JP2016524138A - 電磁特性を計測する装置及び方法 - Google Patents

電磁特性を計測する装置及び方法 Download PDF

Info

Publication number
JP2016524138A
JP2016524138A JP2016513433A JP2016513433A JP2016524138A JP 2016524138 A JP2016524138 A JP 2016524138A JP 2016513433 A JP2016513433 A JP 2016513433A JP 2016513433 A JP2016513433 A JP 2016513433A JP 2016524138 A JP2016524138 A JP 2016524138A
Authority
JP
Japan
Prior art keywords
sensor components
signal
measurement
sensor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016513433A
Other languages
English (en)
Inventor
ソレイマーニ マヌチェール
ソレイマーニ マヌチェール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Bath
Original Assignee
University of Bath
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Bath filed Critical University of Bath
Publication of JP2016524138A publication Critical patent/JP2016524138A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties

Abstract

対象領域の一つ又は複数の電磁特性を判定する装置(100、400)及び方法のうちの少なくとも一つが記述されている。対象領域に対応する一つ又は複数の誘導性計測値(410)と対象領域に対応する一つ又は複数の静電容量性計測値(420)とが受け取られる。導電率の推定値が、少なくとも受け取られた一つ又は複数の誘導性計測値(410)に基づいて取得される(430)。これは、少なくとも受け取られた一つ又は複数の静電容量性計測値(420)と共に、誘電率計測値(440)を判定するために使用される。

Description

本発明は、一つ又は複数の電磁特性を計測する装置及び方法の少なくとも一つ又は両方に関する。
多くの場合に、物体又は試料の電磁特性を判定することが有用である。これを実施するべく、最近の20〜30年の間に、実験的電気断層撮影法が開発されている。医療用途においては、電気インピーダンス断層撮影(Electrical Impedance Tomography:EIT)システムが提案されている。これらのシステムにおいては、導電性電極が、例えば、人体の一部分などの試料に装着され、且つ、計測値を使用することにより、試料の導電率又は誘電率の画像が生成されている。但し、このようなシステムは、医療機関において、未だ広範に使用されてはいない。関係する一つの技法が、静電容量断層撮影(Electrical Capacitance Tomography:ECT)である。ECTは、外部における静電容量計測値から物体の内部の誘電率分布を判定する方法である。EITと同様に、ECTシステムも、主に実験的な段階に留まっている。少数の電極を使用することにより、物体の近似的なスライスの一つ又は複数の低分解能の画像を生成している。
既存の電気的な技法は、通常、限られた範囲の変数にのみ感度を有する。例えば、ECTは、非導電性システム上において使用することが可能であり、EITは、導電性システムに対して適用可能である。導電率マッピングにおけるEITの欠点は、電極が試料との直接的な接触状態にあることを要するという点にある。従って、導電率の範囲全体を撮像することができない。この理由に起因し、EITは、多くの用途において不適切なものとなっている。
第一の態様によれば、対象領域の一つ又は複数の電磁特性を判定する装置が提供され、装置は、対象領域に対応する一つ又は複数の誘導性計測値及び対象領域に対応する一つ又は複数の静電容量性計測値を受け取る少なくとも一つの計測インタフェースと、少なくとも一つの計測インタフェースに対して通信自在に結合され、且つ、少なくとも受け取られた一つ又は複数の誘導性計測値に基づいて導電率の推定値を取得すると共に少なくとも導電率の推定値及び受け取られた一つ又は複数の静電容量性計測値を使用して誘電率計測値を判定するように構成された信号プロセッサと、を有する。
第二の態様によれば、対象領域の一つ又は複数の電磁特性を計測する方法が提供され、方法は、対象領域に対応する一つ又は複数の誘導性計測値を受け取るステップと、少なくとも受け取られた誘導性計測値に基づいて対象領域内の導電率の分布を判定するステップと、対象領域に対応する一つ又は複数の静電容量性計測値を受け取るステップと、少なくとも導電率の分布及び一つ又は複数の静電容量性計測値を使用して対象領域内の誘電率の分布を判定するステップと、を有する。
更なる特徴及び利点については、添付図面を参照して提供される特定の例に関する以下の説明から明らかとなろう。
第一例による装置及び対象領域を示す概略図である。 第一例による装置及び対象領域内に存在する可動物体を示す概略図である。 第二例による装置及び対象領域を示す概略図である。 第二例による装置及び装置と対象領域との間の絶縁領域を示す概略図である。 第一例による複数のセンサコンポーネントを示す概略図である。 第二例による複数のセンサコンポーネントを示す概略図である。 第三例による複数のセンサコンポーネントを示す概略図である。 第四例による複数のセンサコンポーネントを示す概略図である。 第五例による複数のセンサコンポーネントを示す概略図である。 第四例による装置を示す概略図である。 図3Aの装置の側面図を示す概略図である。 図3A及び図3Bの装置の一部分の斜視図である。 一例による信号プロセッサを示す概略図である。 複数のセンサコンポーネントに通信自在に結合された図4Aの信号プロセッサを示す概略図である。 図4Bの信号プロセッサを有する信号コントローラの使用法を示す概略図である。 一例による計測フェーズの第一部分を示す概略図である。 一例による計測フェーズの第二部分を示す概略図である。 別の例による計測フェーズを示す概略図である。 一例による信号プロセッサの一実装形態を示す概略図である。 一例による断層撮影プロセッサの使用法を示す概略図である。 例示用の第一対象領域の写真及び断層撮影プロセッサからの対応する例示用の第一出力を示す。 例示用の第二対象領域の写真及び断層撮影プロセッサからの対応する例示用の第二出力を示す。 一例による対象領域の一つ又は複数の電磁特性を計測する方法を示すフローチャートである。 一例による一つ又は複数のセンサコンポーネントを駆動する方法を示すフローチャートである。 一例による対象領域の一つ又は複数の電磁特性を計測する方法を示すフローチャートである。 装置の例示用の一用途の正面図の概略図である。 装置の例示用の一用途の側面図の概略図である。 テストケースにおける例示用の対象領域の写真を示す。 匹敵する静電容量断層撮影(ECT)プロセッサからのテストケースにおける例示用の出力を示す。 本明細書に記述されている例示用の断層撮影プロセッサからのテストケースにおける例示用の出力を示す。
図1Aは、例100による装置110を示している。装置110は、対象領域120内の一つ又は複数の電磁特性を計測するべく使用される。対象領域120は、線形の領域、二次元のエリア、又は三次元の容積などの装置110近傍の空間であってもよい。対象領域120は、装置110の計測範囲を表しており、且つ、実装形態に従って変化し得る。
特定のケースにおいては、一つ又は複数の物体が対象領域120内に存在してもよい。その一例が図1Bに示されている。任意の物体は、静止状態であってもよく、或いは、例えば、図1Bに点線の矢印によって示されているように、運動可能であってもよい。物体は、空気又は液体混合物などの流体中において保持されてもよい。流体は、対象領域内の任意の物体130が、絶縁領域140により、装置110から分離されるように、絶縁体であってもよい。換言すれば、装置110は、対象領域120及び前記領域内の任意の物体130の計測が、装置110と対象領域120の少なくとも一部分と前記領域内の任意の物体130のいずれか一つとの間における直接的な電気的接触を伴うことなしに、実行され得るように、非接触型装置を有してもよい。或いは、この代わりに、なんらかの物体を収容しているかどうかとは無関係に、流体又は流体混合物が計測対象の材料の組を表してもよい。
図1Cは、第二例105による別の装置115を示している。装置115も、対象領域125内の一つ又は複数の電磁特性を計測するべく使用される。このケースにおいては、対象領域125は、装置115のコンポーネント部品によって形成される境界内の封止されたエリア又は容積である。例えば、このケースにおいては、対象領域125は、走査装置の内部であってもよく、或いは、一つ又は複数の流体を搬送するパイプの内部であってもよい。図1Dは、装置115が一つ又は複数の中間領域135によって対象領域から分離されている第二例の別の実装形態を示している。これらの中間領域135の少なくとも一つは、例えば、装置115が絶縁体によって対象領域125から分離されるように、絶縁材料を有してもよい。このケースにおいては、装置115は、非接触モードにおいて動作し、例えば、装置115と対象領域125との間には、直接的な導電性経路が存在していない。例えば、装置115は、内側の金属パイプと、外側のポリマーケーシングと、を有するパイプライン構成の外部において構成されてもよい。図1A〜図1Dの例によって示されているように、装置110、115は、非侵襲的なものであってもよく、例えば、対象領域に隣接して配置されてもよく、且つ、対象領域内に延在する必要はない。
図2A〜図2Eは、一連の例によるいくつかのセンサコンポーネント構成を示している。これらの構成は、本明細書において記述されている特定の装置及び方法の動作の説明を支援するべく、概略的に、且つ、例として、示されており、図示されていないその他の構成が実装されてもよい。
図2Aは、一例によるセンサコンポーネントの第一構成200を示している。第一構成200は、二つのタイプのセンサコンポーネントの一次元のアレイ210を有する。複数の第一センサコンポーネント220は、一次元アレイ210近傍の対象領域に対応する誘導性計測値を提供するように構成されている。そして、複数の第二センサコンポーネント230は、一次元アレイ210近傍の同一の対象領域に対応する静電容量性計測値を提供するように構成されている。例えば、複数の第一及び第二センサコンポーネントは、例えば、一次元アレイ210の最上部が図1A及び図1Bの装置110又は図1C及び図1Dの装置115とアライメントされるように、対象領域上に対向するようにアライメントされてもよい。このようなケースにおいては、n個の第一センサコンポーネント220と、m個の第二センサコンポーネント230と、が存在してもよく、n及びmは、センサコンポーネントが対象領域125の周囲の少なくとも一部分の周りに配列されるようなものになっている。同様に、図2Aには、四つのセンサコンポーネントが示されているが、一実装形態においては、n個の第一センサコンポーネント220及びm個の第二センサコンポーネント230が利用されてもよく、この場合に、n及びmは、1を上回っている。一実装形態においては、センサコンポーネントは、物体及び/又は対象領域との直接的な電気的接触状態にはない。図2Aにおいては、センサコンポーネントは、一次元においてインタリーブされている。
第一構成200によれば、対象領域の一つ又は複数の電磁特性の計測が可能である。例えば、第一構成200は、信号の配列を出力してもよく、第一センサコンポーネントの組からの信号を使用することにより、導電率及び/又は透磁率計測値の組を生成してもよく、且つ、第二センサコンポーネントの組からの信号を使用することにより、誘電率計測値の組を生成してもよい。これらの計測値は、例えば、長さn及びmなどの一つ又は複数の線形配列又は組(tuple)の配列の形態であってもよい。第二センサコンポーネントからの静電容量性計測値は、対象領域内に配置されている一つ又は複数の誘電性材料の相対的な割合又は特徴判定結果及び場所を表してもよい。
このケースにおいては、誘電率計測値は、電界が、対象領域内に配置された誘電材料などの物体又は材料に対して影響を及ぼす方式、又はこれらによって影響を受ける方式を表し得る。これは、対象領域内の物体又は材料内における電界の形成に対する抵抗力の尺度として見なされてもよい。これは、1メートル当たりのファラッド(Fm-1)を単位として計測されてもよい。本明細書において引用されている透磁率は、例えば、印加された磁界に応答して物体又は材料によって得られる磁化の程度などの磁界の形成をサポートする物体又は材料の能力を表し得る。これは、1メートル当たりのヘンリー(Hm-1)又はアンペアの二乗当たりのニュートン(NA-2)を単位として計測される透磁率において計測され得る。
一例においては、第一センサコンポーネントは、例えば、円形形状のコイル構成を有してもよい。第二センサコンポーネントは、平面状の正方形又は矩形プレート電極を有してもよい。センサ構成サイズの一つ又は複数の組を有してもよく、例えば、すべての第二センサコンポーネントが共通サイズを有してもよく、或いは、所与のサイズの第二センサコンポーネントの組と、異なるサイズの第二センサコンポーネントの少なくとも別の組と、が存在してもよい。センサコンポーネントの形状は、実装環境に依存したものであってもよい。一例として、一実装形態においては、第一センサコンポーネントは、直径が約4cmであって、約3.5cmの高さと360μHの自己インダクタンスとを有する銅線の100巻回を有しており、他方、第二センサコンポーネントは、約6cm×7cmの銅プレートである。
図2Bは、一例によるセンサコンポーネントの第二構成202を示している。第二構成202は、第一センサコンポーネント222の第一の一次元アレイと、第一センサコンポーネント222の第二の一次元アレイと、を有し、この場合に、両方のアレイは、共通センサマウント212に取り付けられている。図2Aと同様に、第一の複数の第一センサコンポーネントは、誘導性計測値を提供するように構成されており、且つ、複数の第二センサコンポーネントは、静電容量性計測値を提供するように構成されている。図2Bのケースにおいては、センサコンポーネントのそれぞれの一次元アレイから、四つの計測値が記録されてもよい。
図2Cは、一例によるセンサコンポーネントの第三構成204を示している。このケースにおいては、第一センサコンポーネント224及び第二センサコンポーネント234は、組み合わせられ、且つ、センサマウント214に結合されている。例えば、これらは、共通電極構成において組み合わせられてもよい。これは、例えば、静電容量のみならずインダクタンスを計測するように構成されたプレート電極上において取り付けられたコイル又は螺旋形又は円錐形コイルを有してもよい。静電容量性及び誘導性計測の両方のために、同一の遮蔽体が使用されてもよい。或いは、この代わりに、センサコンポーネントの二つの組は、共通センサコンポーネント軸に沿ってアライメントされた別個のプレート内において取り付けられてもよい。第三構成204は、センサ密度及び計測対応性の増大という利点を有する。
図2D及び図2Eは、例によるインダクタンス及び静電容量計測値の二次元配列を提供するべく使用され得る二つの構成を示している。図2Dは、二次元においてインタリーブされた複数の第一センサコンポーネント226及び複数の第二センサコンポーネント236を示している。この例におけるセンサコンポーネントは、共通プレーン又はセンサマウント216内において配列されてもよい。或いは、この代わりに、図2Eの例は、例えば、共通プレーン又はセンサマウント218内において配列された第一センサコンポーネント228の二つの組及び第二センサコンポーネント238の二つの組などのように、それぞれのタイプのセンサコンポーネントのグループ化された組を有する平面状アレイを示している。
図2A〜図2Cに示されている構成は、一次元の平面状構成であるものとして示されているが、これらは、所与のエリア又は容積を有する対象領域の計測値を提供するべく、一次元、二次元、又は三次元において走査又は掃引されてもよい。以下、図3A〜図3Cを参照し、計測値を三次元において提供するための一つの構成について説明する。
図3Aは、対象領域325の一つ又は複数の電磁特性を計測するためのセンサ構成305の断面を示している。この例においては、対象領域325は、例えば、対象の物体を前記領域内において運動させることができる装置の内部を有してもよく、或いは、一つ又は複数の流体を搬送するパイプ又はコンジットを有してもよい。図3Aにおいては、一連のp個のセンサマウント315が、対象領域325の周囲の周りに配列されている。一実装形態においては、これらは、対象領域325を包囲する上部構造に結合されてもよい。別の実装形態においては、これらは、パイプ又はコンジットなどの対象領域を有する構造に個々に結合されてもよい。それぞれのセンサマウント315は、一つ又は複数の第一センサコンポーネント及び/又は一つ又は複数の第二センサコンポーネントを有する。例えば、それぞれのセンサマウントは、図2A〜図2Eに示されているセンサマウント210〜218内に示されているセンサコンポーネントの少なくとも一部分を有してもよい。
図3Bは、同一のセンサ構成305の側面図を示している。この例においては、センサマウント315のq個のリングが存在している。センサコンポーネントのサイズ及び/又は構成は、一つ又は複数のリングの間において変化してもよい。図3Cは、センサマウントの一つのリングを斜視図において示している。それぞれのリングのセンサマウント315は、互いに且つ/又は上部構造に結合されてもよく、或いは、これらは、対象領域を有する構造に取り付けられてもよい。p×qのセンサマウント315の組が、容積を取り囲んでいる。この結果、計測値が容積内の物体及び/又は流体について取得され得る。特定のケースにおいては、図2A〜図2Eにおいて使用されている構成のうちの任意のものが、図3Bに示されている長手方向軸に沿って適用されてもよく、例えば、図2A〜図2Eの水平方向軸に沿った分布が、図3Bの水平方向軸に沿って適用されてもよい。
上述のセンサシステムは、例えば、多相流を非侵襲的に計測及び/又は撮像するべく適用されてもよい。特定の例においては、センサコンポーネントは、装置の全体的な感度分布を最適化するべく、インタリーブされている。センタコンポーネントは、一次元、二次元、又は三次元の構成において配列されてもよい。例えば、単一プレーン内において統合されたセンサコンポーネントの組は、非導電性媒体と導電性媒体の任意の混合物を有する二次元撮像を許容する。この結果、統合された三次元センサにより、更に詳細な特徴判定が実現され得る。例えば、図3A及び図3Cの構成305は、任意の形状又は三次元容積のために提供されてもよい。例には示されていないいくつかの形状が可能である。
図4A〜図4Cは、図2A〜図3Cのうちのいずれか一つのセンサ構成と共に使用され得る信号プロセッサを示している。特定のケースにおいては、信号プロセッサは、図示されてはいないセンサ構成と共に使用されてもよい。又、信号プロセッサは、計測プロセッサと呼称されてもよい。
図4Aは、計測データの二つの組M1410及びM2420を示している。これは、図2A〜図2Eのコンポーネント220〜228及び230〜238のいずれかなどの複数の第一センサコンポーネント及び複数の第二センサコンポーネントからそれぞれ受け取られるデータであってもよい。特定の例においては、計測データの第一の組M1410は、誘導性計測値を有してもよく、且つ、計測データの第二の組M2420は、静電誘導性計測値を有してもよい。説明の容易性を目的として、データの二つの組が記述されているが、特定の実装形態においては、これらの組は、計測の単一の組に組み合わせられてもよい。例えば、組み合わせられたシステムは、様々な方法で表現され得る複素インピーダンス画像を生成してもよい。一例においては、特定の複素インピーダンス画像は、複素インピーダンス値を表す単一の画像であってもよい。一実装形態においては、計測データM1410及び/又はM2420は、例えば、センサコンポーネントに電気的に結合されたアナログ−デジタルコンバータから受け取られたデジタル電圧値を有してもよい。計測データの組M1410及びM2420は、信号プロセッサ430によって受け取られる。センサコンポーネントと信号プロセッサ430との間には、一つ又は複数の事前処理モジュールが存在してもよい。例えば、計測データM1410及びM2420は、例えば、増幅器、フィルタ(低域通過フィルタなど)、ラッチ、バッファ、積分器、トランシーバ、マルチプレクサなどのうちの一つ又は複数により、事前処理されてもよい。信号プロセッサ430は、計測データM1410及びM2420に基づいて一つ又は複数の電磁特性を判定するように構成されている。一つ又は複数の電磁特性の値が、計測データMOUT440として出力される。
例えば、信号プロセッサ430は、計測データの第一の組M1410に基づいて対象領域の導電率計測値を判定するように構成されてもよい。この導電率計測の一つ又は複数の値は、信号プロセッサ430により、計測データMOUT440として出力されてもよい。図4Aに示されていない特定のケースにおいては、信号プロセッサ430は、例えば、共有されたメモリ及び/又はストレージ装置を介したアクセスなどのように、別のコンポーネントによって判定された導電性計測値にアクセスしてもよい。又、信号プロセッサ430は、入力パラメータとして導電性計測を使用し、計測データM2420に基づいて誘電率計測値を判定するように構成されてもよい。この誘電率計測の一つ又は複数の値は、信号プロセッサ430により、計測データMOUT440として出力されてもよい。特定の例においては、信号プロセッサ430は、計測データM1410及びM2420に基づいて対象領域の複素導電率計測値を判定してもよく、且つ、これを計測データMOUT440として出力してもよい。次いで、計測データMOUT440は、導電性部分と誘電性部分との組合せを有する複合材料及び構造を含む対象領域内の材料及び構造を特徴判定するべく、使用されてもよい。
特定のケースにおいては、信号プロセッサ430によって判定された誘電率(透磁率)の推定値は、前記プロセッサによって使用される一つ又は複数のモデルにフィードバックされてもよい。例えば、誘電率の推定値は、後続の誘導性計測値を補正及び/又は較正するべく使用されてもよい。導電率と誘電率との間に相関が存在する特定の材料及び/又はプロセスが存在している。特定の例においては、この相関は、撮像の融合を更に改善するべく使用されてもよい。この結果、後続の導電率及び透磁率計測値の精度が改善され得る。一つのケースにおいては、判定された導電率、透磁率、及び誘電率計測値が対象領域の特徴判定の際に反復的且つ/又は確率的に収束するように使用される一つ又は複数の状態モデルが使用されてもよい。例えば、撮像プロセスの動的な側面を表すように、カルマンフィルタが計測値に対して適用されてもよい。特定の例においては、導電率及び/又は透磁率計測値及び誘電率計測値の生成は、別個のフェーズにおいて反復的に実行されてもよく、その他のケースにおいては、統合された再構築プロセスが使用されてもよい。
図4Bは、一つ又は複数の第一センサコンポーネント220及び一つ又は複数の第二センサコンポーネント230に対して通信自在に結合された信号プロセッサ430を示している。信号プロセッサ405は、計測インタフェース405を介してセンサコンポーネント220、230に通信自在に結合されている。計測インタフェース405は、信号プロセッサ430が、計測データM1410及びM2420を処理に適した形態において受け取ることができるように、一つ又は複数の電気的な且つ/又は集積された回路を有してもよい。一実装形態においては、計測インタフェース405は、デマルチプレクサ、増幅器、トランシーバ、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)アナログ−デジタルコンバータのうちの一つ又は複数を有してもよい。
図4Cは、一つ又は複数の信号をセンサコンポーネント220、230に提供するべく、信号コントローラ450が使用されている例を示している。図4Cにおいては、信号コントローラ450は、第一センサコンポーネント220の一つ又は複数及び第二センサコンポーネント230の一つ又は複数に対して通信自在に結合されている。その他の例においては、センサコンポーネントのそれぞれの組について、別個の信号コントローラが設けられてもよい。図4Cにおいては、信号コントローラ450は、計測インタフェース405を介してセンサコンポーネント220、230に通信自在に結合されている。このケースにおいては、計測インタフェース405は、FPGAアナログ−デジタルコンバータ、増幅器、トランシーバ、及びマルチプレクサのうちの一つ又は複数などの一つ又は複数の事前処理要素を有してもよい。一実装形態においては、信号コントローラ450は、信号プロセッサ430に対して通信自在に結合されている。このケースにおいては、信号プロセッサ430によって生成される一つ又は複数の信号は、信号プロセッサ430によって受け取られてもよい。これらの信号は、信号プロセッサ430によって実行される信号処理において使用されてもよい。或いは、この代わりに、その他の例において、一つ又は複数の信号が既定の関数及び/又は時間ベースに従って生成される場合には、信号は、信号プロセッサ430によって独立的に複製されてもよい。同様に、特定の例においては、信号コントローラ450は、信号プロセッサ430から、例えば、タイミング及び/又はセンサコンポーネント情報などのデータを受け取ってもよい。
図4Cにおいては、計測フェーズの少なくとも一部分において、第一信号を受け取るべく、第一センサコンポーネントの少なくとも一つ220−S1が選択される。例えば、第一センサコンポーネントが一つ又は複数のコイルを有する場合には、計測フェーズの少なくとも一部分において第一信号を受け取るように、特定のコイルが選択されてもよい。第一信号は、直流及び/又は交流であってもよい。交流が使用される場合には、第一信号は、一つ又は複数の周波数成分を有してもよい。このケースにおいては、特定の例において、例えば、計測フェーズの一部分Δtが特定の周波数成分と関連付けられるように、所定の周波数範囲が計測フェーズにおいて掃引されてもよい。図4Dに概略的に示されている一例455においては、計測フェーズの特定の一部分において駆動されるように、第一センサコンポーネントのうちの一つ220−S1が選択されてもよく、この場合に、計測値は、残りの第一センサコンポーネント220−S2を使用することにより、取得される。第一センサコンポーネントの組内の異なる第一センサコンポーネントは、例えば、図4Eにおいて矢印470によって示されているように、複数の第一センサコンポーネント(特定のケースにおいては、組のすべてのコンポーネント)がそれぞれ第一信号によって駆動されるように、計測フェーズのそれぞれの部分において反復的に選択されてもよい。第一信号は、実装形態及び計測要件に応じて、同一状態に留まってもよく、或いは、それぞれの第一センサコンポーネントごとに変化してもよい。別の例においては、第一信号によって駆動されるように構成された二つ以上の第一センサコンポーネントの組と、第一信号の印加に応答して計測を提供するように構成された二つ以上の第一センサコンポーネントの組と、を有してもよい。図4Fの例485には、これが示されている。計測値は、電圧及び電流計測値のうちの一つ又は複数として提供されてもよい。
類似の構成が、第二センサコンポーネント230について適用されてもよい。例えば、第二信号を受け取るように、第二センサコンポーネントの少なくとも一つ230−S1が選択されてもよい。例えば、第二センサコンポーネントが一つ又は複数の電極を有する場合には、計測フェーズの少なくとも一部分において第二信号を受け取るように、特定の電極が選択されてもよい。第二信号は、直流及び/又は交流であってもよい。これは、固定された又は変化する電圧が電極に印加されるという結果をもたらし得る。交流が使用される場合には、第二信号も、一つ又は複数の周波数成分を有してもよい。これは、第一信号と同一の周波数の範囲であってもよく、或いは、この代わりに、一つ又は複数の異なる周波数の範囲を有してもよい。一例においては、計測フェーズの特定の部分において駆動されるように、第二センサコンポーネントのうちの一つ230−S1が選択されてもよく、この場合に、計測値は、残りの第二センサコンポーネント230−S2を使用することにより、取得される。第二センサコンポーネントの組内の異なる第二センサコンポーネントは、複数の第二センサコンポーネント(特定のケースにおいては、組内のすべてのコンポーネント)がそれぞれ第二信号によって駆動されるように、計測フェーズのそれぞれの部分において反復的に選択されてもよい。第二信号は、実装形態及び計測要件に応じて、同一の状態に留まってもよく、或いは、それぞれの第二センサコンポーネントごとに変化してもよい。別の例においては、第二信号によって駆動されるように構成された二つ以上の第二センサコンポーネントの組と、第二信号の印加に応答して計測値を提供するように構成された二つ以上の第二センサコンポーネントの組と、を有してもよい。計測値は、電圧及び電流計測値のうちの一つ又は両方として提供されてもよい。誘導性及び静電容量性計測は、逐次的に実行されてもよい。第一及び第二信号のうちの一つ又は両方は、パルス及び/又は正弦波信号であってもよい。これらは、両方が同相状態にあってもよく、或いは、異なる位相を有してもよい。特定のケースにおいては、第一及び第二信号は、単一の信号の異なる成分を有してもよく、例えば、基礎をなす搬送波波形の二つの変調及び/又は共通信号の異なるDC及びAC成分を表してもよい。これは、誘導性及び静電容量性計測が同時に実行されるケースに該当し得る。
図5は、一例500による信号プロセッサ430の特定のサブモジュールを示している。図示のサブモジュールは、すべてを網羅していなくてもよく、その他のサブモジュールが提供されてもよく、且つ/又は、必要に応じて、サブモジュールは、省略されてもよい。図5の信号プロセッサ430は、導電率プロセッサ510と、誘電率プロセッサ530と、を有する。導電率プロセッサ510は、計測データM1410を受け取ると共に対象領域内の導電率分布C520を判定するように構成されている。又、導電率プロセッサ510は、透磁率分布P_e525を判定するように構成されてもよい。誘電率プロセッサ530は、少なくとも導電率分布C520を受け取るが、例えば、これは、導電率プロセッサ510に対して通信自在に結合されてもよい。誘電率プロセッサ530は、計測データM2420を受け取ると共に対象領域内の誘電率分布P_i540を判定するように構成されている。導電率分布C520、透磁率分布P_e525、及び誘電率分布P_i540のうちの一つ又は複数は、信号プロセッサの出力MOut440を形成してもよい。
一例においては、導電率プロセッサ510は、対象領域内の導電率分布C520を判定するべく、渦電流モデルを使用している。渦電流モデルは、ヤコビ行列を定義するべく、使用されてもよい。ヤコビ行列は、渦電流モデルに適用される有限要素法を使用することにより、定義されてもよい。次いで、ヤコビ行列及び計測データM1410は、一連の一次方程式において使用されてもよい。これらの一次方程式を解くことにより、対象領域内の導電率分布C520を判定してもよい。又、このプロセスは、対象領域内の透磁率分布P_e525を結果的にもたらし得る。又、その他の実装形態においては、逆問題を解決してシステムのモデルに基づいて導電率分布C520を判定するべく、非線形の方法が使用されてもよい。
一例においては、誘電率プロセッサ530は、対象領域内の誘電率分布P_i540を判定するべく、誘電率モデルを使用している。この誘電率モデルは、上述の分布C520などの導電率分布をパラメータの組として取得してもよい。誘電率モデルに適用される有限要素法を使用することにより、更なるヤコビ行列が定義されてもよい。更なるヤコビ行列は、ヤコビ行列が、計測された静電容量が誘電率に伴って変化する方式を表すことになることを表してもよい。この結果、更なるヤコビ行列及び計測データM2420は、一連の一次方程式において使用されてもよい。これらの一次方程式を解くことにより、対象領域内の誘電率分布P_i540を判定してもよい。又、以前と同様に、その他の実装形態においては、逆問題を解決してシステムのモデルに基づいて誘電率分布C520を判定するべく、非線形の方法が使用されてもよい。
図6は、信号プロセッサによって判定された一つ又は複数の電磁特性の値が断層撮影プロセッサによって使用され得る方式を示す一例600を示している。図6は、断層撮影プロセッサ610に対して通信自在に結合された図4Aの構成を示している。断層撮影プロセッサ610は、対象領域の、例えば、画像などの、トモグラムを生成するべく信号プロセッサによって出力される計測データMOUT440を受け取るように構成されている。図6に示されているように、断層撮影プロセッサ610は、対象領域の単一のスライス画像620(例えば、前記領域の平面状のエリアを表している)、対象領域の複数のスライス画像630(例えば、平面状のスライス内の容積を表している)、及び三次元表現640(例えば、対象領域の容積を表している)のうちの一つ又は複数を出力するように構成されてもよい。特定のケースにおいては、信号プロセッサ430及び/又は信号コントローラ450は、断層撮影プロセッサ610の制御下において動作してもよい。例えば、計測フェーズにおいて信号プロセッサ430によって生成されるデータは、特定のトモグラム620を生成するべく、断層撮影プロセッサ610によって使用されてもよく、この場合に、断層撮影プロセッサ610は、後続の計測フェーズを開始すると共に対象領域の別のスライスを表す別のトモグラムを取得するように、信号プロセッサ430のパラメータを制御する。図3A〜図3Cの装置315の場合には、断層撮影プロセッサ610は、対象領域325の異なるスライスを生成するように、センサマウント315−i、jのうちの一つ又は複数のセンサマウントの選択を制御してもよい。特定のケースにおいては、断層撮影プロセッサ610は、容積の一つ又は複数の電磁特性をマッピングするように、データの生成を制御してもよく、例えば、前記特性の値を表すボクセル(容積計測ピクセル)の生成を制御してもよい。これらは、例えば、別個の画像スライスの判定を伴うことなしに、容積空間内において直接的に算出されてもよい。特定のケースにおいては、画像又は容積は、例えば、ビデオのフレームとしてなどのように、特定の時間値との関連において生成されてもよい。三次元のケースにおいては、ボクセルは、三つの空間次元の値と時間との両方を有するドクセル(動的ボクセル)を有してもよい。又、断層撮影プロセッサ610は、信号プロセッサ4390に加えて、或いは、それ単独で、対象領域の特性値の二次元又は三次元画像を生成するべく、正規化及び/又は統計的処理などの事後処理を提供してもよい。図6の三次元表現640の例によって示されているように、断層撮影プロセッサ610の出力は、対象領域内に存在している一つ又は複数の物体の特性値の観察を可能にしてもよい。これは、例えば、計測及び/又は物体検出のために使用され得るであろう。
一例においては、図6の装置600は、統合された磁気誘導及び静電容量断層撮影(Integrated Magnetic Induction and Electrical Capacitance Tomography:IMIECT)装置を有してもよい。三次元において動作する場合に、この装置は、容積計測方式により、材料及び構造を特徴判定することができる。これらの多次元画像又は記録は、材料又は物体のフル複素インピーダンスマップを表現し得る。画像において、例えば、可変値、電磁特性の種類、及び動作の周波数を表現するべく、色が使用されてもよい。一つの単一画像内の複数の電磁特性を表すべく、単一の画像が使用される場合には、画像値は、例えば、複素インピーダンスの振幅を表してもよい。
図7Aは、IMIECT装置によって実行される磁気誘導断層撮影の三次元表現700を示している。図7Aの上部画像において示されているように、対象領域は、木製ブロック上において取り付けられた三つのアルミニウム試料720を有する空気又は自由空間の容積を有する。この場合には、4×4の平面状のアレイとして取り付けられた16個のコイルである複数の第一センサコンポーネント710は、三次元表面700を生成するために対象領域を検知すると共に計測値を提供するべく、使用されている。三次元表現700において、第一センサコンポーネントの位置は、715として表されている。次いで、画像部分725は、三つのアルミニウム試料720を表している。例えば、三次元表現は、対象領域内の導電率及び/又は透磁率値を表してもよい。この例においては、アルミニウムは、導電性であるが、木製ブロック及び取り囲んでいる空気空間は、導電性ではなく、アルミニウム試料を表す要素のみが、例えば、導電率及び/又は透磁率の三次元表現700において示されている。
図7Bは、第二センサコンポーネントの組を使用して非導電性及び/又は誘電性試料を撮像し得る方式を示している。図7Bは、IMIECT装置によって実行される静電容量性断層撮影の三次元表現705を示している。これは、上述の誘導性計測値に基づいて補正及び/又は較正された静電容量性断層撮影を有してもよい。図7Bの上部画像において示されているように、対象領域は、三つの木製試料730を有する空気又は自由空間の容積を有する。複数の第二センサコンポーネント740、この場合には、4×3の平面状アレイとして取り付けられた12個の電極が、三次元表現705を生成するべく、対象領域を検知すると共に計測を提供するために使用されている。この結果、画像部分735は、三つの木製試料730を表している。例えば、三次元表現は、対象領域内の誘電率又は誘電性特徴判定結果値を表してもよい。図7Bの対象領域が導電性要素及び/又は物体のみならず、木製試料をも収容していた場合には、木製試料の電磁特性の判定が困難である場合がある。現在の説明対象である特定の例は、対象領域内の検出された導体に基づいて静電容量性計測値を較正することにより、この問題に対処している。
以下、対象領域の、且つ/又は、前記領域内の物体の、一つ又は複数の電磁特性を計測するいくつかの例示用の方法について説明することとする。これらの例示用の方法は、上述の装置のうちのいずれかを使用することにより、実装されてもよい。或いは、この代わりに、方法は、その他の装置及び/又はシステムを使用することにより、実装されてもよい。
図8は、対象領域の一つ又は複数の電磁特性を計測する方法800を示している。ブロック810において、一つ又は複数の誘導性計測値が受け取られている。これらは、上述の第一センサコンポーネントの組からの複数の誘導性計測値を有してもよい。ブロック820において、受け取られた誘導性計測値に基づいて導電率分布が判定されている。ブロック830において、一つ又は複数の静電容量性計測値が受け取られている。これらは、上述の第二センサコンポーネントの組からの複数の静電容量性計測値を有してもよい。ブロック840において、誘電率分布が判定されている。これは、対象領域の誘電性特徴付けを判定するステップを有してもよい。誘電率分布は、一つ又は複数の静電容量性計測値に基づいて判定される。特定のケースにおいては、誘電率分布は、ブロック820において生成された導電率分布を使用することにより、判定され、例えば、対象の対象領域内における一つ又は複数のコンダクタンスの領域の存在に基づいて、補正及び/又は較正がブロック840に対して適用されてもよい。
一例においては、それぞれの計測値は、対象領域の異なる空間部分に対応したものであってもよい。例えば、計測値は、アレイのそれぞれの要素が対象領域内の特定のエリア又は容積に対応している多次元アレイを有してもよい。一つのケースにおいては、センサコンポーネントは、対象領域の空間部分とアライメントされてもよく、例えば、前記領域との関係において相対的な空間位置を有するように、配列されてもよい。センサコンポーネントからの計測値と対象領域の一部分との間のマッピングは、間接的なものであってもよい。図2A及び図2Dに示されているものなどのインタリーブされた構成を使用する際には、センサコンポーネントから受け取られた未加工のデータは、対象領域の特定の部分に対応するように処理されてもよい。例えば、図2A及び図2Dの八つのセンサコンポーネントのそれぞれの組からのデータは、4×4の計測値のアレイを提供するべく、補間されてもよい。図1C及び図1Dの装置115及び図3A〜図3Cの装置305のみならず、その他の平面状アレイアレイの場合には、対象領域の一部分は、センサコンポーネントの組により、いくつかのケースにおいては、第一又は第二信号によって駆動されていない複数のセンサコンポーネントにより、計測されてもよい。次いで、未加工の計測データは、特定の計測値を対象領域の一部分と関連付けるように相関させられてもよい。この相関は、上述のように、信号プロセッサ430及びトポグラフィプロセッサ610のうちの一つ又は両方によって実行される処理において、黙示的なものであってもよい。例えば、一次方程式の組用のヤコビ行列は、計測値を対象領域の特定の空間エリア又は容積と関連付けてもよい。
図9は、一例による一つ又は複数のセンサコンポーネントを駆動する方法を示している。この方法は、計測値を受け取るブロックを補完してもよい。これは、図4Cに示されている信号プロセッサ430と信号コントローラ450とのうちの一つ又は両方によって実装されてもよい。ブロック910において、センサコンポーネントが選択されている。図4D及び図4Eに示されているものなどのケースにおいては、これは、センサコンポーネントの組のうちの一つ又は複数の初期センサコンポーネントを選択するステップを伴ってもよい。図4Fに示されているものなどのケースにおいては、これは、トランスミッタセンサコンポーネントの組を選択するステップを伴ってもよい。このようなトランスミッタセンサコンポーネントは、一つの実装形態のために決定されてもよく(例えば、静的に指名されてもよく)、且つ/又は、複数のセンサコンポーネントのサブセットとして動的に選択されてもよい。ブロック920において、一つ又は複数の選択されたセンサコンポーネントは、信号S925によって駆動されている。これは、直流(DC)及び/又は交流(AC)の電流(並びに/或いは、電圧)をセンサコンポーネントに印加するステップを有してもよい。駆動信号S925は、周波数成分を有してもよく、例えば、特定の搬送波周波数を有する高周波信号を有してもよい。ブロック930において、計測値が、一つ又は複数のセンサコンポーネントから記録されている。これらは、一つ又は複数の駆動されたセンサコンポーネントを含まないセンサコンポーネントのサブセットを有してもよい。計測用のセンサコンポーネントのサブセットは、一つの実装形態のために決定されてもよく(例えば、静的に指名されてもよく)、且つ/又は、複数のセンサコンポーネントのサブセットとして動的に選択されてもよい。特定の実施形態においては、センサコンポーネントのサブセットは、統一性からの摂動を計測するように、単位電流によって駆動されてもよい。ブロック930において記録された計測値は、計測データMn940の一部を形成する。方法は、図9において点線矢印によって示されているように、反復されてもよい。図4D及び図4Eに示されているものなどのケースにおいては、ブロック910の反復においては、センサコンポーネントのシーケンスのうちの別のセンサコンポーネントが選択されてもよい。一つのケースにおいては、方法は、周波数範囲内の異なる周波数について反復されてもよく、例えば、信号S925は、ブロックの反復のために異なる搬送波周波数を有してもよい。一つのケースにおいては、方法は、例えば、xミリ秒ごとなどのように、特定の時間インターバルにおいて反復されてもよい。これらのケースにおいては、計測データMn940は、選択されたセンサコンポーネント、駆動周波数、及び時刻のうちの一つ又は複数によってインデックス付けされた組を有してもよい。
図10は、少なくとも図8のブロック820及び840を実装するべく使用され得る方法1000を示している。例えば、ブロック1020は、図8のブロック820に対応してもよく、且つ、ブロック1040は、図8のブロック840に対応してもよい。ブロック1020の第一サブブロック1022において、渦電流モデルにアクセスされている。モデルは、順問題に基づいたものであってもよい。モデルは、例えば、マクスウェルの補正を伴うアンペアの周回路の法則の微分バージョンなどのマクスウェルの方程式に基づいたものであってもよい。モデルは、磁気ベクトル電位Aの観点において制定されてもよく、ここで、次式の複素フェーザ表記法を使用することにより、正弦波波形励起の場合に、▽×A=Bであり、且つ、Bは、磁束密度である。
▽×((1/μ)▽×A)+iωσA=Js
ここで、σは、導電率であり、μは、透磁率であり、ωは、駆動信号の角周波数であり、▽は、回転演算子であり、且つ、Jsは、例えば、特定の例における励起コイルなどの一つ又は複数の第一センサコンポーネント内の印加された電流密度である。
サブブロック1024において、渦電流モデルに基づいて、ヤコビ行列にアクセスされ、且つ/又は、ヤコビ行列が生成される。例えば、ヤコビ行列は、一つ又は複数の第一センサコンポーネント内の誘発電圧の変化を導電率の変化の結果としてモデル化し得る。例えば、ヤコビ行列の要素は、次式のように表されてもよく、
Figure 2016524138
ここで、Vmnは、駆動された第一センサコンポーネントmによって励起された際の第一センサコンポーネントn内の計測電圧であり、σkは、ピクセルkの導電率であり、この場合に、ピクセルは、対象領域の特定の空間部分又はサブ領域を表しており、ΩDkは、例えば、対象領域の一部分の容積などのピクセルkと関連付けられた摂動の容積であり、且つ、Am及びAnは、それぞれ、第一コンポーネントmが電流I0によって励起されると共に第一センサコンポーネントnが単位電流によって励起された際の順問題用のソルバ(solver)の解である。順問題がソルバによって解かれた際に、ヤコビ行列の要素に入力される。次いで、入力されたヤコビ行列は、導電率分布を判定するべく使用されてもよい。特定の例においては、ヤコビ行列は、計測フェーズの前に、少なくとも部分的に入力されてもよい(且つ、特定の例においては、完全に入力されてもよい)。例えば、これは、計測パラメータの標準的な組が使用される場合に可能であり得る。このケースにおいては、サブブロック1024は、ヤコビ行列用の入力値をメモリ及び/又はデータストレージ装置から取得するステップを有してもよい。
サブブロック1026において、入力されたヤコビ行列は、一つ又は複数の一次方程式を解いて導電率分布を判定するべく、使用されている。これは、順(渦電流)問題と関連する逆問題に対する解を表し得る。例えば、線形応答式は、最小二乗法又はこれに類似したものを使用することにより、解かれてもよい。特定のケースにおいては、ティホノフ(Tikhonov)正規化が適用されている。これは、正規化項をヤコビ行列に追加するステップを有してもよい。例えば、一次方程式の以下の組が解かれてもよく、
Figure 2016524138
ここで、Jは、予め入力されたヤコビであり、Iは、単位行列であり、αは、正規化項であり、bは、センサ計測値の変化の組であり、且つ、xは、導電率分布の推定値である。本サブブロックにおいては、bは、(誘導性)計測データM11025を有してもよく、或いは、これに基づいて判定されてもよく、これは、図4A〜図4Cを参照して上述した計測データを有してもよい。
ブロック1020の結果は、一つ又は複数の次元における導電率分布である。上述のサブブロックは、多次元導電率分布の異なる次元部分を判定するべく、繰り返し反復されてもよい。この例においては、導電率分布は、ブロック1040において使用されている。
ブロック1040の第一サブブロック1042において、静電容量モデルにアクセスされている。この静電容量モデルは、例えば、次式に基づいた順モデルを有してもよく、
(σ+iωε0εr)▽φ=0
ここで、φは、電位であり、ωは、駆動信号の角周波数であり、σは、ブロック1020から受け取られた導電率分布であり、εrは、対象領域の誘電率であり、且つ、ε0は、真空の誘電率である。この結果、導電率情報は、静電容量順モデルに供給される。例えば、上述の式に基づいたこの順モデルを有限要素法(FEM)を使用することによって解くことによりサブブロック1044における更なるヤコビ行列の計算を結果的に取得してもよい。この更なるヤコビ行列(J)は、例えば、∂C=J∂εなどのように、誘電率が変化した際に計測された静電容量が変化する方式を表し得る。先程と同様に、可能な場合には、実装形態が付与された場合に、その値が先験的に判明しているパラメータに基づいて、更なるヤコビ行列の少なくとも一部分が既定されてもよい。更なるヤコビ行列の入力されたバージョンは、順(複素導電率)問題と関連する逆問題の解を表す一次方程式の組において使用されてもよい。サブブロック1046において、これらの一次方程式を解くことにより、誘電率分布の推定値を生成してもよい。この場合にも、一次方程式は、一次方程式が次式を有するように、ティホノフ正規化を使用することにより、正規化されてもよく、
Figure 2016524138
ここで、Jは、導電率分布を使用することによって判定される更なるヤコビ行列であり、Iは、単位行列であり、αは、正規化項であり、bは、センサ計測値の変化の組であり、且つ、xは、導電率分布の推定値である。本サブブロックにおいては、bは、(静電容量性)計測データM21045を有してもよく、或いは、これに基づいて判定されてもよく、これは、図4A〜図4Cを参照して上述したように計測データを有してもよい。
従って、ブロック1040の出力は、導電率補償された静電容量性撮像データを使用することによって構築される誘電率画像の再構築である。全体として、ブロック1020及び1040の出力は、フル複素インピーダンスマップ又は画像を判定するべく使用されてもよい。
特定の例においては、渦電流及び複素導電率モデルは、断層撮影モデルであってもよい。撮像されている物体又は試料が運動している場合には、それぞれの連続的な画像の間に存在する特定程度の相関が存在する場合がある。このケースにおいては、計測画像又はフレームの間の相関情報を含むように、一時的アルゴリズムが逆問題ソルバの一部として実装されてもよい。
本明細書において記述されている特定の例は、例えば、複合複数材料試料の材料特徴判定のために使用され得るインスツルメント及びプロセスなどの装置及び方法を提供する。例えば、本明細書において記述されている特定の装置及び方法によれば、誘電体部分と導電体部分の両方の組合せを有する対象領域内の材料の特徴判定が可能である。特定の装置は、統合された磁気誘導及び静電容量断層撮影(IMIECT)センサを提供する。このセンサは、物体又は材料の一つ又は複数の電磁特性を表す二次元又は三次元画像を提供し得る。特定の装置は、高及び低導電率材料と高導電率材料との両方について計測を実行する能力を有する。
特定の例においては、誘導性計測値を取得するべく、渦電流方法及びプロセッサが使用される。これらの計測値は、導電率及び/又は透磁率を判定するべく使用されてもよい。特定の方法及びプロセッサによれば、誘電性部分からの大きな影響を伴うことなしに、物体の導電性部分又は対象領域の一部分を監視することができる。これらの技法を使用することにより、対象領域内の導電体の存在が判定され得る。次いで、これは、静電容量性方法を使用して誘電性試料を正確に特徴判定するために、静電容量性計測を較正するべく使用されてもよい。例えば、特定の方法及びプロセッサによれば、導電体の存在下において誘電性コントラストを有する材料の特徴判定が可能である。これによれば、例えば、塩水又は金属の存在下における誘電性材料の特徴判定が可能である。この結果、塩水及び石油の二相流を搬送するポリマーシースによって被覆された金属コンジットの特徴判定が実行され得る。
特定の例によれば、静電容量性センサと渦電流(例えば、誘導性)センサとを組み合わせることによる複素導電率のマッピングが可能である。次いで、統合された装置の計測された出力を使用することにより、断層撮影データの融合が実行されてもよい。このシステムにおいては、渦電流方法は、誘電性の変動に対して相対的に感度が低く、且つ、静電容量性システムは、導電体が渦電流方法によって識別された場合に、誘電性材料をマッピングする。この結果、例えば、食塩水から金属に至るまでの範囲の導電体の存在下において、静電容量性撮像の、且つ、従って、誘電性特徴判定の、信頼性が向上する。導電体の存在が既知である場合には、誘電性試料を正確に特徴判定するべく、静電容量計測を較正することができる。
上述のように、本明細書における特定の例は、磁気誘導断層撮影(MIT)と静電容量性断層撮影(ECT)とを単一装置内において統合している。又、MITは、しばしば、電磁誘導断層撮影、電磁断層撮影(EMT)、又は渦電流断層撮影とも呼称される。磁気誘導を計測することにより、渦電流方法を使用し、センサフレームワークに収容された材料の導電率及び透磁率の非接触且つ非侵襲的な撮像が実行されてもよい。この撮像は、高導電率材料に対して容易に適用可能である。又、励起周波数を増大させることにより、低導電率試料を計測することもできる。この撮像は、静電容量性計測に基づいて静電容量性撮像を実行することにより、補完される。例えば、静電容量性撮像は、20MHz未満の周波数において誘電率の変動の影響を受けやすく、これらは、準静的磁界が、支配的であると共に、従って、誘電率との関係において誘導性計測値の精度を低減し得る場合である。従って、統合されたインスツルメントは、信号プロセッサであるのか又は信号プロセッサとセンサの組であるのかを問わず、電気特性の範囲全体に跨って計測する能力を有する。例えば、これによれば、誘電率に対する高感度を許容するためのMIT装置の適合が可能である。
本明細書において記述されている特定の例は、データ融合方式とマルチモード撮像方式とを使用している。例えば、図4A〜図4C及び図5及び図6の信号プロセッサ430は、磁気誘導と静電容量との両方に基づいた計測を受け取ってもよく、且つ、それぞれの計測値に対する誘電率及び/又は導電率の変化の影響が考慮されてもよい。
本明細書において記述されている特定の例は、ヤコビ行列を使用しており、この場合に、ヤコビ行列の要素は、ピクセル又はボクセルの、誘電率又は導電率並びに透磁率の変化との関係における、計測された静電容量又はインダクタンスの導関数を表してもよい。
本明細書において記述されている特定の例は、様々な産業的用途を有する。装置は、非接触及び非侵襲的なものであってもよい。これによれば、非破壊評価が可能である。これは、特に、導電性材料と誘電性材料との混合物が存在する場合に、産業プロセスの監視及び材料の特徴判定における利点を有する。又、本明細書において記述されている特定の例及び方法は、多相流のために使用されてもよい。以下、図10A及び図10Bを参照し、この例について説明する。
図10Aは、本明細書の特定の例において記述されている装置の例示用の用途1000を示している。コンジット1005は、多相流を搬送している。図10Aの多相流は、第一相1010、第二相1020、及び第三相1030という三つの相を有する。上述の装置のうちの一つを有し得る装置1015が、コンジット1005との関係において取り付けられている。装置1015は、例示の容易性を目的として、図10Aにおいては、連続体として示されているが、一実装形態においては、これは、図3A〜図3Cに示されているように、複数の個々のセンサマウントを有してもよい。図10Bは、同一用途の側面図を示している。この場合には、第一相1010は、入口1045を通じて受け取られ、且つ、第二及び第三相1020、1030は、入口1055を介して受け取られている。コンジット内において、これらの相は、図10Bにおいて示されているように、混合する。この結果、装置1005は、例において記述されている技法を使用することにより、この混合を撮像することができる。例えば、3相流は、第一相1010としてガスを、第二相1020として海水などの食塩水を、且つ、第三相1030として砂などの固体を、有してもよい。或いは、この代わりに、三相流は、第一相1010としてガスを、第二相1020として油を、且つ、第三相1020として海水などの食塩水を、有してもよい。食塩水は導電性であり、且つ、その他の相は誘電性であることから、これは、従来は、静電容量断層撮影又は磁気誘導断層撮影を使用して撮像するのが困難となるが、本明細書の例において記述されている統合された方式によれば、導電性側面と誘電性側面との両方の撮像が可能である。例えば、これらによれば、互いの中における一つの流体の濃度の、又は流体中の固体の分布の、計測が可能である。更には、これらによれば、コンジットが導電性材料と非導電性材料との組合せを有する状況においても、非侵襲的な方式により、これが可能である。又、類似の方式により、本明細書において記述されている技法は、海底ケーブルなどのケーブルを監視するべく適用されてもよい。これらの状況においては、導電性環境(例えば、砂及び/又は海水)中に、一つ又は複数の絶縁性要素(例えば、ポリマーシース)によって取り囲まれた導電性要素(例えば、銅コア)が存在し得る。これらの要素の異なる電磁特性は、本明細書において記述されている例を使用することにより、問題を伴うことなしに撮像され得る。
別の例示用の用途においては、対象領域は、異なる電磁特性を有する材料の混合物を有する構造を有してもよい。例えば、図1A及び図1Bに示されている装置110は、補強された鋼バーを有するコンクリート構造を撮像するべく使用されてもよい。このケースにおいては、本明細書において記述されている技法は、鋼要素の腐食を監視するのみならず、コンクリート構造の完全性を監視するべく、使用されてもよい。又、同様に、技法は、航空機又はウインドタービンコンポーネントなどの複合構造に対して適用されてもよい。例えば、これらは、複合炭素ファイバ及び/又はグラスファイバ構造内における大面積の衝撃損傷を調査するべく使用されてもよい。又、これらは、原子力産業において安全に適用されてもよい。更なる例として、これらの技法は、地球物理学的調査において導電性要素及び誘電性要素を撮像するべく使用されてもよい。これらの技法は、湿った土を伴う場合にも(これは、乾燥した土よりも大きな導電性を有する)、問題を伴うことなしに動作すると共に、埋設されたセラミック物体を、且つ、一般的には、金属及び誘電性コントラストの組合せを有する材料を、検出することができる。
以下、図12A、図12B、及び図12Cを参照し、テストケースについて説明することとする。このテストケースは、本明細書に記述されている特定の例を使用することにより、匹敵するECT撮像のケースとの比較において断層撮影撮像を改善し得る方式を示している。
図12Aは、試験構成の写真を示している。試験構成は、センサ構成1210を有する。センサ構成1210は、対象領域1225を有する。このセンサ構成1210は、図2A〜図2E又は図3A〜図3Cのうちのいずれか一つを参照して記述されているように構築されてもよい。例えば、センサ構成1210がセンサ構成305を有している場合には、対象領域325は、センサ構成1210の内部、即ち、対象領域1225、であってもよい。このテストケースにおいては、対象領域内に、絶縁性の木製ブロック1230及び導電性の金属ロッド1240という二つの試験試料が存在している。
図12Bは、匹敵するECTプロセッサからのテストケースにおける例示用の出力を示している。例えば、この匹敵するケースにおいては、ECT断層撮影装置は、電極と外部遮蔽体との間に半径方向のスクリーンを有する12個の電極を有してもよい。このECT断層撮影装置においては、それぞれの電極のサイズは、217×32mm2であってもよく、且つ、電極の間のスクリーンは、幅が3mmであってもよい。Process Tomography Limited(PLT)の300E ECT静電容量計測ユニットは、1.25MHzにおいて固定された励起周波数によって使用されてもよい。12個のチャネルは、相互間静電容量(inter-capacitance)を計測するべく電極に接続されてもよい。図12Bは、このような装置からの匹敵する出力を示している。これは、ECT処理が空気の基準計測によって実行されている断層撮影画像を示している。観察し得るように、導電性材料と絶縁性材料との混合物の撮像は、可能ではなく、匹敵する出力画像は、大部分がブランクであり、いくつかのノイズのエリアを伴っている。
図12Cは、本明細書において記述されている例示用の断層撮影プロセッサを使用した際のテストケースにおける例示用の出力を示しており、例えば、これは、トモグラム620などの例の出力600であってもよい。このケースにおいては、導電性材料の、即ち、導電性金属ロッド1240の、存在及び場所は、導電率の推定によって対処されており、且つ、例示用の出力が、一つ又は複数の静電容量性計測値と共に、この導電率の推定を使用することにより、生成されている。例えば、トモグラムは、本明細書において記述されている推定された誘電率計測値に基づいて、生成されてもよい。図12Cに示されている出力を図12Bに示されている出力と比較すれば、絶縁性の木製ブロック1230の存在及び場所が、図12Cのエリア1250において明瞭に示されており、且つ、導電性の金属ロッド1240の存在及び場所が、エリア1255によって示されているように、導電率の推定値から弁別されている。換言すれば、例えば、導電率推定値を含むように更新されたものなどの更新済みのバックグラウンドデータ及び順モデルは、図12Cに示されている明瞭な誘電率の分布を提供する。
本明細書に記述されている特定の技法は、電磁特性を計測するべく使用されてもよい。これらは、導電率、透磁率、誘電率、及び複素インピーダンスのうちの一つ又は複数を含む受動型の電磁特性であってもよい。例えば、本明細書において記述されている装置及び/又は信号プロセッサは、誘電率及び導電率を含む電気インピーダンスをマッピングする能力を有してもよい。本明細書において記述されている特定の例においては、計測が複数の周波数において実行されており、この結果、上述の受動型電磁特性の分光分析が促進される。特定のケースにおいては、本明細書において記述されている計測値は、微分的なものであってもよく、例えば、これらの計測値は、正常な計測値の間の変化又は既知の値の組からの逸脱を表してもよい。
本明細書に記述されている一例によれば、対象領域の一つ又は複数の電磁特性を判定する装置が提供され、装置は、対象領域に対応する一つ又は複数の誘導性計測値及び対象領域に対応する一つ又は複数の静電容量性計測値を受け取る少なくとも一つの計測インタフェースと、少なくとも一つの計測インタフェースに対して通信自在に結合され、且つ、少なくとも受け取った一つ又は複数の誘導性計測値に基づいて導電率の推定値を取得すると共に少なくとも導電率の推定値及び受け取った一つ又は複数の静電容量性計測値を使用して誘電率計測値を判定するべく構成された信号プロセッサと、を有する。
特定の例においては、信号プロセッサは、前記一つ又は複数の誘導性計測値を使用して前記一つ又は複数の静電容量性計測値を較正するように、構成されている。信号プロセッサは、対象領域の複数のサブ領域について導電率の推定値を判定すると共に静電容量性計測値と関連付けられたヤコビ行列を判定するように構成されてもよく、ヤコビ行列は、導電率の推定値に基づいて補償される。又、信号プロセッサは、導電率、透磁率、誘電率、及び複素インピーダンスのうちの一つ又は複数のものの計測値を出力するように構成されてもよい。
特定の例においては、装置は、信号プロセッサに対して通信自在に結合されていると共に対象領域内の一つ又は複数の電磁特性の空間分布をマッピングするように構成されたトポロジープロセッサを有する。
一つのケースにおいては、装置は、少なくとも一つの計測インタフェースに対して電気的に結合された一つ又は複数の第一センサコンポーネントであって、第一信号の印加の際に装置の近傍の対象領域に対応する誘導性計測値を提供するように構成された少なくとも一つの第一センサコンポーネントと、少なくとも一つの計測インタフェースに対して電気的に結合された一つ又は複数の第二センサコンポーネントであって、第二信号の印加の際に装置の近傍の対象の前記領域に対応する静電容量性計測値を提供するように構成された少なくとも一つの第二センサコンポーネントと、を有する。第一及び第二信号のうちの一つ又は両方は、少なくとも一つの周波数成分を有してもよい。このケースにおいては、信号コントローラは、一つ又は複数の第一信号を第一センサコンポーネントのうちの一つ又は複数に供給するように構成されてもよく、この場合に、計測フェーズにおいては、第一センサコンポーネントのうちの少なくとも一つが、前記第一信号を送信し、且つ、一つ又は複数の誘導性計測値が、少なくとも一つのその他の第一センサから記録され、且つ、第二信号を第二センサコンポーネントの一つ又は複数に供給するように構成されてもよく、この場合に、計測フェーズにおいて、第二センサのうちの少なくとも一つが、前記第二信号を送信し、且つ、一つ又は複数の静電容量性計測値が、少なくとも一つのその他の第二センサコンポーネントから記録される。又、信号コントローラは、一つ又は複数の第一信号を第一センサコンポーネントのそれぞれに供給するように構成されてもよく、複数の第一センサコンポーネントのうちのその他の第一センサコンポーネントの組は、複数の誘導性計測値を提供するべく使用され、且つ、第二信号を第二センサコンポーネントのそれぞれに供給するように供給するように構成されてもよく、複数の第二センサコンポーネントのうちのその他の第二センサコンポーネントの組は、複数の静電容量性計測値を提供するべく使用される。いくつかの実装形態においては、信号コントローラは、第一及び第二信号を信号プロセッサに伝達するように構成されており、且つ、信号プロセッサは、対象領域の一つ又は複数の電磁特性を判定する際に前記信号を使用するように、構成されている。
上述のケースにおいては、複数の第一センサコンポーネント及び複数の第二センサコンポーネントのうちの一つ又は複数は、複数の電圧計測値を提供するように構成されてもよい。いくつかの実装形態においては、第一センサコンポーネントは、第二センサコンポーネントとインタリーブされている。第一センサコンポーネント及び第二センサコンポーネントは、共通電極構成において組み合わせられてもよい。これらは、一つ又は複数の対応する平面状アレイとして構成されてもよいと共に/又は、絶縁体(例えば、非接触)により、対象領域から電気的に分離又は隔離されてもよい。
特定のケースにおいては、信号プロセッサは、誘電率計測値を使用して後続の導電率の推定値を取得するように、構成されている。
本明細書において記述されている一例によれば、対象領域の一つ又は複数の電磁特性を計測する方法が提供され、方法は、対象領域に対応する一つ又は複数の誘導性計測値を受け取るステップと、少なくとも受け取った誘導性計測値に基づいて対象領域内の導電率の分布を判定するステップと、対象領域に対応する一つ又は複数の静電容量性計測値を受け取るステップと、少なくとも導電率の分布及び一つ又は複数の静電容量性計測値を使用して対象領域内の誘電率の分布を判定するステップと、を有する。導電率の分布を判定するステップは、受け取った誘導性計測値に基づいて対象領域内の透磁率の分布を判定するステップを有してもよい。方法の出力は、判定された分布に基づいた対象領域の複素インピーダンスマップであってもよい。方法は、コンピュータプログラムとして提供されてもよい。
一つのケースにおいては、センサコンポーネントは、対象領域とアライメントされており、且つ、一つ又は複数の誘導性計測値を受け取るステップと一つ又は複数の静電誘導性計測値を受け取るステップとのうちの一つ又は複数は、複数のセンサコンポーネントのうちの一つ又は複数のセンサコンポーネントを信号によって駆動するステップと、複数のセンサコンポーネントのうちの一つ又は複数のその他のセンサコンポーネントにおいて応答を計測するステップと、を有する。信号は、少なくとも一つの周波数成分を有してもよい。このケースにおいては、一つ又は複数のセンサコンポーネントを駆動するステップは、一つ又は複数のセンサコンポーネントを複数の信号によって駆動するステップを有してもよく、それぞれの信号は、異なる周波数成分を有し、且つ、この場合に、前記分布は、一つの周波数ドメインについて判定される。
一例においては、分布を判定するステップは、対象領域内の電磁特性の空間分布を表す画像を判定するステップ及び/又は対象領域内の電磁特性の容積計測分布を表す三次元画像を判定するステップを有する。
特定のケースにおいては、方法は、反復されており、この場合に、対象領域内の導電率の分布を判定するステップは、誘電率の予め判定された分布を使用するステップを有する。
本明細書において記述されている一例によれば、対象領域の一つ又は複数の電磁特性を計測する装置が提供され、装置は、平面状アレイとして配列された複数の第一センサコンポーネントであって、第一センサコンポーネントは、第一信号の印加の際に装置の近傍の対象領域に対応する誘導性計測値を提供するように構成されており、誘導性計測値は、対象領域上において磁気誘導断層撮影を実行するべく使用される、複数の第一センサコンポーネントと、平面状アレイとして一つ又は複数の第一センサコンポーネントと統合された複数の第二センサコンポーネントであって、第二センサコンポーネントは、第二信号の印加の際に装置の近傍の対象領域に対応する静電容量性計測値を提供するように構成されており、静電容量性計測値は、対象領域上において静電容量断層撮影を実行するように使用される、複数の第二センサコンポーネントと、を有する。複数の第一センサコンポーネントは、複数の第二センサコンポーネントとインタリーブされてもよく、且つ/又は、第一センサコンポーネント及び第二センサコンポーネントは、共通電極構成において組み合わせられている。複数の第一センサコンポーネント及び複数の第二センサコンポーネントは、絶縁体により、対象領域から電気的に分離されてもよい。
記述されている一つの例によれば、対象領域の一つ又は複数の電磁特性を計測する装置が提供され、装置は、平面状アレイにおいて構成された複数の第一センサコンポーネントであって、第一センサコンポーネントは、第一信号の印加の際に装置の近傍の対象領域に対応する誘導性計測値を提供するように構成されており、誘導性計測値は、対象領域上の磁気誘導断層撮影を実行するべく使用される、複数の第一センサコンポーネントと、平面状アレイとして一つ又は複数の第一センサコンポーネントと統合された複数の第二センサコンポーネントであって、第二センサコンポーネントは、第二信号の印加の際に装置の近傍の前記対象領域に対応する静電容量性計測値を提供するように構成されており、静電容量性計測値は、対象領域上において静電容量断層撮影を実行するべく使用される、複数の第二センサコンポーネントと、を有する。
特定のケースにおいては、複数の第一センサコンポーネントは、複数の第二センサコンポーネントとインタリーブされている。特定のケースにおいては、第一センサコンポーネント及び第二センサコンポーネントは、共通電極構成において組み合わせられている。複数の第一センサコンポーネント及び複数の第二センサコンポーネントは、絶縁体により、対象領域から電気的に分離されてもよい。
図面を参照して本明細書において記述されている例の少なくともいくつかの態様は、一つ又は複数の処理システム或いは一つ又は複数のプロセッサ内において稼働するコンピュータプロセスを使用することにより、実装されてもよい。例えば、これらの処理システム又はプロセッサは、信号プロセッサ430、信号コントローラ450、及び/又はその他の記述されているコンポーネントを実装してもよい。又、これらの態様は、態様を実施に移すべく適合されたコンピュータプログラム、特に、担持体の上部の又は内部のコンピュータプログラムに拡張されてもよい。プログラムは、本発明によるプロセスの実装における使用に適した一時的ではないソースコード、オブジェクトコード、コード中間ソース、及び部分的にコンパイルされた形態のものなどのオブジェクトコードの形態であってもよく、或いは、任意のその他の一時的ではない形態であってもよい。担持体は、プログラムを担持する能力を有する任意のエンティティ又は装置であってもよい。例えば、担持体は、半導体ドライブ(Solid-State Drive:SSD)又はその他の半導体に基づいたRAM、例えば、CD ROMや半導体ROMなどのROM、例えば、フロッピーディスク又はハードディスクなどの磁気記録媒体、一般的な光メモリ装置などのようなストレージ媒体を有してもよい。
同様に、本明細書において参照されている任意の装置は、実際には、任意選択により、チップセット、特定用途向け集積回路(Application-Specific Integrated Circuit:ASIC)、フィールドプログラマブルゲートアレイ(Field-Programmable Gate Array:FPGA)などとして提供される、単一のチップ又は集積回路或いは複数のチップ又は集積回路によって提供されてもよいことを理解されたい。一つ又は複数のチップは、上述の少なくとも一つのデータプロセッサ又は複数のプロセッサを実施するための回路(のみならず、恐らくは、ファームウェア)を有してもよく、これらは、記述されている例に従って動作するように構成可能である。この観点において、記述されている例は、少なくとも部分的に、(一時的ではない)メモリ内に保存されたコンピュータソフトウェアによって実装されてもよく、且つ、プロセッサにより、或いは、ハードウェアにより、或いは、有体の方式で保存されたソフトウェア及びハードウェア(並びに、有体の方式で保存されたファームウェア)の組合せにより、実行可能であってもよい。
上述の例は、例示を目的としたものとして理解されたい。更なる例が想定される。例において提示されている任意の値又は数値は、説明の容易性を目的としたものであり、且つ、いくつかの可能な実装形態のなかの一つの実装形態の単純化を表し得る。方法であるか装置であるかを問わず、例のうちのいずれかの例の任意の記述されている特徴は、方法であるか装置であるかを問わず、任意のその他の例に対して適用されてもよい。例えば、任意の一つの例との関係において記述されている任意の特徴は、単独で、或いは、記述されているその他の特徴との組合せにおいて、使用されてもよく、且つ、例のうちの任意のその他の例の一つ又は複数の特徴との、或いは、例のうちの任意のその他の例の任意の組合せとの、組合せにおいて、使用されてもよいことを理解されたい。更には、添付の請求項において定義されている本発明の範囲を逸脱することなしに、上述されていない均等物又は変更が実施されてもよい。

Claims (25)

  1. 対象領域の電磁特性を判定する装置であって、
    該対象領域に対応する一つ又は複数の誘導性計測値と、該対象領域に対応する一つ又は複数の静電容量性計測値と、を受け取る少なくとも一つの計測インタフェースと
    該少なくとも一つの計測インタフェースに対して通信自在に結合され、少なくとも該受け取った一つ又は複数の誘導性計測値に基づいて導電率の推定値を取得すると共に少なくとも該導電率の推定値と該受け取った一つ又は複数の静電容量性計測値とを使用して誘電率計測値を判定するように構成された信号プロセッサと、
    を具備する装置。
  2. 該信号プロセッサは、該一つ又は複数の誘導性計測値を使用して該一つ又は複数の静電容量性計測値を較正するように構成されている、請求項1に記載の装置。
  3. 該信号プロセッサは、該対象領域の複数のサブ領域の導電率の推定値を判定すると共に該静電容量性計測値と関連付けられたヤコビ行列を判定するように構成されており、該ヤコビ行列は、該導電率の推定値に基づいて補償される、請求項1又は請求項2に記載の装置。
  4. 該信号プロセッサに対して通信自在に結合されると共に該対象領域内の一つ又は複数の電磁特性の空間分布をマッピングするように構成されたトポロジープロセッサを有する、請求項1から請求項3までのいずれか一項に記載の装置。
  5. 該信号プロセッサは、該対象領域に対応する該一つ又は複数の誘導性計測値と、該対象領域に対応する該一つ又は複数の静電容量性計測値と、のうちの少なくとも一つに基づいて、導電率、透磁率、誘電率、及び複素インピーダンスのうちの一つ又は複数の計測値を出力するように構成されている、請求項1から請求項4までのいずれか一項に記載の装置。
  6. 該少なくとも一つの計測インタフェースに対して電気的に結合された一つ又は複数の第一センサコンポーネントであって、第一信号の印加の際に該装置の近傍の対象領域に対応する誘導性計測値を提供するように構成された少なくとも一つの第一センサコンポーネントと、
    該少なくとも一つの計測インタフェースに対して電気的に結合された一つ又は複数の第二センサコンポーネントであって、第二信号の印加の際に該装置の近傍の前記対象領域に対応する静電容量性計測値を提供するように構成された少なくとも一つの第二センサコンポーネントと、
    を具備する、請求項1から請求項5までのいずれか一項に記載の装置。
  7. 該第一センサコンポーネントのうちの一つ又は複数に対する該第一信号であって、計測フェーズにおいて、該第一センサコンポーネントのうちの少なくとも一つが、該第一信号を送信し、且つ、一つ又は複数の誘導性計測値が、少なくとも一つのその他の第一センサコンポーネントから記録される、第一信号と、
    該第二センサコンポーネントのうちの一つ又は複数に対する該第二信号であって、計測フェーズにおいて、該第二センサコンポーネントのうちの少なくとも一つが、該第二信号を送信し、且つ、一つ又は複数の静電容量性計測値が、少なくとも一つのその他の第二センサコンポーネントから記録される、第二信号と、
    のうちの一つ又は複数を供給するように構成された信号コントローラを具備する、
    請求項6に記載の装置。
  8. 該信号コントローラは、
    該第一センサコンポーネントのそれぞれに対する該第一信号であって、該複数の第一センサコンポーネントのうちのその他の第一センサコンポーネントの組は、複数の誘導性計測値を提供するべく使用される、第一信号と、
    該第二センサコンポーネントのそれぞれに対する該第二信号であって、該複数の第二センサコンポーネントのうちのその他の第二センサコンポーネントの組は、複数の静電容量性計測値を提供するべく使用される、第二信号と、
    のうちの一つ又は複数を交互に供給するように構成されている、
    請求項7に記載の装置。
  9. 該信号コントローラは、該第一及び第二信号を該信号プロセッサに伝達するように構成されており、且つ、該信号プロセッサは、該対象領域の一つ又は複数の電磁特性を判定する際に該第一及び第二信号を使用するように構成されている、請求項7又は請求項8に記載の装置。
  10. 該第一及び第二信号のうちの一つ又は複数は、少なくとも一つの周波数成分を有する、請求項6から請求項9までのいずれか一項に記載の装置。
  11. 該複数の第一センサコンポーネントと該複数の第二センサコンポーネントとのうちの一方又は両方は、複数の電圧計測値を提供するように構成されている、請求項6から請求項10までのいずれか一項に記載の装置。
  12. 該第一センサコンポーネントは、該第二センサコンポーネントとインタリーブされている、請求項6から請求項11までのいずれか一項に記載の装置。
  13. 一つの第一センサコンポーネントと一つの第二センサコンポーネントとは、共通電極構成において組み合わせられている、請求項6から請求項11までのいずれか一項に記載の装置。
  14. 該複数の第一センサコンポーネントと該複数の第二センサコンポーネントとのうちの一方又は両方は、一つ又は複数の対応する平面状アレイとして構成されている、請求項6から請求項13までのいずれか一項記載の装置。
  15. 該複数の第一センサコンポーネントと該複数の第二センサコンポーネントとは、絶縁体により、該対象領域から電気的に分離されている、請求項6から請求項14までのいずれか一項に記載の装置。
  16. 該信号プロセッサは、該誘電率計測値を使用して後続の導電率の推定値を取得するように構成されている、請求項1から請求項15までのいずれか一項に記載の装置。
  17. 対象領域の電磁特性を計測する方法であって、
    該対象領域に対応する一つ又は複数の誘導性計測値を受け取るステップと、
    少なくとも該受け取った誘導性計測値に基づいて該対象領域内の導電率の分布を判定するステップと、
    該対象領域に対応する一つ又は複数の静電容量性計測値を受け取るステップと、
    少なくとも該導電率の分布と該一つ又は複数の静電容量性計測値とを使用して該対象領域内の誘電率の分布を判定するステップと、
    を具備する方法。
  18. 導電率の分布を判定するステップは、該受け取った誘導性計測値に基づいて該対象領域内の透磁率の分布を判定するステップを具備する、請求項17に記載の方法。
  19. 該判定された分布に基づいて該対象領域の複素インピーダンスマップを判定するステップを具備する、請求項17又は請求項18に記載の方法。
  20. センサコンポーネントは、該対象領域とアライメントされており、且つ、一つ又は複数の誘導性計測値を受け取るステップと一つ又は複数の静電容量性計測値を受け取るステップとのうちの一つ又は両方は、
    該複数のセンサコンポーネントのうちの一つ又は複数のコンポーネントを信号によって駆動し、且つ、該複数のセンサコンポーネントのうちの一つ又は複数のその他のセンサコンポーネントにおける応答を計測するステップ、
    を具備する、請求項17から請求項19までのいずれか一項に記載の方法。
  21. 前記信号は、少なくとも一つの周波数成分を有する、請求項20に記載の方法。
  22. 一つ又は複数のセンサコンポーネントを駆動するステップは、一つ又は複数のセンサコンポーネントを複数の信号によって駆動するステップを具備し、それぞれの信号は、異なる周波数成分を有し、且つ、前記分布は、一つの周波数ドメインについて判定される、請求項21に記載の方法。
  23. 分布を判定するステップは、該対象領域内の電磁特性の空間分布を表す画像を判定するステップを具備する、請求項17から請求項22までのいずれか一項に記載の方法。
  24. 分布を判定するステップは、該対象領域内の電磁特性の容積計測分布を表す三次元画像を判定するステップを具備する、請求項17から請求項23までのいずれか一項に記載の方法。
  25. 該方法の各ステップを反復するステップを有し、該対象領域内の導電率の分布を判定するステップは、予め判定された誘電率の分布を使用するステップを具備する、請求項17から請求項24までのいずれか一項に記載の方法。
JP2016513433A 2013-05-13 2014-05-13 電磁特性を計測する装置及び方法 Pending JP2016524138A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1308551.9 2013-05-13
GB1308551.9A GB2514114A (en) 2013-05-13 2013-05-13 Apparatus and method for measuring electromagnetic properties
PCT/GB2014/051460 WO2014184536A1 (en) 2013-05-13 2014-05-13 Apparatus and method for measuring electromagnetic properties

Publications (1)

Publication Number Publication Date
JP2016524138A true JP2016524138A (ja) 2016-08-12

Family

ID=48672215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016513433A Pending JP2016524138A (ja) 2013-05-13 2014-05-13 電磁特性を計測する装置及び方法

Country Status (8)

Country Link
US (1) US20160091448A1 (ja)
EP (1) EP2997357A1 (ja)
JP (1) JP2016524138A (ja)
KR (1) KR20160007642A (ja)
CN (1) CN105393113A (ja)
CA (1) CA2911980A1 (ja)
GB (1) GB2514114A (ja)
WO (1) WO2014184536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144876A1 (ja) * 2020-01-15 2021-07-22 朝日インテック株式会社 測定装置、検出装置、および測定方法
JP2022511176A (ja) * 2019-09-24 2022-01-31 青島理工大学 コンクリート部材の内部水分透過を監視するためのectセンサー,システム及びプロセス

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140361793A1 (en) 2013-05-30 2014-12-11 Tech4Imaging Llc Interactive and Adaptive Data Acquisition System for Use with Electrical Capacitance Volume Tomography
US9110115B2 (en) 2013-08-13 2015-08-18 Tech4Imaging Llc Modular stretchable and flexible capacitance sensors for use with electrical capacitance volume tomography and capacitance sensing applications
JP6583829B2 (ja) * 2014-02-25 2019-10-02 学校法人北里研究所 画像生成装置
US10295618B2 (en) 2014-09-19 2019-05-21 Hitachi Metals, Ltd. Magnetic permeability sensor and magnetic permeability detecting method, dielectric permittivity sensor and dielectric permittivity detecting method, and magnetic permeability and dielectric permittivity sensor and magnetic permeability and dielectric permittivity detecting method
JP6613599B2 (ja) * 2015-03-19 2019-12-04 日立金属株式会社 透磁率・誘電率センサ及び透磁率・誘電率検出方法
US9901282B2 (en) 2015-04-27 2018-02-27 Tech4Imaging Llc Multi-phase flow decomposition using electrical capacitance volume tomography sensors
DE102015214596A1 (de) * 2015-07-31 2017-02-02 Robert Bosch Gmbh Verfahren zum Ermitteln einer Position eines Rotors einer elektrischen Maschine
US10488236B2 (en) 2016-02-23 2019-11-26 Tech4Imaging Llc Velocity vector field mapping using electrical capacitance sensors
US9958408B2 (en) 2016-05-11 2018-05-01 Tech4Imaging Llc Smart capacitance sensors for use with electrical capacitance volume tomography and capacitance sensing applications
US10281422B2 (en) 2016-09-12 2019-05-07 Tech4Imaging Llc Displacement current phase tomography for imaging of lossy medium
US11083393B2 (en) * 2017-02-06 2021-08-10 The Regents Of The University Of California Non-contact tomographic imaging and thin film sensors for sensing permittivity changes
US10502655B2 (en) 2017-03-07 2019-12-10 Tech4Imaging Llc Magnetic pressure sensors system for measurement and imaging of steel mass
US10705043B2 (en) 2017-05-31 2020-07-07 Tech4Imaging Llc Multi-dimensional approach to imaging, monitoring, or measuring systems and processes utilizing capacitance sensors
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC NEURO-ACTIVATION PROCESS AND APPARATUS
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
WO2019133997A1 (en) 2017-12-31 2019-07-04 Neuroenhancement Lab, LLC System and method for neuroenhancement to enhance emotional response
US11598739B2 (en) 2018-03-13 2023-03-07 Penny Precision Llc Methods and systems for high fidelity electrical tomographic processes
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11300558B2 (en) * 2018-06-14 2022-04-12 Nokomis, Inc. Apparatus and system for spectroscopy and tomography of fragile biologic materials
CN113382683A (zh) 2018-09-14 2021-09-10 纽罗因恒思蒙特实验有限责任公司 改善睡眠的系统和方法
CN110221230B (zh) * 2019-06-26 2020-12-11 中国人民解放军火箭军工程大学 一种交变电流磁光调制下调制器磁场分析方法
CN111435126A (zh) * 2019-12-17 2020-07-21 华北电力大学 基于图像融合技术的多参数电磁层析成像装置及方法
GB2590662B (en) 2019-12-23 2022-10-12 Flodatix Ltd Electromagnetic sensor
GB2590907B (en) * 2019-12-23 2022-02-09 Flodatix Ltd Method and apparatus for monitoring a multiphase fluid
CN111398369B (zh) * 2020-03-26 2022-09-16 青岛理工大学 一种ect传感器结构优化与电磁场分析方法
CN112013910B (zh) * 2020-08-27 2021-06-25 深圳市宏电技术股份有限公司 一种排水管网流量检测方法、装置、服务器和存储介质
DE102021103803A1 (de) 2021-02-18 2022-08-18 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zur Erfassung materialinterner mechanischer Zustände eines Werkstücks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046777A (ja) * 1998-07-27 2000-02-18 Marcom:Kk 高周波容量式水分計
JP2006214941A (ja) * 2005-02-04 2006-08-17 Kri Inc コンクリート含有成分測定装置および測定方法
US20060255276A1 (en) * 2005-04-15 2006-11-16 Alessandro Manneschi Device for analyzing the composition of the contents of a container
JP2007527988A (ja) * 2003-06-11 2007-10-04 コンサルトユーロープ リミテッド リミテッド ライアビリティー ジョイント ストック キャパシタンス及び磁気センサアレイを備えたセキュリティスキャナ
JP2009520549A (ja) * 2005-12-22 2009-05-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気誘導断層撮影のシステムおよび方法
EP2416127A1 (en) * 2010-07-14 2012-02-08 Politechnika Lodzka A method and a device for measuring component fractions in a multi-phase flow

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815010A1 (de) * 1988-04-30 1989-11-09 Leybold Ag Schaltungsanordnung fuer den kombinierten einsatz einer induktiven und einer kapazitiven einrichtung fuer die zerstoerungsfreie messung des ohmschen wiederstands duenner schichten
DE10253154A1 (de) * 2002-11-14 2004-05-27 Siemens Ag Messgerät zur Bestimmung eines Analyten in einer Flüssigkeitsprobe
US7119553B2 (en) * 2003-06-11 2006-10-10 Konsulteurope Limited Limited Joint Stock Company Security scanners with capacitance and magnetic sensor arrays
US7740424B2 (en) * 2006-02-15 2010-06-22 Battelle Memorial Institute Article separation apparatus and method for unit operations
US8892200B2 (en) * 2006-06-19 2014-11-18 Highland Instruments, Inc. Systems and methods for stimulating tissue using focused energy
US20140357934A1 (en) * 2013-05-30 2014-12-04 Highland Instruments, Inc. Systems and methods for changing tissue impedance in a region of a biologically generated field
BR112016025543B1 (pt) * 2014-05-01 2022-08-02 Halliburton Energy Services, Inc Método para controlar produção multilateral e sistema de controle de produção multilateral
US9839382B2 (en) * 2015-05-18 2017-12-12 Pacesetter, Inc. Device and method for sensing blood glucose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046777A (ja) * 1998-07-27 2000-02-18 Marcom:Kk 高周波容量式水分計
JP2007527988A (ja) * 2003-06-11 2007-10-04 コンサルトユーロープ リミテッド リミテッド ライアビリティー ジョイント ストック キャパシタンス及び磁気センサアレイを備えたセキュリティスキャナ
JP2006214941A (ja) * 2005-02-04 2006-08-17 Kri Inc コンクリート含有成分測定装置および測定方法
US20060255276A1 (en) * 2005-04-15 2006-11-16 Alessandro Manneschi Device for analyzing the composition of the contents of a container
JP2009520549A (ja) * 2005-12-22 2009-05-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気誘導断層撮影のシステムおよび方法
EP2416127A1 (en) * 2010-07-14 2012-02-08 Politechnika Lodzka A method and a device for measuring component fractions in a multi-phase flow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIONHEART, WILLIAM,R.B.: "Reconstruction Algorithms for Permittivety and Conductivity Imaging", [HTTP://EPRINTS.MA.MAN.AC.UK/1078/01/COVERED/MIMS_EP2008_43.PDF], JPN6017021085, August 2001 (2001-08-01), UK, ISSN: 0003728139 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511176A (ja) * 2019-09-24 2022-01-31 青島理工大学 コンクリート部材の内部水分透過を監視するためのectセンサー,システム及びプロセス
JP7076162B2 (ja) 2019-09-24 2022-05-27 青島理工大学 コンクリート部材の内部水分透過を監視するためのectセンサー,システム及びプロセス
WO2021144876A1 (ja) * 2020-01-15 2021-07-22 朝日インテック株式会社 測定装置、検出装置、および測定方法
WO2021145003A1 (ja) * 2020-01-15 2021-07-22 Posh Wellness Laboratory株式会社 測定装置、検出装置、および測定方法
JPWO2021144876A1 (ja) * 2020-01-15 2021-07-22
JP7163516B2 (ja) 2020-01-15 2022-10-31 朝日インテック株式会社 測定装置、検出装置、および測定方法

Also Published As

Publication number Publication date
GB2514114A (en) 2014-11-19
KR20160007642A (ko) 2016-01-20
CN105393113A (zh) 2016-03-09
CA2911980A1 (en) 2014-11-20
EP2997357A1 (en) 2016-03-23
WO2014184536A1 (en) 2014-11-20
US20160091448A1 (en) 2016-03-31
GB201308551D0 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP2016524138A (ja) 電磁特性を計測する装置及び方法
Hu et al. Planar capacitive sensors–designs and applications
US20180325414A1 (en) Electro-magneto volume tomography system and methodology for non-invasive volume tomography
US8963562B2 (en) Transducer configurations and methods for transducer positioning in electrical impedance tomography
Vauhkonen et al. A measurement system and image reconstruction in magnetic induction tomography
Ma et al. Experimental evaluation of conductive flow imaging using magnetic induction tomography
US11598739B2 (en) Methods and systems for high fidelity electrical tomographic processes
JP2012501779A (ja) 磁気誘導断層撮影のための方法及びシステム
CN106596714B (zh) 一种碳纤维复合材料脱粘缺陷检测装置及方法
GB2546617A (en) Apparatus and methods for determining electrical conductivity of tissue
WO2015128705A1 (en) Coil for magnetic induction tomography imaging
US9927385B2 (en) Active control guards and rationometric calibration and reconstruction for use with electrical capacitance volume tomography
Ye et al. Resolution analysis using fully 3D electrical capacitive tomography
Wang et al. Sparse defects detection and 3D imaging base on electromagnetic tomography and total variation algorithm
US20120172719A1 (en) Soft field tomography system and method
Zhang et al. Imaging floating metals and dielectric objects using electrical capacitance tomography
Cui et al. Planar electrical capacitance tomography dynamic imaging for non-destructive test
Kryszyn et al. Evaluation of the electrical capacitance tomography system for measurement using 3d sensor
Satish The monotonicity imaging method for PECT
Evangelidis et al. High definition electrical capacitance tomography for pipeline inspection
CN108981759A (zh) 利用电容传感器对系统和过程进行成像、监测或测量的多维方法
Freeston From four-point probe to impedance imaging
US10488356B2 (en) Method for producing an electrical impedance tomographic image of an acoustic field and a system for performing said method
JP4460808B2 (ja) 電流密度ベクトル推定装置および電気導電率推定装置
Kriz et al. Practical application of electrical impedance tomography and electrical resistive tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130