JP2016221891A - Integrally molded part - Google Patents

Integrally molded part Download PDF

Info

Publication number
JP2016221891A
JP2016221891A JP2015111938A JP2015111938A JP2016221891A JP 2016221891 A JP2016221891 A JP 2016221891A JP 2015111938 A JP2015111938 A JP 2015111938A JP 2015111938 A JP2015111938 A JP 2015111938A JP 2016221891 A JP2016221891 A JP 2016221891A
Authority
JP
Japan
Prior art keywords
resin
resin component
molded product
component
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111938A
Other languages
Japanese (ja)
Inventor
賢也 岡田
Kenya Okada
賢也 岡田
英晃 佐々木
Hideaki Sasaki
英晃 佐々木
▲ぬで▼島 英樹
英樹 ▲ぬで▼島
Hideki Nudeshima
石川 修司
Shuji Ishikawa
修司 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015111938A priority Critical patent/JP2016221891A/en
Publication of JP2016221891A publication Critical patent/JP2016221891A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an integrally molded part in which antenna structure can be arranged at a high positional precision.SOLUTION: Provided is a resin molded part obtained by integrating a resin component (I) made of a thermoplastic resin in which at least a part of the surface is provided with a metallic layer and a resin component (II) made of a fiber-reinforced thermoplastic resin in which electromagnetic shield properties measured by the KEC method lie in the range of more than 0dB and below 20dB in the frequency 1GHz zone. The resin component (I) and the resin component (II) are integrated via a common boundary face, at least a part of the metallic layer is exposed, and further, the ratio of the area of the boundary face to the total area of the resin component (I) lies in the range of 0.3 to 0.9.SELECTED DRAWING: Figure 1

Description

本発明は、金属層を含む樹脂部品と繊維強化熱可塑性樹脂とが一体化された樹脂成形品に関するものである。   The present invention relates to a resin molded product in which a resin component including a metal layer and a fiber reinforced thermoplastic resin are integrated.

近年、携帯電話やパソコンなどの電子機器には、無線通信用のアンテナ構造体が搭載されている。このような電子部品のアンテナ構造体を形成するための成形回路部品((molded interconnect device:MID)は、その上に導電素子または導電経路が形成されたプラスチック基板から構成されることが一般的である。   In recent years, an electronic device such as a mobile phone or a personal computer is equipped with an antenna structure for wireless communication. A molded circuit component (MID) for forming such an electronic component antenna structure is generally composed of a plastic substrate on which a conductive element or a conductive path is formed. is there.

このアンテナ構造体が、携帯電話やパソコンなどに組み込まれる際には、電子機器の筐体に直接接着剤や粘着性のテープなどを用いて貼り付けられることが一般的である。しかし、貼り付けの際の位置ズレや傾き、貼り付け時の作業ミスなどにより、アンテナ構造体が所定の位置に収まらずアンテナ性能を十分に発揮できなくなる問題があった。機械を用いて貼り付けを行う場合であっても、接着剤の塗布量のバラツキや粘着剤の厚みのバラツキ等で位置精度が安定せず、アンテナ性能にバラツキが出る懸念があった。また、人手での貼り付けの場合には、アンテナ構造体を変形させてしまいアンテナ性能が低下する課題もあった。   When this antenna structure is incorporated into a mobile phone or a personal computer, it is generally attached directly to the casing of the electronic device using an adhesive or an adhesive tape. However, there has been a problem that the antenna structure cannot be put in a predetermined position and the antenna performance cannot be sufficiently exhibited due to misalignment or inclination at the time of pasting, or an operation error at the time of pasting. Even when affixing is performed using a machine, there is a concern that the position accuracy is not stable due to variations in the amount of adhesive applied or the thickness of the pressure-sensitive adhesive, resulting in variations in antenna performance. Further, in the case of manual pasting, there is a problem that the antenna structure is deformed and the antenna performance is deteriorated.

特許文献1には、表面にアンテナ素子を有する一次材に、射出成形により形成される二次材を一体化させた樹脂成形品に関する記載がある。特許文献1では、一体成形時の残留応力低減やソリを防止することを目的として、一次材側に凸条を設けることを特徴としている。しかしながら、一次材と二次材との接合に関する記載はあるものの、射出圧等で一次材がずれる等、位置決め精度を確保する点に関する記載はない。また、アンテナ素子が被覆されてアンテナ性能が低下する課題についても着目していない。   Patent Document 1 describes a resin molded product in which a secondary material formed by injection molding is integrated with a primary material having an antenna element on the surface. Patent Document 1 is characterized by providing a ridge on the primary material side for the purpose of reducing residual stress and preventing warping during integral molding. However, although there is a description related to the joining of the primary material and the secondary material, there is no description related to securing positioning accuracy, such as the primary material being displaced by injection pressure or the like. In addition, no attention is paid to the problem that the antenna performance is deteriorated by covering the antenna element.

特開2014−213516号公報JP 2014-213516 A

本発明の目的は、位置精度高くアンテナ構造体を配置することが出来る一体化成形品を提供することである。   An object of the present invention is to provide an integrally molded product in which an antenna structure can be arranged with high positional accuracy.

上記課題を解決するための本発明は、以下の構成を採用する。すなわち、
(1)少なくとも表面の一部に金属層を備えた熱可塑性樹脂からなる樹脂部品(I)と、KEC法により測定される電磁波シールド性が周波数1GHz帯において、0dB以上20dB未満の範囲である繊維強化熱可塑樹脂からなる樹脂部品(II)とが一体化された樹脂成形品であって、前記樹脂部品(I)と前記樹脂部品(II)とが共通の境界面を介して一体化され、前記金属層の少なくとも一部が露出してなるとともに、前記樹脂部品(I)の総表面積に対する前記境界面の面積の比が0.3〜0.9の範囲である樹脂成形品。
(2)前記樹脂成形品がアンテナ送受信機能を持つ(1)に記載の樹脂成形品。
(3)前記金属層の少なくとも一部が前記樹脂部品(II)と接している(1)または(2)に記載の樹脂成形品。
(4)前記樹脂部品(I)に用いられる熱可塑性樹脂がポリカーボネート樹脂である(1)〜(3)のいずれかに記載の樹脂成形品。
(5)前記樹脂部品(I)に用いられる熱可塑性樹脂がポリアミド樹脂である(1)〜(3)のいずれかに記載の樹脂成形品。
(6)前記樹脂部品(I)に用いられる樹脂が繊維強化熱可塑性樹脂からなる(1)〜(5)のいずれかに記載の樹脂成形品。
(7)前記樹脂部品(I)の長手方向に垂直な断面の少なくとも一部に凹凸部を有する(1)〜(6)のいずれかに記載の樹脂成形品。
(8)前記樹脂部品(I)が長手方向に垂直な断面形状がL字型を有する(1)〜(7)のいずれかに記載の樹脂成形品。
(9)前記樹脂部品(I)が金属錯体を含む(1)〜(8)のいずれかに記載の樹脂成形品。
(10)(1)〜(9)のいずれかに記載の樹脂成形品を少なくとも1つ以上含む筐体。
である。
The present invention for solving the above problems employs the following configuration. That is,
(1) Resin component (I) made of a thermoplastic resin provided with a metal layer on at least a part of its surface, and a fiber having an electromagnetic wave shielding property measured by the KEC method in a range of 0 dB or more and less than 20 dB in a frequency of 1 GHz band The resin part (II) made of reinforced thermoplastic resin is integrated with the resin part (I), and the resin part (I) and the resin part (II) are integrated via a common interface, A resin molded product in which at least a part of the metal layer is exposed and a ratio of an area of the boundary surface to a total surface area of the resin component (I) is in a range of 0.3 to 0.9.
(2) The resin molded product according to (1), wherein the resin molded product has an antenna transmission / reception function.
(3) The resin molded product according to (1) or (2), wherein at least a part of the metal layer is in contact with the resin component (II).
(4) The resin molded product according to any one of (1) to (3), wherein the thermoplastic resin used in the resin component (I) is a polycarbonate resin.
(5) The resin molded product according to any one of (1) to (3), wherein the thermoplastic resin used in the resin component (I) is a polyamide resin.
(6) The resin molded product according to any one of (1) to (5), wherein the resin used for the resin component (I) is made of a fiber-reinforced thermoplastic resin.
(7) The resin molded product according to any one of (1) to (6), wherein the resin component (I) has an uneven portion in at least a part of a cross section perpendicular to the longitudinal direction.
(8) The resin molded product according to any one of (1) to (7), wherein the resin component (I) has an L-shaped cross section perpendicular to the longitudinal direction.
(9) The resin molded product according to any one of (1) to (8), wherein the resin component (I) includes a metal complex.
(10) A housing including at least one resin molded product according to any one of (1) to (9).
It is.

本発明によれば、位置精度高くアンテナ構造体を配置することが出来る一体化成形品を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the integrated molded product which can arrange | position an antenna structure with high positional accuracy can be provided.

本発明の金属層を備えた樹脂部品(I)と繊維強化熱可塑性樹脂からなる樹脂部品(II)とが一体化された樹脂成形品の斜視図である。It is a perspective view of the resin molded product with which resin part (I) provided with the metal layer of this invention and resin part (II) consisting of a fiber reinforced thermoplastic resin were integrated. 本発明の長手方向に垂直な断面の一部に凹凸形状を有する樹脂部品(I)の斜視図である。It is a perspective view of the resin component (I) which has uneven | corrugated shape in a part of cross section perpendicular | vertical to the longitudinal direction of this invention. 図2の樹脂部品(I)と樹脂部品(II)とが一体化された樹脂成形品の斜視図である。FIG. 3 is a perspective view of a resin molded product in which the resin component (I) and the resin component (II) of FIG. 2 are integrated. 本発明の長手方向に垂直な断面にL字形状を有する樹脂部品(I)の斜視図である。It is a perspective view of resin part (I) which has L shape in the section perpendicular to the longitudinal direction of the present invention. 図4の樹脂部品(I)と樹脂部品(II)とが一体化された樹脂成形品の斜視図である。FIG. 5 is a perspective view of a resin molded product in which the resin component (I) and the resin component (II) of FIG. 4 are integrated. 本発明の複数の樹脂部品(I)と樹脂部品(II)とが一体化されてなる筐体の斜視図である。It is a perspective view of the housing | casing by which several resin components (I) and resin components (II) of this invention are integrated. 本発明の複数の樹脂部品(I)と樹脂部品(II)とが一体化された樹脂成形品と部材が一体化された筐体の斜視図である。It is a perspective view of the housing | casing in which the resin molded product and member which integrated several resin components (I) and resin components (II) of this invention were integrated.

以下、本発明の複合成形品の製造方法について、図面を用いながら説明する。   Hereinafter, the manufacturing method of the composite molded product of this invention is demonstrated, using drawing.

図1は金属層3を表面に備えた熱可塑性樹脂からなる樹脂部品(I)2と、樹脂部品(II)4とが共通の境界面をなして一体化された樹脂成形品1を示した模式図である。樹脂部品(I)2は例えば射出成形品に電気回路、電極、パターンが形成されたMIDであり、樹脂構造体上にめっきや蒸着技術のみで電気回路を形成することで樹脂構造体全体に自由に回路パターン、電極、シールドを形成することができる。   FIG. 1 shows a resin molded product 1 in which a resin part (I) 2 made of a thermoplastic resin having a metal layer 3 on its surface and a resin part (II) 4 are integrated with a common interface. It is a schematic diagram. The resin part (I) 2 is an MID in which an electric circuit, an electrode, and a pattern are formed on, for example, an injection molded product, and the entire resin structure can be freely formed by forming an electric circuit on the resin structure only by plating or vapor deposition technology. Circuit patterns, electrodes, and shields can be formed.

MIDの中でも、LDS(Laser−direct−structuring)法は、金属粒子などを混ぜた成形樹脂材料を用いて射出成形を行い、回路を形成したい領域をレーザーにより活性化、これにより成形材料内の金属粒子を導体化させる。その導体化させた部分に無電解めっきを行うことで回路を形成する工法であり、電子機器に内蔵する無線通信用のアンテナ構造体を小型化、高機能化することができる。   Among MIDs, the LDS (Laser-direct-structuring) method performs injection molding using a molding resin material mixed with metal particles, etc., and activates a region where a circuit is to be formed by a laser. Make particles conductive. This is a method of forming a circuit by performing electroless plating on the conductor portion, and the antenna structure for wireless communication incorporated in the electronic device can be miniaturized and enhanced in function.

金属層3は、特定の周波数帯のアンテナ送受信機能を持たせるために、樹脂部品(I)2の表面で一定のパターンを描き、樹脂部品(I)2の一面だけでなく樹脂部品(I)2の側面や裏面に3次元的に存在していても良い。3次元的にパターンを描くことで、樹脂部品(I)2の小型化を図ることができる。金属層3の金属の種類は特に制限されるものは無いが、導電率が高いものが好ましく用いられ、錆び防止などの機能を持たせるため2層以上の積層体であることも好ましい。   The metal layer 3 draws a certain pattern on the surface of the resin component (I) 2 so as to have an antenna transmission / reception function of a specific frequency band, and not only the one surface of the resin component (I) 2 but also the resin component (I) It may exist three-dimensionally on the side surface or back surface of the two. By drawing a pattern three-dimensionally, the resin component (I) 2 can be downsized. The metal type of the metal layer 3 is not particularly limited, but a metal having high conductivity is preferably used, and a laminate of two or more layers is also preferable in order to provide a function such as rust prevention.

樹脂部品(I)2と樹脂部品(II)4は部品同士が接する面において、共通の境界面を形成することが重要である。共通の境界面とは、樹脂部品(I)2と樹脂部品(II)4の間に別種の部品を挟まずに接合していることを意味する。すなわち、2つの部品間の接合において、接着剤や粘着材等の第三種の材料を用いて一体化するのではなく、第三種の材料を用いることなく、片側の材料を溶着や融着といった手法により一体化された面であることを意味する。樹脂部品(I)2と樹脂部品(II)4が共通の境界面を形成して一体化し、部品間に第三種の材料を挟まないことから、樹脂部品(II)4に対する樹脂部品(I)2の位置精度を、第三種の材料を含む場合に比較して向上させることができる。第三種の材料を含む場合は、その厚みバラツキなどによって、樹脂部品(I)2と樹脂部品(II)4の距離やそれぞれの傾きが変わるためである。   It is important that the resin component (I) 2 and the resin component (II) 4 form a common boundary surface on the surface where the components contact each other. The common boundary surface means that another type of component is joined between the resin component (I) 2 and the resin component (II) 4 without being sandwiched. That is, in joining two parts, instead of using a third type material such as an adhesive or an adhesive material, the material on one side is welded or fused without using the third type material. It means that the surface is integrated by such a method. Since the resin part (I) 2 and the resin part (II) 4 form a common boundary surface and are integrated, and the third type material is not sandwiched between the parts, the resin part (I) for the resin part (II) 4 2) The positional accuracy of 2 can be improved as compared with the case where the third type material is included. This is because when the third type material is included, the distance between the resin component (I) 2 and the resin component (II) 4 and the inclination of each change depending on the thickness variation.

樹脂部品(I)2と樹脂部品(II)4が共通の境界面を形成して一体化する方法としては、射出成形による一体化が挙げられる。あらかじめ成形された樹脂部品(I)2を射出成形の金型内にセットして固定し、熱可塑性樹脂を射出成形して樹脂部品(II)4を形成し樹脂部品(I)2と一体化させることで、一体化成形品1を得ることができる。射出成形時に溶融した熱可塑性樹脂が樹脂部品(I)2と接することで、共通の境界面を形成することができる。熱可塑性樹脂である樹脂部品(I)2の表面が溶融して射出された熱可塑性樹脂と一体化することは、樹脂部品(I)2と樹脂部品(II)4との接合強度を高めることができ好ましい。   As a method of forming the common boundary surface and integrating the resin component (I) 2 and the resin component (II) 4, integration by injection molding can be mentioned. Pre-molded resin part (I) 2 is set and fixed in an injection mold, and thermoplastic resin is injection-molded to form resin part (II) 4 and integrated with resin part (I) 2 By doing so, the integrated molded product 1 can be obtained. A common boundary surface can be formed by the thermoplastic resin melted at the time of injection molding contacting the resin component (I) 2. Integration of the surface of the resin part (I) 2 that is a thermoplastic resin with the molten thermoplastic resin increases the bonding strength between the resin part (I) 2 and the resin part (II) 4. This is preferable.

樹脂部品(I)2は、射出成形の金型内にセットされることで位置が決まることから、一体化された後に樹脂部品(II)4に対する位置が常に同じ位置に有ることになり、位置精度を高くすることができる。樹脂部品(I)2がアンテナ送受信機能を持つ場合には、アンテナ特性の点から見ても位置が安定することでバラツキを低減させることができる。樹脂部品(I)2には、射出成形の金型内にセットするために位置決めの形状、例えば穴形状を作っておくことも好ましい。射出成形の金型にも位置決めの形状、樹脂部品(I)2に穴が開いている場合は、穴に差し込むピンの形状を作っておくことで、セットが容易になり、また位置精度も向上しやすくなることから好ましい。   Since the position of the resin part (I) 2 is determined by being set in an injection mold, the position with respect to the resin part (II) 4 is always at the same position after being integrated. The accuracy can be increased. When the resin component (I) 2 has an antenna transmission / reception function, the position can be stabilized even from the viewpoint of antenna characteristics, and variations can be reduced. The resin component (I) 2 is also preferably formed with a positioning shape, for example, a hole shape, for setting in an injection mold. If the injection mold has a positioning shape and the resin part (I) 2 has a hole, making the shape of the pin to be inserted into the hole facilitates the setting and improves the positional accuracy. It is preferable because it becomes easy to do.

樹脂部品(I)2の総表面積に対する樹脂部品(I)2と樹脂部品(II)4が形成する共通の境界面の面積の比は0.3〜0.9であることが重要である。0.3未満であると、樹脂部品(I)2と樹脂部品(II)4との接合強度が不十分で有り、一体化成形品1を取り扱う際に樹脂部品(I)2が外れてしまう懸念がある。カシメ等の溶融接着により一体化させる場合は、溶融接着可能な面積が限定され接合強度が不足する懸念がある。また、0.9より大きい場合は樹脂部品(II)4を複雑な形状を持つことがある樹脂部品(I)2のほぼ全面に配置する必要があり、金型の構造的にも、樹脂使用量の面からも好ましくない。上述の通り、樹脂部品(I)2と樹脂部品(II)4との一体化成形品1において、少なくとも一部の金属層3を表面に露出させるためにも、境界面の面積の比は0.9より小さいことが好ましい。   It is important that the ratio of the area of the common boundary formed by the resin part (I) 2 and the resin part (II) 4 to the total surface area of the resin part (I) 2 is 0.3 to 0.9. If it is less than 0.3, the bonding strength between the resin component (I) 2 and the resin component (II) 4 is insufficient, and the resin component (I) 2 comes off when the integrated molded product 1 is handled. There are concerns. When integrating by melt bonding such as caulking, there is a concern that the area that can be melt bonded is limited and the bonding strength is insufficient. If it is greater than 0.9, it is necessary to dispose the resin part (II) 4 over almost the entire surface of the resin part (I) 2 which may have a complicated shape. It is not preferable in terms of quantity. As described above, in the integrally molded product 1 of the resin component (I) 2 and the resin component (II) 4, the boundary area ratio is 0 in order to expose at least a part of the metal layer 3 on the surface. Is preferably less than .9.

樹脂部品(I)2の表層に形成された金属層3は、樹脂部品(I)2と樹脂部品(II)4が一体化された成形品において、すくなくとも一部を表面に露出させていることが好ましい。金属層3がアンテナ送受信機能を持つ場合に、アンテナ機能を制御するために金属層3の一部に導通するケーブルを設置することから、金属層3の導通部が表面に露出していることが必要となる。金属層3は一部が表面に露出していれば、部分的に樹脂部品(I)2と樹脂部品(II)4との間に挟まれていても良い。   The metal layer 3 formed on the surface layer of the resin component (I) 2 is at least partially exposed on the surface of the molded product in which the resin component (I) 2 and the resin component (II) 4 are integrated. Is preferred. When the metal layer 3 has an antenna transmission / reception function, a conductive cable is installed on a part of the metal layer 3 in order to control the antenna function, so that the conductive part of the metal layer 3 is exposed on the surface. Necessary. The metal layer 3 may be partially sandwiched between the resin component (I) 2 and the resin component (II) 4 as long as a part of the metal layer 3 is exposed on the surface.

樹脂部品(I)2の表層に形成された金属層3がアンテナ送受信機能を持つ場合に、樹脂部品(I)2と一体化される樹脂部品(II)4は、金属層3のアンテナ機能を損なわないために電波透過性を有する必要がある。樹脂部品(II)4は、KEC法により測定される電磁波シールド性が周波数1GHz帯において、0dB以上20dB未満の範囲であることが重要である。電磁波シールド性の測定は樹脂部品(II)4を製造する場合と同一のプロセス条件にて同一相当の厚みとした成形体を用いて電磁波シールド性を測定する。ここでいう同一相当の厚みとは、目標厚み±0.05mmである。KEC方により測定される電磁波シールド性が周波数1GHz帯において0dB以上20dB未満の範囲であれば、十分な電波透過性を持つことが出来る。   When the metal layer 3 formed on the surface layer of the resin component (I) 2 has an antenna transmission / reception function, the resin component (II) 4 integrated with the resin component (I) 2 has the antenna function of the metal layer 3. In order not to be damaged, it is necessary to have radio wave permeability. It is important that the resin component (II) 4 has an electromagnetic wave shielding property measured by the KEC method in a range of 0 dB or more and less than 20 dB in the frequency 1 GHz band. The electromagnetic wave shielding property is measured using a molded product having the same equivalent thickness under the same process conditions as in the production of the resin component (II) 4. The same equivalent thickness here is a target thickness of ± 0.05 mm. If the electromagnetic wave shielding property measured by the KEC method is in the range of 0 dB to less than 20 dB in the frequency 1 GHz band, sufficient radio wave permeability can be obtained.

樹脂部品(I)2に用いられる熱可塑性樹脂としては特に制限はないものの、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステル樹脂や、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン樹脂や、スチレン系樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、熱可塑性ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン(PES)樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、熱可塑性フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂が挙げられる。とりわけ、耐熱性、耐薬品性の観点からはポリフェニレンスルフィド樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂、ポリフェニレンエーテル樹脂、スチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。さらに、成形品の高強度、高剛性化を図るために樹脂部品(I)2の樹脂として、非導電性の強化繊維を含有させたものを用いることも好ましい。非導電性の強化繊維としては、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレンなどの有機繊維や、ガラス、シリコンカーバイト、シリコンナイトライドなどのセラミックス繊維が好ましく、それらを2種類以上併用しても良い。これらの繊維には表面処理としてカップリング剤による処理、サイジング剤による処理、添加剤の付着処理などを行うことができる。その中でも特に、電波透過性、比剛性の観点から少なくともガラス繊維を含むことが好ましい。また、電子部品等に用いられる場合には、電子部品の難燃規格であるUL94V−0が求められることから、難燃剤や難燃助剤も好ましく用いられる。難燃剤としては、特に制限されること無く有機系難燃剤、無機系難燃剤を用いることが出来るが、特にリン系難燃剤を用いることが好ましい。   Although there is no restriction | limiting in particular as a thermoplastic resin used for resin component (I) 2, a polyethylene terephthalate (PET) resin, a polybutylene terephthalate (PBT) resin, a polytrimethylene terephthalate (PTT) resin, a polyethylene naphthalate (PEN) Polyester resin such as resin, liquid crystal polyester resin, polyolefin resin such as polyethylene (PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, polyoxymethylene (POM) resin, polyamide (PA) Resin, polycarbonate (PC) resin, polymethylene methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, thermoplastic Reimide (PI) resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone (PES) resin, polyketone (PK) resin, polyetherketone (PEK) ) Resin, polyether ether ketone (PEEK) resin, polyether ketone ketone (PEKK) resin, polyarylate (PAR) resin, polyether nitrile (PEN) resin, thermoplastic phenol resin, phenoxy resin, polytetrafluoroethylene resin Fluorine resins such as polystyrene resins, polyolefin resins, polyurethane resins, polyester resins, polyamide resins, polybutadiene resins, polyisoprene resins, thermoplastic resins such as fluorine resins, etc. Copolymers, modification products, and two or more blended resins. In particular, from the viewpoint of heat resistance and chemical resistance, polyphenylene sulfide resin is used, and from the viewpoint of molded product appearance and dimensional stability, polycarbonate resin, polyphenylene ether resin, and styrene resin are used from the viewpoint of strength and impact resistance of the molded product. Is more preferably a polyamide resin. Furthermore, it is also preferable to use a resin containing non-conductive reinforcing fibers as the resin of the resin component (I) 2 in order to increase the strength and rigidity of the molded product. Non-conductive reinforcing fibers are preferably organic fibers such as aramid, PBO, polyphenylene sulfide, polyester, acrylic, nylon and polyethylene, and ceramic fibers such as glass, silicon carbide and silicon nitride. You may use together. These fibers can be subjected to a treatment with a coupling agent, a treatment with a sizing agent, an additive adhesion treatment, or the like as a surface treatment. Among them, it is particularly preferable that at least glass fiber is included from the viewpoint of radio wave permeability and specific rigidity. In addition, when used in electronic parts and the like, flame retardants and flame retardant aids are preferably used because UL94V-0, which is a flame retardant standard for electronic parts, is required. The flame retardant is not particularly limited, and an organic flame retardant and an inorganic flame retardant can be used, but it is particularly preferable to use a phosphorus flame retardant.

LDS工法により、樹脂部品(I)2を成形する場合はレーザー感応型の特殊金属錯体を含有させることも好ましい。金属錯体は、樹脂のコンパウンディング工程で熱可塑性樹脂に練り込むことができる。この樹脂部品(I)2に波長1,064nmの赤外レーザー光が当てられると、金属錯体は単体金属(例えば銅)と残留有機基に分解される。このレーザー処理によって、樹脂部品(I)2の表面は三次元の伝導経路が刻み込まれ、メッキ処理を施すことで、回路の最適な定着性が得られ、これによって、電子回路を成形体表面にそのまま集積することができる。   When the resin part (I) 2 is molded by the LDS method, it is also preferable to contain a laser-sensitive special metal complex. The metal complex can be kneaded into the thermoplastic resin in the resin compounding step. When an infrared laser beam having a wavelength of 1,064 nm is applied to the resin component (I) 2, the metal complex is decomposed into a single metal (for example, copper) and a residual organic group. By this laser treatment, the surface of the resin component (I) 2 is engraved with a three-dimensional conduction path, and by applying a plating treatment, an optimum fixing property of the circuit can be obtained. It can be accumulated as it is.

樹脂部品(II)4に用いられる熱可塑性樹脂としては、特に制限は無く上述の熱可塑性樹脂が好適に用いられる。強化繊維としても上述の非導電性の強化繊維が用いられることが好ましい。一体化成形品1が電子部品の筐体として用いられる場合には、電子部品の難燃規格であるUL94V−0が求められることから、難燃剤や難燃助剤も好ましく用いられる。難燃剤としては、特に制限されること無く有機系難燃剤、無機系難燃剤を用いることが出来るが、特にリン系難燃剤を用いることが好ましい。   There is no restriction | limiting in particular as a thermoplastic resin used for resin component (II) 4, The above-mentioned thermoplastic resin is used suitably. It is preferable to use the above-mentioned non-conductive reinforcing fiber as the reinforcing fiber. When the integrally molded product 1 is used as a casing of an electronic component, a flame retardant or a flame retardant aid is preferably used because UL94V-0, which is a flame retardant standard for electronic components, is required. The flame retardant is not particularly limited, and an organic flame retardant and an inorganic flame retardant can be used, but it is particularly preferable to use a phosphorus flame retardant.

図2は、樹脂部品(I)2として用いられる好適な形状の一例を示した模式図である。図3は、図2で示した樹脂部品(I)2と樹脂部品(II)4とを一体化した一体化成形品1の斜視図である。樹脂部品(I)2は形状に制限は無いが、樹脂部品(II)4と一体化する際に有用な接合強度を得るために、長手方向に対して垂直な断面の少なくとも一部に凹凸部を形成することが好ましい。凹凸部を形成することで、長手方向に対して垂直な面で一体化する場合は接合面積が増大することから、接合強度が向上させることができる。また、長手方向に対してアンカー効果を発揮する形状が設けられることから、物理的にも接合の強度が向上することから好ましい。   FIG. 2 is a schematic view showing an example of a suitable shape used as the resin component (I) 2. FIG. 3 is a perspective view of an integrally molded product 1 in which the resin component (I) 2 and the resin component (II) 4 shown in FIG. 2 are integrated. The shape of the resin part (I) 2 is not limited, but in order to obtain a useful bonding strength when integrated with the resin part (II) 4, at least part of the cross section perpendicular to the longitudinal direction is uneven. Is preferably formed. By forming the concavo-convex portion, the bonding area can be increased in the case of integration on a plane perpendicular to the longitudinal direction, so that the bonding strength can be improved. Moreover, since the shape which exhibits an anchor effect with respect to a longitudinal direction is provided, it is preferable from the physical strength of joining also improving.

図4は、樹脂部品(I)2として用いられる好適な形状の一例を示す模式図である。図5は、図4で示した好適な形状の樹脂部品(I)2と樹脂部品(II)4とを一体化した一体化成形品1の斜視図である。樹脂部品(I)2は電子機器のアンテナ構造体として用いられる場合には、小型化することで最終的な製品のサイズを小さく出来ることができる。樹脂部品(I)2は長手方向の断面形状をL字型の構造とすることで、体積としては小さいサイズでアンテナ性能を発揮できることから好ましい。また、L字型の形状とすることで、電子機器の筐体と一体化する場合に、筐体の側面の立ち壁の一部として配置することが可能となり、電子機器の他部品のスペースが広く取ることが出来るといった観点からも好ましい。   FIG. 4 is a schematic diagram showing an example of a suitable shape used as the resin component (I) 2. FIG. 5 is a perspective view of an integrally molded product 1 in which the resin part (I) 2 and the resin part (II) 4 having a preferable shape shown in FIG. 4 are integrated. When the resin component (I) 2 is used as an antenna structure of an electronic device, the final product size can be reduced by downsizing. The resin component (I) 2 is preferable because it has an L-shaped cross-sectional shape in the longitudinal direction, and can exhibit antenna performance with a small volume. In addition, the L-shaped shape allows it to be placed as a part of a standing wall on the side surface of the housing when integrated with the housing of the electronic device, thereby freeing up space for other parts of the electronic device. It is also preferable from the viewpoint that it can be widely taken.

図6は、樹脂部品(II)4で形成した筐体と複数の樹脂部品(I)2とが共通の境界面をなして一体化している一体化成形品1を示す斜視図である。電子機器の製品には周波数帯の異なる複数のアンテナ機能が要求されることが多く、そのため、アンテナ構造体も複数必要になることがある。図6のように、筐体形状をなした樹脂部品(II)4に複数の構造の異なる樹脂部品(I)2を一体化させることで、様々な周波数帯の要求を満たすことが可能となる。   FIG. 6 is a perspective view showing an integrally molded product 1 in which a housing formed of the resin component (II) 4 and a plurality of resin components (I) 2 are integrated with each other by forming a common boundary surface. Electronic device products often require a plurality of antenna functions having different frequency bands, and thus a plurality of antenna structures may be required. As shown in FIG. 6, it is possible to satisfy various frequency band requirements by integrating a plurality of resin parts (I) 2 having different structures into a resin part (II) 4 having a casing shape. .

図7は、複数の樹脂部品(I)2と樹脂部品(II)4とを一体化した一体化成形品1に、さらに部材5を一体化させた筐体の斜視図である。図6のように、樹脂部品(II)4を筐体形状に形成しても良いが、部材5のような別体の軽量化や剛性に優れる材料を用いることも、筐体全体の性能を高めることからも好ましい。部材5に用いる材料としては、特に制限されるものではないが、強化繊維を含んだ樹脂組成物が好ましく用いられる。強化繊維としては、例えば、アルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、ポリアクリロニトリル(PAN)系、レーヨン系、リグニン系、ピッチ系等の炭素繊維や黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維や、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維等が使用できる。これらの強化繊維は単独で用いても、また、2種以上併用してもよい。なかでも、比強度、比剛性、軽量性のバランスの観点から炭素繊維が好ましく、比強度・比弾性率に優れる点でポリアクリロニトリル系炭素繊維を少なくとも含むことが好ましい。   FIG. 7 is a perspective view of a housing in which a member 5 is further integrated with an integrated molded product 1 in which a plurality of resin parts (I) 2 and resin parts (II) 4 are integrated. As shown in FIG. 6, the resin component (II) 4 may be formed in a casing shape, but using a separate material such as the member 5 that is lightweight and rigid can also improve the performance of the entire casing. It is preferable also from raising. The material used for the member 5 is not particularly limited, but a resin composition containing reinforcing fibers is preferably used. Examples of reinforcing fibers include metal fibers such as aluminum fibers, brass fibers and stainless steel fibers, carbon fibers such as polyacrylonitrile (PAN), rayon, lignin, and pitch, graphite fibers, glass fibers, and silicon carbide fibers. Inorganic fibers such as silicon nitride fibers, organic fibers such as aramid fibers, polyparaphenylene benzobisoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, and polyethylene fibers can be used. These reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fibers are preferable from the viewpoint of the balance of specific strength, specific rigidity, and lightness, and at least polyacrylonitrile-based carbon fibers are preferably included from the viewpoint of excellent specific strength and specific elastic modulus.

部材5は強化繊維を含む複数の層から構成されるシートであってもよい。強化繊維が、連続強化繊維であれば、より高強度、高剛性を得られることから好ましい。連続強化繊維を含んだシートとは、10mm以上の長さの連続した強化繊維がシート内部(またはシートを構成する強化繊維を含む層内)に配列されているシートであって、必ずしもシート(または、シートを構成する強化繊維を含む層)全体にわたって連続している必要はなく、途中で分断されていても特に問題はない。具体的な連続強化繊維の形態としては、フィラメント、織物(クロス)、一方向引き揃え(UD)、組み物(ブレイド)等が例示できるが、プロセス面の観点から、クロス、UDが好適に使用される。また、これらの形態は単独で使用しても、2種以上の形態を併用してもよい。中でも、マルチフィラメントが一方向に引き揃えられたものが、より効率良く強度、剛性を得られることから好ましい。   The member 5 may be a sheet composed of a plurality of layers containing reinforcing fibers. If the reinforcing fiber is a continuous reinforcing fiber, it is preferable because higher strength and higher rigidity can be obtained. A sheet containing continuous reinforcing fibers is a sheet in which continuous reinforcing fibers having a length of 10 mm or more are arranged inside the sheet (or in a layer containing reinforcing fibers constituting the sheet), and is not necessarily a sheet (or The layer including the reinforcing fibers constituting the sheet) does not need to be continuous over the whole, and there is no particular problem even if it is divided in the middle. Specific examples of the continuous reinforcing fiber include filaments, woven fabrics (cross), unidirectional alignment (UD), and braids (blades). From the viewpoint of process, cloth and UD are preferably used. Is done. Moreover, these forms may be used independently or may use 2 or more types together. Among these, multi-filaments that are aligned in one direction are preferable because strength and rigidity can be obtained more efficiently.

部材5としては、金属材料を用いても良い。具体的には鉄、ステンレス、アルミニウム、マグネシウム、銅、黄銅、ニッケル、亜鉛等の金属からなる群より選ばれる少なくとも1種が好ましいものとして挙げられるが、金属成分がアルミニウムもしくはマグネシウムを主とすることが軽量化の観点から好ましい。ここで、各金属材料としては合金も含む。   As the member 5, a metal material may be used. Specifically, at least one selected from the group consisting of metals such as iron, stainless steel, aluminum, magnesium, copper, brass, nickel, zinc and the like is preferable, but the metal component is mainly aluminum or magnesium. Is preferable from the viewpoint of weight reduction. Here, each metal material includes an alloy.

本発明により得られる一体化成形品1の用途としては、例えば、パソコン、OA機器、携帯電話、携帯情報端末といった無線アンテナ構造体を内蔵する製品の筐体として好適に用いられる。   As an application of the integrated molded product 1 obtained by the present invention, for example, it is suitably used as a housing of a product incorporating a wireless antenna structure such as a personal computer, an OA device, a mobile phone, and a portable information terminal.

1 一体化成形品
2 樹脂部品(I)
3 金属層
4 樹脂部品(II)
5 部材
1 Integrated molded product 2 Resin parts (I)
3 Metal layer 4 Resin parts (II)
5 members

Claims (10)

少なくとも表面の一部に金属層を備えた熱可塑性樹脂からなる樹脂部品(I)と、KEC法により測定される電磁波シールド性が周波数1GHz帯において、0dB以上20dB未満の範囲である繊維強化熱可塑樹脂からなる樹脂部品(II)とが一体化された樹脂成形品であって、前記樹脂部品(I)と前記樹脂部品(II)とが共通の境界面を介して一体化され、前記金属層の少なくとも一部が露出してなるとともに、前記樹脂部品(I)の総表面積に対する前記境界面の面積の比が0.3〜0.9の範囲である樹脂成形品。 Resin component (I) made of a thermoplastic resin provided with a metal layer on at least a part of its surface, and fiber-reinforced thermoplastic whose electromagnetic shielding properties measured by the KEC method are in the range of 0 dB or more and less than 20 dB in the frequency 1 GHz band A resin molded product in which a resin component (II) made of resin is integrated, wherein the resin component (I) and the resin component (II) are integrated through a common interface, and the metal layer A resin molded product in which at least a part of the resin surface is exposed and the ratio of the area of the boundary surface to the total surface area of the resin component (I) is in the range of 0.3 to 0.9. 前記樹脂成形品がアンテナ送受信機能を持つ請求項1に記載の樹脂成形品。 The resin molded product according to claim 1, wherein the resin molded product has an antenna transmission / reception function. 前記金属層の少なくとも一部が前記樹脂部品(II)と接している請求項1または2に記載の樹脂成形品。 The resin molded product according to claim 1 or 2, wherein at least a part of the metal layer is in contact with the resin component (II). 前記樹脂部品(I)に用いられる熱可塑性樹脂がポリカーボネート樹脂である請求項1〜3のいずれかに記載の樹脂成形品。 The resin molded article according to any one of claims 1 to 3, wherein the thermoplastic resin used in the resin component (I) is a polycarbonate resin. 前記樹脂部品(I)に用いられる熱可塑性樹脂がポリアミド樹脂である請求項1〜3のいずれかに記載の樹脂成形品。 The resin molded article according to any one of claims 1 to 3, wherein the thermoplastic resin used in the resin component (I) is a polyamide resin. 前記樹脂部品(I)に用いられる樹脂が繊維強化熱可塑性樹脂からなる請求項1〜5のいずれかに記載の樹脂成形品。 The resin molded product according to any one of claims 1 to 5, wherein the resin used for the resin component (I) is made of a fiber-reinforced thermoplastic resin. 前記樹脂部品(I)の長手方向に垂直な断面の少なくとも一部に凹凸部を有する請求項1〜6のいずれかに記載の樹脂成形品。 The resin molded product according to any one of claims 1 to 6, wherein the resin component (I) has an uneven portion in at least a part of a cross section perpendicular to the longitudinal direction. 前記樹脂部品(I)が長手方向に垂直な断面形状がL字型を有する請求項1〜7のいずれかに記載の樹脂成形品。 The resin molded product according to any one of claims 1 to 7, wherein the resin component (I) has an L-shaped cross section perpendicular to the longitudinal direction. 前記樹脂部品(I)が金属錯体を含む請求項1〜8のいずれかに記載の樹脂成形品。 The resin molded product according to any one of claims 1 to 8, wherein the resin component (I) contains a metal complex. 請求項1〜9のいずれかに記載の樹脂成形品を少なくとも1つ以上含む筐体。 A housing including at least one resin molded product according to claim 1.
JP2015111938A 2015-06-02 2015-06-02 Integrally molded part Pending JP2016221891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111938A JP2016221891A (en) 2015-06-02 2015-06-02 Integrally molded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111938A JP2016221891A (en) 2015-06-02 2015-06-02 Integrally molded part

Publications (1)

Publication Number Publication Date
JP2016221891A true JP2016221891A (en) 2016-12-28

Family

ID=57747083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111938A Pending JP2016221891A (en) 2015-06-02 2015-06-02 Integrally molded part

Country Status (1)

Country Link
JP (1) JP2016221891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200384704A1 (en) * 2018-04-25 2020-12-10 Asahi Kasei Kabushiki Kaisha Continuous-Fiber-Reinforced Resin Molding and Method for Manufacturing Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200384704A1 (en) * 2018-04-25 2020-12-10 Asahi Kasei Kabushiki Kaisha Continuous-Fiber-Reinforced Resin Molding and Method for Manufacturing Same

Similar Documents

Publication Publication Date Title
JP5344032B2 (en) Injection molded product and manufacturing method thereof
JP6617557B2 (en) Laminates and integrated molded products
TWI781970B (en) Integral molded body and method for producing the same
JP6167537B2 (en) Manufacturing method of fiber-reinforced plastic molded product and manufacturing method of integrally molded product
JP2016086400A (en) Case, electronic device including this case, and method of manufacturing this case
JP2008034823A (en) Cabinet for electronic device and method of manufacturing the same
JP2013075447A (en) Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items
WO2016002457A1 (en) Layered body and integrated molded article
KR102310727B1 (en) Housing for electromagnetic shielding
JP2016221891A (en) Integrally molded part
JP2011093213A (en) Manufacturing method of fiber reinforced plastic cabinet for electronic device
CN202587628U (en) Composite material housing of electronic product for preventing signal block
JP4090928B2 (en) Shield box
JP2015094995A (en) Housing component and manufacturing method of the same
US9647322B2 (en) Structural body and wireless communication apparatus
KR20160021751A (en) Waveguide slot antenna and warning system using same
JP6083325B2 (en) Housing and method for manufacturing the same
JPH09323372A (en) Frp structure and its manufacture
JP5936570B2 (en) Structure and wireless communication device
JP2012086556A (en) Composite molding and method for manufacturing the same
TW201110457A (en) Housing of electronic device and method for making the housing
JP2017001206A (en) Joint structure and method for manufacturing the same
JP2014018994A (en) Injection mold
TWM434678U (en) Hybrid fabric for preventing signal blocking
TWM516821U (en) Electro-product shell