[0008]本技術の少なくともいくつかの実施形態は、スライドガラス上で運搬される標本を処理することが可能な自動標本処理システムを対象とする。少なくともいくつかの実施形態は、スライドガラス放出器アセンブリを備える自動標本処理システムを含む。スライドガラス放出器アセンブリは、スライドガラスを受け取るように構成されたスライドガラス載置デバイスを含むことができる。スライドガラス放出器アセンブリはまた、複数の接触点でスライドガラスに係合してスライドガラスを位置ずれした位置から位置合わせされた位置へ動かすように構成されたスライドガラス位置合わせデバイスを含むことができる。一実施形態では、スライドガラス位置合わせデバイスは、第1の位置合わせ部材と、第1の位置合わせ部材の反対側に位置決めされた第2の位置合わせ部材とを含むことができる。第1および第2の位置合わせ部材は、スライドガラスを受け取る開位置と、スライドガラスを位置合わせおよび/または保持する閉位置との間を可動とすることができる。
[0009]第1の位置合わせ部材は、いくつかの実施形態では、スライドガラスの第1の縁部に係合する第1の接触領域および第2の接触領域を含むことができる。第2の位置合わせ部材は、いくつかの実施形態では、第1の縁部の反対側のスライドガラスの第2の縁部に係合する第3の接触領域を含むことができる。様々な実施形態では、スライドガラス位置合わせデバイスは、3つの接触点でスライドガラスに係合するように構成される。一例では、接触点は、スライドガラスのうち、第1、第2、または第3の接触領域の1つによって接触される小さい個別の区域とすることができる。一実施形態では、スライドガラスは、3つの接触点間の点(たとえば、中間点)の周りでスライドガラスを旋回させることによって、待機プラットホーム上で位置ずれした位置から位置合わせされた位置へ動かすことができる。別の実施形態では、スライドガラスを位置ずれした位置から位置合わせされた位置へ動かすことは、スライドガラス長手方向軸を待機プラットホーム長手方向軸に位置合わせすることを含む。
[0010]いくつかの実施形態では、行程超過抑制器と、行程超過抑制器とスライドガラス放出器との間に位置決めされたスライドガラス保持領域とがある。行程超過抑制器は、たとえばスライドガラスがスライドガラス保持領域を越えて動くのを抑制するように位置決めすることができる。一実施形態では、行程超過抑制器は、スライドガラスが待機プラットホームの少なくとも一部分を横切って動かされるときにスライドガラスと待機プラットホームとの間に真空を引き込むように位置決めされた真空ポートを含む。別の実施形態では、行程超過抑制器は、待機プラットホーム上のスライドガラスの存在を検出するセンサを含むことができる。
[0011]自動標本処理システムの少なくともいくつかの実施形態は、少なくとも1つの標本処理ステーションと、スライドガラスを待機プラットホームから標本処理ステーションへ輸送するように構成された移送ヘッドとを含む。移送ヘッドは、一実施形態では、スライドガラス載置デバイスの対応する位置合わせ機構および/または標本処理ステーションの位置合わせ機構の少なくとも1つによって受け取ることができるヘッド位置合わせ機構を含むことができる。一実施形態では、ヘッド位置合わせ機構は、第1の位置合わせピンおよび第2の位置合わせピンを含み、スライドガラス載置デバイスの対応する位置合わせ機構は、それぞれ第1の位置合わせピンおよび第2の位置合わせピンを受け取るように位置決めされた第1の開口および第2の開口を含む。移送ヘッドは、さらなる実施形態では、スライドガラスに係合してスライドガラスを位置合わせされた位置に輸送するように構成された捕獲機構を含むことができる。たとえば、捕獲機構は、スライドガラスが輸送されるときにスライドガラスの上面と移送ヘッドとの間に真空を引き込むように位置決めされた真空ポートを含むことができる。
[0012]自動標本処理システムの少なくともいくつかの実施形態は、スライドガラス放出器アセンブリに通信可能に結合されたコントローラを含む。コントローラは、たとえば、第1の位置合わせ機構を待機プラットホームへ向かう第1の方向に動かし、第2の位置合わせ機構を待機プラットホームへ向かう第1の方向とは反対の第2の方向に動かし、複数の接触点でスライドガラスに係合してスライドガラスを動かすように、スライドガラス位置合わせデバイスに指示するようにプログラムすることができる。コントローラはまた、第1の位置合わせ機構を第2の方向に動かし、第2の位置合わせ機構を第1の方向に動かして、位置合わせされた位置でスライドガラスを解放するように、スライドガラス位置合わせデバイスに指示するようにプログラムすることができる。別の実施形態では、コントローラは、スライドガラス載置デバイスに位置合わせされて、スライドガラスを待機から標本処理ステーションへ輸送するように、移送ヘッドを制御するようにプログラムすることができる。
[0013]本技術の実施形態の少なくともいくつかは、スライドガラス載置デバイスおよび移送ヘッドを備える自動標本処理システムを対象とする。一実施形態では、スライドガラス載置デバイスは、顕微鏡用スライドガラスを受け取るように構成された待機プラットホームと、第1の位置合わせ部材、および第1の位置合わせ部材の反対側に位置決めされた第2の位置合わせ部材を有する位置合わせデバイスとを含むことができる。位置合わせデバイスは、いくつかの実施形態では、複数の接触点で顕微鏡用スライドガラスに係合してスライドガラスを位置ずれした位置から位置合わせされた位置へ動かすように構成される。いくつかの配置では、移送ヘッドは、顕微鏡用スライドガラスを待機プラットホームから標本処理ステーションへ輸送するように構成することができる。移送ヘッドは、たとえば、スライドガラス載置デバイスの対応する位置合わせ機構および/または標本処理ステーションの位置合わせ機構の少なくとも1つによって受け取ることができるヘッド位置合わせ機構を有することができる。様々な実施形態では、第1の位置合わせ部材は、顕微鏡用スライドガラスの第1の縁部に係合する第1の接触領域および第2の接触領域を有することができ、第2の位置合わせ部材は、第1の縁部の反対側の顕微鏡用スライドガラスの第2の縁部に係合する第3の接触領域を有することができる。
[0014]本技術の実施形態のいくつかは、自動処理システム内で標本担持顕微鏡用スライドガラスを輸送する方法を対象とする。一実施形態では、この方法は、複数の標本担持顕微鏡用スライドガラスをキャリアからスライドガラス載置デバイスへ順次動かすステップを含む。個々の標本担持顕微鏡用スライドガラスは、複数の接触点で個々の標本担持顕微鏡用スライドガラスに係合することによって、スライドガラス載置デバイスで長手方向軸と位置合わせすることができる。任意選択で、個々の標本担持顕微鏡用スライドガラスをキャリアからスライドガラス載置デバイスへ動かした後、行程超過抑制器を通じて真空を引き込み、標本担持顕微鏡用スライドガラスをスライドガラス載置デバイスの待機プラットホーム上で捕獲し、待機プラットホーム上のスライドガラスの存在を検出する。いくつかの実施形態では、この方法は、個々の標本担持顕微鏡用スライドガラスをスライドガラス載置デバイスから1つまたは複数の標本処理ステーションへ輸送するステップをさらに含む。
[0015]いくつかの実施形態では、個々の標本担持顕微鏡用スライドガラスを輸送するステップは、輸送アセンブリの移送ヘッドをスライドガラス載置デバイスと位置合わせするステップと、位置合わせされた位置を維持しながら個々の標本担持顕微鏡用スライドガラスをスライドガラス載置デバイスから持ち上げるステップとを含む。他の実施形態では、個々の標本担持顕微鏡用スライドガラスを輸送する前に、輸送アセンブリの位置合わせ機構をスライドガラス載置デバイスにある対応する位置合わせ機構と位置合わせすることができる。さらなる実施形態では、個々の標本担持顕微鏡用スライドガラスを輸送するステップは、個々の標本担持スライドガラスと、標本担持スライドガラスを1つまたは複数の標本処理ステーションへ輸送するように構成された輸送アセンブリとの間に、真空を引き込むステップを含む。
[0016]本技術のいくつかの実施形態は、1つまたは複数の顕微鏡用スライドガラス上へ液体を分注する自動スライドガラス処理装置を対象とする。自動スライドガラス処理装置は、一実施形態では、複数のリザーバウェルを含むカルーセルと、リザーバウェルの1つから試薬を得るための少なくとも1つの装入位置と顕微鏡用スライドガラスの1つの上へ試薬を分注するための少なくとも1つの分注位置との間を可動の試薬ピペットを含む試薬ピペットアセンブリとを備えることができる。いくつかの配置では、自動スライドガラス処理装置はまた、複数のリザーバウェルを洗浄するように構成された洗浄ピペットアセンブリと、カルーセルに結合され、カルーセルを回転させて試薬ピペットアセンブリおよび/または洗浄ピペットアセンブリに対してリザーバウェルを位置決めするように構成された駆動機構とを含むことができる。
[0017]自動スライドガラス処理装置の実施形態の少なくともいくつかは、試薬を保持する複数の容器を含む充填ステーションと、複数のスライドガラス処理ステーションとを含むことができる。試薬ピペットアセンブリは、たとえば、充填ステーションで得られた試薬をカルーセルへ輸送し、カルーセルからの試薬混合物を顕微鏡用スライドガラスの1つの上へ分注するように、自動スライドガラス処理装置の内部チャンバを通って可動とすることができる。別の実施形態では、試薬ピペットアセンブリは、充填ステーションにある容器から試薬を得るための充填位置と、リザーバウェルの1つまたは複数を充填ステーションからの試薬で充填する分注位置との間を可動である。いくつかの実施形態では、自動スライドガラス処理装置は、試薬ピペットアセンブリがリザーバウェルの1つまたは複数の中で試薬を混合して試薬混合物を顕微鏡用スライドガラス上へ分注する混合モードを有する。他の実施形態では、洗浄ピペットアセンブリが、リザーバウェルの1つの中で試薬を混合する。
[0018]駆動機構は、たとえば、洗浄ピペットアセンブリの洗浄ピペットおよび/または試薬ピペットアセンブリの試薬ピペットの下でリザーバウェルを順次回転させるように構成することができる。一実施形態では、試薬ピペットアセンブリは、たとえば洗浄ピペットアセンブリが試薬ウェルの別の1つへ洗浄液を送達する間にリザーバウェルから試薬を得るための試薬装入状態を有する。いくつかの実施形態では、洗浄ピペットアセンブリは、それぞれのリザーバウェル内へ可動のピペットを含む。さらなる実施形態では、洗浄ピペットアセンブリは、真空源に流体的に結合され、洗浄ピペットアセンブリは、真空源が真空を引き込むと、リザーバウェルの1つから液体を引き込む。いくつかの実施形態では、試薬ピペットアセンブリは、同じ位置にあるリザーバウェルにアクセスし、カルーセルは、試薬ピペットアセンブリによってアクセス可能な位置へリザーバウェルを回転させることができる。他の実施形態では、カルーセルは、試薬ピペットアセンブリが異なる位置にあるリザーバウェルにアクセスするように試薬ウェルを位置決めするように回転する。
[0019]いくつかの実施形態では、カルーセルは、他の隣接するウェルに対する汚染のリスクなしで液体を排水口内へ誘導する専用の廃棄物経路を有する。本技術の少なくともいくつかの実施形態では、カルーセルは、相互汚染(たとえば、隣接するリザーバウェル間の流体の流れ)を防止するために、流体(たとえば、洗浄液、試薬など)がリザーバウェルから流れることを可能にするように構成された余水路を含む。余水路は、廃棄物の流れが隣接するウェル内へ再循環するのを抑制または防止するために、同じ径方向の長さを有することができる。一実施形態では、カルーセルは、隣接するリザーバウェル間で円周方向に個々に位置決めされた複数の溢流仕切りを含むことができる。一例では、溢流仕切りは、リザーバウェルから上方および径方向に内方へ延びる。カルーセルは、さらなる実施形態では、排水口と、試薬の溢流がリザーバウェルから排水口の方へ流れることを可能にする余水路とを含むことができる。
[0020]一実施形態では、自動スライドガラス処理装置は、駆動機構に通信可能に結合され、駆動機構が洗浄ピペットアセンブリによる洗浄のためにそれぞれのリザーバウェルを洗浄位置へ順次動かすように駆動機構に指示するように構成されたコントローラを含む。コントローラは、いくつかの実施形態では、リザーバウェルを試薬容器からの試薬で順次充填するように試薬ピペットに指示する命令を記憶および実行する。別の実施形態では、自動スライドガラス処理装置は、試薬ピペットアセンブリが少なくとも2つの試薬をリザーバウェルの1つまたは複数へ送達して試薬混合物を作り出すように試薬ピペットアセンブリに指示するように実行可能な混合命令を有するコントローラを含む。そのような実施形態の1つの配置では、コントローラは、試薬混合物を標本上へ分注するように試薬ピペットアセンブリに指示するように実行可能な混合試薬分注命令を有する。
[0021]本技術のさらなる実施形態は、カルーセルの複数のリザーバウェルへ試薬を順次送達して試薬混合物を作り出す方法を対象とする。カルーセルは、1つまたは複数の洗浄位置にリザーバウェルを順次位置決めするように回転可能とすることができる。この方法はまた、リザーバウェルの少なくとも1つが洗浄位置(複数可)に配置されている間に、リザーバウェルの1つからの試薬混合物で試薬ピペットを少なくとも部分的に充填するステップを含むことができる。試薬ピペットアセンブリは、1つまたは複数のスライドガラス上への単一または複数回の分注のために、リザーバウェル(事前に混合ずみ)または複数のウェルのいずれか1つからの複数の試薬を部分的に吸引することができる。試薬ピペットを試薬で少なくとも部分的に充填した後、この方法は、試薬ピペットを顕微鏡用スライドガラスの方へロボットによって動かすステップと、試薬を顕微鏡用スライドガラス上へ分注するステップとをさらに含むことができる。さらなる実施形態では、この方法は、試薬(たとえば、余分または残留の試薬)を収容するリザーバウェルの1つが洗浄位置に配置されるようにカルーセルを回転させるステップと、洗浄位置でこのリザーバウェルを洗浄して試薬を除去するステップとを含むことができる。
[0022]本技術の少なくともいくつかの実施形態は、顕微鏡用スライドガラスによって運搬される標本に少なくとも1つの試薬を添加するように構成された自動スライドガラス処理装置を対象とする。スライドガラス処理ステーションは、支持表面を有する支持要素と、少なくとも1つのポートと、円形でない形状(たとえば、上から見た場合)を有する封止部材とを含むことができる。封止部材は、圧縮されていない状態と圧縮された状態との間を可動とすることができる。圧縮されていない状態で、封止部材は、支持表面を越えて上方へ延びることができる。圧縮された状態で、封止部材は、少なくとも1つのポートを介して引き込まれた真空によって顕微鏡用スライドガラスが支持表面に付勢されるとき、顕微鏡用スライドガラスの裏側との封止を維持するように構成することができる。封止部材は、いくつかの実施形態では、上から見ると、角の丸い方形の形状(たとえば、丸い角を有し、その半径がまっすぐな辺の長さより短い形状)または方形の形状を有することができる。一実施形態では、封止部材は、支持表面に概して直交する軸に沿って見ると、角の丸い多角形の形状または多角形の形状を有する。
[0023]いくつかの実施形態では、支持要素の少なくとも一部分は、円形でない形状を有することができ、封止部材と少なくとも1つの真空ポートとの間を延びることができる。一実施形態では、支持要素はトレンチを含み、封止部材は、本体およびリップを有する適合ガスケットを含む。本体は、トレンチ内に位置決めすることができ、リップは、本体から径方向に外方へ延びることができる。いくつかの実施形態では、リップは、圧縮された構成と圧縮されていない構成との間を可動とすることができる。圧縮されていない構成で、リップは、トレンチから上方へ延びることができる。圧縮された構成で、リップは、トレンチの側壁の方へ延びることができる。一実施形態では、リップは、トレンチの側壁に接触することなく、圧縮されていない構成と圧縮された構成との間を可動である。顕微鏡用スライドガラスが支持表面に対して引き寄せられたとき、リップは、トレンチの側壁から隔置することができるが、支持要素に対する顕微鏡用スライドガラスの動きを抑制するために、トレンチの側壁に物理的に接触することも可能である。一実施形態では、リップは、垂直軸の周りのスライドガラスのあらゆる回転を防止するのに十分なほど堅い。したがって、スライドガラスは、支持表面に対する回転に関して固定される。一実施形態では、リップは、顕微鏡用スライドガラスが垂直軸の周りを少なくとも約2度回転するとき、側壁に物理的に接触するように構成される。
[0024]圧縮された構成の封止部材は、顕微鏡用スライドガラスが支持表面に対して引き寄せられたときに顕微鏡用スライドガラスの裏面が配置された平面の片側に位置決めすることができる。圧縮されていない構成で、封止部材は、平面の両側に配置することができる。支持要素は、少なくとも1つの真空ポートによって取り囲まれた真空表面を含むことができる。真空表面は、平面から隔置して平面の下に位置決めすることができ、したがって真空表面および顕微鏡用スライドガラスが、封止部材の高さより低い高さを有する真空チャンバを少なくとも部分的に画定する。
[0025]いくつかの実施形態では、封止部材は、使用中に顕微鏡用スライドガラスの裏面に直交する方向に主に撓むように構成されたリップを含むことができる。リップは、支持表面の方へ動いているスライドガラスに接触する圧縮されていない構成と、気密封止を維持する圧縮された構成との間を可動とすることができる。圧縮されていない位置で、リップは、支持表面を越えて上方へ延びることができる。圧縮された位置で、リップは、支持表面またはその下に位置決めすることができる。いくつかの実施形態では、リップは、顕微鏡用スライドガラスが支持表面の方へ動くと撓んでスライドガラスとの気密封止を形成するように構成することができる。封止部材は、いくつかの実施形態では、使用中に顕微鏡用スライドガラスのラベルの下に配置されるように位置決めすることができる。
[0026]自動スライドガラス処理システムの少なくともいくつかの実施形態は、少なくとも1つの真空入口と連通している真空源を含み、真空源は、気密封止を維持するのに十分な真空を引き込むように構成される。いくつかの実施形態では、スライドガラス処理システムは、支持要素を加熱するように構成された加熱器を含むことができ、したがって封止部材が気密封止を維持している間に、支持要素は、顕微鏡用スライドガラスを伝導により加熱する。
[0027]本技術の実施形態のいくつかは、顕微鏡用スライドガラスを保持する方法を対象とする。一実施形態では、この方法は、第2の部分を取り囲む第1の部分を有する支持要素上に顕微鏡用スライドガラスを位置決めするステップと、スライドガラスのラベル担持部分を第2の部分と位置合わせし、スライドガラスの標本担持部分を第1の部分と位置合わせするステップとを含む。この方法はまた、第2の部分を通って真空を引き込むステップと、スライドガラスを封止部材に封止するステップとを含むことができる。いくつかの実施形態では、この方法は、支持要素に対するスライドガラスの並進運動または回転運動の少なくとも1つを抑制するステップをさらに含む。この方法はまた、第2の部分と顕微鏡用スライドガラスの裏側との間に真空チャンバを設けるステップを含むことができる。いくつかの実施形態では、顕微鏡用スライドガラスを位置決めするステップは、封止部材の頂部部分に接触するステップと、スライドガラスの進行経路に概して直交する方向に封止部材の頂部部分を撓ませるステップとを含む。
[0028]本技術の少なくともいくつかの実施形態は、スライドガラス上で運搬されている標本を処理することが可能な生物標本処理システムを対象とする。標本処理システムは、スライドガラスおよび対向部を標本処理ステーションへ順次送達することができる。標本処理ステーションは、対向部を使用して、一連の液体を操作して標本へ誘導することができる。液体は、毛管作用に関連して、スライドガラス表面の上でかつ/またはスライドガラス表面を横切って操作することができ、標本処理ステーションは、組織構造の染色、免疫組織化学染色、原位置ハイブリッド形成染色、または他の標本処理プロトコルに対する処理温度を制御する。いくつかの実施形態では、対向部とは、1つまたは複数の物質をスライドガラス上で操作することが可能な表面または対向要素である。流体状の物質を操作するステップは、流体を分散させるステップ、流体の薄膜を変位させるステップ、または流体のボーラス、流体の帯、もしくは薄膜をその他の方法で変えるステップを含むことができる。
[0029]本技術の少なくともいくつかの実施形態は、対向部を液体に接触させることによって生物標本を液体に接触させるシステムを対象とする。対向部の非平面の(たとえば、湾曲した)濡れ表面と、標本を運搬するスライドガラスとを分離する距離は、濡れ表面とスライドガラスとの間に液体メニスカス層を形成するのに十分な距離である。メニスカス層は、生物標本の少なくとも一部分に接触し、毛管作用および他の操作作用を使用して、スライドガラスを横切って動く。
[0030]メニスカス層は、いくつかの実施形態では、比較的薄い流体膜、流体の帯などとすることができる。対向部は、スライドガラスに対して異なる位置へ可動であり、メニスカス層を形成する異なる体積の液体を収納することができる。毛管作用は、限定されるものではないが、接着力、凝集力、および/または表面張力によって湾曲した対向濡れ表面とスライドガラスとの間の間隙を通って液体が自然にはい上がる現象によるメニスカス層の動きを含むことができる。対向部は、液体を操作(たとえば、撹拌、変位など)し、比較的少量の液体を使用して標本を処理し、廃棄物を管理して一貫した処理を提供するのを助けることができる。蒸発損失は、もしあれば、所望の液体体積、試薬濃度などを維持するように管理することができる。液体廃棄物を低減させるように、比較的少量の液体を使用して、標本を処理することができる。
[0031]いくつかの実施形態では、システムは、スライドガラス全体にわたって熱損失を補償する温度プロファイルをもたらすように、伝導を介して個々のスライドガラスを加熱することができる1つまたは複数の自動スライドガラスホルダを含む。熱損失は、スライドガラスとスライドガラス近傍に配置された対向部との間の間隙内の液体の蒸発によって引き起こされる可能性がある。一実施形態では、スライドガラスホルダは、スライドガラス支持表面を有しており、スライドガラスに接触するスライドガラス支持表面に沿って不均一の温度プロファイルをもたらし、したがってスライドガラスの標本担持表面は、スライドガラスがスライドガラス支持表面上に配置されたとき、実質上均一の温度プロファイルを有する。いくつかの実施形態では、スライドガラス支持表面全体にわたって不均一の温度プロファイルがもたらされるのに対して、スライドガラスの取付け表面に沿って実質上均一の温度プロファイルがもたらされる。本技術の少なくともいくつかの実施形態の別の特徴は、スライドガラスホルダは、低温加熱区間と、低温加熱区間を取り囲む高温加熱区間とをもたらすように構成することができることである。高温区間は、相対的に高い蒸発熱損失を補償して、標本を概して均一の温度に保つことができる。
[0032]少なくともいくつかの実施形態は、スライドガラスキャリアからスライドガラスを取り出すスライドガラス放出器アセンブリを備える標本処理システムを含む。スライドガラス放出器アセンブリは、キャリアハンドラと、スライドガラス載置デバイスと、アクチュエータアセンブリとを含む。キャリアハンドラは、複数のスライドガラスを保持するスライドガラスキャリアを受け取って保持するように構成される。スライドガラス載置デバイスは、待機プラットホームと、待機プラットホームにあるスライドガラスを位置ずれした位置から位置合わせされた位置へ動かすように構成されたスライドガラス位置合わせデバイスとを含む。アクチュエータアセンブリは、個々のスライドガラスをスライドガラスキャリアから待機プラットホームへ移送するようにスライドガラスキャリアに対して動くように位置決めされたスライドガラス放出器を含む。このように、たとえばスライドガラスを1つの位置から別の位置へ引っ張る機械的な把持具または吸盤デバイスを使用することなく、スライドガラスを待機プラットホームへ移送することができる。
[0033]キャリアハンドラは、いくつかの実施形態では、待機プラットホームへ送達するためにスライドガラスの1つを順次載置するようにスライドガラス放出器に対してスライドガラスキャリアを動かすように構成される。いくつかの実施形態では、キャリアハンドラは、キャリア受取り器および受取り器回転器を含む。受取り器回転器は、スライドガラスキャリアを垂直なスライドガラスの向きから水平なスライドガラスの向きへ回転させることが可能である。一実施形態では、キャリアハンドラは、スライドガラスキャリアを装入するための装入位置とスライドガラス抜取り位置との間を可動のキャリア受取り器を含む。キャリアハンドラは、受取り器回転器および輸送デバイスを備えることができる。受取り器回転器は、キャリア受取り器に結合されており、キャリア受取り器によって保持されているスライドガラスキャリアを垂直なスライドガラスの向きから水平なスライドガラスの向きへ動かすように動作可能である。輸送デバイスは、スライドガラス放出器と待機プラットホームとの間で水平なスライドガラスの向きにあるスライドガラスキャリアを垂直方向に動かすように構成される。
[0034]スライドガラス載置デバイスは、いくつかの実施形態では、スライドガラス放出器が待機プラットホームのスライドガラス保持領域の端部を越えて動くのを防止するように位置決めされた放出器止め具を含む。スライドガラス放出器は、第1の位置から第2の位置へ可動とすることができる。いくつかの実施形態では、スライドガラス放出器は、スライドガラスキャリアを通って動き、スライドガラスキャリアからスライドガラスを押し出す。
[0035]待機プラットホームは、スライドガラス保持領域および行程超過抑制器を含むことができる。スライドガラス保持領域は、行程超過抑制器とスライドガラス放出器との間に位置決めされる。スライドガラス放出器は、スライドガラスを一度に1つずつスライドガラスキャリアから行程超過抑制器の方へ動かすように位置決めされる。いくつかの実施形態では、行程超過抑制器は、スライドガラスがスライドガラス放出器によって待機プラットホームの少なくとも一部分を横切るように動かされるときにスライドガラスと待機プラットホームとの間に真空を引き込むように位置決めされた真空ポートを含む。
[0036]スライドガラス位置合わせデバイスは、いくつかの実施形態では、スライドガラスを受け取る開位置とスライドガラスを位置合わせする閉位置との間を可動の1対の掴み具を含む。一実施形態では、掴み具は、掴み具が開位置から閉位置へ動くとき、待機プラットホームの高くなったスライドガラス保持領域に対してスライドガラスを中心に位置決めする。
[0037]アクチュエータアセンブリは、スライドガラス放出器に結合された往復駆動機構を含み、往復駆動機構は、スライドガラスをスライドガラスキャリアから待機プラットホーム上へ押し出すようにスライドガラス放出器を動かすように構成される。いくつかの実施形態では、スライドガラス放出器は、アクチュエータアセンブリとスライドガラス載置デバイスとの間のスライドガラスキャリア受取り間隙を横切るように可動である。
[0038]標本処理システムは、いくつかの実施形態では、1つまたは複数の標本処理ステーションおよび1つまたは複数の移送ヘッドをさらに含むことができる。移送ヘッドは、スライドガラスを待機プラットホームから標本処理ステーションの1つへ輸送するように構成することができる。いくつかの実施形態では、移送ヘッドの少なくとも1つは、スライドガラス載置デバイスの位置合わせ機構および/または標本処理ステーションの位置合わせ機構の少なくとも1つによって受け取ることができるヘッド位置合わせ機構を有することができる。いくつかの実施形態では、ヘッド位置合わせ機構は、第1の位置合わせピンおよび第2の位置合わせピンを含む。スライドガラス載置デバイスの位置合わせ機構は、第1の開口および第2の開口を含むことができる。第1の開口および第2の開口は、それぞれ第1の位置合わせピンおよび第2の位置合わせピンを受け取るように位置決めされる。いくつかの実施形態では、標本処理ステーションの位置合わせ機構は、第1の開口および第2の開口を含むことができ、第1の開口および第2の開口は、それぞれヘッド位置合わせ機構の第1の位置合わせピンおよび第2の位置合わせピンを受け取るように位置決めされる。
[0039]標本処理システムは、いくつかの実施形態では、スライドガラス放出器アセンブリに通信可能に結合されたコントローラをさらに含むことができる。コントローラは、第2のスライドガラスの下に位置決めされた第1のスライドガラスをスライドガラスキャリアから待機プラットホームへ動かすように、アクチュエータアセンブリに指示するようにプログラムすることができ、第1のスライドガラスを待機プラットホームへ動かした後、第2のスライドガラスを待機プラットホームへ動かすようにプログラムすることができる。
[0040]いくつかの実施形態では、標本担持顕微鏡用スライドガラスを輸送する方法は、複数の標本担持顕微鏡用スライドガラスを収容するキャリアを放出器アセンブリへ送達するステップを含む。キャリアは、放出器アセンブリのスライドガラス載置デバイスの方へ動く。標本担持顕微鏡用スライドガラスは、キャリアからスライドガラス載置デバイスへ順次動かされる。スライドガラス載置デバイスは、スライドガラス載置デバイスにある個々の標本担持顕微鏡用スライドガラスを位置合わせされた位置へ動かすように、スライドガラス受取り構成からスライドガラス位置合わせ構成へ動く。個々の標本担持顕微鏡用スライドガラスは、放出器アセンブリのスライドガラス載置デバイスから1つまたは複数の標本処理ステーションへ輸送される。
[0041]キャリアは、いくつかの実施形態では、複数の標本担持顕微鏡用スライドガラスを第1の向きから第2の向きへ動かすように回転させることができる。いくつかの実施形態では、第1の向きは実質上垂直の向きであり、第2の向きは実質上水平の向きである。
[0042]標本担持顕微鏡用スライドガラスは、いくつかの実施形態では、標本担持顕微鏡用スライドガラスをスライドガラス載置デバイス上へスライドガラス載置デバイスに沿って押し込むことによって、キャリアからスライドガラス載置デバイスへ順次動かすことができる。追加または別法として、キャリアによって保持されている最も下の標本担持顕微鏡用スライドガラスが、スライドガラス載置デバイスへ動かされる。このプロセスは、大部分またはすべてのスライドガラスがスライドガラスキャリアから取り出されるまで繰り返すことができる。
[0043]特定の実施形態では、個々の標本担持顕微鏡用スライドガラスは、スライドガラス載置デバイスから標本処理ステーションへ運搬することができ、標本処理ステーションは、標本担持顕微鏡用スライドガラスを個々に処理するように構成される。追加または別法として、標本担持顕微鏡用スライドガラスは、第1の標本担持顕微鏡用スライドガラスをキャリアからスライドガラス載置デバイスへ動かすことによって、キャリアからスライドガラス載置デバイスへ順次動かすことができる。第1の標本担持顕微鏡用スライドガラスをスライドガラス載置デバイスから離れる方へ輸送した後、第2の標本担持顕微鏡用スライドガラスがキャリアからスライドガラス載置デバイスへ輸送される。
[0044]スライドガラス載置デバイスは、いくつかの実施形態では、1対の掴み具を開位置から閉位置へ動かし、掴み具間に位置決めされた標本担持顕微鏡用スライドガラスに接触して位置ずれした位置から位置合わせされた位置へ動かすことによって、スライドガラス受取り構成からスライドガラス位置合わせ構成へ動かすことができる。特定の実施形態では、掴み具は、スライドガラスが置かれるスライドガラス載置デバイスの高くなった部分に対してスライドガラスを中心に位置決めすることができる。
[0045]標本担持顕微鏡用スライドガラスは、いくつかの実施形態では、(a)標本担持顕微鏡用スライドガラスがスライドガラス載置デバイス上へ動くようにスライドガラス放出位置にある標本担持顕微鏡用スライドガラスを押し、(b)キャリアが空になるまでプロセス(a)を繰り返すことによって、キャリアから順次動かされる。一実施形態では、キャリア(たとえば、バスケット)を通って細長い放出器を動かして、スライドガラスをスライドガラス載置デバイス上へ押し込む。
[0046]個々の標本担持顕微鏡用スライドガラスとスライドガラス載置デバイスとの間に真空を引き込むことができる。たとえば、スライドガラスがスライドガラス載置デバイスに沿って動くのを抑制または制限するのに十分な真空を引き込むことができる。真空は、スライドガラスをスライドガラス載置デバイスから取り出すために低減または消滅させることができる。
[0047]キャリアは、いくつかの実施形態では、標本担持顕微鏡用スライドガラスを隔置された配置で保持する棚を含むスライドガラスラックである。標本担持顕微鏡用スライドガラスは、スライドガラス載置デバイスのプラットホームに隣接しているスライドガラス取出し位置にある棚を割り出しすることによって、キャリアからスライドガラス載置デバイスへ順次動かすことができる。いくつかの実施形態では、スライドガラス取出し位置にあるスライドガラスは、スライドガラス載置デバイスよりわずかに高い。
[0048]標本担持顕微鏡用スライドガラスは、(a)最初の位置と放出位置との間でスライドガラス放出器を往復させて標本担持顕微鏡用スライドガラスの少なくとも1つをキャリアからスライドガラス載置デバイスへ動かし、(b)プロセス(a)を繰り返して標本担持顕微鏡用スライドガラスの少なくとも大部分をキャリアから取り出すことによって、キャリアから順次動かすことができる。いくつかの実施形態では、すべての標本担持顕微鏡用スライドガラスが、スライドガラス放出器を使用してキャリアから取り出される。
[0049]いくつかの実施形態では、スライドガラスによって運搬される標本を処理するスライドガラス処理装置は、染色モジュールを含む。染色モジュールは、スライドガラスホルダプラテン、対向要素、および対向部アクチュエータを含む。スライドガラスホルダプラテンは、第1の側壁と、第2の側壁と、第1の側壁と第2の側壁との間のスライドガラス受取り領域とを有する。スライドガラス受取り領域上にスライドガラスが位置決めされる。スライドガラスは、第1の縁部と、反対側の第2の縁部とを含む。対向要素は、スライドガラス近傍に配置されており、第1の縁部部分と、反対側の第2の縁部部分とを含む。対向部アクチュエータは、対向要素とスライドガラスとの間に毛管間隙を形成するように対向要素を保持する。対向要素の第1の縁部部分は、スライドガラスの第1の縁部より第1の側壁に近い。対向要素の第2の縁部部分は、スライドガラスの第2の縁部より第2の側壁に近い。
[0050]スライドガラス処理装置は、いくつかの実施形態では、対向要素とスライドガラスとの間の間隙内で液体が保持されている間に対向要素とスライドガラスとの間で補給液を送達するように位置決めされた分注器を含む。追加として、スライドガラス処理装置は、分注器に通信可能に結合されたコントローラを含むことができ、コントローラは、分注器が補給液を送達して対向要素とスライドガラスとの間の液体の体積を平衡体積範囲内で保つように、分注器に指示するようにプログラムされる。いくつかの実施形態では、コントローラは、補給液を所定の速度で送達するようにプログラムされる。一実施形態では、所定の速度は、大量の液体に対して約37℃の温度で約110μL/分以下である。いくつかの実施形態では、所定の速度は、大量でない試薬に対して約37℃の温度で約7μL/分以下である。この速度は、処理されている標本染色プロトコルに基づいて選択することができる。
[0051]スライドガラス処理装置は、いくつかの実施形態では、複数の追加の染色モジュールと、それぞれの染色モジュールを独立して制御するように構成されたコントローラとをさらに備える。染色モジュールは、標本全体にわたって試薬を分散させて動かすために、使い捨てまたは再利用可能の対向要素を使用することができる。
[0052]対向要素の第1の縁部部分は、スライドガラスの第1の縁部を越えて第1の側壁の方へ延びることができる。対向要素の第2の縁部部分は、スライドガラスの第2の縁部を越えて第2の側壁の方へ延びることができる。対向要素は、対向部アクチュエータの少なくとも一部分によって受け取られて保持されるように寸法設定された少なくとも1つのスロットを有する取付け端部を含むことができる。いくつかの実施形態では、対向要素は、捕獲端部と、捕獲端部から延びる弧状の本体とを有する。弧状の本体は、スライドガラスの表面を横切って液体を動かすように、スライドガラスに沿って転動するように構成される。捕獲端部は、約2.032mm(0.08インチ)以下の曲率半径を有する。他の寸法を使用することもできる。
[0053]染色モジュールは、第1の側壁、第2の側壁、または両方を伝導加熱するように位置決めされた少なくとも1つの加熱要素を含むことができる。対向部アクチュエータは、標本を運搬するスライドガラスの少なくとも一部分にわたって液体の帯を動かすように、スライドガラスに沿って対向要素の湾曲部分を転動させるように可動である。液体の帯が標本全体にわたって操作されている間に、第1の側壁および第2の側壁を使用して、スライドガラス、標本、および/または液体を加熱することができる。
[0054]スライドガラス処理装置は、いくつかの実施形態では、スライドガラスの縁部部分が対向部の縁部から外方へ延びるようにスライドガラスを支持するスライドガラス受取り領域の接触表面を含むことができる。
[0055]いくつかの実施形態では、スライドガラスによって運搬される標本を処理するシステムは、標本処理ステーションおよびコントローラを備える。標本処理ステーションは、対向部アクチュエータおよびスライドガラスホルダプラテンを含む。スライドガラスホルダプラテンは、スライドガラス支持領域および液体補充デバイスを含む。スライドガラスホルダプラテンは、対向部アクチュエータによって保持される対向要素が液体に接触してスライドガラス表面を横切って動く間に、スライドガラス支持領域にあるスライドガラス上の液体を加熱するように構成される。補充デバイスは、対向要素とスライドガラスとの間で補給液を送達するように構成される。コントローラは、補充デバイスが液体の蒸発損失を補償するような補充速度で補給液を送達するように、標本処理ステーションを制御するようにプログラムされる。
[0056]コントローラは、いくつかの実施形態では、1つまたは複数のメモリおよびプログラム可能プロセッサを含む。メモリは、第1のプログラム命令シーケンスおよび第2のプログラム命令シーケンスを記憶する。プログラム可能プロセッサは、スライドガラス上の標本を第1の液体で処理するための第1のプログラム命令シーケンスを実行するように構成され、第1の液体とは異なる第2の液体で標本を処理するための第2のプログラム命令シーケンスを実行するように構成される。いくつかの実施形態では、プログラム可能プロセッサは、スライドガラスホルダプラテンを使用してスライドガラスを第1の温度まで加熱するための第1のプログラム命令シーケンスを実行するように構成され、コントローラは、スライドガラスプラテンを使用してスライドガラスを第2の温度まで加熱するための第2のプログラム命令シーケンスを実行するように構成され、第2の温度は第1の温度とは異なる。
[0057]コントローラは、いくつかの実施形態では、第1の速度で第1の液体をスライドガラスへ送達するように補充デバイスに指示するための第1のプログラム命令シーケンスを実行するように構成される。コントローラは、第1の速度とは異なる第2の速度で第2の液体をスライドガラスへ送達するように補充デバイスに指示するための第2のプログラム命令シーケンスを実行するようにさらに構成される。特定の実施形態では、第1の速度は、第1の液体の蒸発速度に対応し、第2の速度は、第2の液体の蒸発速度に対応する。コントローラは、適度な蒸発損失を助けることができる。
[0058]コントローラは、いくつかの実施形態では、スライドガラス上の液体の体積を平衡体積範囲内で保つためにコントローラによって実行可能な補充プログラムを記憶するメモリを含む。特定の実施形態では、平衡体積範囲は約70〜約260μLである。特定の実施形態では、コントローラは、液体の体積を濡れ過ぎ状態に対応する最大平衡体積と濡れ不足状態に対応する最小平衡体積との間で保つように標本処理ステーションに指示するようにプログラムされる。コントローラは、いくつかの実施形態では、対向部アクチュエータによって保持される対向要素をスライドガラスに対して動かすことによって、スライドガラス上に保持された標本全体にわたって液体の体積を動かすように、標本処理ステーションに指示するようにプログラムされており、また、補給液を補充デバイスから送達して、蒸発による液体の体積の減少を概して補償するようにプログラムすることができる。
[0059]コントローラは、いくつかの実施形態では、基準蒸発速度情報(たとえば、液体に関する蒸発速度情報)をメモリから受け取り、基準蒸発速度情報に基づいて標本処理ステーションを制御するように構成される。追加または別法として、コントローラは、補充デバイスが液体の蒸発速度に基づいて選択された速度で補給液を提供するように、標本処理ステーションに指示するようにプログラムすることができる。
[0060]標本を処理するシステムは、いくつかの実施形態では、対向要素およびコントローラをさらに備える。対向要素は、対向部アクチュエータによって保持されており、スライドガラスの縁部を越えて外方へ延びることができる。コントローラは、液体の蒸発速度が所定の速度(たとえば、約37℃で7μL/分、5μL/分など)以下で保たれている間に対向要素がスライドガラスを横切って液体を操作する間に、対向要素を動かすように標本処理ステーションを制御するようにプログラムされる。
[0061]スライドガラスホルダプラテンは、いくつかの実施形態では、電気エネルギーを受け取って熱エネルギーを出力し、伝導を介してスライドガラスを加熱する加熱要素を含む。加熱要素は、1つまたは複数の抵抗加熱要素を含むことができる。
[0062]いくつかの実施形態では、スライドガラスによって運搬される標本を処理する方法は、スライドガラスホルダによって保持されるスライドガラス上の液体を加熱するステップを含む。対向要素は、スライドガラス上の液体に接触し、スライドガラス上の生物標本全体にわたって液体を動かすように転動する。補充速度は、液体の蒸発速度に基づいて決定される。補給液は、補充速度に基づいて、液体の蒸発損失を実質上補償するように送達される。補給液を含む液体に接触する対向要素は、標本を液体に繰り返し接触させるように転動する。
[0063]スライドガラス上へ送達される補給液の体積は、蒸発を介して減少した液体の体積以上とすることができる。追加または別法として、補給液は、スライドガラス上の液体の体積を最小平衡体積以上で最大平衡体積以下に保つように補給液を送達することによって、スライドガラス上へ送達することができる。追加または別法として、補給液は、対向要素がスライドガラスに沿って転動する間に、スライドガラス上へ送達することができる。
[0064]いくつかの実施形態では、スライドガラス上の標本を処理する方法は、液体に接触する対向要素を使用してスライドガラスに沿って液体を動かすステップを含む。スライドガラス上の液体の温度は、液体を動かしている間に制御される。液体の体積および/または液体の総蒸発速度の少なくとも1つが評価され、補給液は、この評価に基づいて、スライドガラス上の液体の体積を平衡体積範囲内で保つように、スライドガラス上へ送達される。特定の実施形態では、液体の体積および液体の総蒸発速度をメモリから受け取り、メモリからの液体の体積および液体の総蒸発速度を評価することができ、液体の体積および/または液体の総蒸発速度の少なくとも1つを評価するステップは、受け取るステップを含む。平衡体積範囲は、約125μL〜約175μLとすることができる。
[0065]いくつかの実施形態では、スライドガラス処理装置は、スライドガラスホルダプラテンおよび対向部アクチュエータを備える。スライドガラスホルダプラテンは受取り領域を有し、受取り領域は、スライドガラスの第1の側が受取り領域の方を向き、第2の側が受取り領域から離れる方を向いている状態で、スライドガラスを受け取るように構成される。対向部アクチュエータは、対向要素と受取り領域に配置されたスライドガラス表面との間に毛管間隙を画定するように、対向要素を保持するように位置決めされる。対向部アクチュエータは、毛管間隙を第1の方向にスライドガラスに沿って前進させて、液体の帯をスライドガラスの第2の側の長さおよび幅を横切って第1の位置から第2の位置へ動かし、液体の帯を狭くする(たとえば、第1の方向に実質上平行の方向に液体の帯の幅を減少させる)ように構成される。
[0066]対向部アクチュエータは、いくつかの実施形態では、対向要素をスライドガラスに沿って第1の方向と、第1の方向とは反対の第2の方向とに交互に転動させ、第1の位置と第2の位置との間のスライドガラスの表面を横切って液体の帯を操作するように構成される。第1の位置にある液体の帯は、対向要素の端部とスライドガラスとの間に位置し、第2の位置にある液体の帯は、対向要素とスライドガラスの端部との間に位置する。液体の帯を第1の位置および第2の位置の他方へ動かす前に、第1の位置および第2の位置のそれぞれで液体の帯を狭くすることができる。対向部アクチュエータは、いくつかの実施形態では、帯の幅を所定の量だけ減少させるように構成された帯幅可変圧縮式の対向部アクチュエータである。所定の量は、コントローラまたは操作者によって選択することができる。
[0067]対向部アクチュエータは、いくつかの実施形態では、対向要素をスライドガラスに対して動かして、スライドガラスおよび/または対向要素の少なくとも1つの端部によって画定される開口の端部で、液体の帯の幅を少なくとも50%、40%、または25%低減させるように構成される。追加または別法として、対向部アクチュエータは、液体の帯の高さ方向幅を維持しながら、対向要素を動かして第1の位置と第2の位置との間で液体の帯を変位させるように構成することができる。対向部アクチュエータは、いくつかの実施形態では、液体の帯が対向要素とスライドガラスの端部との間の開口の第1の端部で狭くなった第1の構成と、液体の帯が開口の第2の端部で狭くなった第2の構成との間を可動である。対向部アクチュエータは、いくつかの実施形態では、液体の帯の第2の側が対向要素およびスライドガラスの1つの端部で実質上静止したまま保持されているのに対して、液体の帯の第1の側を液体の帯の第2の側の方へ動かして液体の帯の幅を減少させる過転動構成へ可動である。
[0068]スライドガラス処理装置は、いくつかの実施形態では、染色モジュールおよびコントローラをさらに備える。染色モジュールは、スライドガラスホルダプラテンおよび対向部アクチュエータを備える。コントローラは、染色モジュールに通信可能に結合される。コントローラは、対向要素を動かして毛管間隙を動かすように染色モジュールに指示するようにプログラムされる。
[0069]スライドガラス処理装置は、いくつかの実施形態では、対向部アクチュエータの対向部受取り器によって保持される取付け端部と、取付け端部の反対側の捕獲端部と、本体とを含む対向要素をさらに備える。本体は、取付け端部と捕獲端部との間に位置する。捕獲端部は、取付け端部がスライドガラスから離れる方へ動かされると、スライドガラスと協働して、スライドガラスの取付け表面の端部でスライドガラス上のラベル近傍に液体を蓄積させる。
[0070]スライドガラス処理装置は、いくつかの実施形態では、受取り領域の方を向いている先細りした端部を有する対向要素をさらに備える。先細りした端部は、液体の帯に接触して捕獲するように位置決めされる。特定の実施形態では、先細りした端部は、対向要素の長手方向に延びる両縁部間に延びる円形の領域を含む。
[0071]対向部アクチュエータは、いくつかの実施形態では、転動状態を有し、対向要素をスライドガラスに沿って転動させて、スライドガラスの端部によって画定された開口の端部の位置から液体の帯を動かし、開口の反対側の端部の位置へ対向要素を動かす。対向部アクチュエータは、たとえば培養を実行するために、対向要素をスライドガラスに対して静止したまま保つ静止状態を有することができる。
[0072]スライドガラス処理装置は、いくつかの実施形態では、受取り領域の接触表面によって支持されるスライドガラスをさらに備え、したがってスライドガラスは、接触表面の両縁部を越えて横方向に外方へ延びる。スライドガラスは、1つまたは複数の標本を運搬することができる。
[0073]スライドガラス処理装置は、いくつかの実施形態では、対向部アクチュエータによって保持される対向要素をさらに備える。対向要素は、湾曲した捕獲端部を有する。捕獲端部は、約2.032mm(0.08インチ)以下の曲率半径を有することができる。特定の実施形態では、対向要素は、受取り領域でスライドガラスに沿って転動する弧状の本体を有する。
[0074]いくつかの実施形態では、スライドガラス処理装置は、スライドガラスホルダプラテンおよび対向部アクチュエータを備える。対向部アクチュエータは、対向部受取り器および駆動機構を含む。対向部受取り器は、対向要素を保持して対向要素とスライドガラスホルダプラテンによって保持されるスライドガラスとの間に毛管間隙を形成するように位置決めされる。駆動機構は、対向要素を第1の方向にスライドガラスに沿って転動させて液体の帯を対向要素とスライドガラスとの間の空間の端部まで動かす転動状態を有する。駆動機構は、対向要素を第1の方向に転動させて空間の端部で捕獲される液体の帯の幅を減少させる過転動状態を有する。
[0075]対向部アクチュエータは、いくつかの実施形態では、対向要素を動かしてスライドガラスの取付け表面の少なくとも大部分にわたって液体の帯を動かすように構成される。液体の帯の幅は、対向要素の少なくとも一部分をスライドガラスから離れる方へ動かすことによって減少させることができる。液体の帯の幅は、スライドガラスの長手方向軸に実質上平行な方向にある。
[0076]いくつかの実施形態では、スライドガラスによって運搬される標本を処理する方法は、スライドガラスおよび対向要素を染色モジュールへ送達するステップを含む。染色モジュールによって保持される対向要素は、スライドガラスと対向要素との間の毛管間隙内の液体を保持するように、染色モジュールによって保持されるスライドガラスに対して位置決めされる。対向要素は、スライドガラスの長手方向軸に対して実質上平行な第1の方向にスライドガラスと対向要素との間の開口の端部の方へ液体を変位させるように、スライドガラスに対して動かされる。対向要素は、液体の帯が開口の端部で捕獲されている間に、液体の帯の幅を第1の方向に低減させるように、スライドガラスに対して動かされる。
[0077]液体の帯は、いくつかの実施形態では、対向要素をスライドガラスに沿って第1の方向と第1の方向とは反対の第2の方向とに転動させることによって、開口の端部と開口の反対側の端部との間を交互に動かされる。対向要素は、対向要素の本体とスライドガラスとの間で間隔を維持する1つまたは複数の間隙要素を含むことができる。
[0078]液体の帯は、いくつかの実施形態では、液体の帯の幅を増大させるように分散される。分散した液体の帯は、スライドガラス上の標本全体にわたって動かすことができる。特定の実施形態では、液体の帯の幅を毛管間隙の一方の端部で低減させてから、液体の帯を間隙の他方の端部へ動かす。
[0079]標本を処理する方法は、いくつかの実施形態では、液体の帯の幅を低減させながら、間隙の端部で実質上すべての液体を捕獲するステップをさらに含む。
[0080]標本を処理する方法は、いくつかの実施形態では、液体の帯の幅を維持しながら、スライドガラス上の標本全体にわたって液体の帯を変位させるステップをさらに含む。
[0081]標本を処理する方法は、いくつかの実施形態では、対向要素をスライドガラスに対して動かすことによって、液体の帯の幅を少なくとも50%低減させるステップをさらに含む。液体の体積は、約75μL以上とすることができる。
[0082]液体の帯の幅は、いくつかの実施形態では、液体の帯の長さ未満である。液体の帯の幅は、スライドガラスの長手方向軸に対して実質上平行である。液体の帯の長さは、スライドガラスの長手方向軸に実質上直交する。
[0083]いくつかの実施形態では、スライドガラス加熱装置が支持要素および加熱器を備える。支持要素は、スライドガラスの裏側が支持表面の方を向いている状態でスライドガラスを支持するように構成された支持表面と、スライドガラスの裏側に対向するスライドガラスの標本担持表面とを有する。加熱器は、支持要素に結合される。スライドガラス加熱装置は、標本担持表面上の液体の蒸発に伴う不均一の熱損失を実質上補償するために、支持表面を横切ってスライドガラスの裏側へ伝導を介して熱エネルギーを不均一に送達するように構成される。
[0084]加熱器は、いくつかの実施形態では、支持要素を介してスライドガラスへ熱を送達し、標本担持表面の標本担持部分に沿って実質上均一の温度プロファイルをもたらすように位置決めされる。いくつかの実施形態では、実質上均一の温度プロファイルは、標本担持表面の標本担持部分全体にわたって5%未満の温度変動を有する。いくつかの実施形態では、実質上均一の温度プロファイルは、標本担持表面全体にわたって4℃未満の温度変動を有する。他の温度プロファイルを実現することもできる。
[0085]加熱器は、いくつかの実施形態では、支持表面の側面部分を伝導加熱する少なくとも2つの隔置された細長い部分と、細長い部分間を延びる支持表面の2つの端部加熱部分とを含む。2つの端部加熱部分は、支持表面のうちスライドガラスの端部に接触する部分と、支持表面のうちスライドガラスのラベルに隣接するスライドガラスの領域に接触する部分との両方を加熱するように位置決めされる。
[0086]スライドガラス加熱装置は、いくつかの実施形態では、支持表面の中心領域に沿って低加熱区間をもたらし、支持表面に沿って高加熱区間をもたらすように構成される。高加熱区間は、低加熱区間を取り囲む(たとえば、円周方向に取り囲む)ことができる。
[0087]スライドガラス加熱装置は、いくつかの実施形態では、加熱器によって画定されたポケットを通過して支持要素を冷却する対流をもたらすように位置決めされた対流アセンブリをさらに備える。いくつかの実施形態では、対流アセンブリは、1つまたは複数のファンを含む。対流は、スライドガラス上の標本を横切るように流れることなく、支持要素を冷却することができる。
[0088]スライドガラス加熱装置は、いくつかの実施形態では、1対の側壁をさらに備え、各側壁は、熱伝導部分および絶縁部分を有する。熱伝導部分は、スライドガラスを加熱するようにスライドガラスの方を向いている。
[0089]スライドガラス加熱装置は、いくつかの実施形態では、絶縁材料を含むオーバーモールドホルダをさらに備える。支持要素は、オーバーモールドホルダの側壁間に位置決めされ、これらの側壁によって支持される。絶縁材料は、支持要素の材料の熱伝導率より小さい熱伝導率を有することができる。いくつかの実施形態では、絶縁材料は非金属材料(たとえば、プラスチック)を含み、支持要素は金属を含む。
[0090]いくつかの実施形態では、加熱器および支持要素の少なくとも1つは、重量で大部分にステンレス鋼を含む。いくつかの実施形態では、支持表面はステンレス鋼を含む。いくつかの実施形態では、支持表面と加熱器との間の支持要素の大部分はステンレス鋼である。支持要素のうちスライドガラスと加熱器との間の部分は、約20W/m*K以下の熱伝導率を有することができる。
[0091]いくつかの実施形態では、スライドガラス上で運搬される生物標本を加熱する方法は、スライドガラスの裏面が支持要素の方を向き、スライドガラスの標本担持表面が支持要素から離れる方を向くように、伝導スライドガラス加熱装置の支持要素上にスライドガラスを位置決めするステップを含む。熱は、標本担持表面上の液体の蒸発に伴う蒸発熱損失を実質上補償するために、スライドガラスの裏面を横切って支持要素を介して不均一に送達することができる。蒸発熱損失は、スライドガラスの標本担持表面全体にわたって不均一である。
[0092]いくつかの実施形態では、スライドガラスの裏面に接触する支持要素の支持表面に沿って不均一の温度プロファイルをもたらすことができ、したがって標本担持表面は、この不均一の温度プロファイルより均一の温度プロファイルを有する。いくつかの実施形態では、温度変動(たとえば、生物標本に接触する標本担持表面の一部分にわたって維持される温度変動)は、約5°以下の温度変動とすることができ、スライドガラスの裏面に接触する支持要素の支持表面は、5°を超える温度変動を有する。
[0093]支持要素の支持表面は、スライドガラスの裏面に接触することができ、支持表面の中心領域に低加熱区間をもたらし、支持表面のうち中心領域を取り囲む領域に高加熱区間をもたらすように加熱することができる。追加または別法として、支持表面は、標本担持表面に沿って染色区域の周囲に沿って高加熱区間をもたらし、染色区域の中心領域に低加熱区間をもたらすように加熱することができる。
[0094]スライドガラスは、伝導スライドガラス加熱装置の加熱要素によってもたらされる熱エネルギーを使用して伝導加熱することができる。加熱要素は、少なくとも2つの隔置された細長い加熱部分と、細長い加熱部分間を延びる2つの端部加熱部分とを含む。細長い加熱部分および端部加熱部分は、支持要素を冷却するための対流冷却ポケットを画定する。
[0095]いくつかの実施形態では、標本担持スライドガラスを加熱するシステムは、支持要素と、伝導加熱器と、コントローラとを含むスライドガラスプラテンを含む。支持要素は、支持表面を有する。伝導加熱器は、支持要素を加熱するように位置決めされる。コントローラは、スライドガラスの裏側が支持表面に接触しているとき、熱エネルギーをスライドガラスへ伝達して、スライドガラスの標本担持表面の標本担持区域に沿って実質上均一の温度プロファイルをもたらすために、支持要素に沿って不均一の加熱プロファイルをもたらすように、システムに制御するようにプログラムされる。
[0096]伝導加熱器は、いくつかの実施形態では、支持要素を加熱してスライドガラスを支持する支持表面の大部分にわたって不均一の温度加熱プロファイルをもたらすように構成され、したがってスライドガラスの標本担持表面の大部分に沿って実質上均一の温度加熱プロファイルがもたらされる。実質上均一の温度プロファイルは、スライドガラスの標本担持区域全体にわたって5°未満の温度変動を有する。追加または別法として、伝導加熱器は、支持要素に沿って中心の低温加熱区間をもたらし、支持要素に沿って周辺の高温加熱区間をもたらすように構成することができる。追加または別法として、伝導加熱器は、支持要素の下に位置決めされており、対流が通過して支持要素を冷却することが可能な開口を画定する。
[0097]標本担持スライドガラスを加熱するシステムは、いくつかの実施形態では、コントローラに結合された対流冷却デバイスを含み、対流冷却デバイスは、コントローラからの信号に基づいて開口内へ対流を送達するように構成される。特定の実施形態では、対流冷却デバイスは、対流をもたらすことが可能な少なくとも1つのファンを含む。いくつかの実施形態では、圧縮空気または運動空気を使用することができる。
[0098]支持要素は、いくつかの実施形態では、ステンレス鋼を含む。いくつかの実施形態では、支持要素のうちスライドガラスを運搬する支持表面と伝導加熱器との間の部分は、約20W/m*K以下の熱伝導率を有する。
[0099]非限定的および非排他的な実施形態について、以下の図面を参照しながら説明する。同じ参照番号は、別途指定しない限り、様々な図全体にわたって同じ部分または動作を指す。
[00170]図1は、保護ハウジング120、スライドガラスキャリア留置ステーション124(「留置ステーション124」)、対向部キャリア装入ステーション130(「装入ステーション130」)、および試薬留置ステーション140、142を含む標本処理システム100(「システム100」)を示す。システム100は、装入ステーション130を介して装入された対向部を使用して標本担持スライドガラスを自動的に処理し、たとえば標本の調整(たとえば、細胞の調整、洗浄、脱パラフィンなど)、抗原の回収、染色(たとえば、H&E染色)、または他のタイプのプロトコル(たとえば、免疫組織化学プロトコル、原位置ハイブリッド形成プロトコルなど)を実行して、目視検査、蛍光による視覚化、顕微鏡検査、微量分析、質量分析方法、撮像(たとえば、デジタル撮像)、または他の分析もしくは撮像方法のために標本を準備することができる。システム100は、処理の柔軟性および比較的高い処理量を提供するために、同じまたは異なるプロトコルを使用して、20枚の標本担持スライドガラスを同時に処理することができる。標本は、好都合な取扱いおよび相互汚染の防止のため、処理の間中(たとえば、焼成から染色まで)、スライドガラス上に留まることができる。
[00171]保護ハウジング120は、汚染物質が内部の処理環境に入るのを抑制、制限、または実質上防止する。保護ハウジング120はカバー146を含むことができ、カバー146は、限定されるものではないが、ロボット構成要素(たとえば、ロボットアーム)、輸送デバイス(たとえば、コンベア、アクチュエータなど)、流体構成要素、標本処理ステーション、スライドガラスプラテン、混合構成要素(たとえば、混合ウェル、試薬トレーなど)、スライドガラスキャリア取扱い構成要素、対向部キャリア取扱い構成要素、乾燥器、加圧デバイス(たとえば、ポンプ、真空デバイスなど)などを含む内部の構成要素にアクセスするために開けることができる。
[00172]留置ステーション124は、1列のベイを含む。左のベイ148内には、バスケットの形のスライドガラスキャリアが位置決めされる。各ベイは、標本処理の前、途中、または後にスライドガラスを運搬するのに適したラック、バスケット、トレー、または他のタイプのキャリアなど、他のタイプのスライドガラスキャリアを受け取るように構成することができる。図示の留置ステーション124は、分割器によって分離された12個のベイを含む。ベイの数、ベイの位置、ベイの向き、およびベイの構成は、使用すべきスライドガラスキャリアのタイプに基づいて選択することができる。
[00173]装入ステーション130は受取り開口150を含み、使用者は、受取り開口150を通って対向部キャリアを装入することができる。対向部キャリアは、積み重ねた対向要素を保持する格納箱とすることができる。他の実施形態では、対向部キャリアは、カートリッジ、または対向部を運搬する他の携帯型の構造とすることができる。
[00174]留置ステーション140、142はそれぞれ、1列のベイを含む。各ベイは、大容量の試薬容器、ボトル、箱入りバッグ式の試薬容器などを含む1つまたは複数の容器を保持することができる。留置ステーション142は、洗浄溶液などのより大きい体積単位で使用される液体を提供する大容量の液体容器を保持することができる。留置ステーション140、142内の空の容器は、好都合には、満杯の容器と交換することができる。
[00175]標本処理ステーションに出入りして標本処理ステーション内を流れる流体の動きは、たとえばポンプ、バルブ、およびフィルタを含む流体モジュールによって制御することができる。空圧モジュールが、加圧空気を供給し、真空を生成して、様々なスライドガラス処理動作を実行し、システム100全体にわたって流体を動かすことができる。廃棄物は、廃棄物ドロア143へ送達することができる。図2は、廃棄物容器149A、149Bを保持する廃棄物ドロア143を示す。空圧モジュールは、廃棄物を標本処理ステーションから容器149A、149Bへ送達することができ、容器149A、149Bは、周期的に空にすることができる。
[00176]コントローラ144は、システム構成要素に指示することができ、概して、限定されるものではないが、1つまたは複数のコンピュータ、中央処理装置、処理デバイス、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、リーダなどを含むことができる。情報を記憶するために、コントローラ144は、限定されるものではないが、揮発性メモリ、不揮発性メモリ、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)などの1つまたは複数の記憶要素を含むことができる。記憶される情報は、加熱プログラム、最適化プログラム、組織準備プログラム、較正プログラム、割出しプログラム、混合プログラム、または他の実行可能なプログラムを含むことができる。最適化プログラムは、性能を最適化する(たとえば、加熱を強化する、余分な試薬の消費を低減させる、生産性を増大させる、処理の一貫性を強化するなど)ために実行することができる。処理は、たとえば、(1)処理速度を増大させ、(2)加熱もしくは冷却サイクルの時間を低減させ、(3)処理量を増大させ(たとえば、特定の長さの時間内に処理されるスライドガラスの数を増大させる)、かつ/または(4)試薬廃棄物を低減させるために、最適の予定を決定することによって最適化することができる。いくつかの実施形態では、コントローラ144は、標本処理ステーションに装入するための装入シーケンスを決定し、処理時間を低減させ、分注器の装入シーケンスを決定する。これにより、標本担持スライドガラスが標本処理ステーションから取り出されるとすぐに次の標本担持スライドガラス上へ流体を分注することができるため、時間が節約される。いくつかの実施形態では、コントローラ144は、混合ステーション165を使用して試薬を混合および分注するシーケンスを決定する。
[00177]図2は、処理ステーション163、スライドガラス放出器アセンブリ200、対向部分注器380、および標本返却機構157を含む標本処理システム100の等角分解図である。処理ステーション163、スライドガラス放出器アセンブリ200、および対向部分注器380は、内部環境121の左側に位置決めされる。標本返却機構157は、内部環境121の右側に位置決めされる。標本返却機構157のほぼ下に混合ステーション165が位置決めされ、混合ステーション165は、リザーバ(たとえば、リザーバウェル)を含むことができる。混合ステーション165内では、試薬を混合することができる。他の実施形態では、混合ステーション165は、容器(たとえば、バイアル、ビーカなど)を保持することができ、これらの容器内で物質が貯蔵および/または混合される。20個の標本処理ステーションからなる列152により、生物標本を独立して処理することができる。
[00178]動作の際には、使用者は、標本担持スライドガラスを運搬するスライドガラスキャリアを図1の留置ステーション124の空のベイの中へ装入することができ、対向部を運搬する対向部キャリアを装入ステーション130の中へ装入することができる。スライドガラスキャリアは、スライドガラス上にもしあればラベルを読み取るリーダ(たとえば、ラベルリーダ、バーコードリーダなど)(図示せず)へ移送することができる。スライドガラスキャリアは、処理ステーション163へ送達することができ、処理ステーション163は、限定されるものではないが、乾燥器(たとえば、脱水ユニット)、加熱ユニット(たとえば、焼成モジュール)、またはスライドガラスから水を取り出すこと、標本を加熱する(たとえば、標本を加熱して標本をスライドガラスに付着させる)ことなどが可能な他の構成要素を含むことができる。いくつかの実施形態では、処理ステーション163は、スライドガラスの上へ熱風を吹き込んでスライドガラスを乾燥させ、標本がパラフィンを含有する場合、この熱風により、パラフィンを柔らかくしてスライドガラスへの標本の付着を促進することができる。空気システムは、空気を部分的に再循環させて処理ステーション163内の湿度を制御することができる。スライドガラスキャリアは、処理ステーション163から別のモジュール(たとえば、標本処理ステーション、ラベルリーダなど)へ持ち上げて輸送することができ、または留置ステーション124のベイの1つへ戻すことができる。
[00179]標本返却機構157は、標本担持スライドガラスをスライドガラスキャリア内へ装入することができる。装入されたスライドガラスキャリアは、留置ステーション124へ輸送することができる。スライドガラスキャリアが自動カバーガラスに適合している場合、使用者は、カバーガラスで覆うためにスライドガラスキャリアを留置ステーション124から自動カバーガラスへ輸送することができる。別法として、スライドガラスは、手動によりカバーガラスで覆うことができる。カバーガラスで覆われたスライドガラスは、光学機器、たとえば顕微鏡または他の光学デバイスを使用して分析することができる。
[00180]図3は、開示する技術の一実施形態によるピペット装置172の立面図である。ピペット装置172は、改善された染色特性を提供し、処理能力を大幅に増大させ、またはその他の方法で処理を強化するために、載置区域として働くことができる。ピペット装置172は、試薬(たとえば、個々の試薬および/または試薬混合物)の体積を準備および保持することができる。特に混合直後に反応する試薬の場合、染色の一貫性および品質を強化するために、分注直前に反応性の試薬を混合することができる。試薬は、必要とされるよりかなり前に載置することができるため、ピペット装置172は、スライドガラス処理特性を増大させることができ、大容量の自動スライドガラス処理システムでの使用によく適している。追加として、ピペット装置172は、相対的に小さい空間を占め、スライドガラスの処理とは無関係に混合および洗浄機能を提供することができる。
[00181]概して、ピペット装置172は、混合ステーション165、試薬ピペットアセンブリ175、および洗浄ピペットアセンブリ176を含むことができる。混合ステーション165は、カルーセル177と、回転軸181の周りでカルーセル177を回転させる駆動機構184とを含むことができる。カルーセル177は、試薬の体積を保持するように構成されたリザーバウェル180(1つを特定する)からなる円形のアレイを含むことができる。駆動機構184は、カルーセル177を回転させて(矢印186で示す)、リザーバウェル180を試薬ピペットアセンブリ175および/または洗浄ピペットアセンブリ176に対して位置決めすることができる。試薬ピペットアセンブリ175は、充填ステーション209(たとえば、試薬ベイ)からの新鮮な試薬でリザーバウェル180を部分的または完全に充填することができ、また、リザーバウェル180からの試薬を顕微鏡用スライドガラス上へ分注することができる。試薬ピペットアセンブリ175はまた、リザーバウェルを洗浄しかつ/もしくは洗い流すことができ、または他の動作を実行することができる。洗浄ピペットアセンブリ176は、たとえば、リザーバウェル180を洗浄液で洗い流し、液体(たとえば、洗浄液、試薬など)をリザーバウェル180から吸い出すことによって、リザーバウェル180を洗浄することができる。洗浄されたリザーバウェル180内では、新鮮な試薬を混合することができる。
[00182]図4は、開示する技術の一実施形態によるカルーセル177の前部上面等角図である。図5は、カルーセル177の上面図である。図4および図5をともに参照すると、カルーセル177は、リザーバウェル180(1つを特定する)、傾斜部182、および排水口183を含むことができる。リザーバウェル180は、排水口183の周りに(均一または不均一に)角度的に隔置することができ、各リザーバウェル180は、染色プロトコル内の1つまたは複数の分注ステップにとって十分な体積の液体を保持することができる。いくつかの実施形態では、各リザーバウェル180は、約200μL〜約450μLの範囲内の保持容量を有する。一実施形態では、各リザーバウェル180は、約350μLの保持容量を有する。他の実施形態では、異なるリザーバウェル180は、異なる保持容量を有して、異なる体積の試薬混合物を準備することができる。リザーバウェル180の保持容量は、分注すべき試薬混合物の所望の体積に基づいて選択することができる。相互汚染を防止するために、1群のリザーバウェル180(たとえば、4つのリザーバウェル)が、特定のスライドガラスおよび/またはスライドガラス処理ステーションに対応することができる。設定された数の試薬混合物を利用する染色プロトコルでは、リザーバウェル(たとえば、隣接するリザーバウェル180)を使用して、試薬混合物を準備および保持することができる。いくつかの実施形態では、カルーセル177は、排水口183に対して異なる位置に位置決めされたウェルの複数のアレイを含むことができる。たとえば、リザーバウェルの複数の円形のアレイは、中心の排水口183の中心排水半径から異なる半径をあけて位置決めすることができる。
[00183]リザーバウェル180は、垂直方向に向けたピペットを使用してリザーバウェル180の底部にアクセスするために、概して垂直の向きにすることができる(たとえば、リザーバウェルの長手方向軸を垂直方向に向けることができる)。リザーバウェル180は、円形(図5)、楕円形、長円形、これらの組合せ、または好都合な洗い流し/洗浄のために尖った角のない他の形状とすることができる。図示のカルーセル177は、比較的多数のスライドガラス(たとえば、最高約百枚以上のスライドガラス)の急速な処理を可能にするために、複数のリザーバウェル180(たとえば、40個のリザーバウェル180)を有するが、カルーセル177は、カルーセル177によって扱われるスライドガラスの数を増大または減少させるために、より多数または少数のリザーバウェル180を有することもできる。幾何形状(たとえば、円形、長円形など)、パターン(たとえば、円形のアレイ、長円形のアレイなど)、リザーバウェル180の数および向きは、スライドガラスの数、染色プロトコル、ならびに試薬ピペットアセンブリ175および/または洗浄ピペットアセンブリ176の動作に基づいて選択することができる。
[00184]傾斜部182は、リザーバウェル180と排水口183との間に延びることができる。リザーバウェル180から漏れる溢流液(たとえば、試薬、洗浄液、またはこれらの混合物)は、傾斜部182の上面185に沿って排水口183を通って流れることができる。いくつかの実施形態では、上面185は、排水口183に向かって下方へ傾斜しており、径方向に内方への流れを促進するための形状(たとえば、概して切頭円錐形の形状)を有する。上面185は、意図しない化学反応を回避または軽減するために、2つ以上のリザーバウェル180からの流れを別個に保ち、これらの流れが混ざるのを抑制または制限するのを助けることができる。いくつかの実施形態では、傾斜部182は、溢流液が排水口183の方へ流れるのを助ける流れチャネル、溝、または他の特徴を有する。
[00185]図4を次に参照すると、カルーセル177は、溢流液がリザーバウェル180から自動的に流出することを可能にするように構成された余水路187(1つを特定する)を含むことができる。余水路187は、ウェルからウェルへ溢れることを防止することによって、相互汚染を防止することができる。洗浄サイクル中、リザーバウェル180は、隣接するリザーバウェル180に影響を及ぼすことなく、洗浄液(たとえば、水、脱イオン水、洗浄溶液など)で溢れさせることができる。いくつかの実施形態では、余水路187は、溢流仕切り189(図4および図5には2つを特定する)と、溢流壁190とを含む。各仕切り189は、隣接するリザーバウェル180間に位置決めすることができる。
[00186]図6は、図5の線6−6に沿って切り取ったカルーセル177の横断面図である。図7は、カルーセル177の一部分の詳細図である。図7を次に参照すると、仕切り189は、飛び散った液体が近傍のリザーバウェルに到達するのを防止することができ、外側部分192および内側部分194を含むことができる。いくつかの実施形態では、仕切り189は、隣接するリザーバウェル180の中心と、他のリザーバウェルとの間(たとえば、リザーバウェル180の総数の1/5、1/4、または1/3)に位置決めすることができる。洗浄サイクル中、洗浄液は、噴霧となりかつ/または飛び散る傾向があることがあり、仕切り189は、そのような噴霧/飛び散りを阻止し、それによってウェル間の相互汚染を防止することができる。仕切り189の寸法および構成は、リザーバウェルを互いから流体的に分離された状態で保つように選択することができる。
[00187]外側部分192は、2つのリザーバウェル間に直接位置決めすることができ、壁190の縁196の形の余水路入口を越えて上方へ延びることができる。いくつかの実施形態では、外側部分192は、ウェルからウェルへ溢れることを防止するのに十分な距離をあけて、縁196を越えて上方へ延びる。たとえば、外側部分192の高さHは、約3mm〜約7mmの範囲内とすることができる。必要な場合または所望される場合、他の高さを使用することもできる。内側部分194は、内方へ(たとえば、カルーセル177の中心の方へ)延びる概して垂直方向に向けられた壁とすることができる。内側部分194の長さ199は、相互汚染のリスクを冒して液体(たとえば、リンス液または試薬)を意図しないウェルの方へ誘導することを防止するために、高さHに概して等しくすることができる。仕切り189の長さLは、リザーバウェル180の直径D以上とすることができる。たとえば、長さLと直径Dとの比は、1.25、1.5、2、または2.5以上とすることができる。
[00188]リザーバウェル180は、概して平滑な側壁193(たとえば、尖った角のない円筒形の側壁または他の形状の側壁)と底部195(図6)とを有し、それによって所望の体積、たとえば250μL、350μL、または450μLを保持することが可能なチャンバを画定する。図7は、試薬の所望の体積の流体レベル線198(破線で示す)を示す。余分な液体がリザーバウェル180へ送達されたとき、液体は、余水路180の入口196を越えて上昇し、溢れを引き起こすことがある。図7に示すように、液体201(破線で示す)は、壁190を越えて上面185に沿って流れることができる。図6を次に参照すると、液体201は、排水口183を介してカルーセル177から出ることができ、排水口183は、複数のリザーバウェルから流出する流体を収納するのに十分な大きさとすることができる。溢れは、リザーバウェルを洗い流すために意図的に生じさせることができ、たとえば余分な試薬がリザーバウェルの1つの中に分注された場合、意図せずに生じることもある。
[00189]図7は、たとえばピペットを挿入し過ぎたことによって引き起こされうるカルーセル177の損傷を防止するようにピペットが落ちる最大深さを制限する止め具313(1つを特定する)を示す。止め具313は、互いから円周方向に隔置することができ、洗浄ピペット213および/または試薬ピペット204がリザーバウェルの底部195に接触することを防止するのに十分な距離315をあけて上方へ延びることができる。たとえば、ピペットを運搬するヘッドアセンブリは、ヘッドアセンブリによって運搬されるピペットがカルーセル177を損傷する前に止め具313に当たることができる。他のタイプの止め具を使用してピペットを位置決めし、またはピペットの動きを制限することもできる。
[00190]図8は、取付けバイオネット205および位置合わせ機構207を含むカルーセル177の底面斜視図である。取付けバイオネット205は、駆動機構(たとえば、図4の駆動機構184)の駆動軸に結合することができ、1つまたは複数の位置決め器218を含むことができる。他の実施形態では、カルーセル177の外面を使用して、カルーセル177を回転させることができる。たとえば、カルーセル177の外面に駆動輪を係合させることができ、したがって、駆動輪の回転によりカルーセル177の回転を引き起こす。位置決め器218は、駆動機構の駆動軸と嵌合可能なフランジ、リブ、または他の特徴とすることができる。位置合わせ機構207は、カルーセル177を視覚的、機械的、電気機械的、および/または光学機械的に位置合わせするために使用することができる。いくつかの実施形態では、位置合わせ機構207は、駆動機構の位置合わせ突起を受け取るノッチまたは切込みである。他の実施形態では、位置合わせ機構207は、カルーセル177の好都合な識別および指向のための突起または他の視覚的に(光学を含む)特定可能な機構とすることができる。いくつかの実施形態では、位置合わせ機構207は、制御システム(たとえば、コントローラ144)によって個々のリザーバウェル180の位置が分かるように、カルーセル177をクロック制御するために使用することができる。位置合わせ機構207が存在するスカート235の底部から臨界距離をあけて、頂縁部または表面231を配置することができ、したがって、センサ(たとえば、光学センサ)が位置合わせ機構207を識別しない場合、カルーセル177が誤って設置されたことが使用者に直ちに通知される。本明細書に記載するカルーセルは、好都合には、駆動機構184から取り出して洗浄または交換することができ、位置合わせ機構207を使用して、カルーセル177を駆動機構164上に再設置することができる。位置合わせ機構207の片側を検出および使用して、カルーセル177が正しく設置されていない場合は操作者に通知することができる。
[00191]一体型のカルーセルは、単体構造を有することができ、成形プロセス、機械加工プロセス、または他の適したプロセスによって形成することができる。たとえば、カルーセル177は、射出成形プロセスによってモノリシック形成することができる。組立て型の実施形態では、カルーセル177は、カルーセル本体と、カルーセル本体内に設置された別個の余水路およびリザーバウェルとを有することができる。カルーセル177の構成は、カルーセル177の所望の機能に基づいて選択することができる。
[00192]図9A〜9Dは、ピペット装置172の動作を示す。概して、試薬ピペットアセンブリ175は、試薬混合物を作り出すために、リザーバウェル180へ新鮮な試薬を順次送達することができる。試薬ピペットアセンブリ175は、スライドガラス処理ステーションにあるスライドガラス上へそのような試薬混合物を送達することができる。カルーセル177は、洗浄ピペットアセンブリ176による洗浄のためにリザーバウェル180を洗浄位置に順次位置決めするように回転させることができる。いくつかの実施形態では、試薬ピペットアセンブリ175は、全体的な処理時間を低減させるために、洗浄ピペットアセンブリ176がリザーバウェル180を洗浄している間に試薬を混合することができる。他の実施形態では、試薬の混合とリザーバウェルの洗浄は、異なる時間に実行される。試薬の相互汚染を防止するために、充填ステーション209へ往復するたびに、ピペット洗浄器251によってピペット204を洗浄し(たとえば、洗浄液を使用)、真空にし、吹き出し、またはその他の方法で洗浄することができる。ピペット洗浄器251はまた、洗浄動作間にピペット213を洗浄することができる。試薬ピペットアセンブリ175、洗浄ピペットアセンブリ176、および混合ステーション165の動作について、以下に詳述する。
[00193]図9A〜9Cは、試薬ピペットアセンブリ175を利用する1つの方法を示す。試薬ピペットアセンブリ175は、異なるタイプのピペット、バルブ、およびセンサを有することができ、いくつかの実施形態では、図2に示すピペット分注器160、162に類似または同一のものとすることができる。様々な実施形態では、試薬ピペットアセンブリ175は、1つまたは複数のレール/キャリッジアセンブリ、モータ(たとえば、駆動モータ、ステッパモータなど)、駆動要素(たとえば、チェーン、ベルトなど)、または運動を提供する他の特徴を有する位置決め機構を含むことができる。試薬ピペットアセンブリ175は、新鮮な試薬を得て、試薬を載置し、試薬を顕微鏡用スライドガラス上へ分注することができる。いくつかの実施形態では、試薬ピペットアセンブリ175は、たとえば、充填ステーション209にある充填位置(図9A参照)、リザーバウェル180の1つへ試薬を分注しまたはリザーバウェルの1つからの試薬をピペット204に装入するための抜取り/装入位置(図9B)、およびスライドガラス処理システムにあるスライドガラス上へ試薬を分注するための分注位置(図9C)へ、試薬ピペット204を動かすことができる。
[00194]図9Aを次に参照すると、試薬装入動作状態にある試薬ピペットアセンブリ175は、充填ステーション209にある容器211の1つの中へピペット204を挿入することができ、所望の体積の新鮮な試薬227を引き込むことができる。いくつかの実施形態では、試薬ピペットアセンブリ175は、加圧デバイス221によって提供される真空を引き込むことができる。加圧デバイス221は、所望の真空レベルまたは正圧を提供することが可能な1つまたは複数の真空源、ポンプ、または他のデバイスを含むことができる。容器211は、限定されるものではないが、標本を処理するために使用される物質を保持するのに適したバイアル、ボトル、ジャー、または他の容器とすることができる。図示の充填ステーション209は、3つの容器211を有するが、より多数または少数の容器を使用することもでき、充填ステーション209は、図1の留置ステーション140、142などの留置ステーションの一部とすることができる。たとえば、容器211は、図1の留置ステーション140、142のベイ内に設置することができ、図2の内部環境121を通って可動の試薬ピペットアセンブリ175によってアクセスすることができる。
[00195]図9Bは、試薬ピペット204が試薬で充填された後の試薬ピペットアセンブリ175を示す。ピペット204は、図9Bに特定するリザーバウェル180内へ試薬を送達するように位置決めされる。加圧デバイス221は、試薬を分注するために正圧を提供することができる。試薬ピペットアセンブリ175は、充填ステーション209から追加の試薬を得て、それを同じリザーバウェル180内へ分注し、試薬混合物を作り出すことができる。
[00196]図9Bおよび図9Cを参照すると、カルーセル177によって保持される試薬混合物を分注するために、試薬ピペット204は、試薬ウェル180内へ挿入し、所望の体積の試薬混合物で充填することができる。図9Cは、装入された試薬ピペット204が、処理ステーション245にある顕微鏡用スライドガラス156上へ試薬混合物を分注するところを示す。試薬ピペットアセンブリ175は、繰り返し混合ステーション165からの試薬を得て、スライドガラス156または他の処理ステーションにある他のスライドガラス上へ試薬を分注することができる。
[00197]図9Cおよび図9Dは、洗浄ピペットアセンブリ176によって実行される洗浄プロセスの段階を示す。概して、リザーバウェル180は、たとえば洗浄液を分注し、リザーバウェル180を溢れさせて、洗浄液、ならびにリザーバウェル180内に残っているあらゆる残留試薬を取り除く(たとえば、吸い出す)ことによって洗浄することができる。洗浄ピペットアセンブリ176は、それぞれ線247、249によって洗浄ヘッドアセンブリ241に接続された真空源237および加圧デバイス239を含むことができる。駆動アセンブリ184は、洗浄ピペット233の下の洗浄位置にリザーバウェル180を位置決めするように、カルーセル177を回転させることができる。
[00198]図9Dは、リザーバウェルの1つの中へ降下させた後の洗浄ピペット233を示す。洗浄ピペット213を通って洗浄液を送達し、リザーバウェル内にもしあれば試薬を希釈し、リザーバウェルを水洗し、かつ/またはその他の方法でリザーバウェルを洗い流しもしくは洗浄することができる。いくつかの実施形態では、真空源237を起動することができ、洗浄ピペット213は、リザーバウェル180内の試薬の大部分または実質上すべてを吸い出すことができる。次いで、制御された状態で排水口183へ流れる(矢印で示す)洗浄液でリザーバウェル180を溢れさせることができる。この溢れプロセスにより、リザーバウェル180内の残留試薬の体積の大部分または実質上すべてを取り除くことができる。リザーバウェル180を水洗した後、再び真空源237を起動させて、リザーバウェルを一掃することができる。他の実施形態では、吸引前に、制御された状態で排水口183へ流れる(矢印で示す)洗浄液でリザーバウェルを溢れさせることができる。この溢れプロセスにより、リザーバウェル内の試薬の体積の大部分または実質上すべてを取り除くことができる。リザーバウェルを水洗した後、真空源237を起動することができ、リザーバウェル180内に残っている洗浄ピペット213は、液体(たとえば、洗浄液、洗浄液と試薬の混合物など)の大部分または実質上すべてを吸い出すことができる。次いで、ピペット213を高くすることができ、駆動機構184は、別のリザーバウェルを洗浄位置(たとえば、洗浄ピペット213の下)に位置決めするように、カルーセル177を回転させることができる。ピペット洗浄器251(図9A)は、ピペット213の外側を周期的に洗浄することができる。他の実施形態では、洗浄プロセスで2つ以上のピペットを使用することができる。たとえば、1つの洗浄ピペットを使用して洗浄液を分注することができ、別の洗浄ピペットで残留液をリザーバウェルから吸い出すことができる。さらに他の実施形態では、試薬ピペットアセンブリ175は、リザーバウェル180を洗い流すことによって洗浄サイクルを実行するために使用することができる。
[00199]図9Dのコントローラ144は、洗浄ピペットアセンブリ176による洗浄のためにそれぞれのリザーバウェル180を洗浄位置へ順次動かすように駆動機構184に指示するように構成することができる。いくつかの実施形態では、コントローラ144は、メモリ147(破線で示す)内に命令を記憶し、これらの命令を実行して、リザーバウェル180を容器211からの試薬で順次充填するようにピペット装置172に指示する。追加または別法として、メモリ147は、少なくとも2つの試薬(たとえば、2つの試薬、3つの試薬など)をリザーバウェルの1つへ送達するように洗浄ピペットアセンブリ176に指示するようにコントローラ144によって実行可能な混合命令(たとえば、混合プログラム)を記憶することができる。混合命令は、処理すべきスライドガラスから得られる情報に基づいて選択することができる。コントローラ144は、ピペット装置172の構成要素のいずれかまたはすべてに通信可能に結合することができる。
[00200]図1および図2のシステム100は、図3〜9Dに関連して論じた1つまたは複数のピペット装置172を含むことができる。システム100は、内部環境121(図2)の両側に混合ステーション165を有することができる。洗浄ピペットアセンブリは、洗浄ピペットと、混合ステーションの周りを動かすことができる試薬ピペットとの間の衝突を回避するため、垂直方向に可動の洗浄ピペットに対して静止したままとすることができる。混合ステーション165は、単一の試薬ピペットアセンブリおよび単一の洗浄ピペットアセンブリによって扱うことができる。他の実施形態では、各混合ステーション165は、それぞれの試薬ピペットアセンブリおよび洗浄ピペットアセンブリによって扱われる。混合ステーションの数、混合ステーションの位置、ならびに試薬ピペットアセンブリおよび洗浄ピペットアセンブリの動作シーケンスは、実行すべきプロセスに基づいて選択することができる。
[00201]図10は、列152の切片の詳細図である。対向要素154(「対向部154」)により、スライドガラス156に沿って物質を動かしてスライドガラス156上の標本に接触させることができる。図示の実施形態を含むいくつかの実施形態では、20枚のスライドガラスを、1連の物質を使用して独立して処理することができる。
[00202]標本がパラフィン内に埋め込まれた生物サンプルである場合、適当な脱パラフィン流体(複数可)を使用して、このサンプルを脱パラフィンすることができる。脱パラフィン流体(複数可)を取り除いた後、対向部154を使用して、任意の数の物質を標本に連続して添加することができる。流体はまた、前処理(たとえば、蛋白質架橋、核酸の露出など)、変性、ハイブリダイゼーション、洗浄(たとえば、ストリンジェンシー洗浄)、検出(たとえば、視覚またはマーカ分子とプローブの関連付け)、増幅(たとえば、蛋白、遺伝子などの増幅)、カウンタ染色などのために添加することができる。様々な実施形態では、物質には、限定されるものではないが、染色剤(たとえば、ヘマトキシリン溶液、エオシン溶液など)、湿潤剤、プローブ、抗体(たとえば、単クローン抗体、多クローン抗体など)、抗原回復流体(たとえば、水性または非水性の抗原回収溶液、抗原回復緩衝剤など)、溶剤(たとえば、アルコール、リモネンなど)などが含まれる。染色剤には、限定されるものではないが、染料、ヘマトキシリン染色剤、エオシン染色剤、抗体もしくは核酸とハプテン、酵素、もしくは蛍光性成分などの検出可能なラベルとの接合体、または着色および/もしくはコントラスト強化のための他のタイプの物質が含まれる。いくつかの実施形態では、添加される物質は、図2に示すピペット分注器160、162または図3〜9Dに示す試薬ピペットアセンブリ175などの分注器を介して添加される液体の試薬である。
[00203]生物標本は、1つまたは複数の生物サンプルを含むことができる。生物サンプルは、組織サンプルまたは被験者から取り出されたサンプル(たとえば、任意の1群の細胞)とすることができる。組織サンプルは、生物内で類似の機能を実行する1群の相互接続された細胞とすることができる。生物サンプルはまた、限定されるものではないが、細菌、酵母、原生動物、およびアメーバなどの単細胞生物、多細胞生物(健康もしくは外見上は健康な被験者または癌などの診断もしくは検査すべき症状もしくは疾病の影響を受けた患者からのサンプルを含めて、植物または動物など)を含めて、生体から得られ、生体によって排出され、または生体によって分泌された何らかの固体または流体のサンプルとすることができる。いくつかの実施形態では、生物サンプルは、顕微鏡用スライドガラス上に取り付けることができ、限定されるものではないが、組織切片、器官、腫瘍切片、塗抹、凍結切片、細胞プレップ、または細胞系を含む。サンプルを得るためには、切開生検、コア生検、切除生検、針吸引生検、コア針生検、定位生検、直視下生検、または外科的生検を使用することができる。
[00204]図10は、それぞれ約10mL〜約30mLの試薬を保持する1組の封止容器211を運搬するラックを示す。封止容器211は、蒸発損失を最小化、制限、または実質上防止することができる隔壁153の形の封止要素を有するキャップ151を有する。隔壁153は、容器211の中身にアクセスするために破壊することができる(たとえば、穿孔、引き裂きなど)。使用者が容器211を設置するとき、隔壁153を破壊してポンプまたはピペット(たとえば、図9A〜9Dの試薬ピペット204)との流体連通を確立することができ、このポンプまたはピペットは、適当な標本処理ステーションへ流体を順に送達する。容器211は、限定されるものではないが、1つまたは複数の人間可読ラベル、機械可読ラベル(たとえば、システム100によって読み取られるバーコード)、または他のタイプのラベルを含むことができる。留置ステーション140は、いくつかの実施形態では、より小さい体積で使用される流体および溶液(たとえば、ヘマトキシリンおよびエオシン溶液などの染料溶液)を提供する。
[00205]図11および図12は、スライドガラス放出器アセンブリ200(「放出器アセンブリ200」)内へ装入されたスライドガラスキャリア170を示す。図12には、図11の板216が取り除かれた状態を示す。放出器アセンブリ200は、スライドガラスキャリアハンドラ202(「キャリアハンドラ202」)、スライドガラス載置デバイス210(「載置デバイス210」)、および放出器212を含む。キャリアハンドラ202は、キャリア受取り器220(図12)および受取り器回転器デバイス224(図12)を含むことができる。キャリア受取り器220は、1対の隔置されたアーム226(たとえば、細長い部材、片持ち部材など)を含み、アーム226上にスライドガラスキャリア170を置くことができる。図示のスライドガラスキャリア170は、隔置された配置で顕微鏡用スライドガラスを保持することが可能なスライドガラスラックである。図11および図12のキャリア170内には、1つのスライドガラスを示す。いくつかの実施形態では、スライドガラスキャリア170は、SAKURA(登録商標)バスケットまたは棚もしくは分割器を有する類似のバスケットなどのバスケットとすることができる。
[00206]図12のキャリア受取り器220は、スライドガラスキャリアを解放可能に保持する1つまたは複数の把持具、クランプ、保持器、または他の構成要素を含むことができる。受取り器回転器デバイス224は、限定されるものではないが、アーム226を回転させることが可能な1つまたは複数のモータ、作動デバイス、または他の構成要素を含むことができる。アーム226は、スライドガラスキャリア170を回転させるように弧状のトラック、旋回機構などに沿って動くことができる。キャリアハンドラ202は、キャリッジ230およびレール232をさらに含むことができる。キャリッジ230は、スライドガラスキャリア170を垂直方向に動かすようにレール232に沿って進むことができる。
[00207]図11を再び参照すると、完全または部分的に装入されたスライドガラスキャリアを、板214、216間に挿入することができる。受取り器回転器デバイス224(図12)は、スライドガラスが実質上垂直の向きで保持される装入位置213(図11)から、スライドガラスが実質上水平の向きで保持される中間位置215(図13)へ、キャリア受取り器220を回転させることができる。「実質上水平」という用語は、概して、水平から約±3度、たとえば水平から約±1度、水平から約±0.8度などの角度を指す。スライドガラスキャリア170は、抜取り位置217(図14)へ垂直方向に動かすことができる。放出器212は、標本担持スライドガラスを載置デバイス210へ順次動かすことができる。載置デバイス210は、図15〜18に関連して論じるように、次の輸送のために標本担持スライドガラスを位置決めすることができる。
[00208]図15および図16は、待機プラットホーム240および位置合わせデバイス242を含む載置デバイス210の等角図である。待機プラットホーム240は、片持ち板248、スライドガラス保持領域250(「保持領域250」)、および行程超過抑制器254を含むことができる。図15では、スライドガラス243は保持領域250上に置かれており、保持領域250は、スライドガラス243より小さい高くなった領域とすることができる。スライドガラス243は、保持領域250から外方へ突出することができ、したがって、余分な流体がもしあれば、スライドガラス243の下(たとえば、スライドガラス243と図16の表面361との間)に這い上がりを引き起こすことなく、スライドガラス243から板248上へ流出することができる。いくつかの実施形態では、待機プラットホーム240は、限定されるものではないが、スライドガラスの処理を容易にする1つまたは複数のセンサ、リーダ、加熱器、乾燥器、または他の構成要素を含むことができる。
[00209]図16を参照すると、行程超過抑制器254は、位置決め精度に影響を及ぼしうるスライドガラス上の標本、ラベルの縁部、および/またはスライドガラスの他の区域への物理的な接触を生じることなく、スライドガラスを正確に位置決めすることができる。いくつかの実施形態では、行程超過抑制器254は、位置決め精度に影響しうる、たとえば張り出しているラベル付近の位置にあるスライドガラスの頂部への接触を生じることなく、スライドガラスを位置決めすることができる。行程超過抑制器254は、真空ポート290と、1つまたは複数の流体ライン283(たとえば、内部流体ライン、外部流体ラインなど)を介して真空ポート290に流体的に結合される真空源281とを含む。真空源281は、限定されるものではないが、開口310を介して真空を引き込むことが可能な1つまたは複数の加圧デバイス、ポンプ、または他のタイプのデバイスを含むことができる。スライドガラス243の底面(図15)および真空ポート290の接触表面300は、封止を形成して真空を維持することができる。いくつかの実施形態では、接触表面300は、気密封止を維持することが可能な1つまたは複数の圧縮性材料(たとえば、ゴム、シリコンなど)を含むことができる。他の実施形態では、接触表面300は、1つまたは複数の非圧縮性材料(たとえば、アルミニウム、ステンレス鋼など)を含むことができ、いくつかの実施形態では、スライドガラス243との封止を形成するために使用される1つまたは複数の封止部材(たとえば、Oリング、ガスケット、封止カップなど)を含むことができる。さらなる実施形態では、接触表面300および/または真空ポート290は、待機プラットホーム240上のスライドガラス243の存在を検出する圧力センサまたは他のセンサを含むことができる。
[00210]保持領域250は、端部320、322と、端部320、322間に延びる本体328とを含む。端部320によって放出器止め具314が画定され、放出器止め具314を使用して、スライドガラス243の端部の位置を参照することができる。放出器止め具314は、端部320の側壁または縁部とすることができる。他の実施形態では、放出器止め具は、1つまたは複数の突起とすることができる。
[00211]図16〜18に示す実施形態に示すように、載置デバイス210は、位置合わせデバイス242を含む。一実施形態では、位置合わせデバイス242は、1対の概して平行な掴み具270、272を含み、掴み具270、272は、それぞれ開口277、279を通り、保持領域250を越えて垂直方向に上方へ突出する。位置合わせデバイス242は、限定されるものではないが、掴み具270、272を動かすことが可能な1つまたは複数のアクチュエータ(たとえば、空圧アクチュエータ、電気機械アクチュエータなど)を含むことができる。位置合わせデバイス242は、移送ヘッドが位置ずれしたスライドガラスを適切に持ち上げて取り扱うことができない可能性があるため、スライドガラスの持上げおよび取扱いを容易にするように、スライドガラスを位置合わせすることができる。いくつかの実施形態では、掴み具270、272に対するスライドガラスの望ましくない付着を防止するために、スライドガラスのラベルを掴み具270、272から隔置することができる。
[00212]図17は、位置ずれした位置にあるスライドガラス243の長手方向軸271を示す。長手方向軸271は、保持領域250の長手方向軸273に対して平行でない。掴み具270、272は、開位置(図17)から閉位置(図18)まで互いの方へ動くことができ(矢印280、282で示す)、スライドガラス243の位置を変えることができる。いくつかの実施形態では、位置合わせされた位置にあるスライドガラス243の長手方向軸271は、保持領域250の長手方向軸273と実質上位置合わせすることができる(たとえば、平行)。スライドガラス243を位置合わせした後、掴み具270、272は開位置へ戻ることができ、この時点で位置合わせされているスライドガラス243を持ち上げることができる。位置合わせデバイス242の構成および動作は、位置合わせされたスライドガラスの所望の位置に基づいて選択することができる。追加として、位置合わせデバイス242は、掴み具270、272がスライドガラスの両側に同じ力を加えるため、異なる寸法を有するスライドガラスを位置合わせするために使用することもできる。
[00213]図19〜21は、放出器要素330と、ベース334と、駆動機構336とを含む放出器212を示す。放出器要素330は、ベース334内の凹部341内に位置決めされた細長い部分340と、駆動機構336の棒344に結合された取付け部分342とを含む。駆動機構336は、往復直線運動を提供することができ、限定されるものではないが、1つまたは複数のストッパモータ、ピストン(たとえば、空圧ピストン、油圧ピストンなど)、加圧デバイス(たとえば、ポンプ、空気圧縮器など)、センサなどを備えることができる。図示の棒344は、矢印350で示す方向に動かされて、放出器要素330を第1または最初の位置351(図21に破線で示す)からスライドガラスキャリア受取り間隙352(「間隙352」)を横切って動かし、したがって、細長い部分340のヘッド360が、スライドガラスを待機プラットホーム240上へ押し込む。ヘッド360は、スライドガラスの損傷を回避するために、適合材料(たとえば、ゴム、プラスチックなど)を含むことができる。いくつかの実施形態では、ヘッド360は、スライドガラスが所望の位置につくまで、保持領域250の表面361(図16)に沿ってスライドガラスを押すことができる。スライドガラスは、スライドガラスキャリア170が空になるまで、スライドガラスキャリア170から一度に1枚ずつ取り出すことができる。
[00214]図1および図2を再び参照すると、使用者は、標本担持スライドガラスを保持するスライドガラスキャリアを留置ステーション124内へ装入することができる。移送機構により、このスライドガラスキャリアを放出器アセンブリ200へ輸送することができる。移送機構は、限定されるものではないが、位置間で物品を運搬することが可能な1つまたは複数のロボットハンドラもしくはアーム、X−Y−Z輸送システム、コンベア、または他の自動化された機構を含むことができる。いくつかの実施形態では、移送機構は、スライドガラスキャリアを把持するのに適した1つまたは複数のエンドエフェクタ、把持具、吸引デバイス、ホルダ、クランプ、または他の構成要素を含む。
[00215]放出器アセンブリ200は、スライドガラスキャリア170を抜取り位置217(図14)へ動かす。スライドガラスキャリア170は、基準位置に対してスライドガラスを割り出しするように、垂直方向に動かされる。基準位置は、スライドガラス取出し位置を画定する平面(たとえば、図14に示す固定のスライドガラス取出し平面275)とすることができる。取り出すべきスライドガラスの底部は、表面361(図16)と概して同一平面上に位置することができ、または表面361よりわずかに上に位置する。駆動機構336は、放出器要素330を水平方向に動かして、キャリア170を通って細長い部分340(図19)を動かし、スライドガラスを表面361(図15)上へ押し込むことができる。ヘッド360が放出器止め具314(図16)に接触するとスライドガラス243の動きを抑制するように、スライドガラス行程超過抑制器254によって真空を引き込むことができる。次いで、ヘッド360をスライドガラス243から離れる方へ動かすことができる。掴み具270、272を開位置から閉位置へ動かして、スライドガラス243を位置合わせすることができる。位置合わせされたスライドガラス243は、回収して標本処理ステーションへ輸送することができる。駆動機構336は、放出器要素330を前後に動かすことができ、スライドガラスをすべて載置デバイス210へ順次送達するように、スライドガラスを割り出しすることができる。
[00216]標本を保護するために、スライドガラスキャリア170内の最も下のスライドガラスをまず放出することができる。最も下のスライドガラスから開始することによって、垂直方向に隣接するスライドガラス上の標本(複数可)をヘッド360から離れる方へ向けることができ、したがって保護することができる。ヘッド360が、取り出すべきスライドガラスに対して垂直方向に位置ずれしている場合、ヘッド360は垂直方向に隣接するスライドガラスの底部に当たることがあるが、垂直方向に隣接するスライドガラスの上面上の標本(複数可)を移動させることはない。最も下のスライドガラスを取り出した後、スライドガラスキャリア170内に残っている最も下のスライドガラスを取り出すことができる。このプロセスは、スライドガラスキャリア170が空になるまで繰り返すことができる。他の割出しシーケンスを使用して、スライドガラスを取り出すこともできる。
[00217]空のスライドガラスキャリア170は、装入位置(図11)へ戻し、次いで留置ステーション124のベイの1つへ輸送することができる。空のスライドガラスキャリア170は、留置ステーション124から取り出して標本担持スライドガラスで充填し、留置ステーション124へ戻すことができる。別法として、空のスライドガラスキャリア170は、放出器アセンブリ200を使用して、処理済みの標本担持スライドガラスで充填することができる。プッシャアセンブリを使用して、載置デバイス210上の処理済みの標本担持スライドガラスをスライドガラスキャリア内へ押し込むことができる。したがって、放出器アセンブリ200を使用して、スライドガラスキャリアの抜取りと装入の両方を行うことができる。
[00218]図22〜26は、本技術の追加の実施形態によって構成されたスライドガラス放出器アセンブリ200aの載置デバイス210aを示す。図22および図23は、図16〜18を参照して上述した載置デバイス210の特徴に概して類似している特徴を含む載置デバイス210aの等角図である。たとえば、載置デバイス210aは、片持ち板248aと、スライドガラス保持領域250a(「保持領域250a」)と、行程超過抑制器254a(図16に示す行程超過抑制器254に類似)とを有する待機プラットホーム240a(図16に示す待機プラットホーム240に類似)を含む。載置デバイス210aはまた、スライドガラス243を待機プラットホーム240a上の位置ずれした位置から位置合わせされた位置へ動かすように構成された位置合わせデバイス242aを含む。しかし、図22および図23に示す実施形態では、位置合わせデバイス242aは、開口277、279(図16)を通って上方へ突出する1対の概して平行な掴み具270、272(図16)を待機プラットホーム240a内に含まない。
[00219]図22に示す実施形態では、位置合わせデバイス242aは、スライドガラス243の第1の縁部244に係合する第1の位置合わせ部材362と、スライドガラス243の第2の縁部245に係合するように第1の位置合わせ部材362の反対側に位置決めされた第2の位置合わせ部材364とを含む。スライドガラス243の第1の側244と第2の側245の係合により、移送装置(図示せず)によるスライドガラスの持上げおよび取扱いを容易にするように、スライドガラス保持領域250a上の位置合わせされていない向きから、保持領域250a上の位置合わせされた向きへ、スライドガラス243を旋回させ、またはその他の方法で動かすことができる。
[00220]図23を参照すると、第1の位置合わせ部材362および第2の位置合わせ部材364は、第1の留め具367および第2の留め具368(たとえば、ピン、ボルト、ねじ、または当業者には知られている他の機械的留め具)によってブロック365、366に固定される。たとえば、ブロック365、366は、それぞれ留め具367、368を受け取るための孔369、370を含むことができる。ブロック365、366は、1つまたは複数の突起371、372をさらに含むことができ、突起371、372は、位置合わせ部材362、364の回転または旋回を可能にし、ブロック365、366に対する位置合わせ部材362、364の回転もしくは旋回を制限するために、かつ/またはスライドガラス243との係合(後述)中は、それぞれ第1の位置合わせ部材362および第2の位置合わせ部材364に係合する。位置合わせ部材362、364内には、突起371、372を受け取る開口373、374(1つを特定する)を配置することができる。他の実施形態では、位置合わせ部材362、364上に突起を設けることができ、これらの突起は、ブロック365、366内に設けられた開口内に受け取ることができる。いくつかの実施形態では、突起371、372は、方形または他の幾何形状を有する円形でない突起とすることができる。開口373、374は、突起371、372の対応する幾何形状を収納するような形状とすることができ、または図23に示すように、開口373、374は、突起371、372を受け取る貫通孔とすることができる。
[00221]位置合わせデバイス242aは、限定されるものではないが、位置合わせ部材362、364が固定されたブロック365、366を、保持領域250a(図24Aおよび図24Bに示す)の長手方向軸273aの方へ、また長手方向軸273aから離れる方へ動かすことが可能な1つまたは複数のアクチュエータ(たとえば、空圧アクチュエータ、電気機械アクチュエータなど)を含むことができる。たとえば、図24Aおよび図24Bは、スライドガラス243の長手方向軸271aを保持領域250aの長手方向軸273aと位置合わせするプロセス中の段階を示す載置デバイス210aの拡大上面図である。図24Aは、位置ずれした位置にあるスライドガラス243の長手方向軸271aを示す。長手方向軸271aは、保持領域250aの長手方向軸273aに対して平行でない。第1の位置合わせ部材362および第2の位置合わせ部材364は、開位置(図24A)から閉位置(図24B)まで互いの方へ動くことができ(矢印375、376で示す)、閉位置で、位置合わせ部材362、364がスライドガラス243の第1の側244および第2の側245に係合または接触し、スライドガラスの位置を変える。
[00222]一実施形態では、第1の位置合わせ部材362および第2の位置合わせ部材364はともに、3つの別個の接触点でスライドガラス243に接触する。図24Bおよび図24Cに示す実施形態では、第1の位置合わせ部材362は、スライドガラス243の第1の縁部244に係合するように構成された第1の接触領域377および第2の接触領域378を有する。図24Bおよび図24Dに示すように、第2の位置合わせ部材364は、スライドガラス243の第2の縁部245に係合するように構成された第3の接触領域379を有する。一実施形態では、接触点の区域は、スライドガラス243のうち、第1の接触領域377、第2の接触領域378、および第3の接触領域379によって係合される部分である。いくつかの配置では、接触点は、スライドガラス243の比較的小さい個別の部分である(たとえば、第1の縁部244および第2の縁部245に沿っている)。いくつかの実施形態では、3つの接触点によって画定され、第1の接触領域377、第2の接触領域378、および第3の接触領域379によって係合される表面積はほぼ同じであるが、他の実施形態では、これらの表面積が異なってもよい。一実施形態では、第3の接触領域379は、スライドガラス243に沿って横方向の位置において、スライドガラス243の第1の縁部244上の第1の接触領域377および第2の接触領域378によって接触される横方向の位置間で、スライドガラス243の第2の縁部245に接触するように構成される。
[00223]図24Bを参照すると、第1の位置合わせ部材362の第1の接触領域377および第2の接触領域378ならびに第2の位置合わせ部材364の第3の接触領域379がそれぞれスライドガラス243の第1の側244および第2の側245に係合したとき、スライドガラス243は、位置合わせされた位置へ動く(たとえば、3つの別個の接触点によって生成または画定された中間点または回転軸246の周りを旋回する)ことができる。ブロック365、366を介した第1の位置合わせ部材362および第2の位置合わせ部材364の動きは、スライドガラス243が第1の接触領域377、第2の接触領域378、および第3の接触領域379によって係合され、スライドガラス243が動かなくなる(たとえば、位置合わせされた位置にある保持領域250a上に置かれる)まで継続することができる。いくつかの実施形態では、第1の位置合わせ部材362および第2の位置合わせ部材364は、位置合わせ部材362、364がスライドガラス243を動かすのに十分な量の力を加え、かつ/またはスライドガラスを破壊もしくは破損するほどスライドガラス243を圧縮しないことを確実にするために、1つまたは複数の接触領域377、378、379上または近傍に1つまたは複数の圧力センサ381(図24Cおよび図24D)を含むことができる。いくつかの実施形態では、接触領域377、378、379は、スライドガラスの損傷を回避するために、被覆および/または適合材料(たとえば、ゴム、プラスチックなど)を含むことができる。
[00224]図24A〜24Dが第1の接触領域377および第2の接触領域378を有する第1の位置合わせ部材362と第3の接触領域379を有する第2の位置合わせ部材364とを示すのに対して、他の配置を使用することもできる。たとえば、第2の位置合わせ部材364は、2つの接触領域を含むことができ、第1の位置合わせ部材362は、1つの接触領域を含むことができる。さらに、第1の接触領域377、第2の接触領域378、および第3の接触領域379を提供する不規則な形状の幾何形状を有する位置合わせ部材362、364が示されているのに対して、第1、第2、および第3の接触領域を提供するのに適した他の幾何形状も可能である。他の実施形態では、位置合わせ部材362、364は、スライドガラス243に係合する4つ以上の別個の(たとえば、個別の)接触領域を提供することができる。
[00225]図24Bを再び参照すると、位置合わせされた位置にあるスライドガラス243の長手方向軸271aは、保持領域250aの長手方向軸273aと実質上位置合わせすることができる(たとえば、平行)。スライドガラス243を位置合わせした後、位置合わせ部材362、364は、ブロック365、366を矢印375、376(図24A)の方向とは反対の方向に動かすことによって、スライドガラス243を係合解除して開位置に戻すことができる。任意選択で、載置デバイス210aは、待機プラットホーム240a上のスライドガラス243の存在を判定し、かつ/または長手方向軸271aが長手方向軸273a(図24B)と実質上位置合わせされたことを判定するセンサ382または他の信号デバイスを含むことができる。たとえば、待機プラットホーム240aおよび/または保持領域250aは、保持領域250aに対するスライドガラス243の相対的な位置を判定する位置センサ、圧力センサ、光センサなどを含むことができる。位置合わせデバイス242(図16〜18)の構成および動作と同様に、位置合わせデバイス242aは、異なる寸法を有するスライドガラスを位置合わせし、それらのスライドガラスを待機プラットホーム240a上の所望の位置へ位置合わせするように構成することができる。
[00226]スライドガラス243を位置合わせした後、このスライドガラスは、回収して標本処理ステーション(図示せず)へ輸送することができる。図25および図26は、適切な位置合わせを維持しながら位置合わせされたスライドガラス243を待機プラットホーム240aから持ち上げるように構成されたスライドガラス移送ヘッド412(「移送ヘッド412」)を有する輸送アセンブリ410の一部分を示す。図25を参照すると、移送ヘッド412は、移送ヘッド412の下面415上に複数のヘッド位置合わせ機構413(たとえば、2つのヘッド位置合わせ機構)を含む。ヘッド位置合わせ機構413は、限定されるものではないが、ピン(たとえば、細長い棒)、突起、開口(たとえば、ブッシングによって画定される開口、板の中の開口など)などを含むことができる。いくつかの実施形態では、ヘッド位置合わせ機構413は、図22および図25に示す載置デバイス210a上(たとえば、片持ち板248a上)の対応する位置合わせ機構414(414aおよび414bとして個々に示す)内へ挿入することができる位置合わせピン(たとえば、第1および第2の位置合わせピン)の形とすることができる。他の実施形態では、ヘッド位置合わせ機構413は開口であり、対応する位置合わせ機構414は上方へ突出するピンである。いくつかの実施形態では、移送ヘッド412は、ヘッド位置合わせ機構413と対応する位置合わせ機構414との間の接合を制限または防止するために、浮動ヘッド(たとえば、載置デバイス210aに接触しない浮動ヘッド)とすることができる。いくつかの実施形態では、移送ヘッド412および/または載置デバイス210aは、対応する位置合わせ機構414に対するヘッド位置合わせ機構413の適切な位置合わせを確保するために、位置センサ(図示せず)を含むことができる。
[00227]移送ヘッド412はまた、1つまたは複数の捕獲機構416を含むことができる。捕獲機構416は、限定されるものではないが、1つまたは複数の吸引デバイス(たとえば、吸盤、ポンプ、真空ポンプなど)、機械的把持具(たとえば、掴み具、クランプ、ペンチ、磁石など)、またはたとえば位置ずれした状態のスライドガラス243の落下および/もしくは移送を防止する他の保持機構を含むことができる。たとえば、移送ヘッド412は、下面415上に真空ポート417を含むことができる。真空源418により、供給ライン419を介して真空ポート417に吸引を提供することができ、この吸引により、スライドガラス243を載置デバイス210aから持ち上げてさらなる輸送中にスライドガラスを保持することが可能になる。真空は、移送後にスライドガラス243を解放するために低減および/または消滅させることができる。下面415上ならびに/または真空ポート417、真空源418、および/もしくは供給ライン419内に、移送ヘッド412によって保持されるスライドガラス243の存在を検出するセンサ405(たとえば、圧力センサ、空気圧センサ、光センサなど)を設けることができる。
[00228]図25は、スライドガラス移送の位置合わせ段階中に載置デバイス210aの上の非係合位置にある移送ヘッド412を示す。対応する位置合わせ機構414aと位置合わせされたヘッド位置合わせ機構413が示されている。図26は、載置デバイス210aの上の係合位置内に(たとえば、図示されていない駆動機構を介して)降下させた移送ヘッド412を示す。対応する位置合わせ機構414aの開口内に受け取られたヘッド位置合わせ機構413(たとえば、ピン)が示されている。スライドガラス243の上面247(たとえば、スライドガラス243のラベル)に係合している真空ポート417が示されており、したがって、真空源418が起動され(たとえば、図1および図2のコントローラ144による)、待機プラットホーム240aに関連する行程超過抑制器254aが係合解除される(たとえば、ステージ真空源281aによって提供される真空が低減および/または消滅させられる)と、移送ヘッド412によってスライドガラス243を持ち上げることができる。スライドガラス243は、移送ヘッド412が載置デバイス210aの上の非係合位置へ持ち上げられると、載置デバイス210aから取り外すことができる。図26に示すように、ヘッド位置合わせ機構413は、対応する位置合わせ機構414に位置合わせされ、したがってスライドガラス243は、スライドガラスの持上げ中に位置合わせされた位置で維持することができる。スライドガラス243を載置デバイス210aから取り外した後、移送ヘッド414は、スライドガラス243を標本処理ステーション(図示せず)へ輸送することができる。
[00229]図27は、図19〜26を参照して上述した標本処理システム100を使用して標本スライドガラスを移送する方法1000を示すブロック図である。図19〜27をともに参照すると、方法1000は、標本スライドガラス243をスライドガラスキャリア170(図14)から載置デバイス210aの待機プラットホーム240aへ動かすステップを含むことができる(ブロック1002)。スライドガラス243は、放出器212を使用して、放出器要素とスライドガラス243を係合させ、スライドガラスを待機プラットホーム240aのスライドガラス保持領域250a上へ押し込むことによって動かすことができる。方法1000はまた、行程超過抑制器254aを通って真空を引き込み、スライドガラス保持領域250a上のスライドガラス243の前方への動きを停止させるステップを含むことができる(ブロック1004)。方法1000は、保持領域250a上のスライドガラス243の存在を検出するステップをさらに含むことができる(ブロック1006)。いくつかの実施形態では、スライドガラス243の存在は、行程超過抑制器254aの真空吸引の変化によって、コントローラ144によって検出することができる。たとえば、真空ポート290、流体ライン283、および/または真空源281(図16参照)内の圧力の変化を検出するために、センサ403(図25および図26)を設けることができる。他の実施形態では、待機プラットホーム240a上のスライドガラスの存在は、他のセンサ382(たとえば、圧力センサ、光センサ、運動センサなど)を使用して検出することができる。たとえば、待機プラットホーム240aは、スライドガラス243の存在を検出するためにもう1つのセンサ382(たとえば、位置センサ、圧力センサ、光センサ)を含むことができる。方法1000はまた、スライドガラス243を位置ずれした位置から位置合わせされた位置へ位置合わせするステップを含むことができる(ブロック1008)。たとえば、アクチュエータにより、位置合わせ部材362、364をスライドガラス243の方へ動かすことができ、したがって、第1の接触領域377、第2の接触領域378、および第3の接触領域379が、スライドガラスに係合して、スライドガラスを位置合わせされた位置へ動かす。スライドガラス243の位置合わせ後、アクチュエータは、位置合わせ部材362、364を再び開始位置へ、位置合わせされたスライドガラスから離れる方へ動かすことができる。方法1000は、スライドガラスの位置合わせを維持しながら、スライドガラス243を待機プラットホーム240aからたとえば標本処理ステーションへ輸送するステップをさらに含むことができる(ブロック1010)。たとえば、移送ヘッド412上のヘッド位置合わせ機構413と待機プラットホーム240a上の対応する位置合わせ機構414との位置合わせを介して、移送ヘッド412を有する輸送アセンブリ410を待機プラットホーム240aと位置合わせすることができる。移送ヘッド412は、スライドガラス243と捕獲機構416を係合させ、持ち上げて輸送するように構成することができる。一実施形態では、捕獲機構416は、真空ポート417を介して真空源418によって提供される真空を使用することができる。
[00230]図28および図29は、対向部キャリアホルダ384(「ホルダ384」)およびコンベアシステム390を含む対向部分注器380を示す。移送機構により、対向部キャリアを装入ステーション130(図1)からホルダ384へ輸送することができる。図示の実施形態を含むいくつかの実施形態では、ホルダ384は、4つの格納箱391a、391b、391c、391d(集合的に「391」)を保持するように構成され、各格納箱は30個の対向部を保持し、4つの格納箱で120個の対向部の搭載容量を提供する。他の実施形態では、分注器380は、より多数もしくは少数の格納箱または他のタイプの対向部キャリアを保持することができる。
[00231]コンベアシステム390は、キャリッジ393、レール396、および作動機構398を含む。作動機構398は、垂直リフト404を動かして格納箱391を上昇および/または降下させるアクチュエータ(たとえば、ピストンアセンブリ、空圧シリンダなど)を含むことができる。キャリッジ393は、降下させた対向部格納箱をレール396の端部にある抜取り位置へ運搬することができる。図28および図29は、抜取り位置にある空の格納箱394を示す。垂直リフト404は、上へ動いて次の格納箱391を回収し、キャリッジ393は、積み重ねた格納箱391の下へ空の格納箱394を動かす。キャリッジ393は、空の格納箱394を解放することができ、したがってこの格納箱394は、シュート397を降りて貯蔵ビン399(破線で示す)に入る。
[00232]図30は、輸送アセンブリ420と、湿潤モジュール430の形のスライドガラス処理ステーションの形の標本処理ステーションとを示す。湿潤モジュール430では、液体のキャリーオーバー、過度の廃棄物(たとえば、試薬廃棄物)、および/または試薬の劣化を回避して一貫した処理を提供するために、スライドガラスを個々に処理することができる。湿潤モジュール430は、液体に刺激を与えて処理の一貫性を強化し、処理時間を低減させ、および低濃度の試薬による処理を可能にするために、対向要素470を使用することができる。比較的少量の試薬を使用して、標本を均一に染色することができる。比較的少量の洗浄溶液を使用して、比較的短時間で標本を徹底的に洗浄することができる。洗浄サイクルは、染色サイクルの前、途中、および後に実行することができる。標本の処理後、輸送アセンブリ420は、使用済みの対向部470を新しい対向部457と交換し、使用済みのスライドガラス243を新しいスライドガラス458と交換することができる。
[00233]輸送アセンブリ420は、限定されるものではないが、駆動機構434(たとえば、ラック駆動機構、ベルト駆動機構など)およびリフト機構440を含むことができる。駆動機構434は、矢印450、452で示すように、リフト機構440を水平方向に動かすことができる。リフト機構440は、矢印462、464で示すように、移送ヘッド454、456の形のエンドエフェクタを垂直方向に動かすことができる。移送ヘッドは、限定されるものではないが、1つまたは複数の吸引デバイス(たとえば、吸盤、ポンプ、真空ポンプなど)、機械的把持具(たとえば、掴み具、クランプなど)、保持機構(たとえば、スライドガラス/対向部の落下を防止する機構)などを含むことができる。たとえば、移送ヘッド454は、真空を介して対向部457を持ち上げて保持することが可能な持上げヘッド(たとえば、回転可能または浮動式の持上げヘッド)とすることができる。真空は、対向部457を解放するために低減(たとえば、消滅)させることができる。追加または別法として、機械的把持具により、対向部457を保持することもできる。
[00234]図31は、それぞれ対向部457およびスライドガラス458を湿潤モジュール430へ送達する移送ヘッド454、456を示す。移送ヘッド456は、待機プラットホーム240の相補型の位置合わせ機構500、502(図30)および/または湿潤モジュール430の位置合わせ機構510、512(図30)によって受け取ることができるヘッド位置合わせ機構490、492を含む。位置合わせ機構は、限定されるものではないが、ピン(たとえば、細長い棒)、突起、開口(たとえば、ブッシングによって画定される開口、板の中の開口など)などを含むことができる。いくつかの実施形態では、位置合わせ機構490、492は、スライドガラス243と湿潤モジュール430とを位置合わせするために開口の形の対応する位置合わせ機構510、512内へ挿入することができるピンの形である。移送ヘッド456は、それぞれ位置合わせ機構490、492と位置合わせ機構510、512との間の接合を制限または防止するために、浮動ヘッドとすることができる。他の実施形態では、位置合わせ機構490、492は開口であり、位置合わせ機構510、512は上方へ突出するピンである。
[00235]処理済みのスライドガラス243を取り外した後、移送ヘッド456は、未処理のスライドガラス458を載置デバイスから湿潤モジュール430へ輸送することができる。位置合わせ機構490、492は、位置合わせ機構510、512の上に位置決めすることができ、移送ヘッド456を降下させて、スライドガラス458が湿潤モジュール430上に置かれるまで、それぞれ位置合わせ機構490、492を位置合わせ機構510、512内へ挿入することができる。移送ヘッド456は、スライドガラス458を解放することができる。標本を処理した後、移送ヘッド456は、別のスライドガラスを回収して湿潤モジュール430内へ装入することができる。スライドガラスは、システムの性能に影響を及ぼしうる停電または他の場合にスライドガラスの損傷を防止するために、湿潤モジュール430で保持することができる。
[00236]使用済みの対向部470を取り外した後、移送ヘッド454は、対向部457を対向部受取り器480へ送達することができる。対向部457が湿潤モジュール430の上に位置決めされた後、移送ヘッド454は、対向部457を実質上水平の向き(図30)から実質上垂直の向き(図31)へ回転させることができる。いくつかの実施形態では、実質上水平の向きにある対向部457は、仮想水平面に対して5度未満の角度を画定し、実質上垂直の向きにある対向部は、仮想垂直面に対して5度未満の角度を画定する。垂直方向に向けられた対向部457は、対向部受取り器480内へ装入することができる。移送ヘッド454は、使用済みの対向部を取り出し、未使用の対向部を対向部キャリア(たとえば、図28および図29の対向部キャリアホルダ384)から回収することができ、この未使用の対向部を対向部受取り器480内へ装入することができる。
[00237]図32は、対向部受取り器480および駆動機構530を含む対向部アクチュエータ525を示す。対向部受取り器480は、クランプ536および本体540を含むことができる。クランプ536は、対向部470の取付け端部950を保持するように協働する1対の掴み具542A、542Bを含む。対向部470は、捕獲端部543まで延びる本体541を含む。本体541は、旋回軸550によって駆動機構530に旋回可能に結合される。駆動機構530は、連結アセンブリ560および線形アクチュエータアセンブリ562を含むことができる。連結アセンブリ560は、1つまたは複数の回転軸(たとえば、2つの回転軸)の周りの回転を可能にする旋回軸550を含み、1つまたは複数のローラ玉軸受、旋回軸、ヒンジ、または所望の運動を提供する他の特徴を含むことができる。線形アクチュエータアセンブリ562は、励磁可能な駆動デバイス570(たとえば、ステッパモータ、駆動モータ、ソレノイドなど)と、可動要素572(たとえば、親ねじ、駆動棒など)と、レールアセンブリ574(たとえば、キャリッジ/レールアセンブリ、ケージ付きの玉軸受線形レールアセンブリなど)とを含むことができる。
[00238]対向部受取り器480は、線形アクチュエータアセンブリ562によって連結アセンブリ560を介して作動させることができる。線形アクチュエータアセンブリ562は、後退させることができ、静止カム(複数可)(たとえば、図33のカム575)により、ピン576、578に係合して、対向部受取り器480を開いた構成まで駆動することができる。図32の図示の実施形態を含むいくつかの実施形態では、開いた構成にある対向部受取り器480は、対向部470を緩く保持することができる。対向部受取り器480は、1つまたは複数の付勢部材(たとえば、ばね、空圧アクチュエータなど)によって、閉じた構成へ動かすことができる。線形アクチュエータアセンブリ562が延びると、ピン576、578は、上方へ互いの方に動くことができ、したがって付勢部材が対向部受取り器480を閉じる。
[00239]対向部アクチュエータ525はまた、限定されるものではないが、対向部470の存在、対向部470の位置、対向部470によって係合される処理液の1つまたは複数の特性などを検出するための1つまたは複数のセンサを含むことができる。これらのセンサは、限定されるものではないが、接触センサ、電気機械センサ、光学センサ、または化学センサを含むことができ、対向部受取り器480または他の適した構成要素に結合することができ、または組み込むことができる。センサの数、位置、および構成は、所望の監視機能を実現するように選択することができる。
[00240]図33は、本技術の一実施形態によるスライドガラス243を保持する湿潤モジュール430の等角図である。湿潤モジュール430は、対向部アクチュエータ525、スライドガラスホルダプラテン601、およびマニホルドアセンブリ606を含む。転動動作状態にある対向部アクチュエータ525は、スライドガラス243に沿って対向部470を前後に転動させるように延長または後退させることができる。連結アセンブリ560(図32)の回転接合部の運動、重力、および/または液体の毛細管力により、対向部470の所望の運動を維持するのを助けることができる。いくつかの実施形態では、対向部アクチュエータ525は、対向部470を連続的または周期的に転動させて(たとえば、長手方向に転動、横方向に転動、もしくは両方向に転動)、液体の体積を撹拌し、液体の帯(たとえば、液体のメニスカス層)を動かし(たとえば、並進させ、分散させ、狭くするなど)、蒸発を制御し(たとえば、適度な蒸発に)、かつ/または処理液をその他の方法で管理することができる。
[00241]マニホルドアセンブリ606は、1対のセンサ620a、620b(集合的に、「620」)および1つまたは複数のバルブ630を含む。センサ620は、作業流体の圧力を検出することができ、検出した圧力を示す1つまたは複数の信号を送ることができる。流体ライン638は、加圧源640をマニホルド641に流体的に結合させることができる。流体ライン642、644は、マニホルド641を液体取出しデバイス655およびスライドガラスホルダプラテン601に流体的に結合させる。液体取出しデバイス655は、廃棄ポート643を介して対向部470とスライドガラス243との間の液体を取り出すことができる。ライン644は、スライドガラスホルダプラテン601上でスライドガラス243を保持するための真空を引き込むために使用することができる。
[00242]図34Aおよび図34Bは、本技術の一実施形態によるスライドガラスホルダプラテン601の等角図である。図34Aのスライドガラスホルダプラテン601は、スライドガラス243を支持する。図34Bのスライドガラスホルダプラテン601は空である。スライドガラスホルダプラテン601は、支持要素650および取付けベース651を含むことができる。支持要素650は、接点または接触表面679を有する高くなったスライドガラス受取り領域680を含む(図34B)。ポート683(図34B)が、スライドガラス243を接触表面679に押し付けて保持するための真空を引き込むように位置決めされる。ポート683は、スライドガラス243と接触表面679との間で強い真空の引き込みを容易にするように構成された吸盤または他の機構とすることができる。
[00243]支持要素650は、取付けベース651の外壁652内に位置決めされた内壁681を含む。内壁681および外壁652は、加熱可能な側壁682を形成する。いくつかの実施形態では、側壁682は、接触表面679の両側に位置決めすることができ、周囲空気へ熱エネルギーを出力してスライドガラス243、処理流体、および/または標本(複数可)の温度を制御することができる。いくつかの実施形態では、側壁682はまた、スライドガラス243全体を横方向に取り囲むように位置決めすることができる。取付けベース651は、支持要素650を他の構成要素から絶縁することができる絶縁材料(たとえば、プラスチック、ゴム、ポリマーなど)から作ることができる。いくつかの実施形態では、取付けベース651は、支持要素650の材料の熱伝導率より実質上低い熱伝導率を有する材料から作られる。取付けベース651は、支持要素650を取り囲んで保護することができ、結合領域657を含み、結合領域657に対向部アクチュエータ525を結合することができる。
[00244]支持要素650は、低い熱伝導率を有する1つまたは複数の低熱伝達材料(複数可)を含む被覆されていない要素とすることができる。低熱伝達材料は、限定されるものではないが、25℃で約10W/(m*K)〜25℃で約25W/(m*K)の範囲内の熱伝導率を有する鋼、ステンレス鋼、または他の材料を含むことができる。一実施形態では、低熱伝達材料は、25℃で16W/(m*K)の熱伝導率を有するステンレス鋼を含む。いくつかの実施形態では、支持要素650は、重量で大部分にステンレス鋼を含む。特定の実施形態では、加熱要素653(図35)とスライドガラス243との間に直接位置する支持要素650の材料は、重量で少なくとも大部分にステンレス鋼を含む。ステンレス鋼の支持要素650は、比較的長い動作寿命を提供するために、標本を処理するために使用される液体に対して耐食性を有することができる。いくつかの実施形態では、支持要素650は、アンチモン(25℃でk=18.5W/(m*K))またはクロムニッケル鋼(たとえば、25℃で約16.3W/(m*K)の熱伝導率を有する18重量%のCrおよび8%重量のNi)を含む。他の実施形態では、支持要素650は、25℃で約35W/(m*K)の熱伝導率を有する鉛または類似の熱伝導率を有する他の金属を含むことができる。いくつかの実施形態では、支持要素650は、銅または真鍮より低い熱伝導率を有する材料から作ることができる。取付けベース651は、支持要素650の熱伝導率より低い熱伝導率を有する絶縁材料から作ることができる。したがって、取付けベース651は、支持要素650を熱的に絶縁することができる。
[00245]図35は、スライドガラスホルダプラテン601の前底面左側の側面図である。図36は、スライドガラスホルダプラテン601の底面図である。スライドガラスホルダプラテン601は、電気エネルギーを熱エネルギーに変換することができる加熱要素653を含むことができ、加熱要素653は、限定されるものではないが、1つまたは複数のトレース、リード、抵抗要素(たとえば、熱エネルギーを生じさせる能動要素)、ヒューズなどを含むことができる。いくつかの実施形態では、加熱要素653は、抵抗加熱器とすることができる。必要な場合または所望される場合、他のタイプの加熱器を使用することもできる。いくつかの実施形態では、加熱要素653は、支持要素650へ熱エネルギーを出力して所望の熱伝達パターンを実現することができる。熱は、蒸発熱損失を補償するために、支持要素650を介してスライドガラス243へ不均一に伝達することができる。接触表面679に沿って不均一に熱伝達することで、接触表面679に沿って不均一の温度プロファイルを生じさせることができる。スライドガラス243の処理区間671(図34A)全体にわたって、概して均一の温度プロファイルを生じさせることができる。処理区間671は、染色領域、取付け領域、または1つもしくは複数の標本(複数可)を運搬するのに適したスライドガラス243の上面もしくは標本担持表面687(図34A)の区域とすることができる。
[00246]図36の加熱要素653は、2つの細長いスライドガラス加熱部分660a、660b(集合的に、660)および2つの端部加熱部分665a、665b(集合的に、「665」)を含むことができる。細長い部分660は、スライドガラス243の長手方向に延びる縁部部分へ熱エネルギーを伝達する。端部加熱部分665は、処理区間671の端部へ熱エネルギーを伝達する。細長い部分660および端部加熱部分665をともに結合して、組立て型の加熱要素653を形成することができる。細長い部分660および端部加熱部分665は、同じ伝導率または異なる熱伝導率を有する材料から作ることができる。各部分660、665は、異なる量の熱エネルギーを出力するように独立して動作することができる。他の実施形態では、加熱要素653は、均一の厚さまたは可変の厚さを有する一体型の構造を有することができる。一体型の加熱要素653は、1つの材料から作ることができる。
[00247]細長い部分660および端部加熱部分665はともに、ポケット670の形の対流冷却機構を画定する。ポケット670は、支持要素650内の熱を分離するのを助けて、印加される位置で熱エネルギーを保つのを助けることができ、また、スライドガラスホルダプラテン601の熱量を低減または制限するのを助けることもできる。ポケット670は、図36に示すように、実質上方形の形状を有する開口とすることができる。しかし、ポケット670は、支持要素650の接触表面679に沿った所望の熱分布に基づいて、他の形状を有することができる。
[00248]図37Aは、スライドガラスホルダプラテン601の横断面等角図である。支持要素650は、受取り領域680、側壁682、およびチャネル684を含む。受取り領域680は、動作中にチャネル684内に集まる可能性のある流体から隔置された状態でスライドガラス243を保つ。チャネル684は、スライドガラス243の縁部813、815から落ちる液体を収集することができる。いくつかの実施形態では、スライドガラス243は、液体がスライドガラス243と接触表面679との間に這い上がるのを防止するのに十分な距離(たとえば、0.5mm、0.75mm、1mm、2mm、4mm、または6mm)をあけて、受取り領域680から外方へ延びることができる。
[00249]スライドガラスホルダプラテン601は、複数のステップからなる製造プロセスで作ることができる。支持要素650は、機械加工プロセス、打抜き加工プロセスなどによって形成することができる。支持要素650をオーバーモールドして、取付けベース651を形成することができ、取付けベース651は、射出成形プロセス、圧縮成形プロセス、または他の適した製造プロセスを使用して成形された絶縁材料から作ることができる。例示的で非制限的な絶縁材料には、限定されるものではないが、プラスチック、ポリマー、セラミックなどが含まれる。支持要素650および取付けベース651は、液体が支持要素650と取付けベース651との間へ進むのを抑制または防止するために、ともにしっかりと結合されたままとすることができる。たとえば、支持要素650と取付けベース651との間の境界面は、何らかの封止剤を利用するかどうかにかかわらず、液密封止を形成することができる。しかし、支持要素650を取付けベース651にしっかりと結合するために、封止剤、接着剤、および/または留め具を使用することができる。図示の支持要素650は、取付けベース651に対する支持要素650の動きを最小化、制限、または実質上防止するのを助けるために、ロック機構690、692を含む。
[00250]図37Bは、スライドガラスホルダプラテン601の横断面図である。対向部470が液体802に係合し、液体802は標本807に係合する。側壁682は、スライドガラス243を越えて垂直方向に延びることができる。側壁682がスライドガラス243を越えて垂直方向に延びる距離は、対流(たとえば、周囲空気を介した対流)、蒸発などを介して熱損失を引き起こす可能性がある空気の流れを管理(たとえば、制限、最小化、実質上防止など)するように選択することができる。たとえば、スライドガラスホルダプラテン601および対向部470は、液体802の蒸発速度を約7マイクロリットル/分、5マイクロリットル/分、3マイクロリットル/分、または他の最大蒸発速度以下で保つことによって、蒸発を抑えることができる。いくつかの実施形態では、スライドガラスホルダプラテン601および対向部470は、液体802の蒸発速度を約7マイクロリットル/分〜約1マイクロリットル/分の範囲内で保つことができる。そのような実施形態は、蒸発損失を抑えることができる。側壁682および対向部470は、標本を周囲環境から実質上熱的に分離するのを助ける。追加として、側壁682は、標本近傍の空気を加熱して、液体802が周囲空気によって冷却されるのを防止するのを助け、凝縮を抑制し、または防止するのを助けることができる。
[00251]対向部470の側面部分811は、スライドガラス243の縁部813を越えて外方へ延び、したがって側面部分811は、スライドガラス243の縁部813より側壁682に近くなる。間隙819の幅WG1は、側面部分811からスライドガラス縁部813までの距離D1より小さくすることができる。対向部470の側面部分812は、縁部815を越えて外方へ延びる。間隙817の幅WG2は、側面部分812からスライドガラス縁部815までの距離D2より小さくすることができる。いくつかの実施形態では、幅WG1は、左の側壁682と縁部813との間の距離の約10%、25%、または50%以下とすることができる。同様に、幅WG2は、右の側壁682とスライドガラス縁部815との間の距離の約10%、25%、または50%以下とすることができる。幅WG1、WG2は、好都合な取扱いを容易にするために対向部470のわずかな左右の動きを可能にしながら、蒸発損失を抑制または制限するのに十分なほど小さくすることができる。いくつかの実施形態では、幅WG1、WG2は、約1mm、2mm、4mm、または他の適した幅以下である。
[00252]図38は、湿潤モジュール430の上面図である。図39は、図38の線39−39に沿って切り取った湿潤モジュール430の一部分の横断面図である。図40は、図38の線40−40に沿って切り取った湿潤モジュール430の一部分の横断面図である。図38および図39を参照すると、リザーバ697内の液体を検出するように、センサ694が位置決めされる。センサ694は、リザーバ697の底部696付近に位置決めされたサーミスタ要素695を含むことができる。十分な体積の液体が収集されてサーミスタ要素695に接触すると、センサ694は、コントローラ144(図2)へ信号を送る。リザーバ697内で閾値体積の液体を検出することで、湿潤モジュール430内の障害を示すことができる。障害を検出すると、湿潤モジュール430を無効にすることができ、その後、湿潤モジュール430をたとえば検査、洗浄、またはその他の方法で維持することができる。
[00253]図39および図40を参照すると、湿潤モジュール430は対流システム700を含み、対流システム700は、流れ生成器710と、ダクト711と、ダクト711の通路713によって画定される流路712(破線で示す)とを含む。流れ生成器710は、限定されるものではないが、支持要素650の裏側、スライドガラス243、および/またはスライドガラス243上で運搬される物品(たとえば、標本、試薬など)を冷却するのに十分な流量の対流流体(たとえば、空気、冷却剤など)を流路712に沿って生成することが可能な1つまたは複数のファン、ブロワ、または他の適した構成要素を含むことができる。
[00254]流れ生成器710は、スライドガラス243の第1の端部732の下に位置する支持要素650の端部730の方へ対流流体を送達することができる。対流流体は、先細りした区間720を通って垂直方向に進むことができ、先細りした区間720は、対流流体の流れを加速させることができる。加速した流れは、水平方向に誘導され、スライドガラスプラテン601の下を流れる。対流流体は、スライドガラス243の冷却を容易にして促進するために、支持要素650に直接接触することができる。たとえば、対流流体は、支持要素650からの熱エネルギーを吸収するために、ポケット670に入ってポケット670に沿って流れることができる。支持要素650は、スライドガラス243からの熱エネルギーを吸収して上面687を冷却し、最終的には液体、標本(複数可)、または上面687上のあらゆる他の物品もしくは物質を冷却する。温められた流体は、ポケット670を越えて流れ、スライドガラス243のラベル端部752の下に位置決めされた支持要素650の端部750の下を進む。空気は、出口760を通って周囲環境まで下方へ流れる。
[00255]対流システム700を使用して、スライドガラス243を急速に冷却することができる。たとえば、対流システム700は、約2.5℃/秒以上の速度で液体および/または標本を冷却するのを助けることができる。一実施形態では、標本の温度は約95℃になる可能性があり、約4分以内に約30℃以下の温度まで冷却することができる。対流流体の流量、対流流体の温度などを増大または減少させることによって、他の冷却速度を実現することもできる。加熱サイクル中、所望される場合、対流システム700をオフにすることができる。
[00256]図41は、図38の線41−41に沿って切り取ったスライドガラスホルダプラテン601の一部分の横断面図である。液体802の温度は、液体802の特性、標本の特性(たとえば、標本の厚さ、標本の組成など)、および実行すべきプロセスに基づいて選択された標的温度範囲内で維持することができる。液体802のうち、スライドガラス243の縁部に最も近い領域は、液体802の中心領域より多く蒸発するため、スライドガラス243の周辺部および液体802の周辺部は、補償がなければ温度がより低くなる傾向にある。高温プロセス(たとえば、抗原回収)の場合の蒸発熱損失は、低温プロセス(たとえば、洗い流し)の場合の蒸発損失より大きいことがある。標本807および/または液体802に沿って大幅な温度変動が生じることで、処理の変動を招く可能性があるため、湿潤モジュール430は、高温および低温プロセスにおける蒸発熱損失を含む蒸発熱損失を補償することによって、スライドガラス243の所望の温度プロファイルを維持することができる。湿潤モジュール430は、液体802の帯および/または標本807を実質上均一に加熱するために、表面687に沿って実質上均一の温度プロファイルをもたらすことができる。均一の温度プロファイルは、標本807全体を一貫して処理するために、周囲環境の変化とは独立して維持することができる。
[00257]図41Aは、受取り領域680の幅に沿った位置とスライドガラス243へ伝導される熱エネルギーとの関係を示す図である。図41Bは、受取り領域680の幅に沿った位置と支持要素650の接触表面679の温度との関係を示す図である。図41Cは、スライドガラス243の上面687に沿った位置の図である。図41Bと図41Cを比較すると、支持要素650の接触表面679に沿った温度プロファイルが、スライドガラス243の上面687に沿った温度プロファイルとは異なることが分かる。
[00258]図41Aを参照すると、加熱要素653は、伝導を介して熱エネルギーをスライドガラス243へ不均一に伝達することができる。熱は染色領域の周囲に集中したままであり、染色領域では蒸発熱損失が比較的高くなる。熱エネルギーが伝導を介して支持要素650のうちポケット670より上の部分へ直接伝達されないため、支持要素650の接触表面679に沿って不均一の温度プロファイルがもたらされ、液体802の蒸発に伴う不均一の熱損失を補償することができる。この補償により、スライドガラス上面687に沿って実質上均一の温度プロファイルをもたらすことができる。図41Cに示すように、スライドガラス上面687に沿った温度は、標的温度範囲内で保つことができる(2つの水平方向の破線で表す)。抗原回収の場合の一実施形態では、実質上均一の温度プロファイルは、所望の温度の5%以下の温度変動を有することができ、スライドガラス上面687の大部分に及ぶことができる。スライドガラス上面687は、たとえば、約95℃の平均温度または標的温度で、約90.25℃〜約99.75℃の範囲内で保つことができる。いくつかの実施形態では、加熱器要素653は、スライドガラス上面687の大部分にわたって約4%未満の温度変動を生じさせる。他の実施形態では、スライドガラス上面687の大部分にわたって5%未満の温度変動を生じさせることができる。スライドガラス上面687は、たとえば、約95℃の平均温度で、約92.63℃〜約97.38℃の範囲内で保つことができる。いくつかの実施形態では、許容可能な温度変動は、使用者によって入力することができる。
[00259]図42は、本技術の一実施形態による加熱区間の上面図である。高加熱区間820が中間加熱区間824を取り囲む。中間加熱区間824が低加熱区間822を取り囲む。加熱要素653からの熱は、主に上方へ進み、高加熱区間820を画定する。高加熱区間820は、スライドガラス243の染色区域の周囲の下に配置することができる。低加熱区間822は、概して、ポケット670および中心処理区域(たとえば、染色区域)に対応することができ、この区域には、典型的には1つまたは複数の標本が位置決めされる。加熱区間820、822、824の温度は、概して、その加熱区間の真上のスライドガラスに沿った蒸発速度に反比例することができる。たとえば、低加熱区間822は、概して、液体802の帯の中央の下に位置決めすることができ、ここでは実質上蒸発損失が生じない。高加熱区間820は、概して、液体802の帯の周辺部の下に位置決めされ、比較的高い蒸発損失を受ける。
[00260]図43は、本技術の一実施形態によるスライドガラスを加熱する方法900を示す流れ図である。901で、標本担持スライドガラス243(図34A)を支持要素650の接触表面679(図34B)上に位置決めすることができる。スライドガラス243は、スライドガラスホルダプラテン601によって予熱することができる。加熱されたスライドガラス243上へ、液体を送達することができる。別法として、スライドガラスホルダプラテン601は、液体を送達した後にスライドガラス243を加熱することができる。
[00261]902で、対向部470を使用して液体を操作し、蒸発を軽減および制御することができる。蒸発は、温度、濃度、および毛細管の体積に影響を及ぼす可能性がある。いくつかの実施形態では、液体が蒸発することが可能になり、その結果、熱損失が生じ、いくつかの実施形態では、液体802の濃度に変化が生じる。液体の体積を所望の範囲内で保ち、液体の所望の濃度を維持することなどのために、分注器によって所望の時間に補給液を送達することができる。液体の現在の体積が標的平衡体積より低い場合、コントローラは、液体の現在の体積が平衡体積に到達するまで液体を送達するように、分注器に指示することができる。液体の現在の体積が標的平衡体積より高い場合、コントローラは、液体の現在の体積が平衡体積に到達するまで液体の送達を停止するように、分注器に指示することができる。液体が標的平衡体積に到達した後、コントローラは、液体を平衡体積で維持するために、所望の速度(たとえば、固定の速度または可変の速度)で補給流体を液体に提供するように、分注器に指示することができる。送達速度は、液体の蒸発速度に基づいて選択することができる。
[00262]903で、接触表面679は、不均一の温度プロファイルを有することができ、したがって、スライドガラス243の上面687は、接触表面679の不均一のプロファイルより均一の温度プロファイルを有する。実質上、スライドガラス243の取付け区域全体が、実質上均一のプロファイルを有することができる。これにより、一貫した処理のために、取付け表面に接触する標本のあらゆる部分が概して均一の温度で確実に維持される。標本が取付け表面に沿ってわずかに動いた場合でも、これらの標本を一貫して処理することができる。
[00263]904で、接触表面679に沿って不均一の温度プロファイルをもたらすことによって、液体802の蒸発に伴う熱損失を補償することができる。支持要素650および加熱側壁682を使用して、スライドガラス243の温度を制御することができる。
[00264]染色表面を横切って流体を繰り返し操作する結果、スライドガラス表面に接触する流体内の異なる領域間で、質量と熱エネルギーの両方の混合の意味で、流体の混合が生じる。したがって、スライドガラスの表面における温度均一性の制御は、1)スライドガラスの下の伝導加熱要素、2)流体の操作に起因する熱的混合、および3)周囲環境に対する蒸発熱損失の相互作用による影響を受ける。流体の操作は、指定の体積に対する操作速度および距離などの要因によって制御される。したがって、スライドガラスの下の伝導要素の熱プロファイルは、流体操作要因に対してスライドガラス上の温度均一性が最適になるように適当に設計しなければならない。
[00265]図44は、蒸発が抑えられた標本処理ステーションのスライドガラスホルダプラテン601、分注器アセンブリ633、およびコントローラ144を示す。分注器アセンブリ633は、流体ライン623を介して分注器622に流体的に結合された流体源621を含む。流体源621は、限定されるものではないが、1つまたは複数の容器(たとえば、図1の留置ステーション124から取り出した容器、図1の留置ステーション142から取り出した容器など)、リザーバ、または他の適した流体源(たとえば、大容量の試薬リザーバ)を含むことができ、1つまたは複数のバルブ、ポンプなどを含むことができる。分注器622は、導管625のアレイを介して液体を出力することができる。図44の図示の実施形態を含むいくつかの実施形態では、分注器622は8つの導管625を含むが、任意の数の導管を使用することができる。追加として、分注器アセンブリ633は、スライドガラスホルダプラテン601の設計に応じて2つ以上の分注器を含むことができる。追加または別法として、図2の分注器160、162は、スライドガラス上へ液体を送達することができ、流体源621または別の流体源に流体的に結合することができる。対向部470は、分注器160、162の一方または両方がスライドガラス上へ液体を送達することを可能にするように位置決めすることができる。いくつかの実施形態では、分注器622は、留置ステーション142にある容器から大量の液体を送達し、分注器160、162は、留置ステーション140にある容器から液体を送達する。
[00266]コントローラ144は、処理液の体積を平衡体積範囲内で保つように、標本処理ステーションのアレイを制御することが可能である。液体の体積が平衡体積範囲を上回る場合、液体は比較的高速で蒸発する可能性があり、液体の濃度を大幅に変化させることがある。液体の体積が平衡体積範囲を下回る場合、標本を適当に処理するのに十分な体積の液体がないことがある。追加として、十分な体積の液体がない結果、処理中の液体撹拌量が望ましくないほど低くなる可能性がある。平衡体積範囲は、液体の組成、所望の処理温度、または液体802の所望の撹拌に基づいて選択することができる。液体802の平衡体積は、蒸発損失を標的レベル未満で保ちながら標本の完全な到達範囲を提供する流体体積(特定の温度または温度範囲)に対応することができる。分注器622は、液体の体積を平衡体積範囲内で保つこと、枯渇した試薬を補充することなどのために、固定の速度(たとえば、蒸発速度に基づく速度)で液体を周期的に補給する補充デバイスとして機能することができる。
[00267]標的処理温度または標的処理温度範囲および総蒸発速度によって、コントローラ144は、平衡体積の標的範囲を判定することができる。いくつかの実施形態では、コントローラ144は、メモリ629および/または入力デバイス628から総蒸発速度情報を受け取ることができる。入力デバイス628は、要求に応じてまたは周期的にデータベースから情報を提供することができるデータサーバまたは他の類似のデバイスを含むことができる。総蒸発速度情報は、実証研究から得ることができ、データベース内に記憶することができる。他の実施形態では、入力デバイス628は、スライドガラスのラベルから情報(たとえば、標的処理温度、標的処理温度範囲、補充速度など)を得るリーダとすることができる。
[00268]コントローラ144は、情報(たとえば、ルックアップテーブル、温度設定点、デューティーサイクル、電力設定、周囲の温度および/または湿度などの環境情報、処理プロトコルなど)をメモリ629から受け取ることができる。入力デバイス628は、手動入力デバイス(たとえば、キーボード、タッチ画面など)、またはコントローラ144からの要求に応じて情報を自動的に提供することができる自動入力デバイス(たとえば、コンピュータ、データ記憶デバイス、サーバ、ネットワークなど)とすることができる。メモリ629は、異なるプロセスに対する異なる命令を記憶することができる。1つの記憶されたプログラム命令シーケンスを使用して、標本807を洗浄剤に接触させることができ、別のプログラム命令シーケンスを使用して、標本に試薬(たとえば、染色剤)を添加することができる。コントローラ144は、標本を洗浄剤および試薬で順次処理するためのプログラム命令シーケンスを実行するプログラム可能プロセッサ631を含むことができる。スライドガラスホルダプラテン601は、第1のプログラム命令シーケンスを実施するとき、スライドガラスを第1の標的温度まで加熱することができ、第2のプログラム命令シーケンスを実施するとき、スライドガラスを第2の標的温度まで冷却することができる。プロトコルの異なる段階を実行するために、任意の数のプログラム命令シーケンスを実行することができる。
[00269]コントローラ144はまた、分注器622がスライドガラス上へ補給液を送達するように湿潤モジュール430を制御するようにプログラムすることができる。流体送達の速度は、たとえば、処理情報(たとえば、プロトコル、撹拌情報、処理時間(複数可)など)、総蒸発速度情報(たとえば、特定条件下の蒸発速度、特定のタイプの液体の実際の蒸発速度など)などに基づいた速度とすることができる。液体の現在の体積は、スライドガラス上の液体の最初の体積および記憶されている蒸発速度(複数可)に基づいて判定することができる。記憶されている蒸発速度は、システム100内へ入力することができ、またはシステム100によって判定することができる。コントローラ144は、平衡体積を事前に計算することができ(たとえば、パイロットラン)、システム100は、判定された平衡体積を同じ種類の液体の最初の体積として使用することができる。次いで、コントローラ144は、速度(たとえば、パイロットランによって判定された速度)で補給液を提供するように分注器622に指示することができる。いくつかの実施形態では、転動速度は、概して均一の温度プロファイルを提供するために、約100mm/秒とすることができる。たとえば、100ミリメートル/秒の転動速度により、スライドガラス全体にわたって約4.2℃の温度範囲を提供することができ、65ミリメートル/秒の転動速度により、約6.2℃の温度範囲が提供される。転動方向、転動速度、および転動頻度は、液体のタイプおよび所望の温度プロファイルに応じて調整することができる。転動速度は、総蒸発速度に直接的な影響を与える可能性がある。転動速度が速ければ速いほど、より高い蒸発速度を招く可能性がある。実証的な総蒸発体積情報を収集してプロトコルを生成するとき、これは考慮される要因になる可能性がある。
[00270]コントローラ144の電源627は、加熱要素(たとえば、図37Aおよび図37Bの加熱要素653)に電気的に結合することができる。電源627は、1つまたは複数の電池、燃料電池などとすることができる。電源627はまた、システムの他の構成要素にも電気エネルギーを送達することができる。他の実施形態では、電源627は、交流電源とすることができる。
[00271]図45および図46はそれぞれ、スライドガラス243を有する状態で示され、本技術によって構成された、スライドガラスホルダプラテン701の別の実施形態の斜視図および上面図である。図47は、スライドガラス243のないスライドガラスホルダプラテン701の斜視図である。図45〜47を参照すると、スライドガラスホルダプラテン701は、以下に詳述するものを除いて、図34A〜44に関連して上記で論じたスライドガラスホルダプラテン601と概して同一である。スライドガラスホルダプラテン701は、支持要素703、封止部材709、および真空ポート721を含むことができる。支持要素703は、高くなったスライドガラス受取り領域707を含み、封止部材709は、スライドガラス受取り領域707上にスライドガラスが配置されるとスライドガラス243の底面に係合するように構成される。封止部材709は、真空ポート721の周りに位置決めすることができ、したがって、スライドガラス243が封止部材709に係合すると、真空ポート721を介して真空が引き込まれ、スライドガラス243を封止部材709に対して引き寄せて、封止(たとえば、気密封止)を維持し、スライドガラス受取り領域707に対するスライドガラス243の望ましくない動き(たとえば、図46にそれぞれ矢印801a〜bおよび799a〜bで示す回転運動および/または並進運動)を防止または制限する。
[00272]図47を次に参照すると、スライドガラス受取り領域707は、第1の部分733と、第1の部分733の開口745内に配置された第2の部分735とを有することができる。真空ポート721は、第2の部分735の頂面735aの概して中心の位置に配置することができる。真空ポート721は、1つまたは複数の流体ライン719(たとえば、内部流体ライン、外部流体ラインなど)を介して、真空源717に流体的に結合することができる。たとえば、流体ライン(複数可)719は、頂面735aにある開口705から第2の部分735を通って真空源717へ延びることができる。真空源717は、限定されるものではないが、開口705を介して真空を引き込むことが可能な1つまたは複数の加圧デバイス、ポンプ、または他のタイプのデバイスを含むことができる。図46に示すように、スライドガラス243がスライドガラス受取り領域707上に位置決めされたとき、スライドガラス243の標本担持部分729は、第1の部分733と概して位置合わせされ、スライドガラス243のラベル担持部分723は、第2の部分735と概して位置合わせされる。したがって、標本担持部分729の熱処理の混乱を回避するため、真空ポート721によって生成される真空は、スライドガラス243のラベル担持部分723に局在化することができる。
[00273]第2の部分735および開口745は、円形でない形状(上から見た場合)を個々に有することができる。本明細書では、「円形でない」とは、真円(すなわち、その周囲のすべての点において実質上一定の半径を有する形状)以外の任意の形状を指す。たとえば、いくつかの実施形態では、第2の部分735および/または開口745は、丸い角を有する方形の形状を有することができる。他の実施形態では、第2の部分735および/または開口745は、角の丸い多角形の形状、多角形の形状、楕円形、長円など、任意の円形でない形状、寸法、および/または構成を有することができる。いくつかの実施形態では(図示の実施形態を含む)、第2の部分735および開口745は、概して同じ円形でない形状を有することができ、いくつかの実施形態では、第2の部分735および開口745は、異なる円形でない形状を有することができる。
[00274]図48は、スライドガラスホルダプラテン701の部分分解図であり、図49は、図48のプラテン701の一部分の横断面側面図である。図48および図49をともに参照すると、スライドガラス受取り領域707の第1の部分733および第2の部分735はトレンチ737によって分離されており、トレンチ737は封止部材709を受け取る。トレンチ737は、開口745を画定し、第1の部分733によって画定される外側壁739と、第2の部分735によって画定される内側壁741と、側壁739、741間の床部分743とを有することができる。図49を次に参照すると、外側壁739/第1の部分733の高さ775は、内側壁741/第2の部分735の高さ773より大きくすることができる。図54を参照して以下により詳細に説明するように、スライドガラス243がスライドガラス受取り領域707上に位置決めされたとき、スライドガラスの裏面は、第1の部分733の頂面または接触表面733aに接触し、第2の部分735の頂面735aから距離781によって分離される。したがって、第1の部分と第2の部分との間の高さの差により、真空ポート721の周りには、少なくとも部分的に第2の部分735の頂面735aによって画定された真空チャンバ757(図54)が生じる。
[00275]図50および図52Aはそれぞれ、封止部材709の斜視図および上面図であり、図51は、図50の線51−51に沿って切り取った封止部材709の横断面端面図である。封止部材709は、本体747と本体747から径方向に外方へ延びるリップ749とを有する円形でない適合ガスケットの形とすることができる。封止部材709は、スライドガラス受取り領域707の方へ動いているスライドガラスに接触する圧縮されていない構成709UCと、気密封止を維持する圧縮された構成709C(破線で示す)との間を可動である。本体747は、トレンチの内側壁741に接触するように構成された内面761と、トレンチ737の外側壁739に接触するように構成された外面767とを有することができる。リップ749は、スライドガラスがスライドガラス受取り領域707上に配置されているときに顕微鏡用スライドガラスの裏側に係合するように構成された頂面763を含む。リップ749は、本体747の外面767より小さい距離だけ、本体747から径方向に外方へ延びることができる。したがって、リップ749は、封止部材709がトレンチ737内に位置決めされたとき、必ずしも外側壁739に接触するとは限らない。
[00276]図52Aに示すように、封止部材709(または本体747)は、上から見て(または、封止部材709の頂面763に概して直交する軸に沿って)、円形でない形状を有することができる。たとえば、いくつかの実施形態では、本体747は、丸い角を有する方形の形状(たとえば、図52A)を有することができる。他の実施形態では、本体747は、角の丸い多角形の形状、多角形の形状(たとえば、正方形(図52B)、三角形(図52C)など)、「花弁」の形状(たとえば、図52D)など、任意の円形でない形状、寸法、および/または構成を有することができる。封止部材709は、全体的または部分的に、所望の封止を維持することが可能なゴム、ポリテトラフルオロエチレン(PTFE)、シリコーン、ニトリル、ビニル、ネオプレン、および/または他の圧縮もしくは適合材料から作ることができる。
[00277]図53は、スライドガラス243がスライドガラス受取り領域707上に位置決めされているが、スライドガラス243の裏側243aが圧縮されていない状態で封止部材709に接触する前のプラテン701の横断面側面図である。図53に示すように、本体747の少なくとも一部分は、トレンチ737の内側壁741、外側壁739、および床部分743に接触している。リップ749は、トレンチ737の外側壁739から隔置されており、トレンチ737から出て第1の部分733の頂面733aを越えて上方へ延びる。リップ749はまた、トレンチ737から出て、頂面733aによって画定される水平面(仮想の平面)を越えて上方へ延びることができる。たとえば、リップ749は、頂面733aから距離753だけ延びることができる。したがって、リップ749は、裏面243aが第1の部分733の頂面733aに接触する前にスライドガラス243の裏面243aに係合するように構成される。このようにして、封止部材709は、スライドガラス受取り領域707上にスライドガラス243を配置したことに伴う接触力を吸収し、したがってスライドガラス受取り領域707上へのスライドガラス243の遷移を容易にする。
[00278]図54は、スライドガラス243がスライドガラス受取り領域707上に位置決めされた後のプラテン701の横断面側面図であり(たとえば、封止部材709は圧縮された状態にある)、図55は、図54の一部分の拡大図である。図54に示すように、スライドガラス243の裏面243aは、封止部材709のリップ749ならびに第1の部分733の頂面733aに接触する。第1の部分733と第2の部分735との間の高さの差のため、スライドガラス243の裏面243aは、第2の部分735の頂面735aから距離781によって分離される(図55参照)。したがって、加圧されたポート721は、スライドガラス243の裏側243aの下に位置決めされて裏側243aから隔置され、したがって、第2の部分735の頂面735aおよびスライドガラス243の裏面243aが、真空チャンバ757を少なくとも部分的に画定する。たとえば、真空源が起動されたとき、スライドガラス243の裏側243a、封止部材709の一部分(たとえば、リップ749および/または本体747の外面761)、内側壁741、および/または第2の部分735の頂面735aの間の流体および/または空気は、真空ポート721を通って引き込まれる(矢印755で示す)。その結果、スライドガラス243は、封止部材709に対して引き寄せられ、それによって封止を形成する。封止により、支持要素703に対するスライドガラス243の位置決めを固定し、スライドガラス243の望ましくない回転および/または並進を実質上なくす。
[00279]リップ749は、トレンチ737の外側壁739に接触することなく、圧縮されていない構成と圧縮された構成との間を可動とすることができる。図55に最もよく示すように、圧縮された構成でも、封止部材リップ749とトレンチ737の外側壁739との間に間隙771を残すことができる。たとえば、リップ749は、スライドガラス243の裏面243aに直交する方向に主に撓むように構成することができる。リップ749は、垂直軸の周りのスライドガラス243のあらゆる回転を防止するのに十分なほど堅くすることができる。したがって、スライドガラス243は、支持表面に対する回転に関して固定することができる。(圧縮された状態では)リップ749を外側壁739から分離することができるが、支持要素703に対するスライドガラス243の動きを抑制するために、リップ749はトレンチ737の側壁(複数可)に物理的に接触するように構成される。たとえば、図56に示すように、リップ749または封止部材709の他の部分は、スライドガラス243が垂直軸の周りを回転するとき(たとえば、少なくとも約2度)、トレンチ737の外側壁739に物理的に接触するように構成することができる。封止部材709と第1の部分733内の開口745の形状がどちらも円形でないため、トレンチ737の外側壁747は、封止部材709、したがってスライドガラス743の回転を制限する(たとえば、接触力CFを作用させることによる)。
[00280]スライドガラスホルダプラテン701は、追加の特徴を含むことができる。たとえば、スライドガラスホルダプラテン701は、スライドガラス243の存在を検出し、かつ/または真空源717を起動するために、1つまたは複数のセンサ759(図54)を含むことができる。いくつかの実施形態では、スライドガラスホルダプラテン701は、真空チャンバ757内で生成される圧力を監視するために、1つまたは複数のセンサを含むことができる。特定の実施形態では、スライドガラスホルダプラテン701は、真空源717のタイミングおよび/または大きさを制御することができるコントローラと連通することができる。
[00281]図57は、本技術の一実施形態による処理液の平衡体積と総蒸発速度との関係の図である。x軸は、平衡体積(EV、単位:μL)を表し、y軸は、総蒸発速度(TER、単位:μL/秒)を表す。線T1およびT2は、それぞれ温度T1および温度T2におけるTERとEVとの間の関係を表す。図示の実施形態では、T1はT2より高い。コントローラ144は、メモリ629、入力デバイス628などから総蒸発速度情報を受け取ることができる。総蒸発速度情報は、メモリ629内で測定および記憶することができる。総蒸発速度情報は、異なる濃度の液体に対する蒸発速度を含むことができる。コントローラ144が所定の温度(たとえば、T1)および総蒸発速度情報(たとえば、「A」μL/秒)を受け取った後、コントローラ144は、図57のグラフに基づいて、液体のEV値(たとえば、「B」μL)を判定することができる。等式1は、図57に示す関係に対応する。線T1およびT2の傾斜は、以下の温度に依存する蒸発定数(K)を表す。
TER=K×EV 等式1
[00282]液体の平衡体積を判定した後、コントローラ144は、この平衡体積とスライドガラスの推定体積とを比較することができ、必要な場合は補給流体を供給するように分注器622に指示することができる。液体の現在の体積が標的平衡体積より低い場合、コントローラ144は、より多くの補給液を提供するように分注器622に指示することができる。
[00283]図58は、開示する技術の一実施形態による時間とスライドガラスの到達範囲との関係の図である。図59A〜63Bは、取付け区域671の両端部732、735間を交互に動かされることによって完全な到達範囲を提供するように、染色区域671全体(所望される場合はラベル907および縁辺を除く)に沿って液体802を動かすことによって図58に示す到達範囲を実現する1つの方法を示す。完全な到達範囲は、濡れ不足および濡れ過ぎに伴う問題を最小化、制限、または実質上防止するのを助けることができる。濡れ不足の際には、液体802は、染色区域671全体より小さい範囲に接触しており、したがって標本807は、接触されず、したがって処理/染色されない恐れがあることがある。濡れ過ぎの際には、液体802は、染色区域671全体より大きい範囲に接触しており、スライドガラス243から流出する傾向になることがある。液体802は、後の処理で無駄に除去される恐れがあり、その結果、試薬のキャリーオーバーおよびそれに伴う染色品質の劣化が生じることがある。液体802が染色剤である場合、一貫した(たとえば、均一の)染色のために、標本807全体に接触する。液体802が洗浄剤である場合、完全な到達範囲により、特に試薬処理後、標本807全体が確実に徹底的に洗浄される。この方法の異なる段階について、以下で詳細に論じる。
[00284]図59Aおよび図59Bは、図58の時間0における対向部アクチュエータ(図示せず)によって保持される対向部810と取付け区域端部732との間の液体802の帯の側面図および上面図である。対向部810およびスライドガラス243は、液体802の帯(たとえば、メニスカス層、薄膜など)を形成する。図59Bの液体802の帯は、破線で示されている。間隙930(たとえば、毛管間隙)が、約125マイクロリットル〜約200マイクロリットルの最小保持容量を有することができる。必要な場合または所望される場合、他の最小および最大保持容量も可能である。最小保持容量は、間隙930内に収容して標本807に有効に添加することができる液体の最小の体積とすることができ、標本807は、染色区域671上の任意の位置に配置することができる。最大保持容量は、充填し過ぎることなく間隙930内に収容することができる液体の最大の体積である。間隙930の狭くなった領域には小さい液体体積を収納することができるため、高さの変動する間隙930は、均一の高さの間隙より広い範囲の液体体積を収納することができる。
[00285]対向部810は、スライドガラス243に沿って転動し、スライドガラス243の長手方向軸951の方向に液体802の帯を変位させる(矢印961で示す)。図60Aおよび図60Bでは、液体802の帯は、液体802の帯の側面958を長手方向軸951の方向に動かすことによって分散されている(図58の0.25秒に対応する)。液体802の帯の側面956は、スライドガラス243の縁部960に留まることができる。いくつかの実施形態では、液体802の帯は、狭くなった幅WN1(図59B)から分散した幅WSへ分散させることができる。幅WN1、WSは、スライドガラス243の長手方向軸951に対して実質上平行とすることができ、液体802の帯の長さLは、長手方向軸951に実質上直交することができる。
[00286]図61Aおよび図61Bは、スライドガラス243に沿って動いた後の液体802の帯を示し、図58の0.5秒に対応する。液体802の帯は、毛管作用を使用して変位させられる。毛管作用は、限定されるものではないが、液体が接着力、凝集力、および/または表面張力のために間隙930を通って自然にはい上がる現象による液体802の帯の動きを含むことができる。いくつかの実施形態では、幅WSは、液体802の帯を変位させている間に概して維持することができる。他の実施形態では、幅WSは、液体802の帯を動かしている間に5%未満だけ増大または減少させることができる。いくつかの実施形態では、対向部810は、帯がスライドガラスを横切って動くときに可変の幅WSを有するように、不均一の曲率または構成を有することができる。
[00287]図62Aおよび図62Bは、端部735に位置決めされた液体802の帯を示し、図58の0.75秒に対応する。液体802の帯の側面958は、対向部810の端部952と取付け区域671の端部735との間に捕獲することができる。ラベル907は、液体802を捕獲するのを助けることができる。たとえば、ラベル907は、全体的または部分的に、疎水性の材料から作ることができる。対向部810が図63Aの過転動位置へ動くと、液体802の帯の幅WSは、狭くなった幅WN2まで減少させることができ、図58の1秒に対応する。実質上すべての液体802を間隙930の端部970で捕獲しながら、液体802の帯の幅を低減させることができる。たとえば、液体802の少なくとも90体積%を捕獲したままとすることができる。いくつかの実施形態では、液体802の少なくとも95体積%を捕獲したままとすることができる。さらなる実施形態では、液体802の帯の幅が減少したときに、実質上すべての液体802を捕獲したままとすることができる。
[00288]圧縮された幅WN2は、幅WSより実質上小さくすることができ、したがって、狭くなった液体802の帯全体が、標本807から隔置される。いくつかの実施形態では、狭くなった幅WN2は、幅WSの約50%、25%、または10%以下とすることができる。そのような実施形態は、1つまたは複数の標本を運搬するスライドガラスを処理するのに特によく適したものとなることができる。染色区域671の比較的大きい区域を、狭くなった帯によって覆わないで、液体の這い上がりまたは漏れを防止する。いくつかの実施形態では、幅WN2は、幅WSの約40%、30%、または20%以下とすることができる。幅WN1は、幅WN2に概して等しくすることができる。有利には、対向部アクチュエータ525は、液体802の帯を可変に狭くするため、増大または減少するように動作することができる。
[00289]図63Aおよび図63Bの対向部810は、スライドガラス243を横切って後ろに転動し、液体802の帯を図59Aに示す位置へ動かすことができる。対向部810は、スライドガラス243を横切って液体802を前後に動かすため、可変の速度または一定の速度で任意の回数だけ前後に転動することができる。液体802が洗浄液である場合、洗浄液は、徹底的な洗浄を提供するように、標本807を横切って前後に急速に進むことができる。液体802が染色剤である場合、液体802の帯は、標本807の幅Wspec(スライドガラス243の長手方向軸951に対して平行の方向に測定される)全体にわたって均一の染色を提供するように、標本807を横切って前後に進むことができる。染色サイクル間に、1つまたは複数の洗浄サイクルを実行することができる。必要な場合または所望される場合、スライドガラス上の混合を実行することもできる。
[00290]処理プロトコルは、様々な処理基準(たとえば、化学的要件、取込み要件、溶解性の制限、粘性など)を満たすために、異なる転動速度および異なる液体体積を必要とすることがある。標本807が、パラフィンが埋め込まれた標本である場合、比較的小さい体積の脱蝋溶液(たとえば、12マイクロリットルのキシレン)を間隙930内へ送達することができる。対向部810は、液体802を添加するために転動させることができ(たとえば、スライドガラス243の上面から隔置された仮想平面に沿って転動させる、上面に沿って転動させる、横に転動させる、長手方向に転動させるなど)、またはその他の方法で操作することができる(たとえば、回転させる、並進させる、もしくはその両方)。脱蝋後、比較的大きい体積の試薬を間隙930内へ送達することができる。たとえば、体積約125マイクロリットル〜約180マイクロリットルの染色剤を間隙930内へ送達することができる。染色剤は、標本807へ送達され、次いで後に除去される。
[00291]図59A〜63Bに示す方法を使用して、検査ステップ(たとえば、抗体およびクロモゲン検査)を実行することができる。これらの検査ステップは、比較的低い温度で実行することができる。スライドガラスホルダプラテン601は、標本および/または処理液を約35℃〜約40℃の範囲内の温度で保つことができる。一実施形態では、液体および/または標本は、約37℃の温度で保たれる。分注器(たとえば、図44の分注器622)は、約30マイクロリットル〜約350マイクロリットルの標的体積を維持するように補給液を送達することができる。いくつかのプロトコルでは、分注器は、約4〜約5.1マイクロリットル/分〜約5.6マイクロリットル/分の速度で補給液を送達する。そのような実施形態では、液体(たとえば、図59Aの液体802)の体積は、約10%〜90%の相対的な湿度、約±1℃の平均スライドガラス温度公差で約15℃〜約32℃の周囲温度、および約25〜60ミリメートル/秒の対向部転動速度に基づいて、約15分間にわたって約90マイクロリットル〜約175マイクロリットルの範囲内で保つことができる。蒸発速度は、転動速度に概して比例することができる。転動速度が約20ミリメートル/秒である場合、約3.8マイクロリットル/分〜約4.2マイクロリットル/分の補充速度で、約115マイクロリットル〜約200マイクロリットルの体積を維持することができる。転動速度が約40ミリメートル/秒である場合、約5.1マイクロリットル/分〜約5.6マイクロリットル/分の補充速度で、約115マイクロリットル〜約200マイクロリットルの液体802の体積を維持することができる。約90ミリメートル/秒の速い転動速度の場合、補充速度を約7.6マイクロリットル/分〜約8.4マイクロリットル/分にして、約110マイクロリットル〜約200マイクロリットルの体積を維持することができる。より速い速度も可能となりうるが、間隙の高さ、対向部の半径、および流体の特性に依存する。低い温度の場合、湿度および周囲温度が蒸発速度に影響を与える可能性があるが、高温、たとえば72℃より高い温度の場合は、それほど影響を与えない。
[00292]標的の回収の場合、転動速度は約100ミリメートル/秒とすることができ、補充速度は72マイクロリットル/分とすることができる。抗原回収の場合、転動速度は約180ミリメートル/秒とすることができ、補充速度は約105マイクロリットル/分とすることができる。処理状態に基づいて、他の補充速度を選択することもできる。
[00293]本明細書では、「対向要素」という用語は広義の用語であり、限定されるものではないが、本明細書に記載するように、スライドガラス上の標本を処理するように1つまたは複数の物質を操作することが可能な表面、タイル、ストリップ、または別の構造を指す。システム100(図1)の構成要素は、広い範囲の異なるタイプの対向要素を使用する。いくつかの実施形態では、対向要素は、スライドガラスに対して対向要素を位置決めする1つまたは複数のスペーサ、間隙要素、または他の特徴を含むことができる。他の実施形態では、対向要素は、実質上スペーサ、間隙要素などのない平滑な表面(たとえば、非平面の流体操作表面)を有することができ、単層構造または多層構造を有することができる。平滑な表面は、スライドガラスに沿って転動することができ、またはその他の方法で進むことができる。上記で論じたように、流体を操作するために、静止しているスライドガラスに対して対向要素を動かすことができる。他の実施形態では、流体を操作するために、静止している対向要素に対してスライドガラスが動かされる。さらに他の実施形態では、スライドガラスと対向要素との両方が流体を操作するために動かされる。追加として、2つの対向要素で標本を処理することもできる。たとえば、2つの対向要素を使用して、対向要素間で保持された標本を処理するように流体を捕獲および操作することができる。次いで、標本をスライドガラスまたは適当な標本キャリアへ移送することができる。対向部810(図59Aおよび図59B)および対向部2012は、非制限的で例示的な対向要素であり、図64〜67に関連して詳細に論じる。
[00294]図64〜67は、対向部810の一実施形態を示す。対向部810は、本体1459、ポート1374、およびスロット1356を含むことができる。本体1459は、第1の列の間隙要素1450、第2の列の間隙要素1452、および標本処理領域1453を含む。標本処理領域1453がスライドガラスに面し、液体との境界をなしているとき、ポート1374を介して液体を除去することができる。スロット1356は、対向部アクチュエータの機構を受け取ることができる。本体1459はまた、対向部810を位置合わせするために使用されるキー機構1362、1364(たとえば、孔、突起など)を含むことができる。図示の機構1362、1364は孔である。
[00295]図64は、2列の間隙要素1450、1452間に標本処理領域1453を示す。対向部810は、所望の処理領域1453(たとえば、対向部810の表面1460全体、対向部810の上面1460の大部分、間隙要素1450、1452間の領域など)を提供するようにスライドガラスに対して寸法設定することができる縁部1454、1456を有する。
[00296]図65は、間隙要素1450、1452間に位置決めされた液体802の例示的な帯(破線で示す)を示す。液体802の帯は、間隙要素1450、1452に接触することなく、対向部810の長さに沿って動くことができる。液体802の帯は、間隙要素1450、1452のいずれの周りにも液体を蓄積させることなく変位させることができる。
[00297]間隙要素1450、1452は、所望の量の流体(たとえば、最小の量の流体)で標本を処理するのを助けることができる。間隙要素1450、1452はまた、隣接する要素間の這い上がりを低減、制限、または実質上防止するために、互いから隔置することができる。液体802が間隙要素1450、1452の一方に到達した場合、液体802は、隣接する間隙要素へ流れることなく、その間隙要素とスライドガラスとの間の接触境界面に留まることができる。間隙要素1450、1452は、処理領域1453近傍で液体を保つように、対向部810の縁部1454、1456から隔置される。追加として、液体802は、別の物体が縁部1454、1456に接触している場合でも、対向部810の下からの這い上がりを防止するのに十分なほど縁部1454、1456から遠くに離れて保たれる。
[00298]これらの列の間隙要素1450、1452は、対向部810の長さに沿って長手方向に延びる。各列の間隙要素1450、1452の対向する間隙要素は、概して横方向に位置合わせされ、したがってスライドガラスは、横方向に位置合わせされた間隙要素1450、1452に接触することができる。対向部810がスライドガラスに沿って動かされると、スライドガラスは、横方向に位置合わせされた間隙要素1450、1452に連続して接触する。
[00299]各列の間隙要素1450、1452は、互いに概して類似のものとすることができる。したがって、間隙要素1450、1452の一方の列に関する説明は、別段の指定がない限り、他方の列にも等しく当てはまる。間隙要素1450の列は、約5つの間隙要素〜約60個の間隙要素を含むことができ、隣接する間隙要素間の平均距離は、約1.27mm(0.05インチ)〜約15.24mm(0.6インチ)の範囲内である。図64および図65の図示の実施形態を含むいくつかの実施形態では、間隙要素1450の列は、表面1460全体から外方へ突出する19個の間隙要素を含む。他の実施形態では、間隙要素1450の列は、約10個の間隙要素〜約40個の間隙要素を含む。上から見ると(図65参照)、間隙要素1450の列は、概して線形の形状を有する。他の実施形態では、間隙要素1450の列は、ジグザグの形状、蛇行した形状、または任意の他の形状もしくはパターンを有する。
[00300]間隙要素1450は、互いから均一または不均一に隔置することができる。隣接する間隙要素1450間の距離は、間隙要素1450の高さより大きく、かつ/または対向部810の本体1459の厚さT(図67)より小さくすることができる。必要な場合または所望される場合、他の間隔の配置も可能である。いくつかの実施形態では、厚さTは約2mm(0.08インチ)である。縁部1454、1456間の幅Wは、約15.24mm(0.6インチ)〜約38mm(1.5インチ)の範囲内とすることができる。いくつかの実施形態では、幅Wは約30mm(1.2インチ)であり、縁部1454、1456は実質上平行とすることができる。他の幅も可能である。
[00301]図65を参照すると、列1450、1452間の距離Dは、標本の寸法およびスライドガラスの寸法に基づいて選択することができる。いくつかの実施形態では、距離Dは、約6.35mm(0.25インチ)〜約25mm(1インチ)の範囲内である。スライドガラスが標準的な顕微鏡用スライドガラスである場合、距離Dは、約12.7mm(0.5インチ)より小さくすることができる。
[00302]図67は、間隙要素1450の1つを示す。間隙要素1450の高さHは、流体を操作する能力に基づいて選択することができる。標本が約0.038mm(0.0015インチ)未満の厚さを有する組織切片である場合、間隙要素1450は、約0.038mm(0.0015インチ)以下の高さHを有することができる。間隙要素1450がスライドガラスに接触する場合、毛管間隙(たとえば、図59A〜63Bの間隙930)の最小の高さは、0.038mm(0.0015インチ)に等しくすることができる。いくつかの実施形態では、高さHは、約0.025mm(0.001インチ)〜約0.127mm(0.005インチ)の範囲内である。特定の実施形態では、約30ミクロン、20ミクロン、または10ミクロン未満の厚さを有する薄い組織切片を処理するための高さHは、約0.076mm(0.003インチ)(たとえば、0.0762mm(0.003インチ)±0.0127mm(0.0005インチ))である。
[00303]間隙要素1450、1452のパターン、数、寸法、および構成は、標本と液体との間の所望の相互作用に基づいて選択することができる。対向部810が間隙要素の領域を含む場合、間隙要素は、限定されるものではないが、1つまたは複数の列、アレイ、幾何形状などを含むことができる異なるパターンを形成するように、対向部810全体にわたって均一または不均一に分散させることができる。
[00304]間隙要素1450は、部分的に球形の窪み、部分的に長円形の窪みなどとすることができる。図示の間隙要素1450は、実質上部分的に球形の窪みである。標本が十分に大きく、またはスライドガラスの片面の方へ動く場合、窪みの形の間隙要素1450は、スライドガラスに対して標本を損傷または移動させることなく、標本の上を滑ることができる。他の実施形態では、間隙要素1450は、多面体の突起、円錐形の突起、切頭円錐形の突起、または多角形の形状と弧状の形状の別の組合せの形とすることができる。
[00305]図66の本体1459は簡単な弧の形状であり、曲率半径Rは、約5cm(2インチ)〜約76cm(30インチ)の範囲内である。いくつかの実施形態では、曲率半径Rは、約38cm(15インチ)または約74cm(20インチ)である。このプロファイル偏差の公称半径は、約2.54mm(0.1インチ)以下とすることができる。このプロファイルの実際の半径は、約0.254mm(0.01インチ)未満だけ逸脱することができる。そのような実施形態は、上から見ると概して方形の形状を有し、またスライドガラスの幅にまたがり、特定の体積の場合、スライドガラスに沿った長さの分散が低い液体の帯を生じさせるのによく適している。曲率半径Rは、処理すべき標本の数、流体撹拌の量、処理液の特性、間隙要素1450、1452の高さなどに基づいて選択することができる。他の実施形態では、対向部810は、複雑な弧(たとえば、長円形の弧)、複合の弧などの形状である。さらに他の実施形態では、対向部810は、実質上平面とすることができる。幅Wにまたがる表面は、概してまっすぐにすることができる。
[00306]対向部810は、全体的または部分的に、ポリマー、プラスチック、エラストマ、複合材料、セラミック、ガラス、または金属、ならびに処理流体および標本に化学的に適合している任意の他の材料から作ることができる。例示的なプラスチックには、限定されるものではないが、ポリエチレン(たとえば、高密度ポリエチレン、直鎖状低密度ポリエチレン、混合材料など)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシ(PFA)、またはこれらの組合せが含まれる。いくつかの実施形態では、対向部810は、単一の材料から作ることができる。他の実施形態では、対向部810の異なる部分は異なる材料から作られる。対向部810が使い捨てである場合、全体的または部分的に、比較的安価な材料から作ることができる。対向部810が剛性である場合、全体的または部分的に、ポリカーボネート、ウレタン、ポリエステル、金属で被覆された板などから作ることができる。
[00307]図66を再び参照すると、端部952は、先細りした領域1461の形の捕獲機構を含む。先細りした領域1461は、液体の帯を捕獲するように位置決めされる。対向部810が転動し過ぎたとき、液体の帯は、先細りした領域1461に接触して付着することができる。湾曲表面1463により、液体が付着することができる大きい表面積を提供する。図示の先細りした領域1461は、標準的な顕微鏡用スライドガラスと協働して液体の帯を捕獲するように、約2.032mm(0.08インチ)以下の曲率半径を有する。必要な場合または所望される場合、他の曲率半径を使用することもできる。いくつかの実施形態では、丸い縁部1461の曲率は、対向部810の幅W全体にわたって均一である。他の実施形態では、丸い縁部の曲率は、対向部810の幅W全体にわたって変動する。
[00308]対向部810は、相互汚染を防止するために使い捨てとすることができる。本明細書では、「使い捨て」という用語は、対向要素、処理液などのシステムまたは構成要素(もしくは構成要素の組合せ)に適用されるとき、広義の用語であり、概して、限定されるものではないが、当該システムまたは構成要素が有限の回数だけ使用され、次いで廃棄されることを意味する。対向要素など、使い捨ての構成要素の一部は一度だけ使用され、次いで廃棄される。いくつかの実施形態では、キャリーオーバー汚染をさらに防止または制限するために、処理装置の複数の構成要素が使い捨てである。他の実施形態では、これらの構成要素は使い捨てではなく、任意の回数だけ使用することができる。たとえば、使い捨てでない対向要素は、対向要素の特性をはっきりと変えることなく、異なるタイプの洗浄および/または滅菌プロセスにかけることができる。
[00309]本明細書に開示するスライドガラスは、25.4mm×76.2mm(1インチ×3インチ)の顕微鏡用スライドガラス、25mm×75mmの顕微鏡用スライドガラス、または別のタイプの平坦もしくは実質上平坦な基板とすることができる。「実質上平坦な基板」とは、限定されるものではないが、少なくとも1つの実質上平坦な表面を有する任意の物体を指すが、より典型的には、物体の両側に2つの実質上平坦な表面を有する任意の物体を指し、さらに典型的には、両側に実質上平坦な表面を有する任意の物体を指し、これらの両側の表面は、概して等しい寸法であるが、この物体上の他の表面より大きい。いくつかの実施形態では、実質上平坦な基板は、プラスチック、ゴム、セラミック、ガラス、シリコン、半導体材料、金属、これらの組合せなどを含む任意の適した材料を含むことができる。実質上平坦な基板の非制限的な例には、平坦なカバー、SELDIおよびMALDIチップ、シリコンウェーハ、または少なくとも1つの実質上平坦な表面を有する他の概して平面の物体が含まれる。
[00310]上記から、本発明の特有の実施形態について例示を目的として本明細書に記載したが、本発明の少なくともいくつかの実施形態の説明を不要に曖昧にするのを避けるため、周知の構造および機能については詳細に図示または記載していないことが理解されよう。本明細書に記載するシステムは、生物標本を分析のために準備する広い範囲のプロセスを実行することができる。文脈上可能な場合、単数形または複数形の用語は、それぞれ複数形または単数形の用語も含むことができる。「または、もしくは(or)」という単語は、その単語が2つ以上の物品のリストに関して単一の物品のみを他の物品とは排他的に意味するように限定されるべきであることを示す明確な節を伴わない限り、そのようなリスト内での「または、もしくは(or)」の使用は、(a)リスト内の任意の単一の物品、(b)リスト内のすべての物品、または(c)リスト内の物品の任意の組合せを含むと解釈されるべきである。文脈上別途明白に指示しない限り、単数形の「a」、「an」、および「the」は複数形の指示対象も含む。したがって、たとえば、「標本(a specimen)」への言及は、2つ以上の標本、3つ以上の標本、または4つ以上の標本など、1つまたは複数の標本を指す。
[00311]上記の様々な実施形態を組み合わせて、さらなる実施形態を提供することができる。本明細書に記載する実施形態、特徴、システム、デバイス、材料、方法、および技法は、いくつかの実施形態では、すべて全体として参照により本明細書に組み込まれている、「OPPOSABLES AND AUTOMATED SPECIMEN PROCESSING SYSTEMS WITH OPPOSABLES」という名称の2012年12月26日出願の米国特許出願第61/746,078号、「AUTOMATED SPECIMEN PROCESSING SYSTEMS AND METHODS OF USING THE SAME」という名称の2012年12月26日出願の米国特許出願第61/746,085号、「SPECIMEN PROCESSING SYSTEMS AND METHODS FOR MODERATING EVAPORATION」という名称の2012年12月26日出願の米国特許出願第61/746,087号、「SPECIMEN PROCESSING SYSTEMS AND METHOD FOR UNIFORMLY HEATING SLIDES」という名称の2012年12月26日出願の米国特許出願第61/746,089号、および「SPECIMEN PROCESSING SYSTEMS AND METHODS FOR ALIGNING SLIDES」という名称の2012年12月26日出願の米国特許出願第61/746,091号、米国特許出願第13/509,785号、米国特許出願第13/157,231号、米国特許第7,468,161号、ならびに国際出願第PCT/US2010/056752号に記載されている実施形態、特徴、システム、デバイス、材料、方法、および技法のいずれか1つまたは複数に類似のものとすることができる。追加として、本明細書に記載する実施形態、特徴、システム、デバイス、材料、方法、および技法は、特定の実施形態では、前述の特許および出願に開示されている実施形態、特徴、システム、デバイス、材料、方法、および技法のいずれか1つまたは複数に関連して適用または使用することができる。開示する実施形態の態様は、必要な場合、様々な前述の特許、出願、および公開の概念を用いてさらなる実施形態を提供するために修正することができる。上記のすべての出願は、全体として参照により本明細書に組み込まれている。
[00312]上記その他の変更を、上記の詳細な説明に関する実施形態に加えることができる。たとえば、封止要素は、一体型または組立て型の構造を有することができ、任意の数の保持機構を含むことができる。通常、以下の特許請求の範囲において、使用される用語は、明細書および特許請求の範囲内に開示する特有の実施形態に特許請求の範囲を限定すると解釈されるべきではなく、そのような特許請求の範囲に与えられる均等物の完全な範囲とともに、すべての可能な実施形態を含むと解釈されるべきである。したがって、特許請求の範囲は、本開示によって限定されるものではない。