EP3017074B1 - Wear-resistant uncoated steel part - Google Patents

Wear-resistant uncoated steel part Download PDF

Info

Publication number
EP3017074B1
EP3017074B1 EP14734430.3A EP14734430A EP3017074B1 EP 3017074 B1 EP3017074 B1 EP 3017074B1 EP 14734430 A EP14734430 A EP 14734430A EP 3017074 B1 EP3017074 B1 EP 3017074B1
Authority
EP
European Patent Office
Prior art keywords
steel
hardening
steel part
hardened
machines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14734430.3A
Other languages
German (de)
French (fr)
Other versions
EP3017074A1 (en
Inventor
Sascha Sikora
Janko Banik
Thiemo Wuttke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3017074A1 publication Critical patent/EP3017074A1/en
Application granted granted Critical
Publication of EP3017074B1 publication Critical patent/EP3017074B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools

Definitions

  • the invention relates to a wear-resistant, uncoated steel part consisting of a hardenable steel grade, which has been produced by hot forming and / or curing of a semi-finished product.
  • the invention relates to a method for producing a wear-resistant, at least partially uncoated processing, conveying and / or emetic agent of agricultural machinery, conveyors, mining equipment or construction machinery from a semi-finished product, in which the semi-finished product is heated to a temperature of more than the Ac1 transformation temperature is and then hot worked and / or cured.
  • Wear-resistant, at least partially uncoated steel parts which must have high strengths and are simultaneously exposed to abrasive forces, for example, for the provision of agricultural machinery, especially plows but also for blades of an excavator or screw conveyors for abrasive materials, such as the screw conveyor of a concrete mixer needed.
  • they are preferably subjected to hot working, in which the semi-finished products from which the steel parts are produced, are first heated to a temperature above the Ac1 transformation temperature point, so that by hot forming and subsequent Hardening, ie rapid cooling, a transformation hardening of the microstructure occurs and arises in the material martensitic structure.
  • the martensitic structure has a much higher hardness but also a significantly higher mechanical strength, for example tensile strength.
  • Corresponding steel parts are for example from the German patent DE 10 2010 050 499 B3 known.
  • the German patent describes a manufacturing method for excavator buckets, concrete mixer screw conveyors, screw conveyor blades or other transport blades of conveyors, in which the components are hot-formed and press-hardened.
  • the German patent application DE 10 2010 017 354 A1 deals with the problem of hot forming of galvanized flat steel products into high- and high-strength steel components.
  • the melting temperature of the metal of the protective coating is exceeded, there is a risk of the so-called "liquid metal embrittlement", which is caused due to the penetration of the molten metal of the coating in the resulting during the forming of the flat steel product notches or cracks.
  • the liquid metal entering the steel substrate deposits there at grain boundaries and there reduces the maximum absorbable tensile or compressive stress.
  • the patent publication offers a nitration of the edge layer areas, so that finely structured edge layer areas are produced.
  • Japanese Laid-Open Publication JP 2011 032536 A a wear-resistant, uncoated steel part described from a hardenable steel grade, which is nitrided before hardening at the surface. From the Chinese disclosure CN 101 805 823 A it can be seen how a conical steel part is heat-treated, in particular hardened by carburizing and quenching.
  • the present invention deals with the problem that hot-formed and / or hardened steel parts in the uncoated areas do not have the desired wear resistance and are thus not optimally suited for use as conveying means, for example when in contact with abrasive materials.
  • the object of the present invention is therefore to propose at least partially uncoated steel parts, the suitability of which is improved for use with abrasive materials.
  • the stated object is achieved for a steel part in that the steel part at least partially has a surface area which up to a depth of maximum 100 microns, preferably up to a depth of up to 40 microns, has been cured by surface hardening before hot working and / or curing.
  • the hardened surface area of the steel part is hardened by nitriding.
  • This method offers the possibility of hardening near-surface areas of the steel part before hot forming or hardening.
  • Nitriding also has the advantage that the hardness is not reduced during hot forming. Carburization increases the carbon content in the surface areas, but decreases again due to hot working.
  • the hardened surface area of the steel part has at least the hardness of the base material of the steel part lying below the surface area.
  • the wear resistance of the steel part can also be improved in that the hardness of the surface portion of the steel part is greater than the hardness of the base material. It has been found that in particular the hardness of the surface areas are responsible for the wear resistance of the steel part in contact with highly abrasive materials, so that even with a slightly softer base material, a very wear-resistant steel part can be produced.
  • the steel part is designed for use as processing, conveying and / or breaking means in agricultural machines, conveyors, mining machines or construction machines, wherein at least the abrasive forces exposed areas of the steel part are surface hardened.
  • manganese-boron steels, dual-phase steels or TRIP steels in which a particularly pronounced development of the martensite formation or the transformation of residual austenitic parts into martensite makes it possible to increase the hardness are also particularly advantageous.
  • the surface area of the steel part hardened before the hot working and / or hardening has a hardness of 400 to 700 HV at least in some areas.
  • these values are only achieved by ultrahigh-strength steel grades after hot forming or hardening in the base material.
  • Surface hardening before hot working or hardening in particular offers the possibility of providing the starting material for the production of the steel components on a coil.
  • the above-described object is achieved by a method for producing a wear-resistant, at least partially uncoated steel part for machining, conveying and / or breaking means of Agricultural machinery, conveyors, mining equipment or construction machinery from a semi-finished product, wherein the semi-finished product is at least partially heated to a temperature of more than the Ac1 transformation temperature and then hot-formed and / or cured, solved in that the semifinished product before hot forming and / or Hardening is at least partially subjected to a surface hardening, in which a surface area is cured to a maximum depth of 100 microns.
  • a surface area of up to 40 microns depth is hardened, in which usually the decarburization processes take place during hot working.
  • the depth of the surface area to be cured is controlled by the exposure time of the curing treatment.
  • the hardening of the surface areas before hot forming or before hardening makes it possible to carry out the surface hardening on coilable materials, ie on the steel strip, so that a particularly economical production of wear-resistant, at least partially uncoated steel parts made of semi-finished products is made possible.
  • the hardening of the surface area is carried out by nitriding. This method makes it possible to provide a higher hardness in the surface area, which after hot working and / or after hardening, enables a higher wear resistance of the surface of the hot-worked steel part, wherein an annealing treatment in an annealing atmosphere of up to 25 vol.
  • the dew point of the annealing atmosphere is between -50 ° C and -5 ° C, so that the effect of humidity on the curing process is reduced.
  • a maximum of 10 vol .-% H 2 , a maximum of 5 vol .-% NH 3 allowed and set the dew point to a dew point temperature of -40 ° C to -15 ° C at a temperature of 680 to 840 ° C. The latter process parameters resulted in improved and more uniform surface hardening.
  • the depth of the surface hardening can be adjusted by the duration of exposure to the holding temperature.
  • the duration at which the semifinished product has the holding temperature is preferably set to 5 s to 600 s, preferably to 30 s to 120 s.
  • the surface hardening is carried out in a continuous furnace, so that, for example, a strip-shaped semifinished product, ie a coilable semifinished product is surface-hardened and can be supplied to the further hot-forming and / or press-hardening steps.
  • a strip-shaped semifinished product ie a coilable semifinished product is surface-hardened and can be supplied to the further hot-forming and / or press-hardening steps.
  • a chamber furnace it is also conceivable surface hardening in a chamber furnace.
  • semifinished products such as manganese-boron steels, dual-phase steels and TRIP steels on the one hand show a particularly high increase in strength during hot forming or hardening and on the other hand the possibility of nitriding to near-surface regions in the range from 400 to 700 HV bring to.
  • steel parts can be produced in a cost effective manner, which are very resistant to wear and have particularly high strengths.
  • Fig. 1 is first very schematically an embodiment for producing a wear-resistant, at least partially uncoated steel part shown in a schematic representation.
  • the semifinished product 1 which consists of a steel, for example of a manganese-boron steel, dual-phase steel or TRIP steel, is first supplied to a surface hardening 2. If a strip-shaped semifinished product is unwound from a coil 1a and fed to the surface hardening 2, it is advantageous, for example, to carry out the surface hardening, for example in the case of nitriding, in a continuous strip furnace, at the end of which, for example, the strip-shaped semifinished product 1 is now provided with a surface hardening a coil (not shown) can be wound up.
  • the thus surface-hardened band-shaped semi-finished product is cut to length and fed to a hot forming and / or hardening 3, so that a transformed, at least partially uncoated steel part 4 can be produced by method step 3, which is used for processing, conveying and / or breaking means of agricultural machines, conveyors , Mining or construction equipment is suitable.
  • the correspondingly produced steel part 4 is characterized by high strength values due to the hot forming and / or hardening step.
  • the surface area of the steel part also has an increased hardness due to the nitriding of the surface taking place before hot working and / or before hardening.
  • the decarburization of the surface areas can be counteracted, in which the surface area surface hardened up to 100 ⁇ m depth or in a range up to 40 ⁇ m depth.
  • the surface hardening is carried out by nitriding.
  • Surface hardening in process step 2 is preferably carried out by an annealing treatment in an annealing atmosphere with up to 25% by volume H 2 , 0.1-10% by volume NH 3 , H 2 O and the radical N 2 and unavoidable impurities at a holding temperature of 600 ° C to 900 ° C performed.
  • a reduction of the hydrogen concentration to a maximum of 10% by volume or a limitation of the NH 3 concentration to a maximum of 5% by volume lead to a further improvement in the nitration result.
  • the depth of the surface hardening can be adjusted.
  • the surface is nitrided with a holding temperature of 30s to 120s, wherein the temperature is 680 ° C to 840 ° C if possible.
  • Carrying out the surface hardening before hot forming or hardening has the advantage that an annealing process with a band-shaped semifinished product, for example, can be carried out much more efficiently in a continuous strip furnace or a circuit board in a continuous furnace than with deformed steel parts having differently shaped and different geometries.
  • the quality of the surface hardening can also be more easily ensured by the use of ribbon-shaped or semi-finished products designed as a board.
  • Fig. 2 is now shown schematically a cross section of the semifinished product at three different times of the process.
  • the semifinished product 1 exhibits a more or less homogeneous, for example ferritic, structure 1 a corresponding to the production process, which is due to the combination of the production process and the steel composition.
  • Surface hardening hardens the surface region 1b by diffusion of nitrogen during nitriding, whereby the microstructure changes there.
  • the thickness of the surface region 1b depends on the duration of the annealing.
  • the surface area is up to a maximum of 100 ⁇ m, in which the hardness of the semifinished product is changed becomes.
  • a preferred range which is a compromise of sufficient surface hardening and duration of annealing for surface hardening, has a thickness of 20 to 40 microns.
  • the duration of the surface hardening is then preferably from 30 seconds to 120 seconds.
  • the microstructure of the material 1a remaining below the surface region 1b remains substantially unchanged during the annealing treatment.
  • the microstructure of the base material 1a is first converted into austenite and later partly into martensite by hardening. As a result, large hardnesses and high mechanical strengths in the base material 1c are achieved.
  • the surface area 1b remains unchanged apart from the decarburization of these layers. By nitriding, the surface area can remain hardened.
  • the formed steel part 4 thus has a hardened portion 1b and a portion 1c hardened by hot working and hardening.
  • FIG. 3 and 4 show typical applications of the wear-resistant, at least partially uncoated steel part in the form of a screw conveyor 5 in Fig. 3 and a ploughshare 6 for agricultural plows in Fig. 4 ,
  • Both components are typical representatives of processing, conveying and / or breaking agents, which are used in agricultural machinery, conveyors, mining equipment or construction machinery, such as concrete mixers, and are exposed to highly abrasive materials.
  • the use of hot-formed and / or press-hardened steel parts was previously not very advantageous due to their increased susceptibility to wear.
  • the surface hardening of the area decarburized during hot working and / or hardening gives the hot working steels an increased field of application.
  • Table 1 now shows measurements of the hardness of samples A and B, which consist of a grade 22MnB5 steel.
  • Samples A and B were subjected to surface nitriding in an annealing atmosphere containing 1% by volume of NH 3 and 4% by volume of NH 3 at 760 ° C. and 90 s, respectively.
  • the surface nitriding was carried out at intercritical temperatures (T> Ac1) because the austenite can dissolve more nitrogen than the ferrite.
  • the samples were thermoformed and cured. Cuts were made from the hot-formed or hardened steel parts and measured at a distance of 5 ⁇ m from the surface to the hardness HV 0.01 (DIN EN ISO 6507-1).
  • the microhardness measurement showed in the samples depending on the content of NH 3 in the annealing atmosphere at the same Glühparametern, ie holding time and holding temperature, a higher hardness at higher NH 3 content of the annealing atmosphere.
  • the hardness of the sample A initially decreases from the value 460 HV measured at the surface to a value of 333 HV at a depth of 20 ⁇ m. Thereafter, the hardness increases again to a value of about 492 HV, indicating that the decarburization of the base material stops here. Due to the surface hardening in particular the uppermost range of 5 to 15 microns was significantly hardened. It can be seen from sample B that, with increased NH 3 content, the surface hardening is more pronounced both in the amplitude and in the depth of the hardening. This is due to the fact that due to the higher NH 3 concentration of the annealing atmosphere a stronger diffusion of Nitrogen was introduced into the surface of the steel part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

Die Erfindung betrifft ein verschleißfestes, unbeschichtetes Stahlteil bestehend aus einer härtbaren Stahlgüte, welches durch Warmumformen und/oder Härten aus einem Halbzeug hergestellt worden ist. Daneben betrifft die Erfindung ein Verfahren zur Herstellung eines verschleißfesten, zumindest teilweise unbeschichteten Bearbeitungs-, Förder- und/oder Brechmittels von Landmaschinen, Fördermaschinen, Bergbaumaschinen oder Baumaschinen aus einem Halbzeug, bei welchem das Halbzeug auf eine Temperatur von mehr als der Ac1-Umwandlungstemperatur erwärmt wird und anschließend warmumgeformt und/oder gehärtet wird.The invention relates to a wear-resistant, uncoated steel part consisting of a hardenable steel grade, which has been produced by hot forming and / or curing of a semi-finished product. In addition, the invention relates to a method for producing a wear-resistant, at least partially uncoated processing, conveying and / or emetic agent of agricultural machinery, conveyors, mining equipment or construction machinery from a semi-finished product, in which the semi-finished product is heated to a temperature of more than the Ac1 transformation temperature is and then hot worked and / or cured.

Verschleißfeste, zumindest teilweise unbeschichtete Stahlteile, welche hohe Festigkeiten aufweisen müssen und gleichzeitig abrasiven Kräften ausgesetzt sind, werden beispielsweise für die Bereitstellung von Landmaschinen, insbesondere Pflüge aber auch für Schaufeln eines Baggers oder Förderschnecken für abrasive Materialien, wie beispielsweise die Förderschnecke eines Betonmischers, benötigt. Um die notwendigen, hohen Festigkeiten bei den genannten Anwendungen zu realisieren, werden diese vorzugsweise einem Warmumformen unterzogen, bei welchem die Halbzeuge, aus welchen die Stahlteile hergestellt werden, zunächst auf eine Temperatur oberhalb des Ac1-Umwandlungstemperaturpunktes erwärmt werden, so dass durch Warmumformen und anschließendes Härten, d.h. schnelles Abkühlen eine Umwandlungshärtung des Gefüges erfolgt und im Werkstoff martensitisches Gefüge entsteht. Das martensitische Gefüge weist eine deutlich höhere Härte aber auch eine deutlich höhere mechanische Festigkeit, beispielsweise Zugfestigkeit auf. Entsprechende Stahlteile sind beispielsweise aus dem deutschen Patent DE 10 2010 050 499 B3 bekannt. Die deutsche Patentschrift beschreibt ein Herstellverfahren für Baggerschaufeln, Betonmischerförderschnecken, Förderschneckenschaufeln oder anderen Transportschaufeln von Förderanlagen, bei welchem die Bauteile warmumgeformt und pressgehärtet werden.Wear-resistant, at least partially uncoated steel parts, which must have high strengths and are simultaneously exposed to abrasive forces, for example, for the provision of agricultural machinery, especially plows but also for blades of an excavator or screw conveyors for abrasive materials, such as the screw conveyor of a concrete mixer needed. In order to realize the necessary, high strengths in the applications mentioned, they are preferably subjected to hot working, in which the semi-finished products from which the steel parts are produced, are first heated to a temperature above the Ac1 transformation temperature point, so that by hot forming and subsequent Hardening, ie rapid cooling, a transformation hardening of the microstructure occurs and arises in the material martensitic structure. The martensitic structure has a much higher hardness but also a significantly higher mechanical strength, for example tensile strength. Corresponding steel parts are for example from the German patent DE 10 2010 050 499 B3 known. The German patent describes a manufacturing method for excavator buckets, concrete mixer screw conveyors, screw conveyor blades or other transport blades of conveyors, in which the components are hot-formed and press-hardened.

Es hat sich jedoch herausgestellt, dass die so hergestellten Bauteile insbesondere bei Kontakt mit abrasiven Materialien Probleme in Bezug auf die Verschleißfestigkeit trotz des Härtungsprozesses während der Herstellung besitzen.However, it has been found that the components produced in this way, in particular in contact with abrasive materials, have problems in terms of wear resistance despite the hardening process during production.

Die deutsche Offenlegungsschrift DE 10 2010 017 354 A1 beschäftigt sich mit dem Problem der Warmumformung von verzinkten Stahlflachprodukten zu hoch- bzw. höchstfesten Stahlbauteilen. Bei Überschreiten der Schmelztemperatur des Metalls der Schutzbeschichtung besteht die Gefahr der so bezeichneten "Flüssigmetallversprödung", welche aufgrund des Eindringens des schmelzflüssigen Metalls des Überzugs in die bei der Umformung des Stahlflachproduktes entstehenden Kerben oder Risse verursacht wird. Das in das Stahlsubstrat gelangende flüssige Metall lagert sich dort an Korngrenzen ab und reduziert dort die maximal aufnehmbare Zug- bzw. Druckspannung. Als Lösung bietet die Offenlegungsschrift eine Nitrierung der Randschichtbereiche an, so dass feinstrukturierte Randschichtbereiche erzeugt werden.The German patent application DE 10 2010 017 354 A1 deals with the problem of hot forming of galvanized flat steel products into high- and high-strength steel components. When the melting temperature of the metal of the protective coating is exceeded, there is a risk of the so-called "liquid metal embrittlement", which is caused due to the penetration of the molten metal of the coating in the resulting during the forming of the flat steel product notches or cracks. The liquid metal entering the steel substrate deposits there at grain boundaries and there reduces the maximum absorbable tensile or compressive stress. As a solution, the patent publication offers a nitration of the edge layer areas, so that finely structured edge layer areas are produced.

Des Weiteren ist in der japanischen Offenlegungsschrift JP 2011 032536 A ein verschleißfestes, unbeschichtetes Stahlteil aus einer härtbaren Stahlgüte beschrieben, welches vor einem Härten an der Oberfläche nitriert wird. Aus der chinesischen Offenlegungsschrift CN 101 805 823 A ist zu entnehmen, wie ein konisches Stahlteil wärmebehandelt, insbesondere durch Aufkohlen und Abschrecken gehärtet wird.Further, in Japanese Laid-Open Publication JP 2011 032536 A a wear-resistant, uncoated steel part described from a hardenable steel grade, which is nitrided before hardening at the surface. From the Chinese disclosure CN 101 805 823 A it can be seen how a conical steel part is heat-treated, in particular hardened by carburizing and quenching.

Die vorliegende Erfindung beschäftigt sich dagegen mit dem Problem, dass warmumgeformte und/oder gehärtete Stahlteile in den unbeschichteten Bereichen nicht die gewünschte Verschleißfestigkeit aufweisen und damit nicht optimal für den Einsatz als Fördermittel beispielsweise bei Kontakt mit abrasiven Materialien geeignet sind. Die Aufgabe der vorliegenden Erfindung ist es daher, zumindest teilweise unbeschichtete Stahlteile vorzuschlagen, deren Eignung für den Einsatz mit abrasiven Materialien verbessert ist. Zudem soll ein kostengünstiges Herstellverfahren entsprechender Stahlteile vorgeschlagen werden.By contrast, the present invention deals with the problem that hot-formed and / or hardened steel parts in the uncoated areas do not have the desired wear resistance and are thus not optimally suited for use as conveying means, for example when in contact with abrasive materials. The object of the present invention is therefore to propose at least partially uncoated steel parts, the suitability of which is improved for use with abrasive materials. In addition, a cost-effective production of appropriate steel parts to be proposed.

Die aufgezeigte Aufgabe wird für ein Stahlteil dadurch gelöst, dass das Stahlteil zumindest teilweise einen Oberflächenbereich aufweist, welcher bis zu einer Tiefe von maximal 100 µm, bevorzugt bis zu einer Tiefe von bis zu 40 µm, durch eine Oberflächenhärtung vor dem Warmumformen und/oder Härten gehärtet worden ist.The stated object is achieved for a steel part in that the steel part at least partially has a surface area which up to a depth of maximum 100 microns, preferably up to a depth of up to 40 microns, has been cured by surface hardening before hot working and / or curing.

Es hat sich herausgestellt, dass die Erwärmung der Halbzeuge zur Herstellung der Stahlteile auf eine Temperatur von mehr als der Ac1-Umwandlungstemperatur oder oberhalb der Ac3-Temperatur vor dem Warmumformen und/oder Härten zu einer Entkohlung oberflächennaher Bereiche führt, so dass der Kohlenstoffgehalt dieser Bereiche deutlich geringer ist als der Kohlenstoffgehalt des Grundwerkstoffs. In der Folge kann der oberflächennahe Bereich von bis zum 100 µm Tiefe, insbesondere der Bereich bis 40 µm Tiefe während des Warmumformens und/oder Härtens nicht im geforderten Maße gehärtet werden. Es zeigte sich jedoch, dass eine zumindest teilweise Oberflächenhärtung der unbeschichteten Bereiche des Halbzeugs vor dem Warmumformen und/oder Härten zum Stahlteil dazu führt, dass sowohl der Oberflächenbereich als auch der Grundwerkstoff trotz der Entkohlung der oberflächennahen Bereiche aufgrund der hohen Temperaturen beim Warmumformen bzw. Härten, sehr hohe Härten aufweisen. Als Ergebnis steht ein Stahlteil zur Verfügung, welches zumindest teilweise einen Oberflächenbereich aufweist, der vorzugsweise bis zu einer Tiefe von 100 µm bzw. im Bereich bis 40 µm Tiefe gehärtet ist und damit deutlich verschleißfester als die bisher bekannten, zumindest teilweise unbeschichteten Stahlteile ist.It has been found that heating the semifinished products to produce the steel parts at a temperature greater than the Ac1 transformation temperature or above the Ac3 temperature prior to hot working and / or curing results in decarburization of near-surface areas such that the carbon content of these areas is significantly lower than the carbon content of the base material. As a result, the near-surface area of up to 100 microns depth, in particular the area up to 40 microns depth during hot working and / or curing can not be cured to the required extent. However, it has been found that at least partial surface hardening of the uncoated regions of the semifinished product prior to hot working and / or hardening to the steel part results in both the surface region and the base material despite the decarburization of the near surface regions due to the high temperatures during hot working or hardening , have very high hardness. As a result, a steel part is available which at least partially has a surface area which is preferably cured to a depth of 100 microns or in the range to 40 microns depth and thus significantly more wear resistant than the previously known, at least partially uncoated steel parts.

Gemäß einer ersten Ausgestaltung ist der gehärtete Oberflächenbereich des Stahlteils durch ein Nitrieren gehärtet. Dieses Verfahren bietet die Möglichkeit, oberflächennahe Bereiche des Stahlteils vor der Warmumformung bzw. dem Härten gezielt zu härten. Das Nitrieren hat zudem den Vorteil, dass die Härte während des Warmumformens nicht verringert wird. Bei der Aufkohlung wird der Kohlenstoffgehalt in den Oberflächenbereichen erhöht, nimmt aber durch die Warmumformung erneut ab.According to a first embodiment, the hardened surface area of the steel part is hardened by nitriding. This method offers the possibility of hardening near-surface areas of the steel part before hot forming or hardening. Nitriding also has the advantage that the hardness is not reduced during hot forming. Carburization increases the carbon content in the surface areas, but decreases again due to hot working.

Bevorzugt weist gemäß einer weiteren Ausführungsform nach dem Warmumformen und/oder Härten der gehärtete Oberflächenbereich des Stahlteils mindestens die Härte des unter dem Oberflächenbereich liegende Grundwerkstoffs des Stahlteils auf. Vorzugsweise kann die Verschleißfestigkeit des Stahlteils auch dadurch verbessert werden, dass die Härte des Oberflächenbereichs des Stahlteils größer ist als die Härte des Grundwerkstoffs. Es wurde festgestellt, dass insbesondere die Härte der Oberflächenbereiche verantwortlich sind für die Verschleißfestigkeit des Stahlteils bei Kontakt mit stark abrasiven Materialen, so dass auch mit einem etwas weicheren Grundwerkstoff ein sehr verschleißfestes Stahlteil hergestellt werden kann.Preferably, according to a further embodiment, after hot working and / or hardening, the hardened surface area of the steel part has at least the hardness of the base material of the steel part lying below the surface area. Preferably, the wear resistance of the steel part can also be improved in that the hardness of the surface portion of the steel part is greater than the hardness of the base material. It has been found that in particular the hardness of the surface areas are responsible for the wear resistance of the steel part in contact with highly abrasive materials, so that even with a slightly softer base material, a very wear-resistant steel part can be produced.

Hieraus folgt erfindungsgemäß, dass das Stahlteil für die Verwendung als Bearbeitungs-, Förder- und/oder Brechmittel in Landmaschinen, Fördermaschinen, Bergbaumaschinen oder Baumaschinen ausgebildet ist, wobei zumindest die abrasiven Kräften ausgesetzten Bereiche des Stahlteils oberflächengehärtet sind.It follows according to the invention that the steel part is designed for use as processing, conveying and / or breaking means in agricultural machines, conveyors, mining machines or construction machines, wherein at least the abrasive forces exposed areas of the steel part are surface hardened.

Besonders vorteilhaft sind darüber hinaus auch Mangan-Bor-Stähle, Dualphasenstähle oder TRIP-Stähle, bei welchen eine besonders starke Ausprägung der Martensitbildung bzw. der Umwandlung von restaustenitischen Teilen in Martensit eine Steigerung der Härten ermöglicht.In addition, manganese-boron steels, dual-phase steels or TRIP steels in which a particularly pronounced development of the martensite formation or the transformation of residual austenitic parts into martensite makes it possible to increase the hardness are also particularly advantageous.

Gemäß einer weiteren Ausführungsform des Stahlteils weist der vor der Warmumformung und/oder dem Härten gehärtete Oberflächenbereich des Stahlteils zumindest bereichsweise eine Härte von 400 bis 700 HV auf. Diese Werte werden in der Regel nur von höchstfesten Stahlgüten nach der Warmumformung bzw. dem Härten im Grundwerkstoff erreicht. Die Oberflächenhärtung vor der Warmumformung bzw. dem Härten bietet insbesondere die Möglichkeit, das Ausgangsmaterial für die Erzeugung der Stahlbauteile auf einem Coil bereitzustellen.According to a further embodiment of the steel part, the surface area of the steel part hardened before the hot working and / or hardening has a hardness of 400 to 700 HV at least in some areas. As a rule, these values are only achieved by ultrahigh-strength steel grades after hot forming or hardening in the base material. Surface hardening before hot working or hardening in particular offers the possibility of providing the starting material for the production of the steel components on a coil.

Gemäß einer weiteren Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Verfahren zur Herstellung eines verschleißfesten, zumindest teilweise unbeschichteten Stahlteils für Bearbeitungs-, Förder- und/oder Brechmittel von Landmaschinen, Fördermaschinen, Bergbaumaschinen oder Baumaschinen aus einem Halbzeug, bei welchem das Halbzeug zumindest bereichsweise auf eine Temperatur von mehr als der Ac1-Umwandlungstemperatur erwärmt wird und anschließend warmumgeformt und/oder gehärtet wird, gelöst dadurch, dass das Halbzeug vor dem Warmumformen und/oder Härten zumindest teilweise einer Oberflächenhärtung unterzogen wird, bei welcher ein Oberflächenbereich bis zu einer Tiefe von maximal 100 µm gehärtet wird. Bevorzugt wird ein Oberflächenbereich von bis 40 µm Tiefe gehärtet, in welchem üblicherweise die Entkohlungsprozesse während der Warmumformung stattfinden. Die Tiefe des Oberflächenbereichs, welcher gehärtet werden soll, wird durch die Einwirkungsdauer der Härtungsbehandlung gesteuert. Es hat sich vor allem gezeigt, dass trotz der Erwärmung auf eine Temperatur oberhalb des Ac1-Um-wandlungstemperaturpunktes die oberflächengehärteten Bereiche des Stahlteils in Bezug auf deren Oberflächenhärte stabil bleiben, so dass nach dem Warmumformen und/oder Härten hohe Oberflächenhärten erzielt werden. Dies führt dazu, dass die in Kontakt mit abrasiven Materialien stehenden Stahlteile für Bearbeitungs-, Förder- und/oder Brechmittel von Landmaschinen, Fördermaschinen, Bergbaumaschinen oder Baumaschinen einen verringerten Verschleiß aufweisen.According to a further teaching of the present invention, the above-described object is achieved by a method for producing a wear-resistant, at least partially uncoated steel part for machining, conveying and / or breaking means of Agricultural machinery, conveyors, mining equipment or construction machinery from a semi-finished product, wherein the semi-finished product is at least partially heated to a temperature of more than the Ac1 transformation temperature and then hot-formed and / or cured, solved in that the semifinished product before hot forming and / or Hardening is at least partially subjected to a surface hardening, in which a surface area is cured to a maximum depth of 100 microns. Preferably, a surface area of up to 40 microns depth is hardened, in which usually the decarburization processes take place during hot working. The depth of the surface area to be cured is controlled by the exposure time of the curing treatment. In particular, it has been found that, despite the heating to a temperature above the Ac1-Umwendelungstemperaturpunktes the surface hardened areas of the steel part remain stable in terms of their surface hardness, so that after the hot forming and / or curing high surface hardness can be achieved. As a result, the steel parts in contact with abrasive materials for machining, conveying and / or breaking means of agricultural machines, conveyors, mining machines or construction machines have a reduced wear.

Die Härtung der Oberflächenbereiche vor der Warmumformung bzw. vor dem Härten ermöglicht es, die Oberflächenhärtung an coilfähige Materialien, also am Stahlband, durchzuführen, so dass eine besonders wirtschaftliche Herstellung von verschleißfesten, zumindest teilweise unbeschichteten Stahlteilen aus Halbzeugen ermöglicht wird. Erfindungsgemäß erfolgt das Härten des Oberflächenbereichs durch Nitrieren. Dieses Verfahren ermöglicht es, eine höhere Härte im Oberflächenbereich zur Verfügung zu stellen, welche nach der Warmumformung und/oder nach dem Härten eine höhere Verschleißfestigkeit der Oberfläche des warmumgeformten bzw. gehärteten Stahlteils ermöglichen, wobei eine Glühbehandlung in einer Glühatmosphäre mit bis zu 25 Vol.-% H2, 0,1 - 10 Vol.-% NH3, H2O und Rest N2 sowie unvermeidbare Verunreinigungen bei einer Haltetemperatur von 600 °C bis 900 °C durchgeführt wird. Vorzugsweise liegt der Taupunkt der Glühatmosphäre zwischen -50°C und -5°C, so dass der Effekt der Luftfeuchtigkeit auf den Härtungsprozess reduziert wird. Bevorzugt werden darüber hinaus maximal 10 Vol.-% H2, maximal 5 Vol.-% NH3 zugelassen und der Taupunkt auf eine Taupunkttemperatur von -40°C bis -15°C bei einer Temperatur von 680 bis 840°C eingestellt. Die zuletzt genannten Verfahrensparameter ergaben eine verbesserte und gleichmäßigere Oberflächenhärtung.The hardening of the surface areas before hot forming or before hardening makes it possible to carry out the surface hardening on coilable materials, ie on the steel strip, so that a particularly economical production of wear-resistant, at least partially uncoated steel parts made of semi-finished products is made possible. According to the invention, the hardening of the surface area is carried out by nitriding. This method makes it possible to provide a higher hardness in the surface area, which after hot working and / or after hardening, enables a higher wear resistance of the surface of the hot-worked steel part, wherein an annealing treatment in an annealing atmosphere of up to 25 vol. -% H 2 , 0.1 - 10 vol .-% NH 3 , H 2 O and balance N 2 and unavoidable impurities at a holding temperature of 600 ° C to 900 ° C is performed. Preferably, the dew point of the annealing atmosphere is between -50 ° C and -5 ° C, so that the effect of humidity on the curing process is reduced. Be preferred over it addition, a maximum of 10 vol .-% H 2 , a maximum of 5 vol .-% NH 3 allowed and set the dew point to a dew point temperature of -40 ° C to -15 ° C at a temperature of 680 to 840 ° C. The latter process parameters resulted in improved and more uniform surface hardening.

Die Tiefe der Oberflächenhärtung kann durch die Dauer der Einwirkung der Haltetemperatur eingestellt werden. Bevorzugt wird während der Oberflächenhärtung die Dauer, bei welchem das Halbzeug die Haltetemperatur besitzt, auf 5 s bis 600 s, vorzugsweise auf 30 s bis 120 s eingestellt.The depth of the surface hardening can be adjusted by the duration of exposure to the holding temperature. During the surface hardening, the duration at which the semifinished product has the holding temperature is preferably set to 5 s to 600 s, preferably to 30 s to 120 s.

Vorzugsweise wird die Oberflächenhärtung in einem Durchlaufofen durchgeführt, so dass beispielsweise auch ein bandförmiges Halbzeug, also ein coilfähiges Halbzeug oberflächengehärtet wird und den weiteren Warmumform- und/oder Presshärtschritten zugeführt werden kann. Denkbar ist aber auch eine Oberflächenhärtung in einem Kammerofen.Preferably, the surface hardening is carried out in a continuous furnace, so that, for example, a strip-shaped semifinished product, ie a coilable semifinished product is surface-hardened and can be supplied to the further hot-forming and / or press-hardening steps. However, it is also conceivable surface hardening in a chamber furnace.

Wie bereites ausgeführt, zeigen Halbzeuge wie beispielsweise Mangan-Bor-Stähle, Dualphasenstähle sowie TRIP-Stähle einerseits eine besonders hohe Festigkeitssteigerung während der Warmumformung bzw. beim Härten und andererseits die Möglichkeit die oberflächennahen Bereiche durch Nitrieren auf identische Härten von im Bereich 400 bis 700 HV zu bringen. Im Ergebnis können Stahlteile auf kostengünstige Weise hergestellt werden, welche sehr verschleißfest sind und besonders hohe Festigkeiten aufweisen.As already stated, semifinished products such as manganese-boron steels, dual-phase steels and TRIP steels on the one hand show a particularly high increase in strength during hot forming or hardening and on the other hand the possibility of nitriding to near-surface regions in the range from 400 to 700 HV bring to. As a result, steel parts can be produced in a cost effective manner, which are very resistant to wear and have particularly high strengths.

Im Weiteren soll die Erfindung nun anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung näher erläutert werden. Die Zeichnung zeigt in

Fig. 1
schematisch ein Ausführungsbeispiel des Verfahrens zur Herstellung eines verschleißfesten, zumindest teilweise unbeschichteten Stahlteils,
Fig. 2
den Schichtaufbau des entsprechend dem Ausführungsbeispiel auf Fig. 1 behandelten Halbzeugs bzw. Stahlteils in schematischer Darstellung,
Fig. 3, 4
Ausführungsbeispiele eines Stahlteils für Landmaschinen und Fördermaschinen und
Fig. 5
in einem Diagramm den Härteverlauf in Abhängigkeit vom Abstand zur Oberfläche von zwei Ausführungsbeispielen und einem Vergleichsbeispiel.
In addition, the invention will now be explained in more detail with reference to embodiments in conjunction with the drawings. The drawing shows in
Fig. 1
1 shows an exemplary embodiment of the method for producing a wear-resistant, at least partially uncoated steel part,
Fig. 2
the layer structure of according to the embodiment Fig. 1 treated semi-finished or steel part in a schematic representation,
Fig. 3, 4
Embodiments of a steel part for agricultural machinery and conveyors and
Fig. 5
in a diagram, the hardness curve as a function of the distance to the surface of two embodiments and a comparative example.

In Fig. 1 ist zunächst sehr schematisch ein Ausführungsbeispiel zur Herstellung eines verschleißfesten, zumindest teilweise unbeschichteten Stahlteils in einer schematischen Darstellung gezeigt. Das Halbzeug 1, welches aus einem Stahl, beispielsweise aus einem Mangan-Bor-Stahl, Dualphasenstahl oder TRIP-Stahl besteht, wird zunächst einer Oberflächenhärtung 2 zugeführt. Wird ein bandförmiges Halbzeug von einem Coil 1a abgehaspelt und der Oberflächenhärtung 2 zugeführt, ist es beispielsweise von Vorteil, die Oberflächenhärtung, beispielsweise im Fall eines Nitrierens, in einem Banddurchlaufofen durchzuführen, an dessen Ende beispielsweise das bandförmige Halbzeug 1 mit einer Oberflächenhärtung nunmehr versehen, auf ein (nicht dargestelltes) Coil aufgewickelt werden kann. Das so oberflächengehärtete bandförmige Halbzeug wird abgelängt und einem Warmumformen und/oder Härten 3 zugeführt, so dass durch den Verfahrensschritt 3 ein umgeformtes, zumindest teilweise unbeschichtetes Stahlteil 4 hergestellt werden kann, welches für Bearbeitungs-, Förder- und/oder Brechmittel von Landmaschinen, Fördermaschinen, Bergbaumaschinen oder Baumaschinen geeignet ist. Einerseits zeichnet sich das entsprechend hergestellte Stahlteil 4 durch hohe Festigkeitswerte aufgrund des Warmumform- und/oder Härteschritts aus. Andererseits weist auch der Oberflächenbereich des Stahlteils aufgrund der vor der Warmumformung und/oder vor dem Härten stattfindenden Nitrierung der Oberfläche eine erhöhte Härte auf. Wie bereits zuvor ausgeführt, kann mit dem erfindungsgemäßen Verfahren der Entkohlung der Oberflächenbereiche, welche bis zu einer Tiefe von 100 µm stattfindet, entgegengewirkt werden, in dem der Oberflächenbereich bis 100 µm Tiefe bzw. in einem Bereich bis 40 µm Tiefe oberflächengehärtet wird. Vorzugsweise wird die Oberflächenhärtung durch Nitrieren durchgeführt. Bevorzugt wird die Oberflächenhärtung im Verfahrensschritt 2 durch eine Glühbehandlung in einer Glühatmosphäre mit bis zu 25 Vol.-% H2, 0,1 - 10 Vol.-% NH3, H2O und Rest N2 sowie unvermeidbare Verunreinigungen bei einer Haltetemperatur von 600°C bis 900°C durchgeführt. Auch eine Reduktion der Wasserstoffkonzentration auf maximal 10 Vol.-% bzw. eine Begrenzung NH3-Konzentration auf maximal 5 Vol.-% führen zu einer weiteren Verbesserung des Nitrierergebnisses.In Fig. 1 is first very schematically an embodiment for producing a wear-resistant, at least partially uncoated steel part shown in a schematic representation. The semifinished product 1, which consists of a steel, for example of a manganese-boron steel, dual-phase steel or TRIP steel, is first supplied to a surface hardening 2. If a strip-shaped semifinished product is unwound from a coil 1a and fed to the surface hardening 2, it is advantageous, for example, to carry out the surface hardening, for example in the case of nitriding, in a continuous strip furnace, at the end of which, for example, the strip-shaped semifinished product 1 is now provided with a surface hardening a coil (not shown) can be wound up. The thus surface-hardened band-shaped semi-finished product is cut to length and fed to a hot forming and / or hardening 3, so that a transformed, at least partially uncoated steel part 4 can be produced by method step 3, which is used for processing, conveying and / or breaking means of agricultural machines, conveyors , Mining or construction equipment is suitable. On the one hand, the correspondingly produced steel part 4 is characterized by high strength values due to the hot forming and / or hardening step. On the other hand, the surface area of the steel part also has an increased hardness due to the nitriding of the surface taking place before hot working and / or before hardening. As already stated above, with the method according to the invention, the decarburization of the surface areas, which takes place to a depth of 100 μm, can be counteracted, in which the surface area surface hardened up to 100 μm depth or in a range up to 40 μm depth. Preferably, the surface hardening is carried out by nitriding. Surface hardening in process step 2 is preferably carried out by an annealing treatment in an annealing atmosphere with up to 25% by volume H 2 , 0.1-10% by volume NH 3 , H 2 O and the radical N 2 and unavoidable impurities at a holding temperature of 600 ° C to 900 ° C performed. A reduction of the hydrogen concentration to a maximum of 10% by volume or a limitation of the NH 3 concentration to a maximum of 5% by volume lead to a further improvement in the nitration result.

Über die Dauer der Oberflächenhärtung, beispielsweise bei einer Haltetemperatur von 5s bis 600s kann die Tiefe der Oberflächenhärtung eingestellt werden. Bevorzugt wird mit einer Haltetemperatur von 30s bis 120s die Oberfläche nitriert, wobei die Temperatur nach Möglichkeit 680°C bis 840°C beträgt. Die Durchführung der Oberflächenhärtung vor der Warmumformung bzw. dem Härten hat den Vorteil, dass ein Glühprozess mit einem beispielsweise bandförmigen Halbzeug in einem Banddurchlaufofen oder einer Platine in einem Durchlaufofen deutlich effizienter durchgeführt werden kann, als mit unterschiedlich geformten und unterschiedlichen Geometrien aufweisenden umgeformten Stahlteilen. Die Qualität der Oberflächenhärtung kann durch die Verwendung von bandförmigen bzw. als Platine ausgebildeten Halbzeugen ebenfalls leichter sichergestellt werden.Over the duration of the surface hardening, for example at a holding temperature of 5s to 600s, the depth of the surface hardening can be adjusted. Preferably, the surface is nitrided with a holding temperature of 30s to 120s, wherein the temperature is 680 ° C to 840 ° C if possible. Carrying out the surface hardening before hot forming or hardening has the advantage that an annealing process with a band-shaped semifinished product, for example, can be carried out much more efficiently in a continuous strip furnace or a circuit board in a continuous furnace than with deformed steel parts having differently shaped and different geometries. The quality of the surface hardening can also be more easily ensured by the use of ribbon-shaped or semi-finished products designed as a board.

In Fig. 2 ist nun schematisch ein Querschnitt des Halbzeugs zu drei verschiedenen Zeitpunkten des Verfahrens dargestellt. Zunächst zeigt das Halbzeug 1 ein entsprechend des Herstellungsprozesses mehr oder weniger homogenes, beispielsweise ferritisches Gefüge 1a, welches durch die Kombination aus Herstellprozess und Stahlzusammensetzung bedingt ist. Durch die Oberflächenhärtung wird der Oberflächenbereich 1b durch Eindiffusion von Stickstoff beim Nitrieren gehärtet, wobei sich das Gefüge dort ändert. Die Dicke des Oberflächenbereichs 1b hängt dabei von der Dauer der Glühung ab. Üblicherweise beträgt der Oberflächenbereich bis maximal 100 µm, in welchen die Härte des Halbzeugs geändert wird. Ein bevorzugter Bereich, welcher ein Kompromiss aus ausreichender Oberflächenhärtung und Dauer der Glühbehandlung zum Oberflächenhärten ist, weist eine Dicke von 20 bis 40 µm auf. Die Dauer der Oberflächenhärtung, beispielsweise beim Nitrieren beträgt dann vorzugsweise 30s bis 120s. Das unterhalb des Oberflächenbereichs 1b verbliebene Gefüge des Werkstoffs 1a bleibt im Wesentlichen unverändert bei der Glühbehandlung.In Fig. 2 is now shown schematically a cross section of the semifinished product at three different times of the process. First of all, the semifinished product 1 exhibits a more or less homogeneous, for example ferritic, structure 1 a corresponding to the production process, which is due to the combination of the production process and the steel composition. Surface hardening hardens the surface region 1b by diffusion of nitrogen during nitriding, whereby the microstructure changes there. The thickness of the surface region 1b depends on the duration of the annealing. Usually, the surface area is up to a maximum of 100 μm, in which the hardness of the semifinished product is changed becomes. A preferred range, which is a compromise of sufficient surface hardening and duration of annealing for surface hardening, has a thickness of 20 to 40 microns. The duration of the surface hardening, for example during nitriding, is then preferably from 30 seconds to 120 seconds. The microstructure of the material 1a remaining below the surface region 1b remains substantially unchanged during the annealing treatment.

Bei dem Warmumformschritt wird nun das Gefüge des Grundwerkstoffs 1a zunächst in Austenit und durch das Härten später teilweise in Martensit umgewandelt. Hierdurch werden große Härten sowie hohe mechanische Festigkeiten im Grundwerkstoff 1c erzielt. Der Oberflächenbereich 1b bleibt dabei abgesehen von der Abkohlung dieser Schichten unverändert. Durch Nitrieren, kann dabei der Oberflächenbereich weiterhin gehärtet bleiben. Das umgeformte Stahlteil 4 weist damit einen gehärteten Bereich 1b sowie einen durch das Warmumformen und Härten gehärteten Bereich 1c auf.In the hot-forming step, the microstructure of the base material 1a is first converted into austenite and later partly into martensite by hardening. As a result, large hardnesses and high mechanical strengths in the base material 1c are achieved. The surface area 1b remains unchanged apart from the decarburization of these layers. By nitriding, the surface area can remain hardened. The formed steel part 4 thus has a hardened portion 1b and a portion 1c hardened by hot working and hardening.

Fig. 3 und 4 zeigen typische Anwendungsgebiete des verschleißfesten, zumindest teilweise unbeschichteten Stahlteils in Form einer Förderschnecke 5 in Fig. 3 sowie einer Pflugschar 6 für landwirtschaftliche Pflüge in Fig. 4. Beide Bauteile sind typische Vertreter von Bearbeitungs-, Förder- und/oder Brechmitteln, welche in Landmaschinen, Fördermaschinen, Bergbaumaschinen oder Baumaschinen, beispielsweise Betonmischer, eingesetzt werden und stark abrasiven Materialien ausgesetzt sind. Der Einsatz von warmumgeformten und/oder pressgehärteten Stahlteilen war bisher aufgrund deren erhöhten Verschleißanfälligkeit nicht sehr vorteilhaft. Durch die Oberflächenhärtung des beim Warmumformen und/oder Härten entkohlten Bereichs erreichen die Warmumformstähle einen vergrößerten Anwendungsbereich. Tabelle 1 Messung HV 0,01 Tiefe µm Probe A (1% NH3) Probe B (4% NH3) 5 460 546 10 404 490 15 436 447 20 333 415 25 409 394 30 479 453 35 453 479 40 436 485 45 492 466 3 and 4 show typical applications of the wear-resistant, at least partially uncoated steel part in the form of a screw conveyor 5 in Fig. 3 and a ploughshare 6 for agricultural plows in Fig. 4 , Both components are typical representatives of processing, conveying and / or breaking agents, which are used in agricultural machinery, conveyors, mining equipment or construction machinery, such as concrete mixers, and are exposed to highly abrasive materials. The use of hot-formed and / or press-hardened steel parts was previously not very advantageous due to their increased susceptibility to wear. The surface hardening of the area decarburized during hot working and / or hardening gives the hot working steels an increased field of application. Table 1 Measurement HV 0.01 depth μm Sample A (1% NH 3) Sample B (4% NH 3 ) 5 460 546 10 404 490 15 436 447 20 333 415 25 409 394 30 479 453 35 453 479 40 436 485 45 492 466

Tabelle 1 zeigt nun Messungen der Härte von Proben A und B, welche aus einem Stahl der Güte 22MnB5 bestehen. Die Proben A und B wurden einer Oberflächennitrierung in einer Glühatmosphäre mit 1 Vol.-% NH3 bzw. 4 Vol.-% NH3 bei jeweils 760°C und 90s zugeführt. Die Oberflächennitrierung wurde bei interkritischen Temperaturen (T > Ac1) durchgeführt, da der Austenit mehr Stickstoff lösen kann als der Ferrit. Anschließend wurden die Probenwarm umgeformt und gehärtet. Von den warm umgeformten bzw. gehärteten Stahlteilen wurden Schnitte angefertigt und in einem Abstand von 5 µm von der Oberfläche an die Härte HV 0,01 (DIN EN ISO 6507-1) gemessen. Die Mikrohärtemessung zeigte bei den Proben abhängig von dem Gehalt an NH3 in der Glühatmosphäre bei gleichen Glühparametern, d.h. Haltzeit und Haltetemperatur, eine stärkere Härte bei höherem NH3-Gehalt der Glühatmosphäre.Table 1 now shows measurements of the hardness of samples A and B, which consist of a grade 22MnB5 steel. Samples A and B were subjected to surface nitriding in an annealing atmosphere containing 1% by volume of NH 3 and 4% by volume of NH 3 at 760 ° C. and 90 s, respectively. The surface nitriding was carried out at intercritical temperatures (T> Ac1) because the austenite can dissolve more nitrogen than the ferrite. Subsequently, the samples were thermoformed and cured. Cuts were made from the hot-formed or hardened steel parts and measured at a distance of 5 μm from the surface to the hardness HV 0.01 (DIN EN ISO 6507-1). The microhardness measurement showed in the samples depending on the content of NH 3 in the annealing atmosphere at the same Glühparametern, ie holding time and holding temperature, a higher hardness at higher NH 3 content of the annealing atmosphere.

Die Härte der Probe A sinkt zunächst von dem an der Oberfläche gemessenen Wert 460 HV auf einen Wert von 333 HV bei 20 µm Tiefe ab. Danach steigt die Härte wieder auf einen Wert um etwa 492 HV an, was anzeigt, dass hier die Entkohlung des Grundwerkstoffs aufhört. Durch die Oberflächenhärtung wurde insbesondere der oberste Bereich von 5 bis 15 µm deutlich gehärtet. Anhand der Probe B ist erkennbar, dass bei erhöhtem NH3-Gehalt die Oberflächenhärtung deutlicher ausfällt sowohl in der Amplitude als auch in der Tiefe der Härtung. Dies ist darauf zurückzuführen, dass aufgrund der höheren NH3-Konzentration der Glühatmosphäre eine stärkere Diffusion von Stickstoff in die Oberfläche des Stahlteils erfolgte. Die Werte der Probe B beginnen bei 546 in 5 µm Tiefe und sinken bis auf 25 µm Tiefe auf einen Wert von 394 ab. Anschließend steigen die Werte wieder auf etwa 466 in 45 µm Tiefe an. Deutlich erkennbar ist, dass die Oberfläche härter ausgestaltet ist als der Grundwerkstoff bei 45 µm Tiefe. Ein ähnliches Bild zeigen auch die in Fig. 5 dargestellten Messungen an zwei weiteren Ausführungsbeispielen im Vergleich mit einem Vergleichsbeispiel. Das Vergleichsbeispiel dargestellt durch eine gepunktete Linie zeigt im Bereich von 5 bis 35 µm eine reduzierte Härte, welche unterhalb von 400 HV 1 (DIN EN ISO 6507-1) liegt. Die Reduzierung der Härte im Vergleich zum Grundwerkstoff, welche zwischen 450 HV 1 und 500 HV 1 liegt, wird durch die Entkohlung während der Warmumformung erklärt. Die beiden Vergleichsbeispiele mit zwei verschiedenen Nitrierungsvarianten wiederum 1%ige NH3-Glühatmosphäre oder auch 4%ige NH3-Glühatmosphäre unterscheiden sich vor allem in diesem oberflächennahen Bereich, da hier Härten von oberhalb 500 gemessen werden konnten. Damit kann für verschleißfeste, zumindest teilweise unbeschichtete Stahlteile nicht nur die besonders hohen Zugfestigkeitswerte und der warmumgeformten und/oder gehärteten Stahlteile bereitgestellt werden, sondern auch eine hohe Verschleißfestigkeit aufgrund hoher Oberflächenhärten im Bereich von beispielsweise 500 bis 700 HV.The hardness of the sample A initially decreases from the value 460 HV measured at the surface to a value of 333 HV at a depth of 20 μm. Thereafter, the hardness increases again to a value of about 492 HV, indicating that the decarburization of the base material stops here. Due to the surface hardening in particular the uppermost range of 5 to 15 microns was significantly hardened. It can be seen from sample B that, with increased NH 3 content, the surface hardening is more pronounced both in the amplitude and in the depth of the hardening. This is due to the fact that due to the higher NH 3 concentration of the annealing atmosphere a stronger diffusion of Nitrogen was introduced into the surface of the steel part. The values of Sample B begin at 546 in 5 μm depth and sink to a depth of 25 μm down to a value of 394. Subsequently, the values rise again to about 466 in 45 μm depth. It can be clearly seen that the surface is made harder than the base material at 45 μm depth. A similar picture shows the in Fig. 5 shown measurements on two other embodiments in comparison with a comparative example. The comparative example shown by a dotted line shows in the range of 5 to 35 microns a reduced hardness, which is below 400 HV 1 (DIN EN ISO 6507-1). The reduction in hardness compared to the base material, which is between 450 HV 1 and 500 HV 1, is explained by the decarburization during hot forming. The two comparative examples with two different Nitrierungsvarianten turn 1% NH 3 -Glühatmosphäre or even 4% NH 3 -Glühatmosphäre differ especially in this near-surface region, since hardnesses of above 500 could be measured here. Thus, not only the particularly high tensile strength values and the hot-formed and / or hardened steel parts can be provided for wear-resistant, at least partially uncoated steel parts, but also a high wear resistance due to high surface hardness in the range of, for example 500 to 700 HV.

Claims (8)

  1. Wear-resistant, uncoated steel part (4) consisting of a hardenable steel grade which has been produced from a semifinished part (1) by hot forming and/or hardening, characterized in that at least part of the steel part (4) has a surface region (1b) which has been hardened to a depth of not more than 100 µm by surface hardening by nitriding before hot forming and/or hardening and the steel part (4) is configured for use as processing, conveying and/or crushing means (5, 6) in agricultural machines, conveying machines, mining machines or building machines, with at least the regions of the steel part which are subjected to abrasive forces having been surface-hardened
  2. Steel part according to Claim 1, characterized in that after hot forming and/or press hardening, the hardened surface region (1b) of the steel part has at least the hardness of the base material of the steel part located under the surface region.
  3. Steel part according to Claim 1 or 2, characterized in that the steel part (4) consists of a manganese-boron steel, a dual-phase steel or a TRIP steel.
  4. Steel part according to any of Claims 1 to 3, characterized in that the surface region (1b) of the steel part which has been hardened before hot forming and/or hardening has, at least in regions, a hardness of from 400 to 700 HV.
  5. Process for producing a wear-resistant, uncoated steel part for processing, conveying and/or crushing means of agricultural machines, conveying machines, mining machines or building machines from a semifinished part consisting of a hardenable steel grade, in which the semifinished part is heated, at least in regions, to a temperature above the Ac1 transformation temperature and is subsequently hot formed and/or hardened in particular for producing a steel part according to any of Claims 1 to 4, characterized in that at least part of the semifinished part is subjected to surface hardening in which a surface region is hardened to a depth of not more than 100 µm before hot forming and/or hardening, where the surface hardening is effected by a heat treatment in a heat treatment atmosphere comprising up to 25% by volume of H2, 0.1-10% by volume of NH3, H2O and balance N2 and also unavoidable impurities at a hold temperature of from 600°C to 900°C.
  6. Process according to Claim 5, characterized in that, during surface hardening, the time for which the semifinished part has the hold temperature is from 5 s to 600 s, preferably from 30 s to 120 s.
  7. Process according to Claim 5, characterized in that the surface hardening is carried out in a continuous hardening furnace.
  8. Process according to any of Claims 5 to 7, characterized in that a semifinished part consisting of a manganese-boron steel or a TRIP steel is surface-hardened.
EP14734430.3A 2013-07-05 2014-06-24 Wear-resistant uncoated steel part Active EP3017074B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013107100.7A DE102013107100A1 (en) 2013-07-05 2013-07-05 Wear-resistant, at least partially uncoated steel part
PCT/EP2014/063259 WO2015000740A1 (en) 2013-07-05 2014-06-24 Wear-resistant, at least partially uncoated steel part

Publications (2)

Publication Number Publication Date
EP3017074A1 EP3017074A1 (en) 2016-05-11
EP3017074B1 true EP3017074B1 (en) 2018-10-17

Family

ID=51059430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14734430.3A Active EP3017074B1 (en) 2013-07-05 2014-06-24 Wear-resistant uncoated steel part

Country Status (9)

Country Link
US (1) US20160145705A1 (en)
EP (1) EP3017074B1 (en)
JP (1) JP2016528381A (en)
KR (1) KR20160029102A (en)
CN (1) CN105358720A (en)
CA (1) CA2916155C (en)
DE (1) DE102013107100A1 (en)
ES (1) ES2704437T3 (en)
WO (1) WO2015000740A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200912A1 (en) 2016-01-22 2017-07-27 Thyssenkrupp Ag Wear protection element for a shredding device
RU2711060C1 (en) * 2016-10-31 2020-01-15 Ниппон Стил Корпорейшн Method of producing steel component and steel component
DE102020116126A1 (en) * 2020-06-18 2021-12-23 Bilstein Gmbh & Co. Kg Process for press hardening of hot-formable blanks
CN112589393B (en) * 2020-12-14 2022-10-11 舟山中南锚链有限公司 Production process of anchor chain
CN113529009A (en) * 2021-07-07 2021-10-22 江苏大学 Heat treatment method of boron steel, high-strength and high-toughness boron steel and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD78385A (en) *
CA2037316C (en) * 1990-03-02 1997-10-28 Shunichi Hashimoto Cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets for deep drawing
JPH08109466A (en) * 1994-10-11 1996-04-30 Nippon Steel Corp Nitriding of steel sheet
JP2000204464A (en) * 1999-01-12 2000-07-25 Komatsu Ltd Surface treated gear, its production and producing device therefor
DE102006001198A1 (en) * 2006-01-10 2007-07-12 Sms Demag Ag Method and device for setting specific property combinations in multiphase steels
JP4762077B2 (en) * 2006-08-09 2011-08-31 日本パーカライジング株式会社 Hardening method of steel member, hardened steel member and hardened surface protective agent
JP2011032536A (en) * 2009-07-31 2011-02-17 Neturen Co Ltd Method of combined heat treatment of quench-hardened steel member, and quench-hardened steel member
DE102009049398C5 (en) * 2009-10-14 2015-05-07 Benteler Automobiltechnik Gmbh Method for producing a structural component for a motor vehicle and structural component
DE102010017354A1 (en) * 2010-06-14 2011-12-15 Thyssenkrupp Steel Europe Ag Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
DE102010050499B3 (en) 2010-11-08 2012-01-19 Benteler Automobiltechnik Gmbh Use of a wear-resistant steel component
DE102012001862B4 (en) * 2012-02-01 2015-10-29 Benteler Defense Gmbh & Co. Kg Method for producing an armor component and armor component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20160029102A (en) 2016-03-14
CA2916155A1 (en) 2015-01-08
CA2916155C (en) 2017-11-07
CN105358720A (en) 2016-02-24
ES2704437T3 (en) 2019-03-18
WO2015000740A1 (en) 2015-01-08
JP2016528381A (en) 2016-09-15
DE102013107100A1 (en) 2015-01-08
EP3017074A1 (en) 2016-05-11
US20160145705A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
EP3292228B1 (en) Flat steel product and methode for production of said product
EP3017074B1 (en) Wear-resistant uncoated steel part
EP2809819B1 (en) Ultrahigh-strength multiphase steel having improved properties during production and processing
WO2017009192A1 (en) Ultrahigh strength multiphase steel and method for producing a cold-rolled steel strip therefrom
DE102012013113A1 (en) High strength multiphase steel and method of making a strip of this steel having a minimum tensile strength of 580 MPa
DE102013013067A1 (en) Silicon-containing microalloyed high-strength multiphase steel having a minimum tensile strength of 750 MPa and improved properties and processes for producing a strip of this steel
EP2690184B1 (en) Produit plat en acier laminé à froid et son procédé de fabrication
EP2746409A1 (en) Method for the heat treatment a manganese steel product and manganese steel product with a special alloy
WO2013139319A1 (en) High-strength multi-phase steel, and method for producing a strip from said steel
WO2016078643A1 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
WO2016078642A9 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
WO2016078644A1 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
WO2019068560A1 (en) Ultrahigh strength multiphase steel and method for producing a steel strip from said multiphase steel
DE102006052834A1 (en) Method for producing a roller bearing ring and roller bearing ring
DE2745241A1 (en) HIGH QUALITY STEELS WITH IMPROVED TOUGHNESS AND PROCESS FOR THEIR PRODUCTION
EP3853385A1 (en) Method of producing ultrahigh-strength steel sheets and steel sheet therefor
WO2012048917A1 (en) Quenched and tempered steel, use thereof as bar material, threaded spindle, toothed rack, toothed rack elements and method for producing same
DE102022130775A1 (en) Hot press forming process with improved process window
DE102022125128A1 (en) Method for producing a steel strip from a high-strength multi-phase steel and corresponding steel strip
DE102021201150A1 (en) Process for the production of a hot-rolled and heat-treated flat steel product, a correspondingly hot-rolled and heat-treated flat steel product and a corresponding use
EP4047105A1 (en) Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product
DE102024104377A1 (en) Sheet metal part with improved cathodic corrosion protection
WO2022207913A1 (en) Steel strip made of a high-strength multiphase steel and process for producing such a steel strip
WO2024126085A1 (en) Molded sheet-metal part with improved hardness curve
DD298826B5 (en) Process for the heat treatment of wear-stressed components made of low-alloyed high-carbon steels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180323

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009805

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2704437

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009805

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

26N No opposition filed

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190624

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200625

Year of fee payment: 7

Ref country code: NL

Payment date: 20200625

Year of fee payment: 7

Ref country code: BE

Payment date: 20200625

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200825

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140624

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1054107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210624

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502014009805

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 10