JP2016528381A - Wear-resistant, at least partially uncoated steel parts - Google Patents

Wear-resistant, at least partially uncoated steel parts Download PDF

Info

Publication number
JP2016528381A
JP2016528381A JP2016522440A JP2016522440A JP2016528381A JP 2016528381 A JP2016528381 A JP 2016528381A JP 2016522440 A JP2016522440 A JP 2016522440A JP 2016522440 A JP2016522440 A JP 2016522440A JP 2016528381 A JP2016528381 A JP 2016528381A
Authority
JP
Japan
Prior art keywords
steel
steel part
hardened
semi
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016522440A
Other languages
Japanese (ja)
Inventor
ズィコラ,ザシャ
バニク,ヤンコ
ヴトケ,ティモ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of JP2016528381A publication Critical patent/JP2016528381A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools

Abstract

本発明は、耐摩耗性で、硬化性鋼種から成る少なくとも部分的にコーティングされていない鋼部品であって、熱間成形および/または焼入れによって半完成部品から製造される鋼部品に関する。本発明はさらに、農業機械、運搬機械、掘削機械または建設機械における加工、搬送および/または破砕手段のための耐磨耗性で少なくとも部分的にコーティングされていない鋼部品を製造する方法に関し、半完成部品は、Ac1変態温度より高い温度まで加熱された後、熱間成形および/または焼入れされる。少なくとも部分的にコーティングされていない鋼部品の、摩耗性のある材料との使用適合性を改善する提案の問題は、熱間加工および/または焼入れの前の表面硬化の手段によって、少なくとも部分的にコーティングされていない鋼部品が最大100μm以下の深さまで、好適には40μm以下の深さまで硬化された表面領域を有することで、解決される。【選択図】図1The present invention relates to a wear-resistant, at least partially uncoated steel part of a hardenable steel grade, which is produced from a semi-finished part by hot forming and / or quenching. The invention further relates to a method for producing a wear-resistant and at least partly uncoated steel part for processing, conveying and / or crushing means in agricultural, transport, excavating or construction machinery. The finished part is heated to a temperature above the Ac1 transformation temperature and then hot formed and / or quenched. The proposed problem of improving the compatibility of at least partially uncoated steel parts with wearable materials is at least partially due to surface hardening prior to hot working and / or quenching. This is solved by having an uncoated steel part having a surface region hardened to a depth of up to 100 μm or less, preferably to a depth of 40 μm or less. [Selection] Figure 1

Description

本発明は、耐摩耗性の、少なくとも部分的にコーティングされていない硬化性鋼種から構成される鋼部品であって、熱間成形および/焼入れによって半完成部品から製造される鋼部品に関する。さらに本発明は、半完成部品から、農業機械、運搬機械、掘削機械または建設機械の加工、搬送および/または破砕手段のための耐摩耗性で少なくとも部分的にコーティングされていない鋼部品を製造する方法に関し、半完成部品はAc1変態温度より高い温度で加熱され、その後、熱間成形および/または焼入れされる。   The present invention relates to a steel part composed of a hardened grade of wear-resistant, at least partly uncoated, which is produced from a semifinished part by hot forming and / or quenching. Furthermore, the invention produces a wear-resistant and at least partly uncoated steel part from semi-finished parts for the processing, conveying and / or crushing means of agricultural, transport, excavating or construction machinery. With respect to the method, the semi-finished part is heated at a temperature above the Ac1 transformation temperature and then hot formed and / or quenched.

高強度を有する必要性があると同時に摩耗作用のある力に曝される耐摩耗性で少なくとも部分的にコーティングされていない鋼部品は、例えば、農業機械、特にすきの製造、および浚渫機のバケット、または摩耗作用のある物質用のコンベヤスクリュ、例えばコンクリートミキサのコンベヤスクリュなどの製造に必要とされている。上記用途において必要な高い強度を達成するために、鋼部品は、好ましくは熱間成形に曝され、その熱間成形において、半完成部品(この半完成部品から鋼部品が製造される)が、先ず、Ac1点変態温度より高い温度で加熱され、その結果、微細組織の変態硬化が、熱間成形とその後の焼入れ、すなわち急冷により達成され、マルテンサイト微細組織を有する材料が形成される。マルテンサイト微細組織は、非常に高い硬度を有するのに加えて、非常に高い機械強度、例えば引張強度も有する。対応する鋼部品は、例えば、独国特許DE102010050499B3により知られている。この独国特許には、浚渫船バケット、コンクリートミキサのコンベヤスクリュ、コンベヤスクリュブレード、搬送設備のその他の搬送ブレードの製造方法が記載され、それら構成要素が、熱間成形およびプレス焼入れされるものとなっている。   Wear-resistant and at least partially uncoated steel parts that are required to have high strength and are exposed to abrasive forces, such as agricultural machinery, especially plow manufacturing, and dredge buckets Or for the production of conveyor screws for materials with wear effects, for example concrete mixer conveyor screws. In order to achieve the high strength required in the above applications, the steel part is preferably subjected to hot forming, in which a semi-finished part (from which the semi-finished part is produced) First, heating is performed at a temperature higher than the Ac1 point transformation temperature, and as a result, transformation hardening of the microstructure is achieved by hot forming and subsequent quenching, ie, rapid cooling, and a material having a martensite microstructure is formed. In addition to having a very high hardness, the martensite microstructure also has a very high mechanical strength, for example a tensile strength. Corresponding steel parts are known, for example, from German patent DE 10200100499B3. This German patent describes a method of manufacturing dredger buckets, concrete mixer conveyor screws, conveyor screw blades, and other transfer blades of transfer equipment, and these components are hot formed and press quenched. ing.

しかしながら、このようにして製造された構成要素が、製造中に硬化方法を受けるにも関わらず、特に磨耗作用のある物質と接触したときに耐摩耗性に関して問題点を有することが分かっている。   However, it has been found that components produced in this way have problems with regard to wear resistance, especially when in contact with substances that have an abrading action, despite being subjected to a curing method during production.

独国第一公開公報DE102010017354A1は、高強度または超高強度鋼部品を製造するための亜鉛メッキされた平鋼部品を熱間成形の問題を取り上げている。保護コーティングの金属の溶融点を超えたとき、「液体金属脆化」の危険性が存在し、これはコーティングの溶融金属が、平鋼部品の成形時に生じるノッチやクラックに浸入することによって引き起こされる。鋼基板内に浸入した液体金属は粒界で堆積し、それが、耐えられる最大引張または圧縮応力を低下させる。解決策として、この特許公開公報は、微細組織を有する外層領域をもたらすために、外層領域を窒化することを提案している。   German Offenlegungsschrift DE 10 201 0017 354 A1 addresses the problem of hot forming galvanized flat steel parts for producing high-strength or ultra-high-strength steel parts. When the metal melting point of the protective coating is exceeded, there is a risk of “liquid metal embrittlement”, which is caused by the molten metal of the coating entering the notches and cracks that occur during the forming of flat steel parts. . Liquid metal that penetrates into the steel substrate accumulates at grain boundaries, which reduces the maximum tensile or compressive stress that can be tolerated. As a solution, this patent publication proposes nitriding the outer layer region to provide an outer layer region having a microstructure.

これに対して、本願発明は、熱間成形および/または焼入れされた鋼部品がコーティングされていない領域で所望の耐摩耗性を有しておらず、このため、例えば摩耗作用のある物質と接触するときに搬送手段として使用するのに最適ではないという問題を取り上げている。従って、本発明の目的は、摩耗作用のある物質とともに使用するための改善された適合性を有する、少なくとも部分的にコーティングされていない鋼部品を提案することである。加えて、対応する鋼部品の安価な製造方法が提案されるべきである。   In contrast, the present invention does not have the desired wear resistance in areas where hot-formed and / or hardened steel parts are not coated, so that, for example, it is in contact with a material having an abrading action. It takes up the problem of not being optimal for use as a transport means. Accordingly, it is an object of the present invention to propose an at least partially uncoated steel part with improved suitability for use with an abrasive material. In addition, a cheap manufacturing method for the corresponding steel parts should be proposed.

熱間成形および/または焼入れの前の表面硬化によって少なくとも部分的に100μmの深さまで硬化され、好適には40μmの深さまで硬化された表面領域を有する鋼部品によって、示された目的が達成される。   The indicated objectives are achieved by a steel part having a surface region which is at least partially hardened to a depth of 100 μm by surface hardening prior to hot forming and / or quenching and preferably to a depth of 40 μm. .

鋼部品を製造するために熱間成形および/または焼入れの前に、Ac1変態温度またはAc3変態温度より高い温度で半完成部品を加熱することは、表面近傍の領域の脱炭化をもたらし、その結果、これらの領域の炭素含有量は、基材の炭素含有量よりも著しく低くなることが分かっている。結果として、100μmの深さまでの表面近傍の領域、特に40μmの深さまでの領域を、熱間成形および/または焼入れ中に必要な程度まで硬化させることができない。しかしながら、鋼部品を製造するための熱間成形および/または焼入れの前に、半完成部品のコーティングされていない領域を少なくとも部分的に表面硬化することで、熱間成形または焼入れ中の高温の結果として表面近傍の領域が脱炭化するにも関わらず、表面領域および基材の両方に、非常に高い硬度をもたらすことが分かっている。これにより好適には100μmの深さまたは40μmの深さまでの領域が硬化された表面領域を少なくとも部分的に有し、よって、従来より知られている少なくとも部分的にコーティングされていない鋼部品よりも顕著に高い耐磨耗性のある、鋼部品が提供される。   Heating the semi-finished part at a temperature higher than the Ac1 transformation temperature or Ac3 transformation temperature prior to hot forming and / or quenching to produce a steel part results in decarburization in the region near the surface, resulting in It has been found that the carbon content of these regions is significantly lower than the carbon content of the substrate. As a result, regions near the surface up to a depth of 100 μm, in particular regions up to a depth of 40 μm, cannot be cured to the extent necessary during hot forming and / or quenching. However, the high temperature results during hot forming or quenching by at least partially surface hardening the uncoated areas of the semi-finished part prior to hot forming and / or quenching to produce steel parts. It has been found that both the surface region and the substrate provide very high hardness despite the fact that the region near the surface is decarburized. This preferably has a hardened surface area at least partially in the region of 100 μm depth or up to a depth of 40 μm, and thus over at least partially uncoated steel parts known in the art. A steel part is provided that is significantly more wear resistant.

第1の実施形態では、鋼部品の硬化される表面領域は、炭化または窒化によって硬化される。両プロセスは、熱間成形または焼入れの前に、標的方法で鋼部品の表面近傍の領域を硬化させる機会を提供している。加えて、窒化は熱間成形中に硬度が減少しないという利点を有している。炭化の場合には、表面領域の炭素含有量が増加するが、熱間成形によって再び減少する。   In the first embodiment, the hardened surface area of the steel part is hardened by carbonization or nitriding. Both processes offer the opportunity to harden areas near the surface of the steel part in a targeted manner prior to hot forming or quenching. In addition, nitriding has the advantage that the hardness does not decrease during hot forming. In the case of carbonization, the carbon content of the surface region increases but decreases again by hot forming.

さらなる実施形態において、熱間成形および/または焼入れ後に硬化した鋼部品の表面領域は、好適には少なくとも表面領域の下方に位置する鋼部品の基材の硬度を有している。   In a further embodiment, the surface area of the steel part hardened after hot forming and / or quenching preferably has at least the hardness of the steel part substrate located below the surface area.

鋼部品の耐磨耗性も、好適には、基材の硬度より鋼部品の表面領域の硬度が高いことで改善できる。具体的には、表面領域の硬度は、磨耗作用が高い物質と接触するときの鋼部品の耐磨耗性に貢献しており、結果的に、幾分の柔らかい基材を使用した場合も高い耐磨耗性の鋼部品を製造可能であることが分かっている。   The wear resistance of the steel part can also be improved preferably by the fact that the hardness of the surface region of the steel part is higher than the hardness of the base material. Specifically, the hardness of the surface area contributes to the wear resistance of steel parts when in contact with highly abrasive materials, and as a result is high even with somewhat soft substrates. It has been found that it is possible to produce wear-resistant steel parts.

従って、鋼部品のさらなる実施形態によると、鋼部品は、農業機械、運搬機械、掘削機械または建設機械における加工、搬送および/または破砕手段として使用されるように構成され、少なくとも摩耗作用のある力に曝される鋼部品の領域は表面硬化されている。   Thus, according to a further embodiment of the steel part, the steel part is configured to be used as a processing, conveying and / or crushing means in an agricultural machine, conveying machine, excavating machine or construction machine, and at least a force with wear action. The area of the steel part that is exposed to is surface hardened.

さらに、マンガンボロン鋼、二相鋼またはTRIP鋼のような半完成部品は、とりわけ、明白なマルテンサイトの形成、または残留オーステナイト成分のマルテンサイトへの変態で、硬度をできるだけ増大させることから、特に有利である。   In addition, semi-finished parts such as manganese boron steel, duplex steel or TRIP steel, in particular because they increase the hardness as much as possible due to obvious martensite formation or transformation of residual austenite components to martensite, in particular. It is advantageous.

鋼部品のさらなる実施形態では、熱間成形および/または焼入れ前に硬化された鋼部品の表面領域は、少なくとも幾つかの領域において、400HV乃至700HVの硬度を有している。これらの値は、通常は、基材の熱間成形または焼入れの後の非常に高強度の鋼種によってのみ達成される。熱間成形または焼入れの前の表面硬化は、特に、コイルでの鋼構成要素の製造のための出発原料をもたらす機会を提供している。   In a further embodiment of the steel part, the surface area of the steel part hardened before hot forming and / or quenching has a hardness of 400 HV to 700 HV in at least some areas. These values are usually achieved only with very high strength steel grades after hot forming or quenching of the substrate. Surface hardening prior to hot forming or quenching offers the opportunity to provide starting materials for the production of steel components, especially in coils.

本発明のさらなる教示によれば、上記目的は、半完成部品から、農業機械、運搬機械、掘削機械または建設機械における加工、搬送および/または破砕手段のための耐摩耗性のある少なくとも部分的にコーティングされていない鋼部品を製造する方法であって、半完成部品が、少なくとも幾つかの領域において、Ac1変態温度より高い温度まで加熱された後、熱間成形および/または焼入れされる方法において、半完成部品が、表面硬化に少なくとも部分的に曝され、表面領域が、熱間成形および/または焼入れの前に、100μm以下の深さまで硬化されることによって達成されるものである。好ましくは、熱間成形中に脱炭化プロセスが通常起きる、40μmまでの深さの表面領域を硬化することが選択される。硬化されるべき表面領域の深さは、硬化処理の継続時間によって制御される。特に、Ac1変態温度点よりも高い温度まで加熱するにも関わらず、鋼部品の表面硬化された領域は表面硬化に関する限りは、安定した状態を保ち、その結果、熱間成形および/または焼入れ後に高い表面硬度が達成されることが分かっている。これは、磨耗作用のある物質と接触する農業機械、運搬機械、掘削機械または建設機械における加工、搬送および/または破砕手段のための鋼部品が少ない摩耗を示すことにつながる。   In accordance with further teachings of the present invention, the above object is achieved from a semi-finished part, at least partially wear-resistant for processing, conveying and / or crushing means in agricultural machinery, conveying machinery, excavating machinery or construction machinery. A method for producing an uncoated steel part, wherein a semi-finished part is heated to a temperature above the Ac1 transformation temperature in at least some areas and then hot formed and / or quenched. The semi-finished part is achieved by being at least partially exposed to surface hardening and the surface area is hardened to a depth of 100 μm or less prior to hot forming and / or quenching. Preferably, it is chosen to cure surface areas up to 40 μm deep where the decarburization process normally occurs during hot forming. The depth of the surface area to be cured is controlled by the duration of the curing process. In particular, despite being heated to a temperature above the Ac1 transformation temperature point, the surface-hardened region of the steel part remains stable as far as surface hardening is concerned, and as a result after hot forming and / or quenching. It has been found that high surface hardness is achieved. This leads to less wear of the steel parts for processing, conveying and / or crushing means in agricultural machines, transport machines, excavating machines or construction machines that come into contact with the abrasive material.

熱間成形の前または焼入れの前に表面領域を硬化することで、コイル状にすることができる材料、すなわち鋼ストリップで表面硬化を実施できるようになり、その結果、耐摩耗性のある少なくとも部分的にコーティングされていない鋼部品を半完成部品から、非常に経済的に製造することが可能となる。方法の好適な実施形態では、表面領域の硬化は、窒化または炭化によって行われる。両プロセスとも、表面領域により高い硬度を与えることができ、それにより熱間成形の後および/または焼入れの後に、熱間成形または焼入れされた鋼部品の表面のより高い耐磨耗性をもたらすことが可能となる。   Curing the surface area prior to hot forming or quenching allows surface hardening to be performed on a material that can be coiled, i.e. a steel strip, so that at least a part that is wear resistant. Uncoated steel parts can be produced very economically from semifinished parts. In a preferred embodiment of the method, the hardening of the surface region is performed by nitriding or carbonizing. Both processes can give higher hardness to the surface area, thereby providing higher wear resistance of the surface of the hot formed or hardened steel part after hot forming and / or after quenching Is possible.

さらなる実施例において、表面硬化は、特に好適に、600℃乃至900℃の保持温度で、25体積%のH、0.1−10体積%のNH、HOおよびバランスN、並びに不可避の不純物を含む熱処理雰囲気における熱処理によって実行される。熱処理雰囲気の露点は、好適に−50℃乃至−5℃の範囲であり、その結果、硬化プロセスに与える雰囲気水分の影響が低減される。さらに、好適にはNHが最大5体積%およびH体積が最大10体積%が可能とされ、かつ露点は、680℃乃至840℃の温度において−40℃から−15℃までの露点温度に設定されることが選択される。後者のプロセスパラメータは、改善された、より均一な表面硬化を与えた。 In a further embodiment, the surface hardening is particularly suitably, the holding temperature of 600 ° C. to 900 ° C., 25% by volume of H 2, 0.1-10% by volume of NH 3, H 2 O and balance N 2, and The heat treatment is performed in a heat treatment atmosphere containing inevitable impurities. The dew point of the heat treatment atmosphere is preferably in the range of −50 ° C. to −5 ° C. As a result, the influence of atmospheric moisture on the curing process is reduced. Furthermore, preferably NH 3 can be up to 5% by volume and H 2 volume can be up to 10% by volume, and the dew point can be from -40 ° C. to -15 ° C. at a temperature of 680 ° C. to 840 ° C. It is selected to be set. The latter process parameter gave improved and more uniform surface hardening.

保持温度が維持される時間によって、表面硬化の深さを設定することができる。半完成部品が表面硬化中に保持温度に保たれる時間は、5秒乃至600秒、好適には30秒乃至120秒に設定される。   The depth of surface hardening can be set by the time during which the holding temperature is maintained. The time during which the semi-finished part is kept at the holding temperature during the surface hardening is set to 5 seconds to 600 seconds, preferably 30 seconds to 120 seconds.

表面硬化は、好適には連続硬化炉で行われ、その結果、例えば、ストリップ状の半完成部品、すなわちコイル状にすることができる半完成部品を、表面硬化させて、さらなる熱間成形および/またはプレス焼入れのステップに移行させることができる。しかしながら、チャンバ式の炉における表面硬化も考えられる。   The surface hardening is preferably carried out in a continuous hardening furnace, so that, for example, a strip-like semi-finished part, i.e. a semi-finished part that can be coiled, is surface hardened for further hot forming and / Or it can be made to transfer to the step of press hardening. However, surface hardening in a chamber furnace is also conceivable.

上述したように、マンガンボロン鋼、二相鋼およびTRIP鋼のような半完成部品は、まず、熱間成形または焼入れ中に特に高い強度の増加を示し、次に、窒化によって表面近傍の領域に、400HV乃至700HVの範囲の同一硬度をもたらす機会を与える。結果として、耐摩耗性に優れかつ特に高い強度を有する鋼部品を、安価に製造することが可能となる。   As mentioned above, semi-finished parts such as manganese boron steel, duplex steel and TRIP steel first show a particularly high strength increase during hot forming or quenching, and then by nitriding to areas near the surface. Gives the opportunity to produce the same hardness in the range of 400 HV to 700 HV. As a result, it is possible to manufacture a steel part having excellent wear resistance and particularly high strength at a low cost.

以下、図面とともに実施例を用いて本発明を説明することとする。
図1は、耐摩耗性で、少なくとも部分的にコーティングされていない鋼部品を製造する方法の一実施例を概略的に示している。 図2は、実施概略図において図1の実施例のように処理された半完成部品または鋼部品の層構造を示している。 図3は、農業機械のための鋼部品の一例を示している。 図4は、運搬機械のための鋼部品の一例を示している。 図5は、2つの実施例および1つの比較例について、表面からの距離に応じた硬度特性のグラフを示している。
Hereinafter, the present invention will be described with reference to the accompanying drawings.
FIG. 1 schematically illustrates one embodiment of a method for producing a wear-resistant, at least partially uncoated steel part. FIG. 2 shows the layer structure of a semi-finished or steel part processed as in the embodiment of FIG. FIG. 3 shows an example of a steel part for an agricultural machine. FIG. 4 shows an example of a steel part for a transport machine. FIG. 5 shows a graph of hardness characteristics according to the distance from the surface for two examples and one comparative example.

先ず、図1は、非常に概略的に、耐磨耗性で少なくとも部分的にコーティングされていない鋼部品の製造例を概略図において示している。半完成部品1は、例えばマンガンボロン鋼、二相鋼またはTRIP鋼のような鋼で構成されており、最初に表面硬化2に搬送される。ストリップ状の半完成部品は、コイル1aから繰り出されて、表面硬化2に送られるとき、例えば窒化の場合には、連続硬化炉において表面硬化を実行するのが有利であり、連続硬化炉の終端部で、例えば、この時点で硬化表面が与えられているストリップ状の半完成部品1は、コイル(図示省略)に巻き上げられるものとすることができる。表面硬化されたストリップのような半完成部品は、所定の長さに切断されて、熱間成形および/または焼入れ3へ搬送され、その結果、処理ステップ3は、農業機械、運搬機械、掘削機械または建設機械における加工、搬送および/または破砕手段に適した、少なくとも部分的にコーティングされていない成形された鋼部品4を製造することが可能となる。第一に、このように製造された鋼部品4は、熱間成形および/または焼入れステップに起因して高い強度値の特徴を示す。第二に、熱間成形の前および/または焼入れの前に行われる表面の窒化によって、鋼部品の表面領域も硬度が増す。上述したように、本発明の方法によって、100μmの深さまで行われる表面領域の脱炭化が、100μmの深さまであるいは40μmの深さに至る領域において表面領域が表面硬化されることにより、相殺されることを可能とする。表面硬化は、好適には窒化で実行される。しかしながら、表面領域の炭化も考えられる。   First, FIG. 1 very schematically shows an example of the production of a steel part that is wear-resistant and at least partially uncoated. The semi-finished part 1 is made of steel such as manganese boron steel, duplex steel or TRIP steel, and is first conveyed to the surface hardening 2. When the strip-shaped semi-finished part is fed out of the coil 1a and sent to the surface hardening 2, for example in the case of nitriding, it is advantageous to carry out the surface hardening in a continuous hardening furnace, the end of the continuous hardening furnace. For example, the strip-shaped semi-finished part 1 to which the hardened surface is given at this point can be wound up on a coil (not shown). Semi-finished parts such as surface hardened strips are cut to a predetermined length and transported to hot forming and / or quenching 3 so that processing step 3 can be carried out in agricultural machinery, transport machinery, drilling machinery Alternatively, it is possible to produce a shaped steel part 4 which is at least partially uncoated and is suitable for processing, conveying and / or crushing means in construction machines. Firstly, the steel part 4 thus produced exhibits high strength value characteristics due to the hot forming and / or quenching steps. Secondly, surface nitridation performed before hot forming and / or prior to quenching also increases the hardness of the surface area of the steel part. As described above, by the method of the present invention, the decarburization of the surface region performed to a depth of 100 μm is offset by surface hardening of the surface region in the region up to a depth of 100 μm or a depth of 40 μm. Make it possible. Surface hardening is preferably carried out by nitriding. However, carbonization of the surface area is also conceivable.

処理ステップ2の表面硬化は、好適に、600℃乃至900℃の保持温度で、25体積%のH、0.1−10体積%のNH、HOおよびバランスN、並びに不可避の不純物を含む熱処理雰囲気における熱処理によって実行される。最大10体積%への水素濃度の低減または最大5体積%へのNH濃度の制限によって、窒化の結果がさらに改善される。 The surface hardening of process step 2 is preferably carried out at a holding temperature of 600 ° C. to 900 ° C. with 25% by volume H 2 , 0.1-10% by volume NH 3 , H 2 O and balance N 2 , and inevitable. The heat treatment is performed in a heat treatment atmosphere containing impurities. By reducing the hydrogen concentration to a maximum of 10% by volume or limiting the NH 3 concentration to a maximum of 5% by volume, the nitriding results are further improved.

表面硬化の深さは、例えば5秒乃至600秒の保持温度で、表面硬化の継続時間によって設定することができる。好適には表面は、30秒乃至120秒の間、680℃乃至840℃の保持温度で窒化される。熱間成形または焼入れの前に表面硬化を実施することは、連続硬化炉において、例えばストリップ状の半完成部品またはプレートを使用することにより、様々な形状および様々なジオメトリを有する成形鋼部品を使用するときよりも非常に効率的に熱処理プロセスを実行できる、という利点を有している。同様に、ストリップ状の半完成部品またはブランクとして構成される半完成部品を使用することによって、表面硬化の品質をより容易に確保することができる。   The depth of surface hardening can be set by the duration of surface hardening at a holding temperature of, for example, 5 seconds to 600 seconds. Preferably the surface is nitrided at a holding temperature of 680 ° C. to 840 ° C. for 30 seconds to 120 seconds. Performing surface hardening prior to hot forming or quenching uses shaped steel parts with different shapes and different geometries, for example by using strip-like semi-finished parts or plates in a continuous hardening furnace It has the advantage that the heat treatment process can be carried out much more efficiently than when doing so. Similarly, the quality of surface hardening can be more easily ensured by using strip-like semi-finished parts or semi-finished parts configured as blanks.

図2は、処理中の3つの異なる時点における半完成部品の断面を概略的に示している。先ず、半完成部品1は、製造プロセスに対応する、おおよそ均一な、例えばフェライト微細組織1aを有し、それが、製造プロセスと鋼組成の組合せによって決定される。表面硬化の結果として、表面領域1bは、窒化の場合には窒素、炭化の場合には炭素が内側への拡散によって硬化され、そこで微細組織が変化する。表面領域1bの厚さは、熱処理の継続時間に依存する。表面領域は、通常は、最大100μmまでであり、その部分で、半完成部品の硬度が変えられる。十分な表面効果と表面硬化の熱処理の期間との間の折衷となる望ましい領域は、20μm乃至40μmの厚さを有する。例えば窒化において、表面硬化の継続時間は、好適には30秒乃至120秒である。表面領域1bの下方に残留する材料1aの微細組織は、熱処理の間、実質的に変化しないままである。   FIG. 2 schematically shows a cross-section of a semi-finished part at three different times during processing. First, the semi-finished part 1 has a roughly uniform, for example ferrite microstructure 1a, corresponding to the manufacturing process, which is determined by a combination of the manufacturing process and the steel composition. As a result of surface hardening, the surface region 1b is hardened by inward diffusion of nitrogen in the case of nitridation and carbon in the case of carbonization, where the microstructure changes. The thickness of the surface region 1b depends on the duration of the heat treatment. The surface area is usually up to 100 μm, at which the hardness of the semi-finished part can be changed. A desirable region that provides a compromise between sufficient surface effect and a period of heat treatment for surface hardening has a thickness of 20 μm to 40 μm. For example, in nitriding, the duration of surface hardening is preferably 30 to 120 seconds. The microstructure of the material 1a remaining below the surface region 1b remains substantially unchanged during the heat treatment.

熱間成形ステップでは、基材1aの微細組織は、先ず、オーステナイトに変換され、その後、焼入れによって部分的にマルテンサイトに変換される。このように、高い硬度および良好な機械的強度は、基材1cで達成される。表面領域1bは、これらの層の炭化を除いて変化しないままである。窒化の結果、表面領域は硬化状態を持続することができる。窒化の代わりに表面領域1bを対象に炭化した場合、脱炭化が相殺され、その結果、ここで硬度の増加も達成できる。従って、成形された鋼部品4は、硬化した領域1bと、熱間成形および焼入れによって硬化された領域1cとを有している。   In the hot forming step, the microstructure of the substrate 1a is first converted to austenite and then partially converted to martensite by quenching. Thus, high hardness and good mechanical strength are achieved with the substrate 1c. The surface region 1b remains unchanged except for the carbonization of these layers. As a result of nitriding, the surface region can remain cured. If the surface region 1b is carbonized instead of nitriding, decarbonization is offset, and as a result, an increase in hardness can also be achieved here. Accordingly, the formed steel part 4 has a hardened region 1b and a region 1c hardened by hot forming and quenching.

図3および図4は、耐摩耗性で少なくとも部分的にコーティングされていない鋼部品の一般的な応用分野を示し、図3においてコンベヤスクリュ5の形態で、図4においては農業用のすきの刃6の形態でそれぞれ示している。両構成要素は、農業機械、運搬機械、掘削機械または建設機械、例えばコンクリートミキサなどに使用される加工、搬送および/または破砕手段の典型的なものであり、磨耗作用のある物質に曝される熱間成形および/またはプレス焼入れされた鋼部品を使用することは、磨耗の影響を非常に受け易いため、これまであまり有利なものではなかった。熱間成形および/または焼入れ中に脱炭化される領域を表面硬化することによって、熱間成形した鋼は、使用範囲を広げることができる。   3 and 4 show a general field of application of wear-resistant and at least partly uncoated steel parts, in the form of a conveyor screw 5 in FIG. 3 and an agricultural plow blade in FIG. Each of the six forms is shown. Both components are typical of processing, conveying and / or crushing means used in agricultural machines, transport machines, excavating machines or construction machines, such as concrete mixers, and are exposed to abrasive substances The use of hot-formed and / or press-hardened steel parts has not been very advantageous so far because it is very sensitive to wear. By surface hardening the areas that are decarburized during hot forming and / or quenching, hot formed steels can extend the range of use.

Figure 2016528381
Figure 2016528381

表1は、鋼種22MnB5で構成される試料Aおよび試料Bの硬さの測定値を示している。試料AおよびBは、何れの場合も760℃、90秒で、NHが1体積%またはNHが4体積%で構成される熱処理雰囲気で表面窒化にさらされた。オーステナイトはフェライトよりも多くの窒素を溶解することができるので、表面窒化は変態間温度(T>Ac1)で実施された。次に、試料は熱間成形され、焼入れされた。研磨される部分は、熱間成形されるか焼入れされた鋼部品から構成され、HV0.01(DIN EN ISO 6507−1)の硬さが、表面から5μmの距離で測定された。熱処理雰囲気のNH含有量に応じた試料の微細硬度の測定値は、同じ熱処理パラメータ、すなわち同じ保持時間および保持温度で、熱処理雰囲気においてより高いNH含有量でより高い硬度を有していた。 Table 1 shows the measured values of the hardness of Sample A and Sample B composed of steel type 22MnB5. Samples A and B were each exposed to surface nitridation in a heat treatment atmosphere consisting of 1% by volume of NH 3 or 4% by volume of NH 3 at 760 ° C. for 90 seconds. Since austenite can dissolve more nitrogen than ferrite, surface nitridation was performed at the temperature between transformations (T> Ac1). The sample was then hot formed and quenched. The parts to be polished consisted of hot-formed or hardened steel parts and the hardness of HV 0.01 (DIN EN ISO 6507-1) was measured at a distance of 5 μm from the surface. The measured value of the microhardness of the sample according to the NH 3 content in the heat treatment atmosphere had a higher hardness with a higher NH 3 content in the heat treatment atmosphere with the same heat treatment parameters, ie the same holding time and holding temperature. .

先ず、試料Aの硬度は、表面で測定された460HV値から20μmの深さで、333HV値まで低下した。その後、硬度は約492HV値まで再度増加した。これは、基材の脱炭化がここで終了することを示している。最上部の領域、具体的には、5から15μmの領域が表面硬化によって顕著に硬化された。それは、高いNH含有量において、硬度の広がりおよび深さの両方に関して表面硬化より明確な試料Bから分かる。これは、熱処理雰囲気におけるより高いNH濃度により、鋼部品の表面内への窒素のより大きな拡散が生じることに起因すると考えられる。試料Bの値は、5μmの深さにおける546で始まり、25μmの深さでは394の値まで減少する。その後、この値は45μmの深さで約466に再度増加する。これは表面が45μmの深さでは基材よりも硬いことが、明確に分かる。 First, the hardness of Sample A decreased from a 460 HV value measured on the surface to a 333 HV value at a depth of 20 μm. Thereafter, the hardness increased again to a value of about 492 HV. This indicates that the decarbonization of the substrate ends here. The top region, specifically the 5 to 15 μm region, was markedly cured by surface curing. It can be seen from Sample B, which is clearer than surface hardening with respect to both hardness spread and depth at high NH 3 content. This is believed to be due to the greater diffusion of nitrogen into the surface of the steel part due to the higher NH 3 concentration in the heat treatment atmosphere. The value for Sample B starts at 546 at a depth of 5 μm and decreases to a value of 394 at a depth of 25 μm. This value then increases again to about 466 at a depth of 45 μm. It can be clearly seen that the surface is harder than the substrate at a depth of 45 μm.

比較例と比較した図5で示されるさらなる2つの実施例における測定値によって、同様の事実が示されている。点線で示される比較例は、5乃至35μmの領域で400HV1(DIN EN ISO6507−1)より低い減少した硬度を示している。450HV乃1至500HV1の範囲内にある基材と比較したときの硬度の減少は、熱間成形時の脱炭化によって説明される。2つの異なる窒化条件、ここでも1%の濃度のNH熱処理雰囲気または4%の濃度のNHの熱処理雰囲気による2つの比較される実施例は、表面近傍の領域において、500を超える硬度が測定されるため、特に異なる。このように、耐摩耗性の少なくとも部分的にコーティングされていない鋼部品の場合に、熱間成形および/または焼入れされた鋼部品の引張強度の値が特に高いだけでなく、例えば500HV乃至700HVの範囲のより高い表面硬度によって高い耐摩耗性も提供することが可能となる。
Similar measurements are shown by the measurements in the two further examples shown in FIG. 5 compared to the comparative example. The comparative example indicated by the dotted line shows a reduced hardness lower than 400HV1 (DIN EN ISO6507-1) in the region of 5 to 35 μm. The decrease in hardness when compared to substrates in the range of 450 HV-1 to 500 HV1 is explained by decarburization during hot forming. Two compared examples with two different nitridation conditions, again a 1% concentration NH 3 heat treatment atmosphere or a 4% concentration NH 3 heat treatment atmosphere, measured hardness above 500 in the region near the surface. Because it is particularly different. Thus, in the case of wear-resistant at least partially uncoated steel parts, not only the tensile strength values of hot-formed and / or quenched steel parts are particularly high, but for example between 500 HV and 700 HV. Higher surface hardness in the range can also provide high wear resistance.

Claims (12)

耐摩耗性で、少なくとも部分的にコーティングされていない鋼部品(4)であって、熱間成形および/または焼入れによって半完成部品(1)から製造された硬化性鋼種より構成される鋼部品において、
前記鋼部品(4)は、熱間成形および/または焼入れの前の表面硬化によって100μm以下の深さまで硬化された表面領域(1b)を少なくとも部分的に有することを特徴とする鋼部品。
In a steel part (4) which is wear-resistant and at least partly uncoated and is composed of a hardenable steel grade produced from a semi-finished part (1) by hot forming and / or quenching ,
The steel part (4) has at least partly a surface region (1b) hardened to a depth of 100 μm or less by surface hardening before hot forming and / or quenching.
請求項1に記載の鋼部品において、
前記鋼部品の硬化された表面領域(1b)が、炭化または窒化によって硬化されていることを特徴とする鋼部品。
The steel part according to claim 1,
A steel part characterized in that the hardened surface region (1b) of the steel part is hardened by carbonization or nitriding.
請求項1または2に記載の鋼部品において、
熱間成形および/またはプレス焼入れの後に、前記鋼部品の硬化された表面領域(1b)が、当該表面領域の下方に位置する前記鋼部品の基材の硬度を少なくとも有することを特徴とする鋼部品。
In the steel part according to claim 1 or 2,
After hot forming and / or press hardening, the hardened surface area (1b) of the steel part has at least the hardness of the base of the steel part located below the surface area parts.
請求項1乃至3の何れか1項に記載の鋼部品において、
前記鋼部品(4)は、農業機械、運搬機械、掘削機械または建設機械における加工、搬送および/または破砕手段(5,6)として使用されるように構成され、少なくとも摩耗作用のある力に曝される鋼部品の領域が、表面硬化されていることを特徴とする鋼部品。
The steel part according to any one of claims 1 to 3,
The steel part (4) is configured to be used as a processing, conveying and / or crushing means (5, 6) in an agricultural machine, a transporting machine, an excavating machine or a construction machine, and is exposed to at least a force having a wear action. A steel part characterized in that the region of the steel part to be processed is surface hardened.
請求項1乃至4の何れか1項に記載の鋼部品において、
前記鋼部品(4)が、マンガンボロン鋼、二相鋼またはTRIP鋼で構成されることを特徴とする鋼部品。
In the steel part according to any one of claims 1 to 4,
The steel part (4) is composed of manganese boron steel, duplex steel or TRIP steel.
請求項1乃至5の何れか1項に記載の鋼部品において、
熱間成形および/または焼入れ前に硬化された前記鋼部品の前記表面領域(1b)が、少なくとも幾つかの領域において、400HV乃至700HVの硬度を有していることを特徴とする鋼部品。
The steel part according to any one of claims 1 to 5,
Steel part, characterized in that the surface area (1b) of the steel part hardened before hot forming and / or quenching has a hardness of 400 HV to 700 HV in at least some areas.
硬化性鋼種から構成される半完成部品から、農業機械、運搬機械、掘削機械または建設機械の加工、搬送および/または破砕手段のための耐摩耗性で少なくとも部分的にコーティングされていない鋼部品を製造する方法であって、特に請求項1乃至6の何れか1項に記載の鋼部品を製造するために、前記半完成部品が、少なくとも幾つかの領域において、Ac1変態温度より高い温度まで加熱された後、熱間成形および/または焼入れされる、方法において、
前記半完成部品が、表面硬化に少なくとも部分的に曝されて、この表面硬化において、表面領域が、熱間成形および/または焼入れの前に、100μm以下の深さまで硬化されることを特徴とする方法。
From semi-finished parts composed of hardenable steel grades, wear-resistant and at least partly uncoated steel parts for the processing, conveying and / or crushing means of agricultural, transport, excavating or construction machinery A method of manufacturing, in particular for manufacturing a steel part according to any one of claims 1 to 6, wherein the semi-finished part is heated to a temperature higher than the Ac1 transformation temperature in at least some regions. After being hot formed and / or quenched,
The semi-finished part is at least partially exposed to a surface hardening, in which the surface region is hardened to a depth of 100 μm or less before hot forming and / or quenching. Method.
請求項7に記載の方法において、
前記表面領域の硬化が、窒化または炭化によって行われることを特徴とする方法。
The method of claim 7, wherein
The method wherein the surface region is cured by nitridation or carbonization.
請求項7または8に記載の方法において、
前記表面硬化が、600℃乃至900℃の保持温度で、最大25体積%以下のH、0.1乃至10体積%のNH、HOおよびバランスN、並びに不可避の不純物を含む熱処理雰囲気における熱処理によって行われることを特徴とする方法。
The method according to claim 7 or 8, wherein
The surface hardening is a heat treatment including a maximum of 25 volume% H 2 , 0.1 to 10 volume% NH 3 , H 2 O and balance N 2 , and inevitable impurities at a holding temperature of 600 ° C. to 900 ° C. A method characterized by being performed by heat treatment in an atmosphere.
請求項7乃至9の何れか1項に記載の方法において、
前記半完成部品が、表面硬化中の前記温度の保持時間が5秒乃至600秒、好適には30秒乃至120秒であることを特徴とする方法。
The method according to any one of claims 7 to 9,
The method wherein the semi-finished part has a temperature holding time of 5 to 600 seconds, preferably 30 to 120 seconds, during surface hardening.
請求項7乃至10の何れか1項に記載の方法において、
前記表面硬化が、連続硬化炉で実施されることを特徴とする方法。
A method according to any one of claims 7 to 10,
A method characterized in that the surface curing is carried out in a continuous curing furnace.
請求項7乃至11の何れか1項に記載の方法において、
マンガンボロン鋼またはTRIP鋼で構成される半完成部品が、表面硬化されることを特徴とする方法。
12. The method according to any one of claims 7 to 11, wherein
A method characterized in that a semi-finished part made of manganese boron steel or TRIP steel is surface hardened.
JP2016522440A 2013-07-05 2014-06-24 Wear-resistant, at least partially uncoated steel parts Pending JP2016528381A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013107100.7 2013-07-05
DE102013107100.7A DE102013107100A1 (en) 2013-07-05 2013-07-05 Wear-resistant, at least partially uncoated steel part
PCT/EP2014/063259 WO2015000740A1 (en) 2013-07-05 2014-06-24 Wear-resistant, at least partially uncoated steel part

Publications (1)

Publication Number Publication Date
JP2016528381A true JP2016528381A (en) 2016-09-15

Family

ID=51059430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016522440A Pending JP2016528381A (en) 2013-07-05 2014-06-24 Wear-resistant, at least partially uncoated steel parts

Country Status (9)

Country Link
US (1) US20160145705A1 (en)
EP (1) EP3017074B1 (en)
JP (1) JP2016528381A (en)
KR (1) KR20160029102A (en)
CN (1) CN105358720A (en)
CA (1) CA2916155C (en)
DE (1) DE102013107100A1 (en)
ES (1) ES2704437T3 (en)
WO (1) WO2015000740A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200912A1 (en) 2016-01-22 2017-07-27 Thyssenkrupp Ag Wear protection element for a shredding device
BR112019005488A2 (en) * 2016-10-31 2019-06-04 Nippon Steel & Sumitomo Metal Corp Steel component and steel component manufacturing method
DE102020116126A1 (en) * 2020-06-18 2021-12-23 Bilstein Gmbh & Co. Kg Process for press hardening of hot-formable blanks
CN112589393B (en) * 2020-12-14 2022-10-11 舟山中南锚链有限公司 Production process of anchor chain
CN113529009A (en) * 2021-07-07 2021-10-22 江苏大学 Heat treatment method of boron steel, high-strength and high-toughness boron steel and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109466A (en) * 1994-10-11 1996-04-30 Nippon Steel Corp Nitriding of steel sheet
JP2000204464A (en) * 1999-01-12 2000-07-25 Komatsu Ltd Surface treated gear, its production and producing device therefor
JP2008038220A (en) * 2006-08-09 2008-02-21 Nippon Parkerizing Co Ltd Steel member hardening method, hardened steel member and protective agent of hardened surface
JP2009522452A (en) * 2006-01-10 2009-06-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for adjusting desired property combinations in the case of multiphase steels
JP2011032536A (en) * 2009-07-31 2011-02-17 Neturen Co Ltd Method of combined heat treatment of quench-hardened steel member, and quench-hardened steel member
JP2011136369A (en) * 2009-10-14 2011-07-14 Benteler Automobiltechnik Gmbh Method of manufacturing structural component for motor vehicle, plate bar for the hot forming as well as structural component for motor vehicle
WO2011157690A1 (en) * 2010-06-14 2011-12-22 Thyssenkrupp Steel Europe Ag Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD78385A (en) *
CA2037316C (en) * 1990-03-02 1997-10-28 Shunichi Hashimoto Cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets for deep drawing
DE102010050499B3 (en) 2010-11-08 2012-01-19 Benteler Automobiltechnik Gmbh Use of a wear-resistant steel component
DE102012001862B4 (en) * 2012-02-01 2015-10-29 Benteler Defense Gmbh & Co. Kg Method for producing an armor component and armor component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109466A (en) * 1994-10-11 1996-04-30 Nippon Steel Corp Nitriding of steel sheet
JP2000204464A (en) * 1999-01-12 2000-07-25 Komatsu Ltd Surface treated gear, its production and producing device therefor
JP2009522452A (en) * 2006-01-10 2009-06-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for adjusting desired property combinations in the case of multiphase steels
JP2008038220A (en) * 2006-08-09 2008-02-21 Nippon Parkerizing Co Ltd Steel member hardening method, hardened steel member and protective agent of hardened surface
JP2011032536A (en) * 2009-07-31 2011-02-17 Neturen Co Ltd Method of combined heat treatment of quench-hardened steel member, and quench-hardened steel member
JP2011136369A (en) * 2009-10-14 2011-07-14 Benteler Automobiltechnik Gmbh Method of manufacturing structural component for motor vehicle, plate bar for the hot forming as well as structural component for motor vehicle
WO2011157690A1 (en) * 2010-06-14 2011-12-22 Thyssenkrupp Steel Europe Ag Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product

Also Published As

Publication number Publication date
WO2015000740A1 (en) 2015-01-08
CA2916155C (en) 2017-11-07
EP3017074A1 (en) 2016-05-11
US20160145705A1 (en) 2016-05-26
DE102013107100A1 (en) 2015-01-08
KR20160029102A (en) 2016-03-14
EP3017074B1 (en) 2018-10-17
CA2916155A1 (en) 2015-01-08
CN105358720A (en) 2016-02-24
ES2704437T3 (en) 2019-03-18

Similar Documents

Publication Publication Date Title
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP2016528381A (en) Wear-resistant, at least partially uncoated steel parts
EP2546379A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
CN104981556A (en) Soft-nitrided induction-quenched steel component
EP2444511A1 (en) Steel for nitriding and nitrided steel components
JP2014122393A (en) Steel wire material for high-strength spring having excellent hydrogen embrittlement resistance, production method thereof and high-strength spring
JP6497437B2 (en) Hot-rolled steel sheet, steel material and method for producing hot-rolled steel sheet
JP2005090680A (en) Rolling bearing part and method of manufacturing the same
JP2016194156A (en) Carbonitrided component and method of manufacturing carbonitrided component
JP2009068057A (en) Steel sheet for nitrocarburizing treatment and manufacturing method therefor
KR20170130527A (en) A high carbon steel wire rod excellent in freshness,
TWI548755B (en) Steel plate for nitrogen treatment and method for fabricating the same
KR101719560B1 (en) Heat treatment method for surface hardened alloy steel
JP5632454B2 (en) Spring steel and steel surface treatment method
JP6314648B2 (en) Surface hardened component and method for manufacturing surface hardened component
JP2013194287A (en) Gas nitriding method for maraging steel
JP6832618B2 (en) Skin-baked steel for machine structure and parts material for machine structure with excellent pitching resistance
CN107429376B (en) Post-annealed high tensile strength coated steel sheet with improved yield strength and hole expansion
JP6263874B2 (en) Carburizing method for high Si carburizing steel
JPH07157842A (en) Steel for soft-nitriding
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP5582296B2 (en) Iron-based material and manufacturing method thereof
KR20150075309A (en) The method of carbonitriding process for boron added steel
JP2008248282A (en) Induction hardened component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205