JP2016222907A - Foamed urethane composition and strut mount - Google Patents

Foamed urethane composition and strut mount Download PDF

Info

Publication number
JP2016222907A
JP2016222907A JP2016105194A JP2016105194A JP2016222907A JP 2016222907 A JP2016222907 A JP 2016222907A JP 2016105194 A JP2016105194 A JP 2016105194A JP 2016105194 A JP2016105194 A JP 2016105194A JP 2016222907 A JP2016222907 A JP 2016222907A
Authority
JP
Japan
Prior art keywords
mass
parts
foamed urethane
polyester polyol
urethane composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105194A
Other languages
Japanese (ja)
Other versions
JP6836706B2 (en
Inventor
大地 樋口
Daichi Higuchi
大地 樋口
雅美 竹中
Masami Takenaka
雅美 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Publication of JP2016222907A publication Critical patent/JP2016222907A/en
Application granted granted Critical
Publication of JP6836706B2 publication Critical patent/JP6836706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foamed urethane composition reducing frequency dependency of a dynamic-to-static modulus ratio and of a storage elastic modulus.SOLUTION: The foamed urethane composition is provided that contains: an urethane prepolymer (A) which has an isocyanate group and is a reaction product of polyether polyester polyol (a-1) and 1,5-naphthalene diisocyanate (a-2); a compound (B) having an active hydrogen atom; and water (C). A strut mount having a cured article of the foamed urethane composition is also provided. The cured article of the foamed urethane composition can be used especially suitably as a filler for the inside of a strut mount housing.SELECTED DRAWING: None

Description

本発明は、ストラットマウントの製造に好適に使用することができる発泡ウレタン組成物に関する。   The present invention relates to a urethane foam composition that can be suitably used for manufacturing a strut mount.

ストラットマウントは、コイルスプリングとショックアブソーバーとを車体に支持する部材であり、路面からの衝撃を緩和し、振動や騒音の伝達を抑える機能を有するものである。前記ストラットマウントのハウジングの内部充填剤としては、ゴムや発泡ウレタンが使用されている。前記内部充填剤としてゴムが使用された場合には、振動減衰が劣り、衝撃を受けた後いつまでも揺れが継続してしまうとの欠点を有する。これに対し、発泡ウレタンは低弾性と振動減衰とのバランスに優れるため、ゴムから発泡ウレタンへの置換が進んでいる(例えば、特許文献1を参照。)。   The strut mount is a member that supports the coil spring and the shock absorber on the vehicle body, and has a function of reducing the impact from the road surface and suppressing the transmission of vibration and noise. Rubber or urethane foam is used as an internal filler for the housing of the strut mount. When rubber is used as the internal filler, vibration damping is inferior, and there is a disadvantage that shaking continues for a long time after receiving an impact. On the other hand, since urethane foam is excellent in the balance between low elasticity and vibration damping, replacement of rubber with urethane foam is progressing (see, for example, Patent Document 1).

しかしながら、現行の発泡ウレタンは、ハンドル操作時の車挙動のフィーリングに影響する静的バネ定数を一定量確保すると、瞬間的な衝撃を吸収する柔軟さを示す動的バネ定数が高くなるため、動倍率が高くなり、衝撃を吸収しきれないとの問題点があった。   However, the current foamed urethane has a high dynamic spring constant that indicates the flexibility to absorb instantaneous impact, if a certain amount of static spring constant that affects the feeling of vehicle behavior during steering operation is secured. There was a problem that the dynamic magnification became high and the shock could not be absorbed.

特開2007−100889号公報Japanese Patent Laid-Open No. 2007-1000088

本発明が解決しようとする課題は、動倍率、及び、貯蔵弾性率の周波数依存性を低減化する発泡ウレタン組成物を提供することである。   The problem to be solved by the present invention is to provide a urethane foam composition that reduces the frequency dependence of dynamic magnification and storage modulus.

本発明は、ポリエーテルポリエステルポリオール(a−1)及び1,5−ナフタレンジイソシアネート(a−2)の反応物であるイソシアネート基を有するウレタンプレポリマー(A)と活性水素原子を有する化合物(B)と水(C)とを含有することを特徴とする発泡ウレタン組成物、及び、その硬化物を有することを特徴とするストラットマウントを提供するものである。   The present invention relates to a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyether polyester polyol (a-1) and 1,5-naphthalene diisocyanate (a-2) and a compound (B) having an active hydrogen atom. The present invention provides a urethane foam composition characterized by containing water and water (C), and a strut mount characterized by having a cured product thereof.

本発明の発泡ウレタン組成物の硬化物は、適度な密度及び硬度を有し、かつ、動倍率及び貯蔵弾性率の周波数依存性が低いため、優れた衝撃吸収能を有する。よって、本発明の発泡ウレタン組成物は、光学用部材、自動車部材、土木建築用部材等の様々な分野で利用可能であり、緩衝材、ベアリング、ストラットマウント、バンプクッション等の制振用部材として好適に使用することができ、ストラットマウントのハウジングの内部充填剤として特に好適に用いることができる。   The cured product of the urethane foam composition of the present invention has an appropriate density and hardness, and has a low impact frequency and dependence on the dynamic modulus and storage elastic modulus, and thus has an excellent impact absorbing ability. Therefore, the urethane foam composition of the present invention can be used in various fields such as optical members, automobile members, civil engineering and building materials, and is used as a damping member for cushioning materials, bearings, strut mounts, bump cushions, and the like. It can be used preferably, and can be particularly preferably used as an internal filler of the housing of the strut mount.

本発明の発泡ウレタン組成物は、ポリエーテルポリエステルポリオール(a−1)及び1,5−ナフタレンジイソシアネート(a−2)を反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)と活性水素原子を有する化合物(B)と水(C)とを必須成分として含有するものである。   The urethane foam composition of the present invention comprises a urethane prepolymer (A) having an isocyanate group obtained by reacting a polyether polyester polyol (a-1) and 1,5-naphthalene diisocyanate (a-2) and an active hydrogen atom. A compound (B) having water and water (C) are contained as essential components.

前記ポリエーテルポリエステルポリオール(a−1)は、動倍率及び貯蔵弾性率の周波数依存性の低減化に必須の成分である。前記ポリエーテルポリエステルポリオール(a−1)の代わりに他のポリオールを用いた場合には、動的バネ定数、及び、高周波数領域での貯蔵弾性率が高くなり、衝撃吸収能が低下してしまう。   The polyether polyester polyol (a-1) is an essential component for reducing the frequency dependence of dynamic magnification and storage elastic modulus. When another polyol is used instead of the polyether polyester polyol (a-1), the dynamic spring constant and the storage elastic modulus in the high frequency region are increased, and the impact absorption capacity is decreased. .

前記ポリエーテルポリエステルポリオール(a−1)としては、例えば、ポリエーテルポリオール(a−1−1)とラクトン化合物(a−1−2)とを公知の方法により反応させて得られたものを用いることができる。   As said polyether polyester polyol (a-1), what was obtained by making polyether polyol (a-1-1) and a lactone compound (a-1-2) react by a well-known method is used, for example. be able to.

前記ポリエーテルポリオール(a−1−1)としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンポリオール、ポリオキシエチレンポリオキシプロピレンポリオール、ポリオキシエチレンポリオキシテトラメチレンポリオール、ポリオキシプロピレンポリオキシテトラメチレンポリオール等を用いることができる。これらのポリエーテルポリオールは単独で用いて2種以上を併用してもよい。これらの中でも、動倍率及び貯蔵弾性率の周波数依存性をより一層低減化できる点から、ポリテトラメチレングリコールを用いることが好ましい。   Examples of the polyether polyol (a-1-1) include polyethylene glycol, polypropylene glycol, polytetramethylene polyol, polyoxyethylene polyoxypropylene polyol, polyoxyethylene polyoxytetramethylene polyol, and polyoxypropylene polyoxytetra. Methylene polyol or the like can be used. These polyether polyols may be used alone or in combination of two or more. Among these, it is preferable to use polytetramethylene glycol because the frequency dependence of the dynamic magnification and the storage elastic modulus can be further reduced.

前記ラクトン化合物(a−1−2)としては、例えば、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトン、β−メチル−ε−カプロラクトン、γ−メチル−ε−カプロラクトン、β,δ−ジメチル−ε−カプロラクトン、3,3,5−トリメチル−ε−カプロラクトン、エナントラクトン、ドデカノラクトン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。   Examples of the lactone compound (a-1-2) include δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, β-methyl-ε-caprolactone, γ-methyl-ε-caprolactone, β , Δ-dimethyl-ε-caprolactone, 3,3,5-trimethyl-ε-caprolactone, enanthlactone, dodecanolactone, and the like can be used. These compounds may be used alone or in combination of two or more.

前記ポリエーテルポリエステルポリオール(a−1)としては、動倍率及び貯蔵弾性率の周波数依存性をより一層低減化できる点から、ポリテトラメチレングリコールとラクトン化合物とを反応させて得られるポリオールを用いることが好ましく、ポリテトラメチレンポリオールとε−カプロラクトンとを反応させて得られるポリオールを用いることがより好ましい。   As the polyether polyester polyol (a-1), a polyol obtained by reacting polytetramethylene glycol and a lactone compound is used from the viewpoint that the frequency dependency of dynamic magnification and storage modulus can be further reduced. It is preferable to use a polyol obtained by reacting polytetramethylene polyol with ε-caprolactone.

前記ポリエーテルポリエステルポリール(a−1)の数平均分子量としては、動倍率及び貯蔵弾性率の周波数依存性の点から、650〜5,000の範囲であることが好ましく、800〜4,000の範囲がより好ましく、1,000〜3,000の範囲が更に好ましい。なお、前記ポリエーテルポリエステルポリール(a−1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した値を示す。   The number average molecular weight of the polyether polyester polyol (a-1) is preferably in the range of 650 to 5,000 from the viewpoint of frequency dependence of dynamic magnification and storage modulus, and is preferably 800 to 4,000. Is more preferable, and the range of 1,000 to 3,000 is still more preferable. In addition, the number average molecular weight of the said polyether polyester polyol (a-1) shows the value measured on condition of the following by gel permeation chromatography (GPC) method.

測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.

(標準ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

前記ポリエーテルポリエステルポリオール(a−1)の多分散度[重量平均分子量(Mw)/数平均分子量(Mn)]としては、動倍率及び貯蔵弾性率の周波数依存性をより一層低減化できる点から、1.5以下であることが好ましく、1.1〜1.5の範囲であることがより好ましい。なお、前記ポリエーテルポリエステルポリオール(a−1)の重量平均分子量は、前記数平均分子量と同様に測定して得られた値を示す。   As the polydispersity [weight average molecular weight (Mw) / number average molecular weight (Mn)] of the polyether polyester polyol (a-1), it is possible to further reduce the frequency dependency of the dynamic magnification and the storage elastic modulus. 1.5 or less, and more preferably in the range of 1.1 to 1.5. In addition, the weight average molecular weight of the said polyether polyester polyol (a-1) shows the value obtained by measuring similarly to the said number average molecular weight.

前記の好ましい多分散度を有するポリエーテルポリエステルポリオールを得る方法としては、例えば、前記ポリエーテルポリオール(a−1−1)と前記ラクトン化合物(a−1−2)とを有機スズ触媒の存在下で反応させる方法等が挙げられる。この場合、前記ポリエーテルポリオール(a−1−1)に対して、0.0001〜0.001質量%の有機スズ触媒の存在下で、前記ラクトン化合物(a−1−2)を165〜175℃で反応させ、前記(a−1−2)の未反応物が0.5質量%以下になった時点で反応を終了させることが好ましい(例えば、特開2001−261798号公報を参照。)。   Examples of a method for obtaining the polyether polyester polyol having the preferred polydispersity include, for example, the polyether polyol (a-1-1) and the lactone compound (a-1-2) in the presence of an organotin catalyst. And the like. In this case, the lactone compound (a-1-2) is 165 to 175 in the presence of 0.0001 to 0.001% by mass of an organic tin catalyst with respect to the polyether polyol (a-1-1). The reaction is preferably carried out at 0 ° C. and the reaction is terminated when the amount of unreacted substance (a-1-2) becomes 0.5% by mass or less (see, for example, JP-A-2001-261798). .

前記有機スズ触媒としては、例えば、オクチル酸スズ、ジブチルチンスズオキサイド、ジブチルスズラウレート、n−ブチルスズヒドロキシオキサイド等を用いることができる。これらの触媒は単独で用いても2種以上を併用してもよい。   Examples of the organic tin catalyst that can be used include tin octylate, dibutyltin tin oxide, dibutyltin laurate, and n-butyltin hydroxyoxide. These catalysts may be used alone or in combination of two or more.

前記ポリエーテルポリエステルポリール(a−1)には、必要に応じてその他のポリオールを併用してもよい。   Other polyols may be used in combination with the polyether polyester polyol (a-1) as necessary.

前記その他のポリオールとしては、前記(a−1)以外のポリエーテルポリオール、前記(a−1)以外のポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、ポリブタジエンポリオール、ダイマージオール、ポリイソプレンポリオール、数平均分子量が50〜500の範囲の鎖伸長剤等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。   Examples of the other polyols include polyether polyols other than (a-1), polyester polyols other than (a-1), polycarbonate polyols, acrylic polyols, polybutadiene polyols, dimer diols, polyisoprene polyols, and number average molecular weights. A chain extender in the range of 50 to 500 can be used. These polyols may be used alone or in combination of two or more.

前記1,5−ナフタレンジイソシアネート(a−2)は、動倍率及び貯蔵弾性率の周波数依存性の低減化に必須の成分である。前記1,5−ナフタレンジイソシアネート(a−2)の代わりに他のポリイソシアネートを用いた場合には、動的バネ定数、及び、高周波数領域での貯蔵弾性率が高くなり、衝撃吸収能が低下してしまう。   The 1,5-naphthalene diisocyanate (a-2) is an essential component for reducing the frequency dependence of dynamic magnification and storage modulus. When other polyisocyanates are used instead of the 1,5-naphthalene diisocyanate (a-2), the dynamic spring constant and the storage elastic modulus in the high frequency region are increased, and the impact absorption capacity is decreased. Resulting in.

前記1,5−ナフタレンジイソシアネート(a−2)には、必要に応じてその他のポリイソシアネートを併用してもよい。   The 1,5-naphthalene diisocyanate (a-2) may be used in combination with other polyisocyanates as necessary.

前記その他のポリイソシアネートとしては、例えば、例えば、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシレンジイソシアネート、1,4−フェニレンジイソシアナート等の芳香族ポリイソシアネート;イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、ノルボルネンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。   Examples of the other polyisocyanates include, for example, aromatic polyisocyanates such as diphenylmethane diisocyanate, tolylene diisocyanate, tolidine diisocyanate, xylylene diisocyanate, tetramethylxylene diisocyanate, 1,4-phenylene diisocyanate; isophorone diisocyanate, water Alicyclic polyisocyanates such as hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate and norbornene diisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate and dimer acid diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more.

前記ポリエーテルポリエステルポリオール(a−1)及び1,5−ナフタレンジイソシアネート(a−2)の反応におけるモル比[NCO/OH]としては、安定生産の点から、1.2〜20の範囲で行うことが好ましく、1.5〜10の範囲がより好ましく、2〜5の範囲が更に好ましい。前記モル比[NCO/OH]が1.2より小さい場合はウレタンプレポリマー(A)の粘度が著しく高くなり、ウレタンプレポリマー(A)と活性水素原子を有する化合物(B)と水(C)とを均一に混合することが困難となる。一方、前記モル比[NCO/OH]が20を超える場合はウレタンプレポリマー(A)中のイソシアネート基含有量が高くなり、ウレタンプレポリマーの部分固化や凝集物の発生を引き起こしたり、ウレタンプレポリマー(A)と活性水素原子を有する化合物(B)と水(C)とを混合する際に著しい発熱による副反応を引き起こしてしまう。   The molar ratio [NCO / OH] in the reaction of the polyether polyester polyol (a-1) and 1,5-naphthalene diisocyanate (a-2) is in the range of 1.2 to 20 from the viewpoint of stable production. The range of 1.5 to 10 is more preferable, and the range of 2 to 5 is still more preferable. When the molar ratio [NCO / OH] is smaller than 1.2, the viscosity of the urethane prepolymer (A) is remarkably high, and the urethane prepolymer (A), the compound having an active hydrogen atom (B), and water (C) It becomes difficult to mix them uniformly. On the other hand, when the molar ratio [NCO / OH] exceeds 20, the isocyanate group content in the urethane prepolymer (A) becomes high, which causes partial solidification of the urethane prepolymer and generation of aggregates. When (A), the compound (B) having an active hydrogen atom and water (C) are mixed, a side reaction due to significant heat generation is caused.

前記ウレタンプレポリマー(A)は、イソシアネート基を有するものであり、そのイソシアネート基含有率(以下、「NCO%」と略記する。)としては、衝撃吸収能の点から、1〜16%の範囲であることが好ましく、2〜8質量%の範囲がより好ましい。なお、前記ウレタンプレポリマー(A)のNCO%は、JISK1603−1:2007に準拠し、電位差滴定法により測定した値を示す。   The urethane prepolymer (A) has an isocyanate group, and the isocyanate group content (hereinafter abbreviated as “NCO%”) is in the range of 1 to 16% from the viewpoint of impact absorption capacity. Is preferable, and the range of 2 to 8% by mass is more preferable. In addition, NCO% of the said urethane prepolymer (A) shows the value measured by the potentiometric titration method based on JISK1603-1: 2007.

前記活性水素原子を有する化合物(B)は、活性水素原子を有する基([NH]基及び/又は[OH]基)を有するものを示し、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエーテルポリエステルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、アクリルポリオール、ポリブタジエンポリオール、ダイマージオール、ポリイソプレンポリオールのポリオール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、1,5−ヘキサンジオール、1,6−ヘキサンジオール、2,5−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、2−メチル−1,3−プロパンジオール、ネオペンチルグリコール、2−ブチル−2−エチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2−エチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−メチル−1,8−オクタンジオール、ビスフェノールA、ビスフェノールF、4,4’−ビスフェノール等の数平均分子量が50〜500の範囲の水酸基を有する化合物;エチレンジアミン、4,4’−ジアミノ−3,3’−ジクロロジフェニルメタン、ポリアミノクロロフェニルメタン化合物等のアミノ基を有する化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、適度な硬度の発泡体を得る点から、ポリオール及び/又は数平均分子量が100〜500の範囲の水酸基を有する化合物を用いることが好ましく、ポリエーテルポリエステルポリオール(a−1)及び数平均分子量が50〜500の範囲の水酸基を有する化合物を用いることがより好ましい。   The compound (B) having an active hydrogen atom indicates a group having an active hydrogen atom ([NH] group and / or [OH] group), specifically, polyethylene glycol, polypropylene glycol, polytetra Methylene glycol, polyether polyester polyol, polyester polyol, polycarbonate polyol, polycaprolactone polyol, acrylic polyol, polybutadiene polyol, dimer diol, polyisoprene polyol polyol; ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2- Propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2- Ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, bisphenol A, bisphenol F, 4,4′-bi Compounds having a hydroxyl group with a number average molecular weight in the range of 50 to 500 such as phenol; compounds having an amino group such as ethylenediamine, 4,4′-diamino-3,3′-dichlorodiphenylmethane, polyaminochlorophenylmethane compounds, etc. Can do. These compounds may be used alone or in combination of two or more. Among these, from the viewpoint of obtaining a foam having an appropriate hardness, it is preferable to use a polyol and / or a compound having a hydroxyl group having a number average molecular weight in the range of 100 to 500, and polyether polyester polyol (a-1) and number. It is more preferable to use a compound having a hydroxyl group having an average molecular weight in the range of 50 to 500.

前記化合物(B)の使用量としては、適度な硬度の発泡体を得る点から、前記ウレタンプレポリマー(A)100質量部に対して、1〜60質量部の範囲であることが好ましく、2〜40質量部の範囲がより好ましい。   The amount of the compound (B) used is preferably in the range of 1 to 60 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A) from the viewpoint of obtaining a foam having an appropriate hardness. The range of -40 mass parts is more preferable.

前記水(C)は発泡剤として機能するものであり、例えば、イオン交換水、蒸留水等を用いることができる。前記水(C)の使用量としては、硬化物の発泡状態及び密度の点から、前記化合物(A)100質量部に対して、0.05〜5質量部の範囲であることが好ましく、0.1〜3質量部の範囲であることがより好ましい。   The water (C) functions as a foaming agent, and for example, ion exchange water, distilled water or the like can be used. The amount of water (C) used is preferably in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the compound (A) from the viewpoint of the foamed state and density of the cured product. More preferably, it is in the range of 1 to 3 parts by mass.

本発明の発泡ウレタン組成物は、前記ウレタンプレポリマー(A)、前記化合物(B)及び前記水(C)を必須の成分とするが、必要に応じてその他の添加剤を含有してもよい。   The urethane foam composition of the present invention comprises the urethane prepolymer (A), the compound (B) and the water (C) as essential components, but may contain other additives as necessary. .

前記その他の添加剤としては、例えば、乳化剤、触媒、整泡剤、砥粒、充填剤、顔料、増粘剤、加水分解防止剤、酸化防止剤、紫外線吸収剤、界面活性剤、難燃剤、可塑剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。   Examples of the other additives include, for example, emulsifiers, catalysts, foam stabilizers, abrasive grains, fillers, pigments, thickeners, hydrolysis inhibitors, antioxidants, ultraviolet absorbers, surfactants, flame retardants, A plasticizer or the like can be used. These additives may be used alone or in combination of two or more.

前記乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体、ポリエチレングリコールエステル、ポリプロピレングリコールエステル等のノニオン系乳化剤;オレイン酸塩、ひまし油のナトリウム塩、スルホン化ひまし油のナトリウム塩、スルホン化脂肪酸ナトリウム塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルフォネートナトリウム塩、アルキルジフェニルエーテルスル酸ナトリウム塩等のアニオン系乳化剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン系乳化剤;有機シリコン化合物、ジメチルポリシロキサン−ポリオキシアルキレン共重合体等のシリコン化合物などを用いることができる。これらの乳化剤は単独で用いても2種以上を併用してもよい。   Examples of the emulsifier include polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene sorbitol tetraoleate, polyoxyethylene / polyoxypropylene copolymer, polyethylene glycol ester, Nonionic emulsifiers such as polypropylene glycol ester; oleate, castor oil sodium salt, sulfonated castor oil sodium salt, sulfonated fatty acid sodium salt, alkyl sulfate ester salt, alkylbenzene sulfonate, alkyl sulfosuccinate, naphthalene sulfonate , Anions such as polyoxyethylene alkyl sulfate, alkane sulfonate sodium salt, alkyl diphenyl ether sodium salt Emulsifiers; alkylamine salts, alkyl trimethyl ammonium salts, cationic emulsifiers such as alkyl dimethyl benzyl ammonium salts; organic silicon compound, dimethylpolysiloxane - polyoxyalkylene copolymer such as a silicon compound, such as can be used. These emulsifiers may be used alone or in combination of two or more.

前記乳化剤を用いる場合の使用量としては、硬化物の発泡状態及び密度の点から、前記化合物(B)100質量部に対して、0.001〜10質量部の範囲であることが好ましく、0.1〜5質量部の範囲であることがより好ましい。   The amount of the emulsifier used is preferably in the range of 0.001 to 10 parts by mass with respect to 100 parts by mass of the compound (B) from the viewpoint of the foamed state and density of the cured product. More preferably, it is in the range of 1 to 5 parts by mass.

前記触媒としては、例えば、トリエチレンジアミン、N,N,N’,N’−テトラメチルヘキサンジアミン、N,N,N’,N’−テトラメチルプロパンジアミン、N,N,N’,N’’,N’’−ペンタメチルジエチレントリアミン、N,N’,N’−トリメチルアミノエチルピペラジン、N,N−ジメチルシクロヘキシルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ビス(3−ジメチルアミノプロピル)−N,N−ジメチルプロパンジアミン、N,N−ジシクロヘキシルメチルアミン、ビス(ジメチルアミノエチル)エーテル、N,N’,N’’−トリス(3−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、N,N−ジメチルベンジルアミン、N,N−ジメチルアミノエトキシエトキシエタノール、N,N−ジメチルアミノヘキサノール、N,N−ジメチルアミノエトキシエタノール、N,N,N’−トリメチルアミノエチルエタノールアミン、N,N,N’−トリメチル−2−ヒドロキシエチルプロピレンジアミン、1−メチルイミダゾール、1−イソブチル−2−メチルイミダゾール、1,2−ジメチルイミダゾール、ジメチルエタノールアミン、トリエタノールアミン等のアミン化合物;ジブチルスズジウラウレート、ジオクチルチンジラウレート、オクチル酸スズ2−エチルヘキサン酸、オクチル酸カリウム、ジブチルスズラウリルメルカプタイド、ビスマストリス(2−エチルヘキサノエート)等の金属化合物などを用いることができる。これらの触媒は単独で用いても2種以上を併用してもよい。   Examples of the catalyst include triethylenediamine, N, N, N ′, N′-tetramethylhexanediamine, N, N, N ′, N′-tetramethylpropanediamine, N, N, N ′, N ″. , N ″ -pentamethyldiethylenetriamine, N, N ′, N′-trimethylaminoethylpiperazine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, bis (3-dimethylamino Propyl) -N, N-dimethylpropanediamine, N, N-dicyclohexylmethylamine, bis (dimethylaminoethyl) ether, N, N ′, N ″ -tris (3-dimethylaminopropyl) hexahydro-S-triazine, N, N-dimethylbenzylamine, N, N-dimethylaminoethoxyethoxyethanol, N, -Dimethylaminohexanol, N, N-dimethylaminoethoxyethanol, N, N, N'-trimethylaminoethylethanolamine, N, N, N'-trimethyl-2-hydroxyethylpropylenediamine, 1-methylimidazole, 1- Amine compounds such as isobutyl-2-methylimidazole, 1,2-dimethylimidazole, dimethylethanolamine, triethanolamine; dibutyltin dilaurate, dioctyltin dilaurate, tin octylate 2-ethylhexanoic acid, potassium octylate, dibutyltin lauryl Metal compounds such as mercaptide and bismuth tris (2-ethylhexanoate) can be used. These catalysts may be used alone or in combination of two or more.

前記触媒を用いる場合の使用量としては、硬化物の発泡状態及び密度の点から、前記化合物(A)100質量部に対して、0.001〜1質量部の範囲であることが好ましく、0.005〜0.2質量部の範囲がより好ましい。   The amount used in the case of using the catalyst is preferably in the range of 0.001 to 1 part by mass with respect to 100 parts by mass of the compound (A) from the viewpoint of the foamed state and density of the cured product. A range of 0.005 to 0.2 parts by mass is more preferable.

本発明の発泡ウレタン組成物を発泡・硬化させる方法としては、例えば、前記ウレタンプレポリマー(A)、前記化合物(B)、前記水(C)、及び、必要に応じて前記その他添加剤を撹拌し、金型に注入して、例えば50〜110℃で10分〜1時間加熱硬化し、その後必要に応じて、例えば60〜120℃で8〜72時間アフタキュアし、硬化物を得る方法などが挙げられる。   Examples of the method for foaming and curing the urethane foam composition of the present invention include stirring the urethane prepolymer (A), the compound (B), the water (C), and the other additives as necessary. Then, it is poured into a mold, for example, heated and cured at 50 to 110 ° C. for 10 minutes to 1 hour, and then after-cured at 60 to 120 ° C. for 8 to 72 hours, for example, to obtain a cured product. Can be mentioned.

本発明の発泡ウレタン組成物の硬化物の密度としては、耐久性及び衝撃吸収能の点から、0.2〜0.8kg/mの範囲であることが好ましく、0.3〜0.7kg/mの範囲がより好ましい。なお、前記硬化物の密度は、硬化物の質量(kg)及び体積(m)を測定し、得られた値から算出した値を示す。 The density of the cured product of the urethane foam composition of the present invention is preferably in the range of 0.2 to 0.8 kg / m 3 from the viewpoint of durability and impact absorption capacity, and is 0.3 to 0.7 kg. A range of / m 3 is more preferable. In addition, the density of the said hardened | cured material shows the value computed from the value obtained by measuring the mass (kg) and volume (m < 3 >) of hardened | cured material.

本発明の発泡ウレタン組成物の硬化物の硬度としては、耐久性及び衝撃吸収能の点から、50〜90の範囲であることが好ましく、60〜80の範囲がより好ましい。なお、前記硬化物の硬度は、JISK7312−1996(硬さ試験)に準拠したスプリング硬さ試験とし、タイプCで評価した値を示す。   The hardness of the cured product of the urethane foam composition of the present invention is preferably in the range of 50 to 90, more preferably in the range of 60 to 80, from the viewpoints of durability and impact absorption capability. In addition, the hardness of the said hardened | cured material is taken as the spring hardness test based on JISK7312-1996 (hardness test), and shows the value evaluated by the type C.

本発明の発泡ウレタン組成物の硬化物の反発弾性率としては、動倍率及び貯蔵弾性率の周波数依存性をより一層低減化し衝撃吸収能をより向上できる点から、70%以上であることが好ましく、75%以上であることがより好ましく、77〜99%の範囲が更に好ましい。なお、前記硬化物の反発弾性率は、JISK6255:2013に準拠してショブ式反発弾性試験機(株式会社東洋精機製作所製「SB−M1」)を使用して測定した値を示す。   The rebound resilience of the cured product of the urethane foam composition of the present invention is preferably 70% or more from the viewpoint of further reducing the frequency dependence of the dynamic magnification and the storage elastic modulus and further improving the impact absorbing ability. 75% or more, more preferably 77 to 99%. The rebound resilience of the cured product is a value measured using a Sov rebound resilience tester (“SB-M1” manufactured by Toyo Seiki Seisakusho Co., Ltd.) according to JIS K6255: 2013.

本発明の発泡ウレタン組成物の硬化物の10Hz及び1Hzにおける貯蔵弾性率の比(E’(10Hz)/E’(1Hz))としては、衝撃吸収能の点から、1.1以下であることが好ましく、1〜1.04の範囲がより好ましい。なお、前記硬化物の10Hz及び1Hzにおける貯蔵弾性率は、下記条件にて動的熱機械測定を行った値を示す。
測定機器:セイコーインスツル株式会社製動的粘弾性測定装置「DMS6100」
周波数:10Hz、1Hz
モード:圧縮
The ratio of the storage elastic modulus at 10 Hz and 1 Hz (E ′ (10 Hz) / E ′ (1 Hz)) of the cured product of the urethane foam composition of the present invention is 1.1 or less from the point of impact absorption capacity. Is preferable, and the range of 1-1.04 is more preferable. In addition, the storage elastic modulus in 10 Hz and 1 Hz of the said hardened | cured material shows the value which performed the dynamic thermomechanical measurement on the following conditions.
Measuring instrument: Seiko Instruments Inc. dynamic viscoelasticity measuring device “DMS6100”
Frequency: 10Hz, 1Hz
Mode: Compression

本発明の発泡ウレタン組成物の硬化物の動倍率としては、衝撃吸収能の点から、2.2以下であることが好ましく、2以下であることがより好ましく、1.5〜1.75の範囲が更に好ましい。なお、前記硬化物の動倍率は、下記条件により測定された静的バネ定数(Ks)と動的バネ定数(Kd)との比[Kd/Ks]を示す。   The dynamic ratio of the cured product of the foamed urethane composition of the present invention is preferably 2.2 or less, more preferably 2 or less, more preferably 1.5 to 1.75 from the viewpoint of impact absorption ability. A range is more preferred. The dynamic magnification of the cured product indicates the ratio [Kd / Ks] between the static spring constant (Ks) and the dynamic spring constant (Kd) measured under the following conditions.

[静的バネ定数(Ks)]
JISK6385:2012の「6.静的ばね特性試験」における「5.6.c)両方向負荷方式」に準拠して、常温下、試験の変位速度;20mm/分で±200(N)の範囲のたわみを3回負荷させ、「6.6.b)1)算出範囲を力(荷重)で指定する場合」に規定する方法により算出した。
[動的バネ定数(Kd)]
JISK6385:2012の「7.動的特性試験」における「7.2.4.a)2)力(荷重)−たわみのヒステリシス曲線による場合」に準拠して、常温下、X軸方向に周波数100(Hz)、振幅±0.1mmでたわみを加えて、荷重とたわみとの関係を測定することにより算出した。
[Static spring constant (Ks)]
In accordance with “5.6.c) Bidirectional load method” in “6. Static spring characteristic test” of JIS K6385: 2012, the displacement rate of the test at room temperature, within a range of ± 200 (N) at 20 mm / min. The deflection was applied three times, and the calculation was performed by the method defined in “6.6.b) 1) When the calculation range is specified by force (load)”.
[Dynamic spring constant (Kd)]
In accordance with “7.2.4.a) 2) Force (load) -deflection hysteresis curve” in “7. Dynamic characteristic test” of JIS K6385: 2012, a frequency of 100 in the X-axis direction at room temperature. It was calculated by adding a deflection at (Hz) and an amplitude of ± 0.1 mm and measuring the relationship between the load and the deflection.

以上、本発明の発泡ウレタン組成物の硬化物は、適度な密度と硬度とを有し、動倍率及び貯蔵弾性率の周波数依存性が低いため、優れた衝撃吸収能を有する。よって、本発明の発泡ウレタン組成物は、光学用部材、自動車部材、土木建築用部材等の様々な分野で利用可能であり、緩衝材、ベアリング、ストラットマウント、バンプクッション等の制振用部材として好適に使用することができ、ストラットマウントのハウジングの内部充填剤として特に好適に用いることができる。   As described above, the cured product of the urethane foam composition of the present invention has an appropriate density and hardness, and has a low impact frequency and dependence on dynamic modulus and storage elastic modulus, and thus has an excellent impact absorbing ability. Therefore, the urethane foam composition of the present invention can be used in various fields such as optical members, automobile members, civil engineering and building materials, and is used as a damping member for cushioning materials, bearings, strut mounts, bump cushions, and the like. It can be used preferably, and can be particularly preferably used as an internal filler of the housing of the strut mount.

以下、実施例を用いて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[合成例1]ポリエーテルポリエステルポリオール(a−1(1))の合成
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、ポリテトラメチレングリコール(数平均分子量;1,000、以下「PTMG1000」と略記する。)を100質量部、ε−カプロラクトン(以下、「ε−CL」と略記する。)を100質量部、及び、触媒として、オクチル酸第一スズを0.01質量部仕込み、窒素気流下で撹拌しながら170℃で反応させ、2時間ごとにサンプリングをした。12時間後、ε−カプロラクトンの残存量が0.2質量%となった時点で反応を終了し、数平均分子量;2,000、多分散度;1.47のポリエーテルポリエステルポリオール(a−1(1))を得た。
[Synthesis Example 1] Synthesis of Polyether Polyester Polyol (a-1 (1)) Polytetramethylene glycol (several) was added to a 1 liter 4-neck round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer. Average molecular weight: 1,000, hereinafter abbreviated as “PTMG1000”) 100 parts by mass, ε-caprolactone (hereinafter abbreviated as “ε-CL”) 100 parts by mass, and octyl acid 0.01 parts by mass of stannous was charged, reacted at 170 ° C. with stirring under a nitrogen stream, and sampled every 2 hours. After 12 hours, when the residual amount of ε-caprolactone reached 0.2% by mass, the reaction was terminated, and the polyether polyester polyol (a-1) having a number average molecular weight; 2,000, polydispersity; 1.47 (1)) was obtained.

[合成例2]ポリエーテルポリエステルポリオール(a−1(2))の合成
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、ポリテトラメチレングリコール(数平均分子量;650、以下「PTMG650」と略記する。)を100質量部、ε−CLを208質量部、及び、触媒として、オクチル酸第一スズを0.01質量部仕込み、窒素気流下で撹拌しながら170℃で反応させ、2時間ごとにサンプリングをした。14時間後、ε−カプロラクトンの残存量が0.3質量部となった時点で反応を終了し、数平均分子量;2,000、多分散度;1.41のポリエーテルポリエステルポリオール(a−1(2))を得た。
[Synthesis Example 2] Synthesis of Polyether Polyester Polyol (a-1 (2)) Polytetramethylene glycol (several) was added to a 1 liter 4-neck round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer. Average molecular weight: 650, hereinafter abbreviated as “PTMG650”) 100 parts by mass, ε-CL 208 parts by mass, and as a catalyst, 0.01 part by mass of stannous octylate was charged and stirred under a nitrogen stream The reaction was conducted at 170 ° C. while sampling was performed every 2 hours. After 14 hours, when the remaining amount of ε-caprolactone reached 0.3 parts by mass, the reaction was terminated, and the polyether polyester polyol (a-1) having a number average molecular weight; 2,000, polydispersity; 1.41 (2)) was obtained.

[実施例1]
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、合成例1で得られたポリエーテルポリエステルポリオール(a−1(1))を100質量部入れ、次いで、1,5−ナフタレンジイソシアネート(以下、「NDI」と略記する。)を28.5質量部入れ混合し、窒素気流下125℃で1時間反応を行い、NCO%;5.5質量%のウレタンプレポリマー(A−1)を得た。
次に、ポリエーテルポリエステルポリオール(a−1(1))を100質量部、1,4−ブタンジオール(以下、「BG」と略記する。)を3質量部、ラインケミージャパン株式会社製発泡剤(「アドベードSV」、水、スルホン化ひまし油のナトリウム塩、及び、高スルホン化脂肪酸のナトリウム塩の混合物(水の含有率;50質量%)、以下、「SV」と略記する。)を4質量部、トリエチレンジアミン0.08質量部を混合し、硬化剤とした。
次いで、90℃に加熱した前記ウレタンプレポリマー(A−1)100質量部に対して、40℃に加熱した前記硬化剤を32.7質量部添加し、4,000rpmで高速撹拌し、90℃に加熱した金型に注入した後、90℃の加温装置で30分熟成させた。その後、金型から取出し、90℃で48時間アフタキュアを行うことで硬化物を得た。
[Example 1]
100 parts by mass of the polyether polyester polyol (a-1 (1)) obtained in Synthesis Example 1 was placed in a 1 liter four-necked round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer. Then, 28.5 parts by mass of 1,5-naphthalene diisocyanate (hereinafter abbreviated as “NDI”) was added and mixed, and the reaction was conducted at 125 ° C. for 1 hour under a nitrogen stream. NCO%; 5.5% by mass A urethane prepolymer (A-1) was obtained.
Next, 100 parts by mass of the polyether polyester polyol (a-1 (1)), 3 parts by mass of 1,4-butanediol (hereinafter abbreviated as “BG”), a foaming agent manufactured by Rhein Chemie Japan Co., Ltd. 4 masses of “Adado SV”, water, sodium salt of sulfonated castor oil, and sodium salt of highly sulfonated fatty acid (water content: 50 mass%), hereinafter abbreviated as “SV”). Part and 0.08 part by mass of triethylenediamine were mixed to obtain a curing agent.
Next, 32.7 parts by mass of the curing agent heated to 40 ° C. is added to 100 parts by mass of the urethane prepolymer (A-1) heated to 90 ° C., and stirred at a high speed of 4,000 rpm. Then, the mixture was poured into a heated mold and aged for 30 minutes with a 90 ° C. heating device. Then, it took out from the metal mold | die and cured | curing material was obtained by performing after-cure at 90 degreeC for 48 hours.

[実施例2]
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、合成例2で得られたポリエーテルポリエステルポリオール(a−1(2))を100質量部入れ、次いで、NDIを28.5質量部入れ混合し、窒素気流下125℃で1時間反応を行い、NCO%;5.61質量%のウレタンプレポリマー(A−2)を得た。
次に、ポリエーテルポリエステルポリオール(a−1(2))を100質量部、BGを3質量部、SVを4質量部、トリエチレンジアミン0.08質量部を混合し、硬化剤とした。
次いで、90℃に加熱した前記ウレタンプレポリマー(A−2)100質量部に対して、40℃に加熱した前記硬化剤を33.3質量部添加し、4,000rpmで高速撹拌し、90℃に加熱した金型に注入した後、90℃の加温装置で30分熟成させた。その後、金型から取出し、90℃で48時間アフタキュアを行うことで硬化物を得た。
[Example 2]
100 parts by mass of the polyether polyester polyol (a-1 (2)) obtained in Synthesis Example 2 was placed in a 1 liter four-necked round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer. Next, 28.5 parts by mass of NDI was added and mixed, and the reaction was performed at 125 ° C. for 1 hour under a nitrogen stream to obtain a urethane prepolymer (A-2) of NCO%; 5.61% by mass.
Next, 100 parts by mass of the polyether polyester polyol (a-1 (2)), 3 parts by mass of BG, 4 parts by mass of SV, and 0.08 parts by mass of triethylenediamine were mixed to obtain a curing agent.
Subsequently, 33.3 parts by mass of the curing agent heated to 40 ° C. is added to 100 parts by mass of the urethane prepolymer (A-2) heated to 90 ° C., and the mixture is stirred at a high speed of 4,000 rpm. Then, the mixture was poured into a heated mold and aged for 30 minutes with a 90 ° C. heating device. Then, it took out from the metal mold | die and cured | curing material was obtained by performing after-cure at 90 degreeC for 48 hours.

[比較例1]
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、ポリエステルポリオール(エチレングリコール及びアジピン酸を反応させて得られた数平均分子量2,000のポリエステルポリオール、以下、「PEs−1」と略記する。)を100質量部入れ、次いで、NDIを28.6質量部入れ混合し、窒素気流下125℃で1時間反応を行い、NCO%;5.53質量%のウレタンプレポリマー(A’−1)を得た。
次に、PEs−1を100質量部、BGを3質量部、SVを4質量部、トリエチレンジアミン0.1質量部を混合し、硬化剤とした。
次いで、90℃に加熱した前記ウレタンプレポリマー(A’−1)100質量部に対して、60℃に加熱した前記硬化剤を32.9質量部添加し、4,000rpmで高速撹拌し、90℃に加熱した金型に注入した後、90℃の加温装置で30分熟成させた。その後、金型から取出し、90℃で48時間アフタキュアを行うことで硬化物を得た。
[Comparative Example 1]
To a 1 liter four-necked round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer, polyester polyol (polyester polyol having a number average molecular weight of 2,000 obtained by reacting ethylene glycol and adipic acid, In the following, abbreviated as “PEs-1”) is added in an amount of 100 parts by mass, then 28.6 parts by mass of NDI is added and mixed, and the reaction is performed at 125 ° C. for 1 hour under a nitrogen stream. % Urethane prepolymer (A′-1) was obtained.
Next, 100 parts by mass of PEs-1, 3 parts by mass of BG, 4 parts by mass of SV, and 0.1 parts by mass of triethylenediamine were mixed to obtain a curing agent.
Next, 32.9 parts by mass of the curing agent heated to 60 ° C. is added to 100 parts by mass of the urethane prepolymer (A′-1) heated to 90 ° C., and stirred at a high speed of 4,000 rpm. After pouring into a mold heated to 0 ° C., it was aged for 30 minutes with a 90 ° C. heating device. Then, it took out from the metal mold | die and cured | curing material was obtained by performing after-cure at 90 degreeC for 48 hours.

[比較例2]
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、ポリエステルポリオール(BG、2−メチル−1,3−プロパンジオール及びアジピン酸を反応させて得られた数平均分子量2,000のポリエステルポリオール、以下、「PEs−2」と略記する。)を100質量部入れ、次いで、NDIを28.6質量部入れ混合し、窒素気流下125℃で1時間反応を行い、NCO%;5.51質量%のウレタンプレポリマー(A’−2)を得た。
次に、PEs−2を100質量部、BGを3質量部、SVを4質量部、トリエチレンジアミン0.1質量部を混合し、硬化剤とした。
次いで、90℃に加熱した前記ウレタンプレポリマー(A’−2)100質量部に対して、40℃に加熱した前記硬化剤を32.8質量部添加し、4,000rpmで高速撹拌し、90℃に加熱した金型に注入した後、90℃の加温装置で30分熟成させた。その後、金型から取出し、90℃で48時間アフタキュアを行うことで硬化物を得た。
[Comparative Example 2]
Polyester polyol (obtained by reacting BG, 2-methyl-1,3-propanediol and adipic acid with a 1 liter four-necked round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer. A polyester polyol having a number average molecular weight of 2,000 (hereinafter abbreviated as “PEs-2”) is added in an amount of 100 parts by mass, and then 28.6 parts by mass of NDI is added and mixed. To obtain a urethane prepolymer (A′-2) of NCO%; 5.51% by mass.
Next, 100 parts by mass of PEs-2, 3 parts by mass of BG, 4 parts by mass of SV, and 0.1 part by mass of triethylenediamine were mixed to obtain a curing agent.
Next, 32.8 parts by mass of the curing agent heated to 40 ° C. is added to 100 parts by mass of the urethane prepolymer (A′-2) heated to 90 ° C., and stirred at a high speed of 4,000 rpm. After pouring into a mold heated to 0 ° C., it was aged for 30 minutes with a 90 ° C. heating device. Then, it took out from the metal mold | die and cured | curing material was obtained by performing after-cure at 90 degreeC for 48 hours.

[比較例3]
窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた1リットル4ツ口丸底フラスコに、合成例1で得られたポリエーテルポリエステルポリオール(a−1(1))を100質量部入れ、次いで、4,4’−ジフェニルメタンジイソシアネート(以下、「MDI」と略記する。)を50質量部入れ混合し、窒素気流下70℃で5時間反応を行い、NCO%;8.32質量%のウレタンプレポリマー(A’−3)を得た。
次に、BGを100質量部、イオン交換水を4質量部、トリエチレンジアミン2質量部、シリコーン系整泡剤「SH−193」(東レ・ダウコーニング株式会社製)2.5質量部を混合し、硬化剤とした。
次いで、50℃に加熱した前記ウレタンプレポリマー(A’−3)100質量部に対して、50℃に加熱した前記硬化剤を8.48質量部添加し、4,000rpmで高速撹拌し、90℃に加熱した金型に注入した後、90℃の加温装置で30分熟成させた。その後、金型から取出し、90℃で48時間アフタキュアを行うことで硬化物を得た。
[Comparative Example 3]
100 parts by mass of the polyether polyester polyol (a-1 (1)) obtained in Synthesis Example 1 was placed in a 1 liter four-necked round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer. Next, 50 parts by mass of 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as “MDI”) was added and mixed, and the reaction was performed at 70 ° C. for 5 hours under a nitrogen stream. NCO%; 8.32% by mass of urethane A prepolymer (A′-3) was obtained.
Next, 100 parts by mass of BG, 4 parts by mass of ion-exchanged water, 2 parts by mass of triethylenediamine, and 2.5 parts by mass of a silicone foam stabilizer “SH-193” (manufactured by Toray Dow Corning Co., Ltd.) are mixed. And a curing agent.
Next, 8.48 parts by mass of the curing agent heated to 50 ° C. is added to 100 parts by mass of the urethane prepolymer (A′-3) heated to 50 ° C., and stirred at a high speed of 4,000 rpm. After pouring into a mold heated to 0 ° C., it was aged for 30 minutes with a 90 ° C. heating device. Then, it took out from the metal mold | die and cured | curing material was obtained by performing after-cure at 90 degreeC for 48 hours.

[硬化物の密度の測定方法]
実施例及び比較例で得られた硬化物の質量(kg)及び体積(m)を測定し、得られた値から密度を算出した。
[Method for measuring density of cured product]
The mass (kg) and volume (m 3 ) of the cured products obtained in the examples and comparative examples were measured, and the density was calculated from the obtained values.

[硬化物の硬度の測定方法]
実施例及び比較例で得られた硬化物に対して、JISK7312−1996(硬さ試験)に準拠したスプリング硬さ試験を行い、タイプCで評価した。
[Measurement method of hardness of cured product]
The cured products obtained in Examples and Comparative Examples were subjected to a spring hardness test in accordance with JIS K7312-1996 (hardness test) and evaluated by type C.

[硬化物の反発弾性率の測定方法]
実施例及び比較例で得られた硬化物の反発弾性率は、JISK6255:2013に準拠してショブ式反発弾性試験機(株式会社東洋精機製作所製「SB−M1」)を使用して測定した。
[Measurement method of rebound resilience of cured product]
The rebound resilience of the cured products obtained in Examples and Comparative Examples was measured using a Shob rebound resilience tester (“SB-M1” manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JISK6255: 2013.

[硬化物の貯蔵弾性率の周波数依存性の測定方法]
下記条件で動的熱機械測定を行い、実施例及び比較例で得られた硬化物の10Hz及び1Hzにおける貯蔵弾性率を測定し、その比(E’(10Hz)/E’(1Hz))を算出した。
測定機器:セイコーインスツル株式会社製動的粘弾性測定装置「DMS6100」
周波数:10Hz、1Hz
モード:圧縮
[Method for measuring frequency dependence of storage modulus of cured product]
Dynamic thermomechanical measurement is performed under the following conditions, and the storage elastic modulus at 10 Hz and 1 Hz of the cured products obtained in Examples and Comparative Examples is measured, and the ratio (E ′ (10 Hz) / E ′ (1 Hz)) is determined. Calculated.
Measuring instrument: Seiko Instruments Inc. dynamic viscoelasticity measuring device “DMS6100”
Frequency: 10Hz, 1Hz
Mode: Compression

[硬化物の動倍率の測定方法]
実施例及び比較例で得られた硬化物の静的バネ定数(Ks)及び動的バネ定数(Kd)を下記条件にて測定し、その比[Kd/Ks]を動倍率とした。
[Measurement method of dynamic magnification of cured product]
The static spring constant (Ks) and dynamic spring constant (Kd) of the cured products obtained in Examples and Comparative Examples were measured under the following conditions, and the ratio [Kd / Ks] was defined as the dynamic magnification.

[静的バネ定数(Ks)]
JISK6385:2012の「6.静的ばね特性試験」における「5.6.c)両方向負荷方式」に準拠して、常温下、試験の変位速度;20mm/分で±200(N)の範囲のたわみを3回負荷させ、「6.6.b)1)算出範囲を力(荷重)で指定する場合」に規定する方法により算出した。
[動的バネ定数(Kd)]
JISK6385:2012の「7.動的特性試験」における「7.2.4.a)2)力(荷重)−たわみのヒステリシス曲線による場合」に準拠して、常温下、X軸方向に周波数100(Hz)、振幅±0.1mmでたわみを加えて、荷重とたわみとの関係を測定することにより算出した。
[Static spring constant (Ks)]
In accordance with “5.6.c) Bidirectional load method” in “6. Static spring characteristic test” of JIS K6385: 2012, the displacement rate of the test at room temperature, within a range of ± 200 (N) at 20 mm / min. The deflection was applied three times, and the calculation was performed by the method defined in “6.6.b) 1) When the calculation range is specified by force (load)”.
[Dynamic spring constant (Kd)]
In accordance with “7.2.4.a) 2) Force (load) -deflection hysteresis curve” in “7. Dynamic characteristic test” of JIS K6385: 2012, a frequency of 100 in the X-axis direction at room temperature. It was calculated by adding a deflection at (Hz) and an amplitude of ± 0.1 mm and measuring the relationship between the load and the deflection.

Figure 2016222907
Figure 2016222907

本発明の発泡ウレタン組成物の硬化物は、動倍率及び貯蔵弾性率の周波数依存性が低く、優れた衝撃吸収能を有することが分かった。   It has been found that the cured product of the urethane foam composition of the present invention has a low frequency dependency of the dynamic magnification and the storage elastic modulus and has an excellent impact absorbing ability.

一方、比較例1及び2は、ポリエーテルポリエステルポリオール(a−1)の代わりに、ポリエステルポリオールを用いた態様であるが、いずれも動倍率及び貯蔵弾性率の周波数依存性が高いことが分かった。   On the other hand, Comparative Examples 1 and 2 are embodiments in which a polyester polyol is used instead of the polyether polyester polyol (a-1), and it has been found that both have high frequency dependency of dynamic magnification and storage elastic modulus. .

比較例3は、1,5−ナフタレンジイソシアネート(a−2)の代わりにMDIを用いた態様であるが、動倍率及び貯蔵弾性率の周波数依存性が高いことが分かった。   Although the comparative example 3 is the aspect which used MDI instead of 1, 5- naphthalene diisocyanate (a-2), it turned out that the frequency dependence of a dynamic magnification and a storage elastic modulus is high.

Claims (6)

ポリエーテルポリエステルポリオール(a−1)及び1,5−ナフタレンジイソシアネート(a−2)の反応物であるイソシアネート基を有するウレタンプレポリマー(A)と活性水素原子を有する化合物(B)と水(C)とを含有することを特徴とする発泡ウレタン組成物。   Polyurethane polyester polyol (a-1) and urethane prepolymer (A) having an isocyanate group which is a reaction product of 1,5-naphthalene diisocyanate (a-2), compound (B) having active hydrogen atom and water (C And a foamed urethane composition. 前記ポリエーテルポリエステルポリオール(a−1)が、ポリエーテルポリオール(a−1−1)とラクトン化合物(a−1−2)との反応物である請求項1記載の発泡ウレタン組成物。   The foamed urethane composition according to claim 1, wherein the polyether polyester polyol (a-1) is a reaction product of a polyether polyol (a-1-1) and a lactone compound (a-1-2). 前記ポリエーテルポリオール(a−1−1)が、ポリテトラメチレングリコールである請求項2記載の発泡ウレタン組成物。   The foamed urethane composition according to claim 2, wherein the polyether polyol (a-1-1) is polytetramethylene glycol. 前記ポリエーテルポリエステルポリオールの多分散度[重量平均分子量(Mw)/数平均分子量(Mn)]が、1.5以下である請求項1記載の発泡ウレタン組成物。   2. The foamed urethane composition according to claim 1, wherein the polydispersity of the polyether polyester polyol [weight average molecular weight (Mw) / number average molecular weight (Mn)] is 1.5 or less. 硬化物の反発弾性率が70%以上である請求項1記載の発泡ウレタン組成物。   The foamed urethane composition according to claim 1, wherein the rebound resilience of the cured product is 70% or more. 請求項1〜5のいずれか1項記載の発泡ウレタン組成物の硬化物を有することを特徴とするストラットマウント。   A strut mount comprising a cured product of the urethane foam composition according to any one of claims 1 to 5.
JP2016105194A 2015-05-28 2016-05-26 Urethane foam composition and strut mount Active JP6836706B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108680 2015-05-28
JP2015108680 2015-05-28

Publications (2)

Publication Number Publication Date
JP2016222907A true JP2016222907A (en) 2016-12-28
JP6836706B2 JP6836706B2 (en) 2021-03-03

Family

ID=57745471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105194A Active JP6836706B2 (en) 2015-05-28 2016-05-26 Urethane foam composition and strut mount

Country Status (1)

Country Link
JP (1) JP6836706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188531A1 (en) * 2022-03-30 2023-10-05 住友理工株式会社 Anti-vibration/vibration suppression member and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929729A (en) * 1974-11-21 1975-12-30 Goodyear Tire & Rubber Polyureaurethane shock absorbing unit
JPS61181815A (en) * 1985-02-07 1986-08-14 Dainippon Ink & Chem Inc Cellular polyurethane elastomer
JP2011506624A (en) * 2007-11-17 2011-03-03 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing cellular polyurethane (PUR) cast elastomer from storage stable 1,5-naphthalene diisocyanate (NDI) prepolymer
JP2011178951A (en) * 2010-03-03 2011-09-15 Toyo Tire & Rubber Co Ltd Foamed polyurethane and method for producing the same and vibration insulator for automobile composed of foamed polyurethane
JP2012193293A (en) * 2011-03-17 2012-10-11 Mitsui Chemicals Inc Polyurethane resin composition, polyurethane molding, pressure sensor and touch panel
WO2014057740A1 (en) * 2012-10-09 2014-04-17 Dic株式会社 Bump cushion
JP2015503653A (en) * 2011-12-27 2015-02-02 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Method for producing microporous polyurethane elastomer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929729A (en) * 1974-11-21 1975-12-30 Goodyear Tire & Rubber Polyureaurethane shock absorbing unit
JPS61181815A (en) * 1985-02-07 1986-08-14 Dainippon Ink & Chem Inc Cellular polyurethane elastomer
JP2011506624A (en) * 2007-11-17 2011-03-03 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing cellular polyurethane (PUR) cast elastomer from storage stable 1,5-naphthalene diisocyanate (NDI) prepolymer
JP2011178951A (en) * 2010-03-03 2011-09-15 Toyo Tire & Rubber Co Ltd Foamed polyurethane and method for producing the same and vibration insulator for automobile composed of foamed polyurethane
JP2012193293A (en) * 2011-03-17 2012-10-11 Mitsui Chemicals Inc Polyurethane resin composition, polyurethane molding, pressure sensor and touch panel
JP2015503653A (en) * 2011-12-27 2015-02-02 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Method for producing microporous polyurethane elastomer
WO2014057740A1 (en) * 2012-10-09 2014-04-17 Dic株式会社 Bump cushion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188531A1 (en) * 2022-03-30 2023-10-05 住友理工株式会社 Anti-vibration/vibration suppression member and method for manufacturing same

Also Published As

Publication number Publication date
JP6836706B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP4897082B2 (en) Polyurethane foam and polishing pad
JP6838133B2 (en) Method for manufacturing polyurethane foam elastomer raw material, polyurethane foam elastomer and polyurethane foam elastomer
TWI663210B (en) Honing material
JP2011038005A (en) Manufacturing method of foamed polyurethane elastomer
JP6961837B2 (en) Manufacturing method of foamed polyurethane elastomer raw material, foamed polyurethane elastomer, midsole and foamed polyurethane elastomer
TW201336883A (en) Polyurethane foam
CN115087680B (en) Foamed polyurethane resin composition and foamed polyurethane elastomer
JP6365869B2 (en) Urethane composition and abrasive
JP5858315B2 (en) Bump cushion
JP6836706B2 (en) Urethane foam composition and strut mount
JP6531440B2 (en) Foam urethane composition and strut mount
JP6253942B2 (en) Foamed urethane rubber and foamed urethane rubber forming composition
JP6303482B2 (en) Urethane composition, cured product, and abrasive
JP6445640B2 (en) Foamed urethane rubber and foamed urethane rubber forming composition
JP2012017435A (en) Polyurethane elastomer composition and vibration-proof material
JP2022022532A (en) Microporous polyurethane elastomer composition and microporous polyurethane elastomer
JP2011212775A (en) Composition of polyurethane polishing pad member
JP2024053741A (en) Urethane resin composition and cured product
JP2016132724A (en) Non-foamed urethane elastomer and composition for forming non-foamed urethane elastomer
JP2005336225A (en) Low rigidity polyurethane resin and manufacturing process for the polyurethane resin

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R151 Written notification of patent or utility model registration

Ref document number: 6836706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250