-rays
EP3785636A1 (en) * 2019-08-27 2021-03-03 Koninklijke Philips N.V. Multi-spectral x-ray imaging using conventional equipment
CN110664420B (zh) * 2019-10-11 2023-04-07 上海联影医疗科技股份有限公司 焦点校正方法、装置、计算机设备和计算机可读存储介质
JP7460426B2 (ja) 2020-03-31 2024-04-02 住友重機械工業株式会社 X線ct装置
CN113218634B (zh) * 2021-05-06 2022-06-17 昆山国力大功率器件工业技术研究院有限公司 X射线管性能测试设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274340A (ja) * 1985-09-30 1987-04-06 株式会社東芝 フオ−カルスポツト調整付きctスキヤナ
JPH08255695A (ja) * 1995-03-17 1996-10-01 Toshiba Corp X線管制御装置
JP2002280195A (ja) * 2001-03-13 2002-09-27 Ge Medical Systems Global Technology Co Llc X線管球及びその異常検出装置並びにx線ct装置及びシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391A (en) 1976-06-23 1978-01-05 Seiko Instr & Electronics Ltd Agc circuit for x-ray generator
US4918714A (en) 1988-08-19 1990-04-17 Varian Associates, Inc. X-ray tube exposure monitor
US5293415A (en) 1992-10-05 1994-03-08 General Electric Company X-ray fluoroscopy system for reducing dosage employing iterative power ratio estimation
US7177392B2 (en) * 2002-09-10 2007-02-13 Newton Scientific, Inc. X-ray detector for feedback stabilization of an X-ray tube
US7233645B2 (en) 2003-03-04 2007-06-19 Inpho, Inc. Systems and methods for controlling an X-ray source
DE602006015846D1 (de) 2005-12-01 2010-09-09 Philips Intellectual Property Röntgenröhre und verfarhen zur bestimmung von brennpunkteigenschaften
US8761342B2 (en) * 2008-12-08 2014-06-24 Koninklijke Philips N.V. Compensation of anode wobble for X-ray tubes of the rotary-anode type
EP2638558B1 (en) * 2010-11-08 2018-02-07 Koninklijke Philips N.V. Determining changes in the x-ray emission yield of an x-ray source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274340A (ja) * 1985-09-30 1987-04-06 株式会社東芝 フオ−カルスポツト調整付きctスキヤナ
JPH08255695A (ja) * 1995-03-17 1996-10-01 Toshiba Corp X線管制御装置
JP2002280195A (ja) * 2001-03-13 2002-09-27 Ge Medical Systems Global Technology Co Llc X線管球及びその異常検出装置並びにx線ct装置及びシステム

Also Published As

Publication number Publication date
US9538979B2 (en) 2017-01-10
JP6073524B2 (ja) 2017-02-01
CN105580102B (zh) 2017-03-22
US20160183907A1 (en) 2016-06-30
WO2015032664A1 (en) 2015-03-12
CN105580102A (zh) 2016-05-11
EP3001880A1 (en) 2016-04-06
EP3001880B1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6073524B2 (ja) X線検出
US9370084B2 (en) Determining changes in the x-ray emission yield of an x-ray source
US10663616B2 (en) X-ray tomography inspection systems and methods
US7817777B2 (en) Focus detector arrangement and method for generating contrast x-ray images
US10405813B2 (en) Panoramic imaging using multi-spectral X-ray source
US9424958B2 (en) Multiple focal spot X-ray radiation filtering
US7340029B2 (en) X-ray computed tomography apparatus for fast image acquisition
CN106340340B (zh) X射线滤波
CN111435120B (zh) X射线成像系统的使用和校准
US8396185B2 (en) Method of fast current modulation in an X-ray tube and apparatus for implementing same
US8983024B2 (en) Tetrahedron beam computed tomography with multiple detectors and/or source arrays
CN106687042B (zh) 用于生成对象的x射线投影的系统和方法
KR20040097164A (ko) 스캐닝에 근거를 둔 전리 방사선 검출에 있어서의 노출 제어
JP2015180859A (ja) フォトンカウンティングct装置
US20160199019A1 (en) Method and apparatus for focal spot position tracking
US20100189211A1 (en) X-ray souce for measuring radiation
EP2783384B1 (en) Periodic modulation of the x-ray intensity
JP2010124832A (ja) X線コンピュータ断層撮影装置及びx線検出器

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R150 Certificate of patent or registration of utility model

Ref document number: 6073524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees