JP2016517350A - Zeolite-metal chloride hybrid moisture adsorption composition and production method thereof - Google Patents
Zeolite-metal chloride hybrid moisture adsorption composition and production method thereof Download PDFInfo
- Publication number
- JP2016517350A JP2016517350A JP2016507899A JP2016507899A JP2016517350A JP 2016517350 A JP2016517350 A JP 2016517350A JP 2016507899 A JP2016507899 A JP 2016507899A JP 2016507899 A JP2016507899 A JP 2016507899A JP 2016517350 A JP2016517350 A JP 2016517350A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- metal chloride
- chloride
- water
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 116
- 229910001510 metal chloride Inorganic materials 0.000 title claims abstract description 68
- 239000000203 mixture Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 91
- 239000010457 zeolite Substances 0.000 claims abstract description 88
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 66
- 238000002156 mixing Methods 0.000 claims description 39
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 36
- 239000000243 solution Substances 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 12
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 12
- 239000002594 sorbent Substances 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 9
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 9
- 239000003463 adsorbent Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 7
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 150000004685 tetrahydrates Chemical class 0.000 claims description 6
- 238000001291 vacuum drying Methods 0.000 claims description 6
- 238000003801 milling Methods 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 238000005057 refrigeration Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 3
- 229910017119 AlPO Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000012692 Fe precursor Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/20—Halides
- C01F11/24—Chlorides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
本発明は、除湿機及び水分吸着式冷凍機に適用可能な水分吸着組成物及びその製造方法に関するもので、特に、多孔性のゼオライト(zeolite)と金属塩化物のハイブリッド組成物及びこれを製造する方法に関する技術である。本発明は、水分吸着組成物において、多孔性(porosity)のゼオライト(zeolite)と金属塩化物を含み、前記多孔性のゼオライトは、アルミノフォスフェート系ゼオライト(aluminophosphate type Zeolite)、フェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)の中から選択される一つ以上のゼオライトであることを特徴とするゼオライト−金属塩化物ハイブリッド水分吸着組成物を提供する。【選択図】図4The present invention relates to a moisture adsorption composition applicable to a dehumidifier and a moisture adsorption refrigerator and a method for producing the same, and more particularly, to produce a porous composition of porous zeolite and metal chloride and the same. It is a technique related to the method. The present invention relates to a moisture adsorption composition comprising a porous zeolite and a metal chloride, wherein the porous zeolite is an aluminophosphate type zeolite or a ferroaluminophosphate type. There is provided a zeolite-metal chloride hybrid moisture adsorption composition characterized in that it is one or more zeolites selected from among zeolites (Feraroluminophosphate type Zeolite). [Selection] Figure 4
Description
本発明は、除湿機及び水分吸着式冷凍機に適用可能な水分吸着組成物及びその製造方法に関するもので、特に、多孔性のゼオライト(zeolite)と金属塩化物のハイブリッド組成物及びこれを製造する方法に関する技術である。 The present invention relates to a moisture adsorption composition applicable to a dehumidifier and a moisture adsorption refrigerator and a method for producing the same, and more particularly, to produce a porous composition of porous zeolite and metal chloride and the same. It is a technique related to the method.
現在、全世界的にエネルギーの効率的活用が大きなイシューとなっており、特に、産業現場で発生する多様な産業廃熱の活用技術に対する研究が活発に進められている。産業廃熱は、中低温水、飽和水蒸気などの多様な形態で、70ないし90℃の温度範囲の熱が最も多いが、大部分再使用せずに廃棄されている。
これら廃棄エネルギーを有効に活用できる方法として、吸着式冷凍システムが大きな関心を受けている。
Currently, efficient use of energy has become a major issue worldwide, and in particular, research on technologies for utilizing various industrial waste heat generated at industrial sites is being actively promoted. Industrial waste heat is in various forms such as medium and low temperature water, saturated steam, etc., and most heat in the temperature range of 70 to 90 ° C. is mostly discarded without being reused.
Adsorption-type refrigeration systems have received great interest as a way to effectively use these waste energies.
1980年代の初期から、吸着を利用した冷凍システムは、水、アルコール、アンモニアなどの自然冷媒とシリカゲル、ゼオライト、活性炭などの吸着剤が活用され、日本では、1986年にシリカゲル/水を利用した17kW級の吸着式冷凍機が商品化されている。現在日本では、西淀(Nishiyodo)社と前川(Mayekawa)社において70ないし500kW級の吸着式冷凍機を実用化して販売しており、ドイツのソルテック(SorTech)では7.5kW、15kW級の太陽熱と連係した冷房システムを開発して販売している。 Since the early 1980s, refrigeration systems using adsorption have utilized natural refrigerants such as water, alcohol, and ammonia, and adsorbents such as silica gel, zeolite, and activated carbon. In Japan, 17 kW using silica gel / water in 1986. Grade adsorption refrigerators have been commercialized. Currently, in Japan, Nishiyodo and Mayekawa have commercialized and sold 70 to 500 kW adsorption refrigeration machines, while Germany's SorTech has 7.5 kW and 15 kW solar heat. Has developed and sells cooling systems linked to
吸着式冷凍システムは、各工程で捨てられる廃熱を駆動源として使用することができ、冷媒として水を使用することにより、オゾン層破壊と関連のない環境にやさしいシステムである。 The adsorption refrigeration system can use waste heat discarded in each process as a driving source, and is an environment-friendly system that is not related to ozone layer destruction by using water as a refrigerant.
従来の商用化された吸着式冷凍システムにはシリカゲルと水が使用されているが、シリカゲルは強い親水性により低い水蒸気分圧で吸着を始める傾向を有する。また、吸着冷凍システム上の駆動圧力範囲(P/Po=0.1ないし0.3)における吸着速度が遅く、脱着が容易ではなく、単位吸着剤当たりの吸着する水の量が0.1g−water/g−sorbent程度で、非常に低い。すなわち、吸着式冷凍システムの性能向上と装置費用の削減などのためには、駆動圧力範囲内における水吸着量がより高い新しい水分吸着組成物が要求される。最近、メソ気孔物質であるSBA−15とCaCl2を用いて製造された物質に対する研究結果が発表(Microporous and Mesoporous Materials 129(2010)243−250)されている。 Silica gel and water are used in conventional commercial adsorption refrigeration systems, but silica gel has a tendency to start adsorption at a low water vapor partial pressure due to its strong hydrophilicity. Further, the adsorption speed in the driving pressure range (P / Po = 0.1 to 0.3) on the adsorption refrigeration system is slow, the desorption is not easy, and the amount of water adsorbed per unit adsorbent is 0.1 g- About water / g-sorbent, very low. That is, in order to improve the performance of the adsorption refrigeration system and reduce the apparatus cost, a new moisture adsorption composition having a higher water adsorption amount within the driving pressure range is required. Recently, research results on substances produced using mesoporous substances SBA-15 and CaCl 2 have been published (Microporous and Mesoporous Materials 129 (2010) 243-250).
前記論文では、多孔性のSBA−15を合成し、CaCl2を溶かした水溶液と混合して水を蒸発させることによって、SBA−15の気孔内部にCaCl2が含浸した形態の物質を製造し、これに対する水の吸着特性を詳しく調べた。
前記論文で製造された素材の駆動圧力範囲(P/Po=0.1ないし0.2)内での水分吸着最大値は0.16g−water/g−sorbentと測定された。
In the article, porous SBA-15 was synthesized, mixed with an aqueous solution in which CaCl 2 was dissolved, and water was evaporated to produce a substance in a form in which CaCl 2 was impregnated inside the pores of SBA-15, The water adsorption characteristics were investigated in detail.
The maximum value of moisture adsorption within the driving pressure range (P / Po = 0.1 to 0.2) of the material manufactured in the paper was measured as 0.16 g-water / g-sorbent.
これは、一般的なシリカゲルに比べて高い数値であるが、動的吸着速度が遅く、最大水分吸着量もまた満足ではない。また、SBA−15のようなメソ気孔シリカは製造工程がややこしいだけでなく、大量合成が難しいという短所を持つ。 This is a higher numerical value than general silica gel, but the dynamic adsorption rate is slow, and the maximum water adsorption amount is not satisfactory. In addition, mesoporous silica such as SBA-15 has not only a complicated manufacturing process but also has a disadvantage that mass synthesis is difficult.
また、日本の三菱ケミカル(Mitsubishi Chemical)では、AQSOAという商品名でフェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate Zeolite(FAPO4−5))を活用した水分吸着式クーラーを商業化したことがある。この技術は、AlPO4−5の格子構造内に部分的にFeイオンを追加し、水分吸着相対蒸気圧を吸着式冷凍機の駆動範囲(P/Po=0.1〜0.3)に調節した。AQSOAの最大水分吸着量は、P/Po=0.1〜0.3の範囲でAQSOA1g当たり0.2g以下の水を吸着すると知られている。しかし、吸着式クーラーを小型化、高性能化するためには、水分吸着素材の吸着性能がP/Po=0.1〜0.3の範囲で最小0.5g−water/g−sorbent以上の最大吸着量を有することが好ましいので、前記フェロアルミノフォスフェート−5ゼオライトだけでは、その期待値に及ばない。 Further, the Japanese Mitsubishi Chemical (Mitsubishi Chemical), have previously commercialize water adsorption type cooler utilizing ferro aluminophosphate -5 zeolite (Ferroaluminophosphate Zeolite (FAPO 4 -5) ) under the trade name AQSOA. This technology adds Fe ions partially in the lattice structure of AlPO 4 -5 and adjusts the moisture adsorption relative vapor pressure to the driving range of the adsorption refrigerator (P / Po = 0.1 to 0.3). did. The maximum water adsorption amount of AQSOA is known to adsorb 0.2 g or less of water per gram of AQSOA in the range of P / Po = 0.1 to 0.3. However, in order to reduce the size and increase the performance of the adsorption cooler, the adsorption performance of the moisture adsorption material is at least 0.5 g-water / g-sorbent in the range of P / Po = 0.1 to 0.3. Since it is preferable to have the maximum adsorption amount, the ferroaluminophosphate-5 zeolite alone does not reach its expected value.
一方、大韓民国特許出願第10−2013−0114371号は、水分吸着組成物の製造方法として、シリカ(Silica)、塩、及び蒸溜水を準備する段階、前記塩を蒸溜水に溶解して含浸液を準備する段階、前記含浸液に前記シリカ(Silica)を混合し、撹拌して混合物を製造する段階、前記混合物を凍結乾燥(Freeze Drying)して水分吸着組成物を製造する段階を含む。前記シリカ(Silica)はヒュームドシリカ(Fumed Silica)であり、前記塩は塩化カルシウム(CaCl2)、塩化マグネシウム(MgCl2)の中から選択する。前記発明は、商業的に販売されているシリカ粒子にCaCl2を含浸し、凍結乾燥法を用いて優れた性能の水分吸着素材を製造する技術で、製造工程が単純で単価が低いながらも駆動圧力(P/Po=0.1ないし0.2)内で0.21g−water/gsorbent以上の水分を吸着するCSPM(Composites Salt in Porous Matrix)タイプの吸着剤を提供する。前記のような技術を具現するために、CaCl2を水に溶かして前記シリカ粒子と混合させ、混合に使われた水を除去する段階で一般の乾燥方法である真空乾燥と凍結乾燥を適用した。湿式シリカの場合、真空乾燥によって製造された吸着剤の性能が駆動圧力(P/Po=0.1ないし0.2)内で0.17g−water/g−sorbent以上の水分を吸着する性能を示す。ヒュームドシリカの場合、凍結乾燥をして製造された水分脱着素材は、駆動圧力範囲(P/Po=0.1ないし0.2)内における最大吸着量が0.21g−water/g−sorbentに達する大きい向上を見せた。すなわち、前記の発明は、メソ気孔シリカのように合成するのが難しくて価格が高い担体を使用せずとも、CaCl2を含浸することで大量生産が可能な技術を開示したことがある。 Meanwhile, Korean Patent Application No. 10-2013-0114371 discloses a method for preparing a moisture-adsorbing composition by preparing silica, salt, and distilled water, dissolving the salt in distilled water, Preparing, mixing the silica in the impregnating solution and stirring to produce a mixture; and freeze-drying the mixture to produce a moisture-adsorbing composition. The silica is fumed silica, and the salt is selected from calcium chloride (CaCl 2 ) and magnesium chloride (MgCl 2 ). The above-mentioned invention is a technology for manufacturing a water-adsorbing material having excellent performance by impregnating commercially available silica particles with CaCl 2 and using a freeze-drying method. The manufacturing process is simple and the unit price is low. Provided is a CSPM (Composite Salt in Porous Matrix) type adsorbent that adsorbs 0.21 g-water / gsorbent or more of water within a pressure (P / Po = 0.1 to 0.2). In order to implement the above-described technique, vacuum drying and freeze-drying, which are general drying methods, are applied at a stage where CaCl 2 is dissolved in water and mixed with the silica particles, and water used for mixing is removed. . In the case of wet silica, the adsorbent produced by vacuum drying has the ability to adsorb water of 0.17 g-water / g-sorbent or more within the driving pressure (P / Po = 0.1 to 0.2). Show. In the case of fumed silica, the moisture desorption material produced by freeze-drying has a maximum adsorption amount of 0.21 g-water / g-sorbent within the driving pressure range (P / Po = 0.1 to 0.2). Showed a great improvement to reach. That is, the above-mentioned invention has disclosed a technique that can be mass-produced by impregnating CaCl 2 without using a carrier that is difficult to synthesize and is expensive, such as mesoporous silica.
上述したように、吸着式クーラーを小型化、高性能化するためには、P/Po=0.1〜0.3の駆動圧力範囲で最大水分吸着量0.3−0.9g(water(水))/g(sorbent(吸着剤))の効率を有する水分吸着組成物が必要である。しかし、従来の吸着組成物は、前記の要求値を満たし得ない問題があった。 As described above, in order to reduce the size and increase the performance of the adsorption type cooler, the maximum moisture adsorption amount of 0.3-0.9 g (water (in the driving pressure range of P / Po = 0.1 to 0.3) There is a need for a moisture-adsorbing composition having an efficiency of water)) / g (sorbent). However, the conventional adsorption composition has a problem that it cannot satisfy the above-mentioned required value.
これにより、本発明においては、多孔性ゼオライト(zeolite)、特に、アルミノフォスフェート−5(AlPO4−5)の製造過程において、Fe転移金属をAlと一部置換することによって製造されたフェロアルミノフォスフェート−5(Ferroaluminophosphate;FAPO4−5)を支持体とし、潮解性の塩(CaCl2)を水溶液上で互いに混合乾燥することによって製造されたゼオライト−金属塩化物のハイブリッド水分吸着組成物を提供する。前記のゼオライト−金属塩化物のハイブリッド水分吸着組成物、特に、FAPO4−5/CaCl2形態のハイブリッド(Hybrid)水分吸着剤組成物はP/Po=0.1〜0.3の駆動圧力範囲で最大水分吸着量0.3−0.9g(water(水))/g(sorbent(吸着剤))の効果を期待することができる。 Thus, in the present invention, a ferroalumino produced by partially substituting the Fe transition metal with Al in the production process of porous zeolite, particularly aluminophosphate-5 (AlPO 4 -5). A zeolite-metal chloride hybrid moisture adsorption composition prepared by mixing and drying deliquescent salt (CaCl 2 ) with each other in an aqueous solution, using a phosphate-5 (FAPO 4 -5) as a support. provide. The zeolite-metal chloride hybrid moisture adsorption composition, especially the hybrid moisture adsorption composition in the form of FAPO 4 -5 / CaCl 2 , has a driving pressure range of P / Po = 0.1 to 0.3. Thus, an effect of a maximum moisture adsorption amount of 0.3 to 0.9 g (water (water)) / g (sorbent (adsorbent)) can be expected.
すなわち、本発明は、水分吸着組成物において、多孔性(porosity)のゼオライト(zeolite)と金属塩化物を含み、前記多孔性のゼオライトは、アルミノフォスフェート系ゼオライト(aluminophosphate type Zeolite)、フェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)の中から選択され、前記多孔性のゼオライト粒子の間に前記金属塩化物が含浸して構成され、前記多孔性のゼオライトは、前記ゼオライト粒子内に0.3−1.5nmの孔隙を有し、50−50000nmの粒子の大きさを有し、吸着式冷凍機の駆動圧力範囲であるP/Po=0.1−0.3の範囲で0.3−0.9g(water(水))/g(sorbent(吸着剤))の最大水分吸着量を有するゼオライト−金属塩化物ハイブリッド水分吸着組成物を提供し、前記のような課題を解決しようと思う。 That is, the present invention relates to a moisture-adsorbing composition containing a porous zeolite and a metal chloride, and the porous zeolite is an aluminophosphate type zeolite, a ferroaluminophosphine. Ferro-based zeolite (Ferroluminophosphate type Zeolite) is selected, and the porous zeolite particles are impregnated with the metal chloride. The porous zeolite is 0.3- It has a pore size of 1.5 nm, a particle size of 50-50000 nm, and 0.3-0 in the range of P / Po = 0.1-0.3 which is the driving pressure range of the adsorption refrigerator. .9 g (water (water)) / g (so The present invention intends to provide a zeolite-metal chloride hybrid moisture adsorption composition having a maximum moisture adsorption amount of rbent (adsorbent) and solve the above-mentioned problems.
本発明のゼオライト−金属塩化物ハイブリッド水分吸着組成物は、P/Po=0.1〜0.3の駆動圧力範囲で最大水分吸着量が0.5g−water/g−sorbent以上の効率が期待でき、吸着式クーラーを小型化、高性能化するためには、水分吸着素材を具現する効果がある。 The zeolite-metal chloride hybrid moisture adsorption composition of the present invention is expected to have an efficiency with a maximum moisture adsorption amount of 0.5 g-water / g-sorbent or more in a driving pressure range of P / Po = 0.1 to 0.3. In order to reduce the size and increase the performance of the adsorption cooler, there is an effect of embodying a moisture adsorption material.
特に、本発明のFAPO4−5/CaCl2形態のハイブリッド(Hybrid)水分吸着剤組成物において、CaCl2の添加量が増加するにつれP/Po=0.1〜0.3の範囲における水分吸着量が最大517mg/gに達することを確認することができる。これは、従来の水分吸着素材であるFAPO4−5の吸着性能とCaCl2の吸湿性とが複合化されて表われる結果である。 In particular, the FAPO 4 -5 / CaCl 2 forms a hybrid (Hybrid) water absorbent composition of the present invention, the moisture adsorption in the range of P / Po = 0.1 to 0.3 as the amount of CaCl 2 is increased It can be confirmed that the amount reaches a maximum of 517 mg / g. This is a result of the combined adsorption performance of FAPO 4 -5, which is a conventional moisture adsorption material, and the hygroscopicity of CaCl 2 .
すなわち、本発明のゼオライト−金属塩化物ハイブリッド水分吸着組成物は、要求される駆動圧力範囲であるP/Po=0.1〜0.3で高い吸着性能を有するように吸着区間を移動(shift)させることにより、吸着式冷凍装置への適用においてより高い効率の吸着性能を提供することができる。 That is, the zeolite-metal chloride hybrid moisture adsorption composition of the present invention moves through the adsorption section so as to have a high adsorption performance at a required driving pressure range of P / Po = 0.1 to 0.3. ), It is possible to provide higher-efficiency adsorption performance in application to an adsorption refrigeration apparatus.
以下、添付された図面を参照して、本発明を詳しく説明することにする。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
本発明は、水分吸着組成物において、多孔性(porosity)のゼオライト(zeolite)と金属塩化物とを含み、前記多孔性のゼオライトは、アルミノフォスフェート系ゼオライト(aluminophosphate type Zeolite)、フェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)の中から選択され、前記多孔性のゼオライト粒子の間に前記金属塩化物が含浸して構成され、前記多孔性のゼオライトは、前記ゼオライト粒子内に0.3−1.5nmの孔隙を有し、50−50000nmの粒子の大きさを有し、吸着式冷凍機の駆動圧力範囲であるP/Po=0.1−0.3の範囲で0.3−0.9g(water(水))/g(sorbent(吸着剤))の最大水分吸着量を有するゼオライト−金属塩化物ハイブリッド水分吸着組成物を提供する。 The present invention relates to a moisture adsorption composition comprising a porous zeolite and a metal chloride, wherein the porous zeolite is an aluminophosphate type zeolite or a ferroaluminophosphate. Selected from among zeolite-based zeolites (Ferroluminophosphate type Zeolite), the porous zeolite particles are impregnated with the metal chloride, and the porous zeolite is 0.3-1 in the zeolite particles. It has a pore size of 5 nm, a particle size of 50-50000 nm, and 0.3-0. 9g (water (water)) / g (sorben) A zeolite-metal chloride hybrid moisture adsorption composition having a maximum moisture adsorption amount of t (adsorbent)) is provided.
前記金属塩化物は、塩化カルシウム(CaCl2)、塩化マグネシウム(MgCl2)、塩化リチウム(LiCl)の中から選択される一つ以上のものであることが好ましい。特に、前記多孔性のゼオライトは、フェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)であり、前記金属塩化物は、塩化カルシウム(CaCl2)であることが最も好ましい。図1は、Al2O3:P2O5:FeO:TEA:H2O=1:1.05:0.1:1.2:50の重量比を有する前記フェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)の写真であり、図2は、前記図1のFAPO4−5の電子走査顕微鏡写真である。
本発明者は、FAPO4−5の水分吸着特性の調節のため、Feの前駆体含量を変化させて製造する実験を行い、その結果を表1に示した。
The metal chloride is preferably one or more selected from calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), and lithium chloride (LiCl). In particular, the porous zeolite is ferroaluminophosphate-5 (FAPO 4 -5), and the metal chloride is most preferably calcium chloride (CaCl 2 ). FIG. 1 shows the ferroaluminophosphate-5 zeolite having a weight ratio of Al 2 O 3 : P 2 O 5 : FeO: TEA: H 2 O = 1: 1.05: 0.1: 1.2: 50. (Ferroaluminophosphate-5; FAPO 4 -5 ) is a photograph of FIG. 2 is a scanning electron micrograph of FAPO 4 -5 of FIG. 1.
The present inventor conducted an experiment in which the precursor content of Fe was changed in order to adjust the moisture adsorption property of FAPO 4 -5. The results are shown in Table 1.
前記表1によると、Al2O3:P2O5:FeO:TEA:H2O=1:1.05:0.1:1.2:50の重量比を有する前記フェロアルミノフォスフェート−5ゼオライト(FAPO4−5(100))が適用される駆動圧力の範囲内で164mg/gの吸着量を有する。 According to Table 1, the ferroaluminophosphate having a weight ratio of Al 2 O 3 : P 2 O 5 : FeO: TEA: H 2 O = 1.1.05: 0.1: 1.2: 50 5 zeolite (FAPO 4 -5 (100)) has an adsorption amount of 164 mg / g within the range of driving pressures applied.
図3は、Al2O3:P2O5:FeO:TEA:H2O=1:1.05:0.1:1.2:50の重量比を有するフェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)の水分吸着等温線を示したグラフである。図3のグラフは前記表1における結果のように、吸着式クーラーに適用するためのP/Po=0.1〜0.3の駆動圧力範囲でFAPO4−5が164mg/gの吸着量を示していることを表わす。しかし、FAPO4−5が有する164mg/gの吸着量は、吸着式クーラーを小型化及び高性能化するために要求される0.5g−water/g−sorbentの最大水分吸着量に大きく満たない数値である。 FIG. 3 shows a ferroaluminophosphate-5 zeolite having a weight ratio of Al 2 O 3 : P 2 O 5 : FeO: TEA: H 2 O = 1: 1.05: 0.1: 1.2: 50 ( Ferroaluminophosphate-5; FAPO is a graph showing the moisture adsorption isotherm of 4 -5). The graph of FIG. 3 shows the adsorption amount of 164 mg / g of FAPO 4 -5 in the driving pressure range of P / Po = 0.1 to 0.3 to be applied to the adsorption type cooler as the result in Table 1 above. Indicates what is shown. However, the adsorption amount of 164 mg / g of FAPO 4 -5 has is less than heavily on the maximum moisture adsorption amount of 0.5g-water / g-sorbent required to compact and high performance of the adsorption type cooler It is a numerical value.
図4は、本発明のゼオライト−金属塩化物ハイブリッド水分吸着組成物の粒子分布の説明図である。前記の要求される0.5g−water/g−sorbent以上の最大水分吸着量を達成するために、本発明は、図4に示されたように、前記多孔性のゼオライト粒子100の間に前記金属塩化物200を含浸させて構成する。このような構成のために前記多孔性のゼオライトは50−50000nmの粒子の大きさを有し、前記ゼオライト粒子100内に0.05−3nmの孔隙110を有することが好ましく、さらに好ましい孔隙の大きさは0.3−1.5nmである。前記のように、ゼオライト粒子100の間に含浸した金属塩化物200は高い潮解性(deliquescence)を有するので、各ゼオライト粒子間の空間が水分を吸着することができる孔隙としての役割を行えるようにする。このような構成により、ゼオライトと金属塩化物でFAPO4−5とCaCl2が適用される場合、従来の水分吸着素材であるFAPO4−5の吸着性能とCaCl2の吸湿性とが複合化されて相乗作用を期待することができる。
FIG. 4 is an explanatory diagram of the particle distribution of the zeolite-metal chloride hybrid moisture adsorption composition of the present invention. In order to achieve the required maximum water adsorption amount of 0.5 g-water / g-sorbent or more, the present invention provides the above-mentioned
表2は、前記ゼオライト−金属塩化物ハイブリッドの水分吸着組成物の一実施例であるFAPO4−5とCaCl2を混合比率によってそれぞれ製造し、水分吸着特性を比較分析した結果の表である。表2は、製造されたハイブリッド水分吸着組成物のFAPO4−5とCaCl2の比率による種類及び水分最大吸着量を示す。 Table 2 is a table showing the results of comparative analysis of the moisture adsorption characteristics of FAPO 4 -5 and CaCl 2 , which are examples of the moisture adsorption composition of the zeolite-metal chloride hybrid. Table 2 shows the types of the hybrid water-adsorbing composition produced and the maximum amount of water adsorbed by the ratio of FAPO 4 -5 and CaCl 2 .
本発明者は、それぞれのサンプルに対する水分吸着特性分析を行い、その結果を図5ないし図9にそれぞれ示した。各水分吸着特性の曲線は25℃の等温条件で測定した。 The present inventor performed moisture adsorption characteristic analysis for each sample, and the results are shown in FIGS. Each moisture adsorption characteristic curve was measured under isothermal conditions of 25 ° C.
FAPO4−5(100)とCaCl2を含浸して製造されたハイブリッド水分吸着組成物の場合、動的吸着範囲であるP/Po=0.1〜0.3で一次上昇区間と二次上昇区間とに明確に区分される水分吸着グラフを呈する。また、CaCl2の添加量が増加するにつれP/Po=0.1〜0.3の範囲における水分吸着量が最大517mg/gに達することを確認することができる。これは、従来の水分吸着素材であるFAPO4−5の吸着性能とCaCl2の吸湿性とが複合化されて表われる結果といえる。 In the case of a hybrid moisture-adsorbing composition manufactured by impregnating FAPO 4 -5 (100) and CaCl 2 , the primary ascending zone and the secondary ascent at the dynamic adsorption range P / Po = 0.1 to 0.3. It presents a moisture adsorption graph that is clearly divided into sections. Further, it can be confirmed that the amount of water adsorption in the range of P / Po = 0.1 to 0.3 reaches a maximum of 517 mg / g as the addition amount of CaCl 2 increases. This can be said to be a result of a composite of the adsorption performance of FAPO 4 -5, which is a conventional moisture adsorption material, and the hygroscopicity of CaCl 2 .
すなわち、前記多孔性のゼオライトと金属塩化物の混合比は10:2〜10:30の重量比で構成されてもよく、最も好ましい実施例は、CaCl2:FAPO4−5の重量比が10:4であることで、動的吸着範囲であるP/Po=0.1〜0.3で517mg/gの吸着性能を有することである。 That is, the mixing ratio of the porous zeolite and the metal chloride may be 10: 2 to 10:30, and the most preferable embodiment is that the weight ratio of CaCl 2 : FAPO 4 -5 is 10 : 4 is that the dynamic adsorption range is P / Po = 0.1 to 0.3 and has an adsorption performance of 517 mg / g.
本願発明は、前記のように、P/Po=0.1〜0.3で高い吸着性能を有する。図13は、従来のゼオライト4Aの吸着剤−圧力のリニアスケール(liner scale)グラフ(上)と、ログスケール(logarithmic scale)グラフ(下)である。前記のグラフで吸着分圧0.1は約3mbarに該当し、吸着分圧0.3は約9.6mbarに該当する。すなわち、図13のグラフで吸着温度25℃の時(ダイヤモンドで表示)要求される動的吸着範囲であるP/Po=0.1〜0.3の区間は、0.3〜0.95kPa、3〜9.6mbarである。図13のゼオライト4Aのレファレンスグラフにおいて、ゼオライト4Aは1mbar以下で多くの水分吸着が成されることが分かる。すなわち、前記のように、P/Po=0.1未満の範囲で大部分の吸着性能を示す従来のゼオライトに比べて、本発明のゼオライト−金属塩化物ハイブリッド水分吸着組成物は、要求される駆動圧力範囲であるP/Po=0.1〜0.3で高い吸着性能を有するように吸着区間を移動(shift)させることによって、吸着式冷凍装置への適用においてより高い効率の吸着性能を提供することができる。 As described above, the present invention has high adsorption performance at P / Po = 0.1 to 0.3. FIG. 13 shows an adsorbent-pressure linear scale graph (upper) and a logarithmic scale graph (lower) of the conventional zeolite 4A. In the graph, the adsorption partial pressure 0.1 corresponds to about 3 mbar, and the adsorption partial pressure 0.3 corresponds to about 9.6 mbar. That is, the interval of P / Po = 0.1 to 0.3, which is the dynamic adsorption range required when the adsorption temperature is 25 ° C. (indicated by diamond) in the graph of FIG. 13, is 0.3 to 0.95 kPa, 3 to 9.6 mbar. In the reference graph of the zeolite 4A in FIG. 13, it can be seen that the zeolite 4A adsorbs much moisture at 1 mbar or less. That is, as described above, the zeolite-metal chloride hybrid moisture-adsorbing composition of the present invention is required as compared with the conventional zeolite exhibiting most adsorption performance in the range of P / Po = 0.1. By moving the adsorption section so as to have a high adsorption performance at P / Po = 0.1 to 0.3, which is the driving pressure range, a higher efficiency of adsorption performance in application to an adsorption refrigeration apparatus. Can be provided.
そこで、さらに本発明は、水分吸着組成物の製造方法において、塩化カルシウム(CaCl2)、塩化マグネシウム(MgCl2)、塩化リチウム(LiCl)の中から選択される一つ以上の金属塩化物を水に完全に溶解させる段階(s100)、前記金属塩化物の溶液にアルミノフォスフェート系ゼオライト(aluminophosphate type Zeolite)、フェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)の中から選択される一つ以上の多孔性ゼオライトを混合する混合段階(s200)、前記金属塩化物の溶液と多孔性ゼオライトと混合物内の水を蒸発させるために150℃〜250℃のオーブンに入れて24時間の間乾燥する乾燥段階(s300)、乾燥が完了した後、生成物を破砕機を用いて粉末形態に形成させる製粉段階(s400)、余分な水分を除去する真空乾燥段階(s500)を含むゼオライト−金属塩化物ハイブリッド水分吸着組成物の製造方法を提供する。前記金属塩化物を水に完全に溶解させる段階(s100)の前記金属塩化物は、上述したように、塩化カルシウム(CaCl2)、塩化マグネシウム(MgCl2)、塩化リチウム(LiCl)の中から選択されるのが好ましい。 Therefore, the present invention further provides a method for producing a moisture-adsorbing composition in which one or more metal chlorides selected from calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), and lithium chloride (LiCl) are added to water. At least one porous selected from the group consisting of an aluminophosphate type zeolite and a ferroaluminophosphate type zeolite in the solution of the metal chloride (s100). Mixing step (s200) for mixing the functional zeolite, and drying step for 24 hours in an oven at 150 ° C. to 250 ° C. in order to evaporate the water in the metal chloride solution, the porous zeolite and the mixture ( s30 0) Zeolite-metal chloride hybrid moisture adsorption including a milling step (s400) in which the product is formed into a powder form using a crusher after drying is completed, and a vacuum drying step (s500) to remove excess moisture A method for producing the composition is provided. As described above, the metal chloride in the step (s100) of completely dissolving the metal chloride in water is selected from calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), and lithium chloride (LiCl). Preferably it is done.
前記一つ以上の多孔性ゼオライトを混合する混合段階(s200)は、上述したように、前記多孔性のゼオライトと金属塩化物の混合比が10:2−10:30の重量比になるように混合することができる。 In the mixing step (s200) of mixing the one or more porous zeolites, as described above, the mixing ratio of the porous zeolite and the metal chloride is 10: 2-10: 30. Can be mixed.
多孔性ゼオライトを混合する混合段階(s200)における多孔性ゼオライトは、フェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)であり、前記フェロアルミノフォスフェート−5ゼオライトは、リン酸(Phosphoric acid)を水に溶かす段階(s210)、前記水溶液にトリエチルアミン(Triethylamine)を添加して撹拌する段階(s220)、撹拌される溶液の温度を低くしてアルミニウムイソプロポキシド(Aluminium isopropoxide)を徐々に添加して撹拌する段階(s230)、アルミニウムイソプロポキシドを添加した前記溶液にFeの前駆体である塩化鉄(II)・四水和物(Iron chloride(II)・tetrahydrate)を入れて鉄がよく分散されるように1−3時間の間撹拌する段階(s240)、前記撹拌後に溶液を200℃ 以上に温度を上げた後、7hr以上水熱合成(Hydrothermal Synthesis)を進める水熱合成段階(s250)、常温で冷却する冷却段階(s260)、100−200℃の温度で30分−2時間の間乾燥する乾燥段階(s270)、500−700℃の温度に温度を上げて4−6時間の間焼成する焼成段階(s280)の工程で製造することができる。前記のような水熱合成(Hydrothermal Synthesis)を利用した実施例は、次のとおりである。 Porous zeolite in the mixing step of mixing a porous zeolite (s200), the ferro-aluminophosphate -5 zeolite; a (Ferroaluminophosphate-5 FAPO 4 -5) , the Ferro aluminophosphate -5 zeolite, phosphate ( (Phosphoric acid) is dissolved in water (s210), triethylamine is added to the aqueous solution and stirred (s220), and the temperature of the stirred solution is lowered to gradually add aluminum isopropoxide (Aluminium isopropoxide). (S230), and iron (II) chloride tetrahydrate (Iron chloride (I)), which is a precursor of Fe, is added to the solution to which aluminum isopropoxide is added. ) · Tetrahydrate) and stir for 1-3 hours so that iron is well dispersed (s240). After the stirring, the temperature of the solution is raised to 200 ° C. or higher, and then hydrothermal synthesis (Hydrothermal) A hydrothermal synthesis stage (s250) for proceeding the synthesis), a cooling stage for cooling at room temperature (s260), a drying stage for drying for 30 minutes-2 hours at a temperature of 100-200 ° C. (s270), a temperature of 500-700 ° C. The temperature can be raised to 4 to 6 hours, and the process can be performed in the firing step (s280). Examples using the hydrothermal synthesis as described above are as follows.
− 水熱合成法を利用したFAPO4−5の製造 - production of FAPO 4 -5 by using hydrothermal synthesis
Al2O3:P2O5:FeO:TEA:H2O=1:1.05:0.1:1.2:50の比率でFAPO4−5を合成する。リン酸(Phosphoric acid)41.2gを水76gに溶かした溶液にトリエチルアミン(Triethylamine)24.2gを入れて強く30分間撹拌する。撹拌された溶液の容器を氷水に浸して温度を下げた後、アルミニウムイソプロポキシド(Aluminium isopropoxide)(81.8g)を徐々に入れながら強く撹拌する。よく混ざり合った前記溶液にFeの前駆体である塩化鉄(II)・四水和物(Iron chloride(II)・tetrahydrate)1.6gを入れて鉄がよく分散できるように2時間の間撹拌した後、オートクレーブ(Autoclave)に移し入れて200℃に温度を上げた後、7時間の間水熱合成を進める。7時間後に常温に温度を下げて反応を終了させ、生成物を蒸溜水で三回洗う。洗浄が完了した反応物質は150℃で1時間の間乾燥した後、550℃に温度を上げて5時間の間焼成加工する。最終生成物は浅い黄土色のパウダー形態で得られる。図1に示されたように、FAPO4−5(100)は黄色性状のパウダーで得られる。また、図2に示されたように、電子走査顕微鏡写真を通じて約1ミクロン(micron)大の結晶性粒子が形成されていることを見ることができる。 FAPO 4 -5 is synthesized at a ratio of Al 2 O 3 : P 2 O 5 : FeO: TEA: H 2 O = 1: 1.05: 0.1: 1.2: 50. 24.2 g of triethylamine is added to a solution of 41.2 g of phosphoric acid dissolved in 76 g of water, and the mixture is vigorously stirred for 30 minutes. The container of the stirred solution is immersed in ice water to lower the temperature, and then stirred vigorously while gradually adding aluminum isopropoxide (81.8 g). Add 1.6 g of iron chloride (II) tetrahydrate (Fe precursor) to the well-mixed solution and stir for 2 hours so that the iron can be well dispersed. After that, after transferring to an autoclave and raising the temperature to 200 ° C., hydrothermal synthesis is advanced for 7 hours. After 7 hours, the temperature is lowered to room temperature to complete the reaction, and the product is washed three times with distilled water. The washed reactant is dried at 150 ° C. for 1 hour, then heated to 550 ° C. and calcined for 5 hours. The final product is obtained in the form of a shallow ocher powder. As shown in FIG. 1, FAPO 4 -5 (100) is obtained in powder yellow properties. Also, as shown in FIG. 2, it can be seen that crystalline particles having a size of about 1 micron are formed through an electron scanning micrograph.
他の実施例として、水熱合成(Hydrothermal Synthesis)で製造する方法以外にも、電磁気波(microwave radiation)を利用して製造される方法が適用可能である。すなわち、本発明において、多孔性ゼオライトを混合する混合段階(s200)における多孔性ゼオライトは、フェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)であり、前記フェロアルミノフォスフェート−5ゼオライトはリン酸(Phosphoric acid)を水に溶かす段階(s210’)、前記水溶液にトリエチルアミン(Triethylamine)を添加して撹拌する段階(s220’)、撹拌される溶液の温度を下げてアルミニウムイソプロポキシド(Aluminium isopropoxide)を添加しながら撹拌する段階(s230’)、アルミニウムイソプロポキシドを添加した前記溶液にFeの前駆体である塩化鉄(II)・四水和物(Iron chloride(II)・tetrahydrate)を入れて鉄がよく分散できるように1−2時間の間撹拌する段階(s240’)、前記撹拌後に溶液を電磁気波(microwave radiation)を利用して150−250℃に温度を上げた後、30分−2時間の間反応させる段階(s250’)、常温に冷却する冷却段階(s260’)、100−200℃の温度で30分−2時間の間乾燥する乾燥段階(s270’)、500−700℃の温度に温度を上げて4−6時間の間焼成する焼成段階(s280’)の工程で製造されるゼオライト−金属塩化物ハイブリッド水分吸着組成物の製造方法を提供する。前記のような電磁気波(microwave radiation)を利用した方法に対する実施例は、次のとおりである。 As another example, in addition to the method of manufacturing by hydrothermal synthesis, a method of manufacturing using electromagnetic wave (microwave radiation) can be applied. That is, in the present invention, the porous zeolite in the mixing step of mixing a porous zeolite (s200), the ferro-aluminophosphate -5 zeolite; a (Ferroaluminophosphate-5 FAPO 4 -5) , the Ferro aluminophosphate -5 Zeolite is prepared by dissolving phosphoric acid in water (s210 ′), adding triethylamine to the aqueous solution and stirring (s220 ′), and lowering the temperature of the stirred solution to form aluminum isopropoxide. (S230 ′), while stirring while adding (Aluminium isopropoxide), iron (II) chloride tetrahydrate (Iro) which is a precursor of Fe to the solution to which aluminum isopropoxide has been added. n chloride (II) · tetrahydrate) and stir for 1-2 hours so that the iron can be well dispersed (s240 ′), and after the stirring, the solution is heated to 150-250 using electromagnetic wave (microwave radiation). After raising the temperature to ℃, reacting for 30 minutes-2 hours (s250 ′), cooling to cool to room temperature (s260 ′), drying at a temperature of 100-200 ° C. for 30 minutes-2 hours Production of zeolite-metal chloride hybrid moisture-absorbing composition produced in the drying step (s270 ′), the firing step (s280 ′) in which the temperature is raised to a temperature of 500-700 ° C. and calcined for 4-6 hours. Provide a method. An embodiment of the method using the electromagnetic radiation as described above is as follows.
リン酸(Phosphoric acid)4.12gを水7.6gに溶かした溶液にトリエチルアミン(Triethylamine)2.42gを入れて強く30分間撹拌する。撹拌された溶液の容器を氷水に浸して温度を下げた後、アルミニウムイソプロポキシド(Aluminium isopropoxide)8.18gを入れて撹拌する。よく混ざり合った前記溶液にFeの前駆体である塩化鉄(II)・四水和物(Iron chloride(II)・tetrahydrate)0.16gを入れて鉄がよく分散できるように30分間撹拌した後、テフロン(登録商標である)(Teflon)の高圧容器に移し入れて180〜200℃の温度範囲で1時間の間反応させる。1時間後に常温に温度を下げて反応を終了させ、生成物を蒸溜水で三回洗う。洗浄が完了した反応物質は150℃で1時間の間乾燥した後、550℃に温度を上げて5時間の間焼成加工する。最終生成物は浅い黄土色のパウダー形態で得られ、水分吸着性能は水熱合成の結果と同一である。 Add 2.42 g of triethylamine to a solution of 4.12 g of phosphoric acid in 7.6 g of water and stir vigorously for 30 minutes. After the container of the stirred solution is immersed in ice water to lower the temperature, 8.18 g of aluminum isopropoxide is added and stirred. After 0.16 g of iron (II) chloride tetrahydrate (Iron chloride (II) tetrahydrate), which is a precursor of Fe, is added to the well-mixed solution and stirred for 30 minutes so that the iron can be well dispersed. The mixture is transferred to a high pressure vessel of Teflon (registered trademark) (Teflon) and reacted at a temperature range of 180 to 200 ° C. for 1 hour. After 1 hour, the reaction is terminated by lowering the temperature to room temperature, and the product is washed three times with distilled water. The washed reactant is dried at 150 ° C. for 1 hour, then heated to 550 ° C. and calcined for 5 hours. The final product is obtained in the form of a shallow ocher powder and the moisture adsorption performance is the same as the result of hydrothermal synthesis.
前記実施例1と実施例2で製造されるフェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)はすべて上述したように、Al2O3:P2O5:FeO:TEA:H2O=1:1.05:0.1:1.2:50の重量比率で構成されるのが好ましい。 The Ferro aluminophosphate -5 zeolite prepared in Example 1 and Example 2; all (Ferroaluminophosphate-5 FAPO 4 -5), as described above, Al 2 O 3: P 2 O 5: FeO: TEA: It is preferable that the weight ratio of H 2 O is 1: 1.05: 0.1: 1.2: 50.
前記実施例1と実施例2で製造されたフェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)とCaCl2とを混合したFAPO4−5/CaCl2−ハイブリッド水分吸着組成物の製造の実施例は、次のとおりである。 Example 1 and ferroaluminum prepared in Example 2 Roh phosphate -5 zeolite (Ferroaluminophosphate-5; FAPO 4 -5 ) and FAPO obtained by mixing CaCl 2 4 -5 / CaCl 2 - hybrid water adsorption composition Examples of manufacture are as follows.
250gのCaCl2を500mLの水に完全に溶解させた後、この溶液を500gのFAPO4−5(100)を容器に入れてよく混ぜ合わせる。この時、水の量が不足する場合、少量を滴下しながら混ぜ合わせる。完全に混合がなされた時、混合物内から水を蒸発させるために150℃〜200℃のオーブンに入れて24時間の間乾燥する。乾燥が完了した後、生成物を破砕機を用いて粉末形態にすりつぶして真空乾燥して余分な水分を完全に除去する。 After completely dissolving 250 g of CaCl 2 in 500 mL of water, 500 g of FAPO 4 -5 (100) is placed in a container and mixed well. At this time, if the amount of water is insufficient, mix with dropping a small amount. When completely mixed, place in an oven at 150 ° C. to 200 ° C. for 24 hours to evaporate water from within the mixture. After drying is complete, the product is ground into a powder form using a crusher and vacuum dried to completely remove excess moisture.
本発明を添付された図面と共に説明したが、これは本発明の要旨を含む多様な実施形態のうちの一つの実施例に過ぎず、当業界で通常の知識を有する者が容易に実施できるようにするところにその目的があるのであって、本発明は、前記説明された実施例にのみ局限されるのではないことは明確である。したがって、本発明の保護範囲は下記の請求の範囲によって解釈されるべきであり、本発明の要旨を外れない範囲内での変更、置換、代替などによって、それと同等な範囲内にあるすべての技術思想は本発明の権利範囲に含まれるだろう。また、図面の一部構成は、構成をより明確に説明するためのもので、実際より誇張されたり縮小されて提供されたものであることを明確にする。
Although the present invention has been described with reference to the accompanying drawings, it is only one example of various embodiments including the gist of the present invention, and can be easily implemented by those having ordinary skill in the art. However, it is clear that the present invention has its purpose, and the present invention is not limited to the embodiments described above. Therefore, the protection scope of the present invention should be construed by the following claims, and all the technologies within the equivalent scope by alterations, substitutions, substitutions, etc. within the scope not departing from the gist of the present invention. The idea will be included in the scope of the present invention. In addition, a part of the configuration of the drawings is for explaining the configuration more clearly, and it is clarified that the configuration is provided in an exaggerated or reduced manner.
Claims (12)
多孔性(porosity)のゼオライト(zeolite)と金属塩化物を含み、
前記多孔性のゼオライトは、アルミノフォスフェート系ゼオライト(aluminophosphate type Zeolite)、フェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)の中から選択され、
前記多孔性のゼオライト粒子の間に前記金属塩化物が含浸して構成され、
前記多孔性のゼオライトは、前記ゼオライト粒子内に0.3−1.5nmの孔隙を有し、50−50000nmの粒子の大きさを有し、
吸着式冷凍機の駆動圧力範囲であるP/Po=0.1−0.3の範囲で0.3−0.9g(water(水))/g(sorbent(吸着剤))の最大水分吸着量を有することを特徴とする、ゼオライト−金属塩化物ハイブリッド水分吸着組成物。 In the moisture adsorption composition,
Including porosity zeolite and metal chloride;
The porous zeolite is selected from among aluminophosphate type zeolite and ferroaluminophosphate type zeolite.
It is constituted by impregnating the metal chloride between the porous zeolite particles,
The porous zeolite has a pore size of 0.3-1.5 nm in the zeolite particles and a particle size of 50-50000 nm;
Maximum moisture adsorption of 0.3-0.9 g (water (water)) / g (sorbent (adsorbent)) in the range of P / Po = 0.1-0.3 which is the driving pressure range of the adsorption refrigerator A zeolite-metal chloride hybrid moisture adsorption composition, characterized in that it has a quantity.
i)金属塩化物を水に完全に溶解させる段階(s100);
ii)前記金属塩化物の溶液にアルミノフォスフェート系ゼオライト(aluminophosphate type Zeolite)、フェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)の中から選択される一つ以上の多孔性ゼオライトを混合する混合段階(s200);
iii)前記金属塩化物の溶液と多孔性ゼオライトと混合物内の水を蒸発させるために、150℃〜250℃のオーブンに入れて24時間の間乾燥する乾燥段階(s300);
iv)乾燥が完了した後、生成物を破砕機を用いて粉末形態に形成させる製粉段階(s400);
v)余分な水分を除去する真空乾燥段階(s500);
を含むことを特徴とする、ゼオライト−金属塩化物ハイブリッド水分吸着組成物の製造方法。 In the method for producing a moisture adsorption composition,
i) completely dissolving the metal chloride in water (s100);
ii) a mixing step of mixing one or more porous zeolites selected from aluminophosphate type zeolite and ferroaluminophosphate type zeolite into the metal chloride solution ( s200);
iii) a drying step (s300) in which the metal chloride solution, the porous zeolite and the water in the mixture are evaporated in an oven at 150 ° C. to 250 ° C. and dried for 24 hours;
iv) After the drying is completed, a milling step (s400) in which the product is formed into a powder form using a crusher;
v) Vacuum drying step to remove excess moisture (s500);
A method for producing a zeolite-metal chloride hybrid moisture-adsorbing composition, comprising:
i)金属塩化物を水に完全に溶解させる段階(s100);
ii)前記金属塩化物の溶液にフェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)を混合する多孔性ゼオライト混合段階(s200);
iii)前記金属塩化物の溶液と多孔性ゼオライトと混合物内の水を蒸発させるために、150℃〜250℃のオーブンに入れて24時間の間乾燥する乾燥段階(s300);
iv)乾燥が完了した後、生成物を破砕機を用いて粉末形態に形成させる製粉段階(s400);
v)余分な水分を除去する真空乾燥段階(s500);
を含み、
前記多孔性ゼオライトを混合する混合段階(s200)における多孔性ゼオライトは、フェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)であり、前記フェロアルミノフォスフェート−5ゼオライトは、
a)リン酸(Phosphoric acid)を水に溶かす段階(S210);
b)前記水溶液にトリエチルアミン(Triethylamine)を添加して撹拌する段階(s220);
c)撹拌される溶液の温度を下げてアルミニウムイソプロポキシド(Aluminium isopropoxide)を徐々に添加して撹拌する段階(s230);
d)アルミニウムイソプロポキシドを添加した前記溶液にFeの前駆体である塩化鉄(II)・四水和物(Iron chloride(II)・tetrahydrate)を入れて鉄がよく分散できるように1−3時間の間撹拌する段階(s240);
e)前記撹拌後に溶液を200℃以上に温度を上げた後、7時間以上水熱合成(Hydrothermal Synthesis)を進める水熱合成段階(S250);
f)常温で冷却する冷却段階(s260);
g)100−200℃の温度で30分−2時間の間乾燥する乾燥段階(s270);
h)500−700℃の温度に温度を上げて4−6時間の間焼成する焼成段階(s280);
の工程で製造されることを特徴とする、ゼオライト−金属塩化物ハイブリッド水分吸着組成物の製造方法。 In the method for producing a moisture adsorption composition,
i) completely dissolving the metal chloride in water (s100);
ii) a porous zeolite mixing step (s200) in which a ferroaluminophosphate type zeolite is mixed with the metal chloride solution;
iii) a drying step (s300) in which the metal chloride solution, the porous zeolite and the water in the mixture are evaporated in an oven at 150 ° C. to 250 ° C. and dried for 24 hours;
iv) After the drying is completed, a milling step (s400) in which the product is formed into a powder form using a crusher;
v) Vacuum drying step to remove excess moisture (s500);
Including
Porous zeolite in the mixing step (s200) of mixing the porous zeolite, ferro aluminophosphate -5 zeolite; a (Ferroaluminophosphate-5 FAPO 4 -5) , the Ferro aluminophosphate -5 zeolite,
a) The step of dissolving phosphoric acid in water (S210);
b) adding triethylamine to the aqueous solution and stirring (s220);
c) lowering the temperature of the stirred solution and gradually adding aluminum isopropoxide and stirring (s230);
d) Iron (II) chloride tetrahydrate (Iron chloride (II) tetrahydrate), which is a precursor of Fe, is added to the solution to which aluminum isopropoxide has been added so that iron can be well dispersed. Stirring for a time (s240);
e) Hydrothermal synthesis step (S250) in which after the stirring, the temperature of the solution is raised to 200 ° C. or higher, and then hydrothermal synthesis is performed for 7 hours or more;
f) a cooling step (s260) of cooling at room temperature;
g) a drying step (s270) of drying at a temperature of 100-200 ° C. for 30 minutes-2 hours;
h) a calcination step (s280) in which the temperature is raised to a temperature of 500-700 ° C. and baked for 4-6 hours;
A method for producing a zeolite-metal chloride hybrid moisture-absorbing composition, which is produced by the process of
i)金属塩化物を水に完全に溶解させる段階(s100);
ii)前記金属塩化物の溶液にフェロアルミノフォスフェート系ゼオライト(Ferroaluminophosphate type Zeolite)を混合する多孔性ゼオライト混合段階(s200);
iii)前記金属塩化物の溶液と多孔性ゼオライトと混合物内の水を蒸発させるために、150℃〜250℃のオーブンに入れて24時間の間乾燥する乾燥段階(s300);
iv)乾燥が完了した後、生成物を破砕機を用いて粉末形態に形成させる製粉段階(s400);
v)を除去する真空乾燥段階(s500);
を含み、
前記多孔性ゼオライトを混合する混合段階(s200)における多孔性ゼオライトは、フェロアルミノフォスフェート−5ゼオライト(Ferroaluminophosphate−5;FAPO4−5)であり、前記フェロアルミノフォスフェート−5ゼオライトは、
a)リン酸(Phosphoric acid)を水に溶かす段階(s210’);
b)前記水溶液にトリエチルアミン(Triethylamine)を添加して撹拌する段階(s220’);
c)撹拌される溶液の温度を下げてアルミニウムイソプロポキシド(Aluminium isopropoxide)を添加して撹拌する段階(s230’);
d)アルミニウムイソプロポキシドを添加した前記溶液にFeの前駆体である塩化鉄(II)・四水和物(Iron chloride(II)・tetrahydrate)を入れて鉄がよく分散できるように1−2時間の間撹拌する段階(s240’);
e)前記撹拌後に溶液を電磁気波(microwave radiation)を利用して150−250℃に温度を上げた後、30分−2時間の間反応させる段階(s250’);
f)常温で冷却する冷却段階(s260’);
g)100−200℃の温度で30分−2時間の間乾燥する乾燥段階(s270’);
h)500−700℃の温度に温度を上げて4−6時間の間焼成する焼成段階(s280’);
の工程で製造されることを特徴とする、ゼオライト−金属塩化物ハイブリッド水分吸着組成物の製造方法。 In the method for producing a moisture adsorption composition,
i) completely dissolving the metal chloride in water (s100);
ii) a porous zeolite mixing step (s200) in which a ferroaluminophosphate type zeolite is mixed with the metal chloride solution;
iii) a drying step (s300) in which the metal chloride solution, the porous zeolite and the water in the mixture are evaporated in an oven at 150 ° C. to 250 ° C. and dried for 24 hours;
iv) After the drying is completed, a milling step (s400) in which the product is formed into a powder form using a crusher;
v) a vacuum drying step to remove (s500);
Including
Porous zeolite in the mixing step (s200) of mixing the porous zeolite, ferro aluminophosphate -5 zeolite; a (Ferroaluminophosphate-5 FAPO 4 -5) , the Ferro aluminophosphate -5 zeolite,
a) dissolving phosphoric acid in water (s210 ′);
b) adding triethylamine to the aqueous solution and stirring (s220 ′);
c) lowering the temperature of the stirred solution and adding aluminum isopropoxide and stirring (s230 ′);
d) Iron (II) chloride tetrahydrate (Iron chloride (II) tetrahydrate), which is a precursor of Fe, is added to the solution to which aluminum isopropoxide has been added so that iron can be well dispersed. Stirring for time (s240 ');
e) After the stirring, the temperature of the solution is raised to 150-250 ° C. using microwave radiation and then reacted for 30 minutes-2 hours (s250 ′);
f) a cooling step of cooling at room temperature (s260 ′);
g) a drying step (s270 ′) of drying at a temperature of 100-200 ° C. for 30 minutes-2 hours;
h) a calcination step (s280 ′) in which the temperature is raised to a temperature of 500-700 ° C. and baked for 4-6 hours;
A method for producing a zeolite-metal chloride hybrid moisture-absorbing composition, which is produced by the process of
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0029917 | 2014-03-13 | ||
KR1020140029917A KR101602801B1 (en) | 2014-03-13 | 2014-03-13 | A zeolite-metalchloride hybrid composite for absorption of moisture, and manufacturing method of it |
PCT/KR2014/006408 WO2015137571A1 (en) | 2014-03-13 | 2014-07-15 | Zeolite-metal chloride hybrid water adsorption composition and method for preparing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016517350A true JP2016517350A (en) | 2016-06-16 |
JP6029791B2 JP6029791B2 (en) | 2016-11-24 |
Family
ID=54071992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016507899A Active JP6029791B2 (en) | 2014-03-13 | 2014-07-15 | Zeolite-metal chloride hybrid moisture adsorption composition and production method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6029791B2 (en) |
KR (1) | KR101602801B1 (en) |
DE (1) | DE112014006459T5 (en) |
WO (1) | WO2015137571A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018075526A (en) * | 2016-11-09 | 2018-05-17 | 富士電機株式会社 | Moisture adsorbent |
JP2021045748A (en) * | 2020-11-30 | 2021-03-25 | 富士電機株式会社 | Moisture adsorbent |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061726A1 (en) * | 2015-10-05 | 2017-04-13 | 한국생산기술연구원 | Method for preparing organic/inorganic nanoporous material-metal chloride hybrid water absorbent composition, water absorbent composition prepared thereby, and water absorbent composition for surface coating, containing same |
KR101950316B1 (en) * | 2016-10-27 | 2019-02-20 | 한국생산기술연구원 | Metal doped organic-inorganic nanoporous materials adsorbent of water and method for manufacturing of adsorbent of water using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004136269A (en) * | 2002-08-20 | 2004-05-13 | Mitsubishi Chemicals Corp | Adsorbent material for adsorbing type heat pump, adsorbent material for air humidity conditioner, adsorbing type heat pump, and air humidity conditioner |
JP2007083236A (en) * | 2002-08-20 | 2007-04-05 | Mitsubishi Chemicals Corp | Adsorbent material for air humidity conditioner and air humidity conditioner and its operating method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100720152B1 (en) * | 2005-06-08 | 2007-05-18 | 한국화학연구원 | A preparation method of porous metal aluminophosphate molecular sieves |
KR100830841B1 (en) * | 2006-05-19 | 2008-05-20 | 한국화학연구원 | A preparation method of porous molecular sieves with various particle sizes |
KR101347206B1 (en) * | 2011-10-24 | 2014-01-06 | 서윤덕 | Water absorbent using porosity silica and producing method of same |
KR20130114371A (en) | 2012-04-09 | 2013-10-18 | 델타기계(주) | Apparatus for metal transfer of matal cutting machine |
KR101455902B1 (en) * | 2012-05-09 | 2014-11-04 | (주)엘지하우시스 | Gatter having nano porous material and manufacturing method thereof |
-
2014
- 2014-03-13 KR KR1020140029917A patent/KR101602801B1/en active IP Right Grant
- 2014-07-15 JP JP2016507899A patent/JP6029791B2/en active Active
- 2014-07-15 WO PCT/KR2014/006408 patent/WO2015137571A1/en active Application Filing
- 2014-07-15 DE DE112014006459.9T patent/DE112014006459T5/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004136269A (en) * | 2002-08-20 | 2004-05-13 | Mitsubishi Chemicals Corp | Adsorbent material for adsorbing type heat pump, adsorbent material for air humidity conditioner, adsorbing type heat pump, and air humidity conditioner |
JP2007083236A (en) * | 2002-08-20 | 2007-04-05 | Mitsubishi Chemicals Corp | Adsorbent material for air humidity conditioner and air humidity conditioner and its operating method |
Non-Patent Citations (3)
Title |
---|
JPN6016018468; ARISTOV Yu. I.: 'SELECTIVE WATER SORBENTS, A NEW FAMILY OF MATERIALS FOR ADSORPTION COOLING/HEATING: STATE-OF-THE ART' V Minsk International Seminar "Heat Pipes, Heat Pumps, Refrigerators" , 200309, 379-390 * |
JPN6016018470; JANCHEN J. et al.: 'Calorimetric investigation on zeolites, AlPO4's and CaCl2 impregnated attapulgite for thermochemica' Thermochimica Acta Vol.434, 2005, 37-41 * |
JPN6016018471; 大島一典 外: 'AIPO系新規吸着材のデシカントへの応用' SCEJ 40th Autumn Meeting(Sendai, 2008) , 2008, X324 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018075526A (en) * | 2016-11-09 | 2018-05-17 | 富士電機株式会社 | Moisture adsorbent |
JP2021045748A (en) * | 2020-11-30 | 2021-03-25 | 富士電機株式会社 | Moisture adsorbent |
JP7064179B2 (en) | 2020-11-30 | 2022-05-10 | 富士電機株式会社 | Moisture adsorbent |
Also Published As
Publication number | Publication date |
---|---|
KR20150107947A (en) | 2015-09-24 |
WO2015137571A1 (en) | 2015-09-17 |
DE112014006459T5 (en) | 2016-11-24 |
JP6029791B2 (en) | 2016-11-24 |
KR101602801B1 (en) | 2016-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | A novel activating strategy to achieve highly porous carbon monoliths for CO 2 capture | |
Shabir et al. | Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications | |
Garzón‐Tovar et al. | Composite salt in porous metal‐organic frameworks for adsorption heat transformation | |
JP6029791B2 (en) | Zeolite-metal chloride hybrid moisture adsorption composition and production method thereof | |
US8962520B2 (en) | Activated carbon/silica-gel/CaCl2 composite adsorbent material for air-conditioning applications and a method of preparing the same | |
KR101509690B1 (en) | A zeolite-metalchloride hybrid composite for absorption of moisture of coating layer, and manufacturing method of it | |
Tan et al. | Composite salt in MIL-101 (Cr) with high water uptake and fast adsorption kinetics for adsorption heat pumps | |
CN107921409B (en) | Method for preparing moisture-absorbing composition, moisture-absorbing composition prepared by the same and moisture-absorbing composition for surface coating | |
KR100803945B1 (en) | Organic-inorganic porous adsorbent as a water adsorbent and a method for preparing the same | |
Zhang et al. | Na 2 HPO 4-modified NaY nanocrystallites: efficient catalyst for acrylic acid production through lactic acid dehydration | |
US10040052B2 (en) | Composite adsorbent for adsorption chiller | |
EP4023656A1 (en) | Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof | |
Bonaccorsi et al. | Synthesis of SAPO-34/graphite composites for low temperature heat adsorption pumps | |
Singh et al. | Pure and strontium carbonate nanoparticles functionalized microporous carbons with high specific surface areas derived from chitosan for CO 2 adsorption | |
JP6761999B2 (en) | A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule. | |
KR101728505B1 (en) | Organic-inorganic nanoporous materials and metal halide hybrid adsorbent, and manufacturing method of the same, and application of the same | |
KR20150066632A (en) | Manufacturing method of activated carbon aerogel for carbon dioxide adsorption | |
KR102255608B1 (en) | Manufacturingmethod of organic-inorganic nanoporous material adsorbent and adsorbent produced by the same | |
JP2018030122A (en) | Method for producing desiccant | |
EP3366748B1 (en) | A composite material for thermochemical storage and a method for forming a composite material | |
KR20090071807A (en) | Silica particles of core-shell shape with mesoporous shells and preparation method thereof | |
KR100803938B1 (en) | Mesoporous silica material for adsorbent of water in low temperature | |
KR102221740B1 (en) | Plate-shape titanosilicate molecular sieve, method of preparing the same, and carbon dioxide absorbent including the same | |
JP5230109B2 (en) | Crystalline aluminum phosphate porous structure and method for producing the same | |
US20230417457A1 (en) | Reagent for a thermal machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6029791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |