JP2013075447A - Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items - Google Patents

Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items Download PDF

Info

Publication number
JP2013075447A
JP2013075447A JP2011217022A JP2011217022A JP2013075447A JP 2013075447 A JP2013075447 A JP 2013075447A JP 2011217022 A JP2011217022 A JP 2011217022A JP 2011217022 A JP2011217022 A JP 2011217022A JP 2013075447 A JP2013075447 A JP 2013075447A
Authority
JP
Japan
Prior art keywords
molding
thermoplastic resin
resin
base material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011217022A
Other languages
Japanese (ja)
Inventor
Kohei Kadokura
浩平 角倉
Toshihiro Tabeya
寿寛 田辺谷
Takayuki Onishi
孝幸 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011217022A priority Critical patent/JP2013075447A/en
Publication of JP2013075447A publication Critical patent/JP2013075447A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a composite laminated plate capable of preventing the deterioration of radio communication performance while maintaining, in particular, electromagnetic wave interception performance, achieving excellent design performance and partially having a radio wave transmission region, and an integrated molded article using the composite laminated plate.SOLUTION: The integrally-molded composite laminated plate (1C) is formed by laminating a first reinforced base material (2a) which is paper having a sheet shape and having a conductive discontinuous reinforcement fiber and a second base material (2b) different from the first base material to make the base materials adjacent to each other, laminating a matrix resin sheet (2c) mainly formed of thermoplastic resin at least on a surface layer in the thickness direction so as to sandwich the base materials (2a) (2b), impregnating the matrix resin sheet by hot melt press and then cooling the matrix resin sheet in a mold for shaping. The integrated molded article having the composite laminated plate is formed by performing injection molding using thermoplastic resin (1D) so as to surround at least part of the outer periphery of the composite laminated plate (1C).

Description

本発明は、複合積層板および複合積層板を用いた一体成形品ならびにそれらの製造方法に関するものであり、特に電磁波遮蔽性を維持したまま無線通信性能を劣化せず、意匠性に優れた部分的に電波透過領域を有した複合積層板および複合積層板を用いた一体成形品ならびにそれらの製造方法に関する。   The present invention relates to a composite laminate, an integrally molded product using the composite laminate, and a method for producing the same, and in particular, the wireless communication performance is not deteriorated while maintaining electromagnetic shielding properties, and a partial design excellent in design. The present invention relates to a composite laminate having a radio wave transmission region, an integrally molded product using the composite laminate, and a method for manufacturing the same.

近年、ノートパソコンや携帯電話に代表される無線通信機能を内蔵した製品の高機能化が進み、急速にオフィスや一般家庭へと普及した。これらの製品の多くは無線通信用のアンテナが実装されるが、携帯性や意匠性の観点から筺体内部にアンテナが配されるケースが大半である。   In recent years, products with built-in wireless communication functions typified by notebook computers and mobile phones have become more sophisticated, and have rapidly spread to offices and homes. Many of these products are equipped with antennas for wireless communication, but from the viewpoint of portability and design, most cases have antennas arranged inside the housing.

一般的な電子機器筐体に必要な特性として電磁波遮蔽性能(EMI)が挙げられる。これはある機器が動作することによって発せられる電波により、他の機器の動作や人体に影響を与えることを防ぐための指標として用いられている。電子機器は何の対策も施さなければ近くにある他の機器の放射電磁波、雷、太陽の活動などの影響で、機能低下や誤作動、停止、記録消失などのトラブルを生じる場合があり、また、電子機器自身の発する電磁波によって他機器の動作や近くにいる人間の健康に悪影響を与えてしまう場合があることも一般に論じられている。そのため電子機器の筐体材料としては電磁波遮蔽性能の高い導電性プラスチックや金属などが使用されているが、特に携行が容易であるノートパソコンや携帯電話などの小型電子機器向けの筐体材料については、電磁波遮蔽性能に加え堅牢性と軽量性に優れる炭素繊維強化プラスチックやマグネシウム合金などが選定される場合が多い。   An electromagnetic shielding performance (EMI) is a characteristic required for a general electronic device casing. This is used as an index for preventing radio waves emitted by the operation of a certain device from affecting the operation of other devices and the human body. If no measures are taken, electronic devices may cause troubles such as functional degradation, malfunction, stoppage, loss of records, etc. due to the effects of electromagnetic radiation, lightning, and solar activity from other nearby devices. It has also been generally discussed that electromagnetic waves emitted by electronic devices themselves may adversely affect the operation of other devices and the health of nearby humans. For this reason, conductive plastics and metals with high electromagnetic shielding performance are used as housing materials for electronic devices. However, especially for case materials for small electronic devices such as laptop computers and mobile phones that are easy to carry. In many cases, carbon fiber reinforced plastics or magnesium alloys that are excellent in robustness and light weight in addition to electromagnetic shielding performance are selected.

このような電子機器筐体を構成する筺体全面に電磁波遮蔽性能が高い材料、例えば炭素繊維強化プラスチックやマグネシウム合金などの金属を選定した場合、平均アンテナ利得の低下や偏った電波指向性の発現などが生じ、無線通信性能が劣化するという機能的な問題が生じていた。   When a material with high electromagnetic shielding performance, such as a metal such as carbon fiber reinforced plastic or magnesium alloy, is selected for the entire casing of such an electronic device casing, the average antenna gain decreases and the biased radio wave directivity develops. As a result, a functional problem that wireless communication performance deteriorates has occurred.

特許文献1には、電磁波遮蔽効果を持つ筐体の一部分に別成形基材である絶縁体基材をはめ込み、基材に含まれる熱可塑樹脂の溶融温度よりも高い温度で加熱プレス成形して一体化する製造方法が開示されており、一部に絶縁体基材を使用することにより電波透過領域をもった筐体を作製できるようにはなったが、絶縁体基材を別成形するため製造工程が追加され、量産性の面で課題が残った。   In Patent Document 1, an insulating base material, which is a separate molding base material, is fitted into a part of a casing having an electromagnetic wave shielding effect, and hot press molding is performed at a temperature higher than the melting temperature of the thermoplastic resin contained in the base material. An integrated manufacturing method has been disclosed, and it has become possible to produce a casing having a radio wave transmission region by using an insulating base material in part. A manufacturing process was added, and problems remained in terms of mass productivity.

特許文献2には、電磁波遮蔽効果を持つ繊維強化熱硬化性樹脂材料を金型に配置した後、絶縁体部材を射出成形することにより強固な接合強度を持って接合させ、かつ量産性を確保する手法であるアウトサート射出成形接合技術が開示されており、接合強度と量産性を確保した成形技術が確立されたが、無線通信性能を得るための電波透過領域に使用する絶縁部材料は一般的に成形収縮率が大きいため、電波透過領域を大きく確保すると射出成形後に成形収縮率差から筐体に反りや変形を生じやすいという課題が残った。このような技術課題に対し、絶縁部材の材料設計指針が明確に記載された文献は存在しない。   In Patent Document 2, a fiber-reinforced thermosetting resin material having an electromagnetic wave shielding effect is placed in a mold, and then an insulator member is injection-molded to have a strong bonding strength and secure mass productivity. Outsert injection molding joining technology is disclosed, and molding technology that secures joint strength and mass productivity has been established, but insulating material used in the radio wave transmission region to obtain wireless communication performance is generally Since the molding shrinkage rate is large, there remains a problem that if the radio wave transmission region is large, the casing is likely to be warped or deformed from the difference in molding shrinkage rate after injection molding. For such technical problems, there is no document that clearly describes the material design guidelines for insulating members.

このように、従来技術では電磁波遮蔽効果を持つ筐体の天面基材にも、絶縁部材料にも熱可塑性樹脂を用い、かつ効果的に反りや変形を防止し、意匠性に優れ、量産性を確保した複合積層板を用いた電子機器筐体の製造方法の開発が望まれていた。   In this way, in the conventional technology, thermoplastic resin is used for the top surface base material of the housing that has an electromagnetic wave shielding effect and the insulating material, and it effectively prevents warping and deformation, has excellent design properties, and is mass-produced. Development of a method of manufacturing an electronic device casing using a composite laminate plate that secures high performance has been desired.

特開2011−93213号公報JP 2011-93213 A 特開2008−34823号公報JP 2008-34823 A

本発明は、従来技術の背景に鑑み、効果的に反りや変形を防止し、意匠性に優れ、量産性を確保した、複合積層板および複合積層板を用いた一体成形品ならびにそれらの製造方法を提供することを目的とする。   In light of the background of the prior art, the present invention effectively prevents warping and deformation, has excellent design properties, and ensures mass productivity, and an integrally molded product using the composite laminate and a method for manufacturing the same The purpose is to provide.

本発明者らは前記目的を達成すべく鋭意検討した結果、前記課題を達成することができる、次の部分的に電波透過領域を有した複合積層板の製造方法とこれを用いた一体成形品を見出した。
(1)導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材(2a)と第1の基材と異なる第2の基材(2b)とを突き合わせ接合した複合基材を、少なくとも複数積層した基材積層体の層間の少なくとも一部に、熱可塑性樹脂を主成分としたマトリックス樹脂シート(2c)を挟入した成形前積層体を形成し、前記成形前積層体を内部に配置した成形型を加熱溶融プレスによりマトリックス樹脂を前記複合基材内に含浸させた後、前記成形型内で冷却することにより一体化成形した複合積層板(1C)の製造方法。
(2)隣接する前記複合基材の境界部分の一部が重なり合うように積層することを特徴とした(1)に記載の複合積層板(1C)の製造方法。
(3)前記加熱溶融プレスにおいて、前記成形前積層体温度を融点以上の温度で加熱溶融プレスしたのち、固化温度以下になるまで冷却する間、圧力を保持することを特徴とした(1)または(2)に記載の複合積層板(1C)の製造方法。
(4)前記第1の強化基材(2a)にマトリックス樹脂が含浸した電磁波遮蔽領域となる成形材(1A)のKEC法により測定される電磁波遮蔽性が周波数1GHz帯において10〜80dBとなる材料を使用することを特徴とする(1)から(3)のいずれかに記載の複合積層板(1C)の製造方法。
(5)前記第2の基材(2b)にマトリックス樹脂が含浸した電波透過領域となる成形材(1B)のKEC法により測定される電磁波遮蔽性が周波数1GHz帯において0〜10dBとなる材料を使用することを特徴とする(1)から(4)のいずれかに記載の複合積層板(1C)の製造方法。
(6)前記電磁波遮蔽領域となる成形材(1A)の繊維重量含有率(Wf)が5%から80%であることを特徴とする(1)から(5)のいずれかに記載の複合積層板(1C)の製造方法。
(7)前記電波透過領域となる成形材(1B)は強化繊維を含むことができ、強化繊維が非導電繊維であるガラス繊維、アラミド繊維、化学繊維、強化フィラーから選択される少なくとも1種を含む、(1)から(6)のいずれかに記載の複合積層板(1C)の製造方法。
(8)前記電波透過領域となる成形材(1B)の繊維重量含有率(Wf)の範囲が0%から80%であることを特徴とする(1)から(7)のいずれかに記載の複合積層板(1C)の製造方法。
(9)(1)から(3)のいずれかに記載の前記複合積層板(1C)の周縁部の少なくとも一部に接合部となるスロープ形状を設けた後に、前記周縁部の少なくとも一部を覆うように熱可塑性樹脂(1D)を射出成形して一体化することを特徴とする一体成形品の製造方法。
(10)(1)から(9)のいずれかに記載の前記複合積層板(1C)の層間に、コア層(11E)として樹脂フィルム、シート、発泡体から選択される1種以上を積層することを特徴とする一体成形品の製造方法。
(11)電気・電子機器筐体、家電機器筐体のいずれかの用途に用いること特徴とする(9)または(10)に記載の一体成形品の製造方法。
(12)導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材(2a)と第1の基材と異なる第2の基材(2b)とを突き合わせ接合した複合基材を、少なくとも複数積層した基材積層体の層間の少なくとも一部に、熱可塑性樹脂を主成分としたマトリックス樹脂シート(2c)を挟入した成形前積層体に、加熱溶融プレスによりマトリックス樹脂を含浸させ、該マトリックス樹脂を冷却して一体化成形した複合積層板(1C)。
(13)前記成形前積層体の一部を折り曲げて立ち壁の一部とする(12)に記載の複合積層板(1C)。
(14)(12)または(13)のいずれかに記載の前記複合積層板(1C)の周縁部の少なくとも一部にスロープ形状を有する接合部を設けるとともに、前記周縁部の少なくとも一部を覆うように熱可塑性樹脂(1D)を射出成形して一体化することを特徴とする一体成形品。
(15)別成形した小部品(14F)の絶縁材料を、熱可塑性樹脂(1D)とともに一体成形されたことを特徴とする(14)に記載の一体成形品。
As a result of intensive studies to achieve the above-mentioned object, the present inventors can achieve the above-mentioned problem, and a method for manufacturing a composite laminate having a partially radio wave transmission region and an integrally molded product using the same. I found.
(1) A composite base material in which a first reinforcing base (2a) that is a sheet-like paper having conductive discontinuous reinforcing fibers and a second base (2b) different from the first base are butt-joined At least a part of the layers of the substrate laminate, and a matrix resin sheet (2c) mainly composed of a thermoplastic resin is interposed between the laminates before molding, and the laminate before molding is formed. A method for producing a composite laminate (1C), in which a molding die placed inside is impregnated with a matrix resin by a hot melt press into the composite base material and then cooled in the molding die to be integrally molded.
(2) The method for producing a composite laminate (1C) according to (1), wherein the laminates are laminated so that a part of the boundary portion between the adjacent composite base materials overlaps.
(3) In the heating and melting press, the pressure is maintained during cooling until the temperature of the laminated body before molding is equal to or higher than the melting point and then cooling to a solidification temperature or lower (1) or The manufacturing method of the composite laminated sheet (1C) as described in (2).
(4) A material in which the electromagnetic wave shielding property measured by the KEC method of the molding material (1A), which is an electromagnetic wave shielding region impregnated with the matrix resin in the first reinforced substrate (2a), is 10 to 80 dB in the frequency 1 GHz band. The method for producing a composite laminate (1C) according to any one of (1) to (3), wherein:
(5) A material whose electromagnetic wave shielding property measured by the KEC method of the molding material (1B), which is a radio wave transmission region in which the second base material (2b) is impregnated with a matrix resin, is 0 to 10 dB in the frequency band of 1 GHz. A method for producing a composite laminate (1C) according to any one of (1) to (4), wherein the method is used.
(6) The composite laminate according to any one of (1) to (5), wherein a fiber weight content (Wf) of the molding material (1A) serving as the electromagnetic wave shielding region is 5% to 80%. Manufacturing method of board (1C).
(7) The molding material (1B) serving as the radio wave transmitting region can include reinforcing fibers, and the reinforcing fibers are at least one selected from glass fibers, aramid fibers, chemical fibers, and reinforcing fillers, which are non-conductive fibers. A method for producing a composite laminate (1C) according to any one of (1) to (6).
(8) The range of the fiber weight content (Wf) of the molding material (1B) serving as the radio wave transmission region is from 0% to 80%, according to any one of (1) to (7) A method for producing a composite laminate (1C).
(9) After providing the slope shape which becomes a junction part in at least one part of the peripheral part of the said composite laminated board (1C) in any one of (1) to (3), at least one part of the said peripheral part is used. A method for producing an integrally molded product, wherein the thermoplastic resin (1D) is injection-molded and integrated so as to cover.
(10) One or more types selected from resin films, sheets, and foams are laminated as the core layer (11E) between the layers of the composite laminate (1C) according to any one of (1) to (9). A method for producing an integrally molded product,
(11) The method for producing an integrally molded product according to (9) or (10), wherein the method is used for any one of an electrical / electronic device housing and a home appliance housing.
(12) A composite base material in which a first reinforcing base (2a), which is a sheet-like paper having conductive discontinuous reinforcing fibers, and a second base (2b) different from the first base are butt-joined Is impregnated with a matrix resin by a hot melt press into a laminate before molding in which a matrix resin sheet (2c) containing a thermoplastic resin as a main component is sandwiched between at least a part of the layers of the substrate laminate. A composite laminate (1C) obtained by cooling and integrally molding the matrix resin.
(13) The composite laminate (1C) according to (12), wherein a part of the laminate before molding is bent to form part of a standing wall.
(14) A joint having a slope shape is provided on at least a part of the peripheral part of the composite laminate (1C) according to any one of (12) and (13), and at least a part of the peripheral part is covered. Thus, an integrally molded product characterized by integrating the thermoplastic resin (1D) by injection molding.
(15) The integrally molded product according to (14), wherein the insulating material of the separately molded small part (14F) is integrally molded together with the thermoplastic resin (1D).

本発明の複合積層板および一体成形品の製造方法は、電磁波遮蔽性を維持したまま無線通信性能を劣化させず、効果的に反りや変形を防止し、意匠性に優れながら量産性を確保し従来技術以上に短時間で製造することができる。   The manufacturing method of the composite laminate and the integrally molded product of the present invention does not deteriorate the wireless communication performance while maintaining the electromagnetic wave shielding property, effectively prevents warping and deformation, and ensures mass productivity while being excellent in design. It can be manufactured in a shorter time than the prior art.

(a)本発明における複合積層板の製造方法を用いた一体成形品の一例を示す斜視図とその接合部の部分断面図および(b)部分断面の一部の拡大図である。(A) The perspective view which shows an example of the integrally molded product using the manufacturing method of the composite laminated board in this invention, the fragmentary sectional view of the junction part, (b) The enlarged view of a part of fragmentary cross section. 本発明における複合積層板の製造方法の一形態を説明する工程図であり、それぞれ(a)積層工程、(b)プレス成形工程、(c)得られた複合積層板の模式断面図、である。It is process drawing explaining one form of the manufacturing method of the composite laminated board in this invention, (a) Lamination process, (b) Press molding process, (c) Schematic sectional drawing of the obtained composite laminated board, respectively. . (a)導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材(3a)と第1の基材と異なる第2の基材(3b)の境界部分における積層方法を示した模式断面図、および(b)同一平面内に突合せた状態を示す正面図である。(A) The lamination | stacking method in the boundary part of the 2nd base material (3b) different from the 1st reinforcement base material (3a) and the 1st base material which are sheet-like papermaking which has an electroconductive discontinuous reinforcement fiber is shown. It is a schematic cross-sectional view, and (b) is a front view showing a state of butting in the same plane. (a)導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材(4a)と第1の基材と異なる第2の基材(4b)の境界部分における積層方法を示した図、および(b)一部(4L)を重ね合わせた正面図である。(A) The lamination | stacking method in the boundary part of the 2nd base material (4b) different from a 1st reinforcement base material (4a) and a 1st base material which is a sheet-like papermaking which has an electroconductive discontinuous reinforcement fiber is shown. And (b) is a front view in which a part (4L) is superimposed. (a)プレス成形した際の温度履歴を、縦軸に温度、横軸に時間を取って各工程を示した図および(b)温度履歴の測定方法を示す模式図である。(A) It is the figure which showed the temperature history at the time of press molding, took the temperature on the vertical axis, took time on the horizontal axis, and showed each process, and (b) the schematic diagram which shows the measuring method of a temperature history. (a)電磁波遮蔽領域となる成形材(6A)により電波透過領域となる成形材(6B)の周囲を囲うように積層した場合におけるゆがみの生じた複合積層板の斜視図、(b)その一部を切断することにより内部ひずみが開放された複合積層板の模式図である。(A) Perspective view of a composite laminate having distortion when laminated so as to surround the molding material (6B) serving as a radio wave transmission region by the molding material (6A) serving as an electromagnetic wave shielding region, (b) It is a schematic diagram of the composite laminated board by which the internal strain was open | released by cut | disconnecting a part. アウトサート射出成形するにあたり、複合積層板の外周端部にアウトサート樹脂との接合部形状を設けるようにスロープ加工の一形態を示した図である。In outsert injection molding, it is the figure which showed one form of the slope process so that the junction part shape with outsert resin might be provided in the outer peripheral edge part of a composite laminated board. (a)本発明における複合積層板を有する成形品の複合積層板と小部品の外周の少なくとも一部を囲うように、複合積層板(8C)と小部品(8F)の絶縁材料を同時に金型内にインサートして、これらの外周の少なくとも一部を囲うように、熱可塑性樹脂(8D)を用いアウトサート成形をする一例を説明するための工程を模式的に表した断面図および(b)この工程で得られた成形品の一部断面斜視図である。(A) The composite laminate plate (8C) and the small component (8F) insulating material are simultaneously molded so as to surround at least part of the outer periphery of the composite laminate plate and the small component of the molded product having the composite laminate plate in the present invention Sectional drawing which represented typically the process for explaining an example which inserts in and encloses at least one part of these outer periphery, and performs an outsert molding using a thermoplastic resin (8D), and (b) It is a partial cross section perspective view of the molded product obtained at this process. 電界シールド性(KEC法)の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of electric field shielding property (KEC method). (a)得られた複合積層板の斜視図、(b)接合部の段差の測定方法を説明するための概略図と(c)測定した粗さ曲線図の一例である。(A) The perspective view of the obtained composite laminated board, (b) The schematic for demonstrating the measuring method of the level | step difference of a junction part, (c) It is an example of the roughness curve figure measured. (a)本発明の別の態様に係る複合積層板の一部をカットした斜視図、(b)複合積層板(11C)の積層構成において、コア層(11E)として樹脂フィルムを選択した場合の積層例を示した拡大断面図である。(A) The perspective view which cut a part of the composite laminated board which concerns on another aspect of this invention, (b) In the laminated structure of a composite laminated board (11C), when the resin film is selected as a core layer (11E) It is the expanded sectional view which showed the lamination example. (a)筐体形状の立ち壁の一部を同時に一体化成形した複合積層板の外周の少なくとも一部を囲うように、熱可塑性樹脂(12D)を用いアウトサート成形をする一例を説明するための工程を模式的に表した断面図、(b)この工程で得られた成形品の斜視図および(c)この工程で得られた成形品の一部断面斜視図である。(A) To explain an example in which outsert molding is performed using a thermoplastic resin (12D) so as to enclose at least a part of the outer periphery of a composite laminate in which a part of a casing-shaped standing wall is integrally molded simultaneously. FIG. 4 is a cross-sectional view schematically showing the step (b), (b) a perspective view of the molded product obtained in this step, and (c) a partial cross-sectional perspective view of the molded product obtained in this step. (a)筐体形状の立ち壁の一部を同時に一体化成形した複合積層板の外周の少なくとも一部を囲うように、熱可塑性樹脂(13D)を用いアウトサート成形した成形品の斜視図および(b)成形品の一部をカットした斜視図である。(A) A perspective view of a molded product that is outsert molded using a thermoplastic resin (13D) so as to surround at least a part of the outer periphery of a composite laminate in which a part of a casing-shaped standing wall is integrally molded simultaneously; (B) It is the perspective view which cut a part of molded article. 複合積層板と別成形しておいた小部品(14F)の絶縁材料を同時に金型内にインサートして、これらの外周の少なくとも一部を囲うように、熱可塑性樹脂(14D)を用い射出成形して得られることを特徴とする複合積層板を有する一体成形品の一例を示す斜視図である。The insulating material of the small component (14F) that has been molded separately from the composite laminate is inserted into the mold at the same time, and injection molding is performed using the thermoplastic resin (14D) so as to surround at least a part of the outer periphery thereof. It is a perspective view which shows an example of the integrally molded article which has a composite laminated board characterized by being obtained by doing.

以下、本発明の具体的な態様を、図面を用いて説明する。なお、本発明は図面に記載された構成に限定されるものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the structure described in drawing.

図1や図2に示すように、本発明に用いられる複合積層板1Cは、少なくとも、導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2a、第1の基材と異なる第2の基材2b、および熱可塑性樹脂を主成分としたマトリックス樹脂シート2cから構成される。以下に、本発明の製造方法について、これらの構成要素と、好ましい実施の形態について詳細に説明する。   As shown in FIG. 1 and FIG. 2, the composite laminate 1C used in the present invention includes at least a first reinforcing substrate 2a and a first substrate which are sheet-like papermaking having conductive discontinuous reinforcing fibers. And a matrix resin sheet 2c mainly composed of a thermoplastic resin. In the following, the manufacturing method of the present invention will be described in detail with respect to these components and preferred embodiments.

まず、本発明の製造方法に係る、構成要素を詳細に説明する。   First, components according to the manufacturing method of the present invention will be described in detail.

導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aは、例えば分散媒体に強化繊維束を投入し、強化繊維を分散媒体中に分散させた後、分散媒体を除去して強化繊維をシート状に引き揃える工程により得られる。導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aと後述する熱可塑性樹脂を主成分としたマトリックス樹脂シート2cを含浸した複合積層板は、繊維補強効果により寸法安定性と剛性に優れているばかりか、導電性繊維を用いていることにより、電磁波遮蔽材として機能し、導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aと後述する熱可塑性樹脂を主成分としたマトリックス樹脂シート2cで形成される領域は、高い電波遮断性能を有する電磁波遮蔽領域となる。   The first reinforcing substrate 2a, which is a sheet-like paper having conductive discontinuous reinforcing fibers, is, for example, throwing reinforcing fiber bundles into a dispersion medium, dispersing the reinforcing fibers in the dispersion medium, and then removing the dispersion medium Thus, it is obtained by a process of aligning the reinforcing fibers into a sheet shape. The composite laminated board impregnated with the first reinforcing substrate 2a, which is a sheet-like paper having conductive discontinuous reinforcing fibers, and the matrix resin sheet 2c mainly composed of a thermoplastic resin, which will be described later, is dimensionally stabilized by the fiber reinforcing effect. The first reinforcing substrate 2a, which is a sheet-shaped paper having a conductive discontinuous reinforcing fiber, functions as an electromagnetic wave shielding material by using conductive fibers as well as excellent properties and rigidity, and will be described later. The region formed by the matrix resin sheet 2c containing the thermoplastic resin as a main component is an electromagnetic wave shielding region having high radio wave shielding performance.

本発明に係るシート状抄紙の目付けは特に制限されるものではないが、好ましくは30〜300g/mのシート抄紙であり、この目付け時の厚みは15〜170μmとなる。より好ましくは75〜200g/m、厚みは40〜120μm、さらに好ましくは100〜150g/m、厚みは55〜90μmとした抄紙である。抄紙の目付けが小さすぎると、狙いの繊維重量含有量(Wf)にするために、細かい調整はできるが、積層に多くの抄紙枚数を必要とすることになり成形時の取り扱い性が低下する。また、反対に抄紙の目付けが大きいと、狙いの繊維重量含有量(Wf)にするために、少ない積層枚数で成形可能になるが、抄紙が厚いため成形の際に溶融した樹脂が含浸し難くなる。これをふまえ、成形時の取り扱い性のバランスから、目付けは100〜150g/mとすることが例示できる。 The basis weight of the sheet paper according to the present invention is not particularly limited, but is preferably a sheet paper of 30 to 300 g / m 2 , and the thickness at this basis weight is 15 to 170 μm. More preferably, the paper is 75 to 200 g / m 2 , the thickness is 40 to 120 μm, more preferably 100 to 150 g / m 2 , and the thickness is 55 to 90 μm. If the basis weight of the papermaking is too small, fine adjustment can be made in order to obtain the target fiber weight content (Wf), but a large number of papermaking is required for lamination, and the handling at the time of molding is reduced. On the other hand, if the basis weight of the papermaking is large, it becomes possible to form with a small number of laminated sheets in order to achieve the target fiber weight content (Wf). However, since the papermaking is thick, it is difficult to impregnate the molten resin at the time of molding. Become. Based on this, it is possible to exemplify that the basis weight is 100 to 150 g / m 2 from the balance of the handleability at the time of molding.

第1の基材と異なる第2の基材2bは、絶縁性繊維を用いているか、または樹脂のみを用いることにより、電波透過材として機能し、第1の基材と異なる第2の基材2bと後述する熱可塑性樹脂を主成分としたマトリックス樹脂シート2cで形成される領域は低い電波遮断性能を有するので、電波透過領域となる。   The second base material 2b different from the first base material functions as a radio wave transmitting material by using insulating fibers or using only a resin, and a second base material different from the first base material. Since the area | region formed with the matrix resin sheet 2c which has 2b and the thermoplastic resin mentioned later as a main component has low radio wave shielding performance, it becomes a radio wave transmission area | region.

導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aで強化繊維として用いる導電性繊維としては、例えば、アルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維や、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維(黒鉛繊維を含む)が例示できる。これらの繊維には、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などの表面処理が施されていても良い。また、これらの導電性繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。これらの導電性繊維の中でも、筺体の軽量性や剛性を効率的に高めることができる炭素繊維を用いるのが好ましい。   Examples of the conductive fiber used as the reinforcing fiber in the first reinforcing substrate 2a that is a sheet-like paper having conductive discontinuous reinforcing fibers include metal fibers such as aluminum fibers, brass fibers, and stainless fibers, and polyacrylonitrile. Examples thereof include carbon fiber of rayon type, rayon type, lignin type and pitch type (including graphite fiber). These fibers may be subjected to a surface treatment such as a treatment with a coupling agent, a treatment with a sizing agent, or an adhesion treatment of an additive. Moreover, these conductive fibers may be used individually by 1 type, and may use 2 or more types together. Among these conductive fibers, it is preferable to use carbon fibers that can efficiently increase the lightness and rigidity of the housing.

第1の基材と異なる第2の基材2bで強化繊維として用いる絶縁性繊維としては、例えば、ガラス繊維や、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレンなどの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が例示できる。これらの繊維には、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などの表面処理が施されていても良い。また、これらの絶縁性繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。これらの導電性繊維の中でも、特に電波透過性、比剛性、コストの観点からガラス繊維を用いるのが好ましい。   Examples of the insulating fiber used as the reinforcing fiber in the second base material 2b different from the first base material include glass fiber, organic fiber such as aramid, PBO, polyphenylene sulfide, polyester, acrylic, nylon, and polyethylene, Examples thereof include inorganic fibers such as silicon carbide and silicon nitride. These fibers may be subjected to a surface treatment such as a treatment with a coupling agent, a treatment with a sizing agent, or an adhesion treatment of an additive. Moreover, these insulating fibers may be used individually by 1 type, and may use 2 or more types together. Among these conductive fibers, it is particularly preferable to use glass fibers from the viewpoint of radio wave transmission, specific rigidity, and cost.

導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aと第1の基材と異なる第2の基材2bに含浸させマトリックス樹脂として用いる熱可塑性樹脂を主成分としたマトリックス樹脂シート2cである前記熱可塑性樹脂としては特に制限はなく、具体例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。熱可塑性樹脂成分としては、耐熱性、耐薬品性の観点からPPSが、成形品外観、寸法安定性の観点からポリカーボネートやスチレン系樹脂が、成形品の強度や耐衝撃性の観点からポリアミドが好ましく用いられる。マトリックスには、用途等に応じ、熱可塑性樹脂に加えて、耐衝撃性向上のために、ゴム成分などの他のエラストマーを含有しても良いし、種々の機能を与えるために、他の充填材や添加剤を含有してもよい。かかる充填材や添加剤としては、例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。   The main component is a thermoplastic resin used as a matrix resin by impregnating the first reinforced substrate 2a, which is a sheet-like paper having conductive discontinuous reinforcing fibers, and the second substrate 2b different from the first substrate. The thermoplastic resin that is the matrix resin sheet 2c is not particularly limited, and specific examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), Polyester such as liquid crystal polyester, polyolefin such as polyethylene (PE), polypropylene (PP), polybutylene, styrene resin, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), poly salt Vinyl (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone ( PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), phenolic resin, phenoxy resin Fluorine resins such as polytetrafluoroethylene, thermoplastic elastomers such as polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, and fluorine These copolymers, modification products, and may be a two or more blended resins. As the thermoplastic resin component, PPS is preferable from the viewpoint of heat resistance and chemical resistance, polycarbonate and styrene resin are preferable from the viewpoint of molded product appearance and dimensional stability, and polyamide is preferable from the viewpoint of the strength and impact resistance of the molded product. Used. The matrix may contain other elastomers such as rubber components to improve impact resistance in addition to the thermoplastic resin, depending on the application etc., and other fillings to give various functions You may contain a material and an additive. Examples of such fillers and additives include inorganic fillers, flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, and coloring prevention. Agents, heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.

また、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cは、厚みは特に制限されるものではないが、好ましくは30〜1000μmのシート厚みであり、より好ましくは50〜600μm、さらに好ましくは100〜300μmとしたマトリックス樹脂シートである。   Further, the thickness of the matrix resin sheet 2c mainly composed of a thermoplastic resin is not particularly limited, but is preferably a sheet thickness of 30 to 1000 μm, more preferably 50 to 600 μm, and still more preferably 100 to 100 μm. It is a matrix resin sheet having a thickness of 300 μm.

樹脂シートについても抄紙と同様の理由により、好ましい厚みが決定される。厚みが薄すぎると、狙いの繊維重量含有量(Wf)にするために、細かい調整や含浸性が向上するが、積層に多くのマトリックス樹脂シート枚数を必要とすることになり成形時の取り扱い性が低下する。また、反対に厚みが厚いと、狙いの繊維重量含有量(Wf)にするために、少ない積層枚数で成形可能になるが、抄紙に完全に含浸しなかった樹脂リッチ層ができした樹脂が含浸し難くなる。これをふまえ、成形時の取り扱い性のバランスから、目付けは100〜150g/mとすることが例示できる。 The preferred thickness of the resin sheet is also determined for the same reason as in papermaking. If the thickness is too thin, fine adjustment and impregnation are improved in order to achieve the target fiber weight content (Wf), but a large number of matrix resin sheets are required for lamination, and handling during molding is easy. Decreases. On the other hand, if the thickness is thick, the target fiber weight content (Wf) can be formed with a small number of laminated sheets, but the resin-rich layer that has not been completely impregnated into the papermaking is impregnated. It becomes difficult to do. Based on this, it is possible to exemplify that the basis weight is 100 to 150 g / m 2 from the balance of the handleability at the time of molding.

本発明の複合積層板に用いられる好ましい製造方法は、導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aと、第1の基材と異なる第2の基材2bとを突き合わせ接合した複合基材を、少なくとも複数積層した基材積層体の層間の少なくとも一部に熱可塑性樹脂を主成分としたマトリックス樹脂シート2cを積層した成形前積層体を形成し、一対の成形型内に成形前積層体を配置し、成形型をプレス機によって加熱溶融させながら圧力を加えることにより、シート状だったマトリックス樹脂を成形前積層体内に含浸させた後、成形型内で冷却して賦形することにより一体化成形することにより複合積層板2Cを得る方法である。   A preferable production method used for the composite laminate of the present invention is a first reinforcing substrate 2a which is a sheet-like paper having conductive discontinuous reinforcing fibers, and a second substrate 2b which is different from the first substrate. And forming a laminated body before molding in which a matrix resin sheet 2c containing a thermoplastic resin as a main component is laminated on at least a part of layers between at least a plurality of laminated substrates. The pre-molding laminate is placed in the mold, and pressure is applied while the mold is heated and melted with a press, so that the matrix resin that has been in the form of a sheet is impregnated into the pre-molding laminate and then cooled in the mold. Then, it is a method of obtaining the composite laminate 2C by integrally forming by shaping.

図1に本発明により得られる複合積層板の製造方法の一例を示す。本発明により得られる複合積層板2Cは、導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材2aに熱可塑性樹脂を主成分としたマトリックス樹脂シート2cが含浸した電磁波遮蔽領域となる成形材1Aと、第1の基材と異なる第2の基材2bに熱可塑性樹脂を主成分としたマトリックス樹脂シート2cが含浸した電波透過領域となる成形材1Bで構成され、電磁波遮蔽領域となる成形材1Aと電波透過領域となる成形材1Bの間には接合部1ABが形成されている。   FIG. 1 shows an example of a method for producing a composite laminate obtained by the present invention. The composite laminate 2C obtained according to the present invention is an electromagnetic shielding material in which a matrix resin sheet 2c mainly composed of a thermoplastic resin is impregnated in a first reinforcing substrate 2a which is a sheet-like paper having conductive discontinuous reinforcing fibers. A molding material 1A serving as a region and a molding material 1B serving as a radio wave transmission region in which a matrix resin sheet 2c mainly composed of a thermoplastic resin is impregnated in a second base material 2b different from the first base material, A joint 1AB is formed between the molding material 1A serving as the shielding region and the molding material 1B serving as the radio wave transmission region.

第1の強化基材2aと第1の基材と異なる第2の基材2bとを突き合わせ接合した複合基材は、基材同士を面内方向に突合せ接合するだけでも十分な強度は得られる。複合基材の積層方法は、図2のように、突き合わせ接合した箇所を厚さ方向に揃えてもよいし、さらに表面外観における平滑性を高めるために、より好ましい形態としては、図4に示すように、接合部1ABが互い違いに重ね合わさるようにするとよい。互い違いに重ね合わさることより、成形後の接合部に形成される溝深さが浅くなり表面状態がより平滑に保つことができる。   The composite base material obtained by butt-joining the first reinforced base material 2a and the second base material 2b different from the first base material can obtain sufficient strength even if the base materials are butt-joined in the in-plane direction. . As shown in FIG. 2, the composite base material is laminated as shown in FIG. 4 as a more preferable form in order to align the butt-joined portions in the thickness direction and to further improve the smoothness of the surface appearance. In this way, it is preferable that the joint portions 1AB are alternately stacked. By alternately superimposing, the depth of the groove formed in the joint after molding becomes shallow, and the surface state can be kept smoother.

図4に示すように、重ね合わさる領域長をオーバーラップ長4Lとしたとき、オーバーラップ長の上限には特に制限はないが、オーバーラップ長4Lは製造する成形品の大きさに合わせて変更することが好ましい。オーバーラップさせる方向の成形品長さに対して1%から10%の長さであることが好ましく、より好ましくは1%から5%である。1%未満であると、大型基材では問題にならないことも考えられるが、本発明のようなノートパソコン程度の筐体サイズである場合では、重ね合わせる際にオーバーラップ長が短すぎて、重ね合わせることが困難となる。また10%を超える場合については、筐体サイズで考えた場合、筐体天面内で広範囲にわたって、オーバーラップ領域が作製されるため外観が低下する恐れがある。オーバーラップがあることにより、溝深さが浅くなり表面状態がより平滑に保たれる傾向にあり、より強固な接合部を形成することができる。また、表面の平滑性、接合強度、生産性のバランスから10%以下とすることが例示できる。   As shown in FIG. 4, when the overlapped region length is an overlap length of 4L, the upper limit of the overlap length is not particularly limited, but the overlap length 4L is changed according to the size of the molded product to be manufactured. It is preferable. The length is preferably 1% to 10%, more preferably 1% to 5%, with respect to the length of the molded product in the overlapping direction. If it is less than 1%, a large base material may not be a problem. However, in the case of a case size of a notebook personal computer like the present invention, the overlap length is too short when overlapping, It becomes difficult to match. In addition, when the size exceeds 10%, when considering the case size, the appearance may be deteriorated because the overlap region is formed over a wide range within the top surface of the case. Due to the overlap, the groove depth becomes shallow and the surface state tends to be kept smoother, and a stronger joint can be formed. Further, it can be exemplified as 10% or less from the balance of surface smoothness, bonding strength, and productivity.

また、第2の基材3bの配置方法は特に制限はないが、図3または図4に示すように、第1の強化基材3aが第1の基材と異なる第2の基材3bの外周の少なくとも一部を覆うように配置されている状態が好ましい。例えば、第1の基材と異なる第2の基材3bが樹脂のみの場合や、第1の基材と異なる第2の基材3bの強化繊維が第1の強化基材3aに比較して大きい繊維径の繊維を選択した場合、もしくは繊維重量含有率(Wf)が低い場合には、成形圧力により第1の基材と異なる第2の基材3bが流れて形状を大きく崩れるおそれがあり、これを防止するためである。   Further, the arrangement method of the second base material 3b is not particularly limited. However, as shown in FIG. 3 or FIG. 4, the first base material 3b is different from the first base material 3b in the second base material 3b. The state arrange | positioned so that at least one part of outer periphery may be covered is preferable. For example, when the second base material 3b different from the first base material is only a resin, or the reinforcing fibers of the second base material 3b different from the first base material are compared with the first reinforcing base material 3a. When a fiber having a large fiber diameter is selected, or when the fiber weight content (Wf) is low, the second base material 3b different from the first base material may flow due to the molding pressure, and the shape may be greatly collapsed. This is to prevent this.

このような基材積層体は、上記の積層方法に限定されるものではなく、必要に応じて、複合基材以外の他の基材を本発明の目的を損なわない範囲で積層してもよいし、同様に電波透過領域となる成形材1Bの位置や領域サイズについても限定されるものではなく、必要に応じて位置を変更したり、二箇所以上に分割したり、そのサイズを変更しても良い。また、電波透過領域となる成形材1Bの無い(電磁波遮蔽領域となる成形材1Aのみ)層を設けてもよい。   Such a substrate laminate is not limited to the above-described lamination method, and may be laminated as long as the other substrates other than the composite substrate are not impaired. Similarly, the position and area size of the molding material 1B to be a radio wave transmission area are not limited, and the position may be changed as necessary, or divided into two or more locations, or the size may be changed. Also good. Further, a layer without the molding material 1B serving as the radio wave transmission region (only the molding material 1A serving as the electromagnetic wave shielding region) may be provided.

また、熱可塑性樹脂を主成分としたマトリックス樹脂シート3cを厚み方向に積層する方法は、前記のように少なくとも厚み方向の表層に、第1の強化基材3a、第1の基材と異なる第2の基材3b、または複合基材からなる基材積層体を挟み込むように積層することであるが、より好ましくは、第1の強化基材3a、第1の基材と異なる第2の基材3b、複合基材の任意の層間にも熱可塑性樹脂を主成分としたマトリックス樹脂シート3cを挟入して積層し、成形前積層体とすることである。厚み方向にむらのない、同等の体積含有率を目標に成形するのであれば、マトリックス樹脂を含浸させる位置を、基材成形体の厚み方向に数箇所に分割して、第1の強化基材3a、第1の基材と異なる第2の基材3b、または複合基材の層間に熱可塑性樹脂を主成分としたマトリックス樹脂シート3cを配置した方が、流動抵抗の高い厚み方向への含浸距離が短くなるため、各基材へ溶融したマトリックス樹脂をより含浸させやすくするために有効である。さらに好ましくは、熱可塑性樹脂を主成分としたマトリックス樹脂シート3cを基材積層体の層間に、厚み方向にほぼ等間隔に配置すると、複合成形板2C全体として均一な体積含有率となるように成形することができる。   In addition, the method of laminating the matrix resin sheet 3c mainly composed of a thermoplastic resin in the thickness direction is different from the first reinforcing substrate 3a and the first substrate at least on the surface layer in the thickness direction as described above. 2 base material 3b or a base material laminate composed of a composite base material, and more preferably, the first reinforcing base material 3a and the second base material different from the first base material. A matrix resin sheet 3c mainly composed of a thermoplastic resin is sandwiched and laminated between any layers of the material 3b and the composite base material to form a laminate before molding. If the target is to have the same volume content with no unevenness in the thickness direction, the first reinforced substrate is divided by dividing the matrix resin impregnation position into several locations in the thickness direction of the substrate molded body. 3a, the second substrate 3b different from the first substrate, or the matrix resin sheet 3c composed mainly of a thermoplastic resin between the layers of the composite substrate is impregnated in the thickness direction with high flow resistance. Since the distance is shortened, it is effective in making it easier to impregnate each matrix with the molten matrix resin. More preferably, when the matrix resin sheet 3c containing a thermoplastic resin as a main component is arranged between the layers of the base material laminate at substantially equal intervals in the thickness direction, the composite molded plate 2C as a whole has a uniform volume content. Can be molded.

その他、積層方法の応用例を例示すると、熱可塑性樹脂を主成分としたマトリックス樹脂シート3cとして流動性の異なる樹脂を複数用意し、表層に流動性の良い樹脂を用いることにより、箱型筐体の立ち壁形状までも一度に成形することも可能となる。また、加飾フィルムなどを最表層に用いることで、良外観の複合積層板も成形可能となる。このように複合積層板は積層方法を変更することで、あらゆる応用が可能である。   In addition, as an application example of the laminating method, a plurality of resins having different fluidity are prepared as the matrix resin sheet 3c containing a thermoplastic resin as a main component, and a resin having good fluidity is used for the surface layer. Even the standing wall shape can be formed at a time. Further, by using a decorative film or the like as the outermost layer, a composite laminate having a good appearance can be formed. In this way, the composite laminate can be applied in various ways by changing the lamination method.

次に前記のようにして得た成形前積層体を、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの融点以上の温度で加熱プレス成形し、その後、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの熱可塑性樹脂の溶融温度よりも低い温度で圧力を固化温度以下になるまで保持し、冷却プレス成形して複合積層板2Cを成形する。   Next, the laminate before molding obtained as described above is subjected to hot press molding at a temperature equal to or higher than the melting point of the matrix resin sheet 2c mainly composed of the thermoplastic resin, and then the matrix resin mainly composed of the thermoplastic resin. The composite laminate 2C is formed by holding the pressure at a temperature lower than the melting temperature of the thermoplastic resin of the sheet 2c until the pressure becomes equal to or lower than the solidification temperature, and performing cooling press molding.

ここでプレス成形とは、加工機械および型、工具等を用いて金属、プラスチック材料、セラミックス材料などに例示される各種材料に、曲げ、剪断、圧縮等の変形を与えて成形体を得る方法である。本発明では、得られる製品の意匠性の観点から、予め成形前積層体を熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの熱可塑性樹脂の溶融温度よりも高い温度に加熱し熱可塑性樹脂を溶融、軟化させた状態にした後に、熱可塑性樹脂の溶融温度未満の温度でプレス成形する、いわゆるコールドプレス法を選択するものである。具体的には、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの熱可塑性樹脂が結晶性樹脂の場合、融点をTmとしたとき、Tm以上、好ましくは、Tm+5℃〜Tm+65℃の範囲に成形前積層体を加熱する。ここで結晶性樹脂とは、示査走査熱量計(DSC)により測定した結晶化ピークが実質的に存在するものをいう。結晶化ピークが複数存在する場合は最も高いものがTmとして選択される。熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの熱可塑性樹脂が非結晶性樹脂の場合、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの融点をTとしたとき、T+120℃〜T+170℃、好ましくはT+120℃〜T+150℃の範囲に成形前積層体を加熱する。ここで非結晶性樹脂とは、示査走査熱量計(DSC)により測定した結晶化ピークが実質的に存在しないものをいう。ガラス転移点が複数存在する場合は最も高いものがTとして選択される。 Here, press molding is a method of obtaining a molded body by applying deformation such as bending, shearing, compression, etc. to various materials exemplified by metals, plastic materials, ceramic materials, etc. using a processing machine, a mold, a tool and the like. is there. In the present invention, from the viewpoint of the design properties of the product obtained, the thermoplastic resin is preliminarily heated to a temperature higher than the melting temperature of the thermoplastic resin of the matrix resin sheet 2c mainly composed of the thermoplastic resin. The so-called cold press method is selected, in which after being melted and softened, press molding is performed at a temperature lower than the melting temperature of the thermoplastic resin. Specifically, when the thermoplastic resin of the matrix resin sheet 2c containing a thermoplastic resin as a main component is a crystalline resin, when the melting point is Tm, it is molded to Tm or more, preferably in the range of Tm + 5 ° C. to Tm + 65 ° C. The pre-laminate is heated. Here, the crystalline resin means a resin having substantially a crystallization peak measured by a scanning scanning calorimeter (DSC). When there are a plurality of crystallization peaks, the highest one is selected as Tm. When the thermoplastic resin of the matrix resin sheet 2c composed mainly of thermoplastic resin is a noncrystalline resin, when the melting point of the matrix resin sheet 2c mainly containing thermoplastic resin was T g, T g + 120 ℃ ~ The pre-molding laminate is heated to T g + 170 ° C., preferably in the range of T g + 120 ° C. to T g + 150 ° C. Here, the non-crystalline resin means a resin in which a crystallization peak measured by a scanning scanning calorimeter (DSC) does not substantially exist. If the glass transition point there are a plurality is selected as the most high T g.

成形型の下面となる下型の上に成形前積層体を配置し、加熱して熱可塑性樹脂を主成分としたマトリックス樹脂シート2cの熱可塑性樹脂を溶融、含浸させ、熱可塑性樹脂が溶融、軟化している状態で、次いで上型を閉じて型締を行い、その後加圧して、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cに含まれる熱可塑性樹脂の固化温度以下になるまで冷却する。これにより、表面粗さが均一な意匠面の複合積層板を製造できる。   The laminated body before molding is placed on the lower mold which is the lower surface of the molding die, heated to melt and impregnate the thermoplastic resin of the matrix resin sheet 2c mainly composed of the thermoplastic resin, and the thermoplastic resin is melted. In the softened state, the upper mold is then closed and the mold is clamped, and then pressurized, and cooled until the temperature is equal to or lower than the solidification temperature of the thermoplastic resin contained in the matrix resin sheet 2c containing the thermoplastic resin as a main component. . Thereby, the composite laminated board of the design surface with uniform surface roughness can be manufactured.

前記の方法で作製した複合積層板は、収縮率の差や板の剛性の違いから図6に示すようなゆがみを生じる場合がある。この場合には、複合積層板中の第1の基材と異なる電波透過領域となる成形材6Bが一部残るように切断することにより、電波透過領域となる成形材6Bの収縮率の違いによって複合積層板に生じたゆがみ変形を解放することが可能である。   The composite laminate produced by the above method may be distorted as shown in FIG. 6 due to a difference in shrinkage ratio or a difference in plate rigidity. In this case, by cutting so that a part of the molding material 6B that becomes a radio wave transmission region different from the first base material in the composite laminate remains, due to a difference in shrinkage rate of the molding material 6B that becomes the radio wave transmission region. It is possible to release the distortion deformation generated in the composite laminate.

ただし、各々の繊維と樹脂の組み合わせにおいて、ゆがみを生じさせない繊維重量含有率(Wf)値が存在する。適正なWfを選択して成形し、ゆがみを生じない場合にはこの限りではない。この時、繊維重量含有率(Wf)の計算は、w:繊維重量、wre:樹脂重量を用いて次式により決定される。
Wf=w/(wre+w)×100(%)
However, in each fiber and resin combination, there is a fiber weight content (Wf) value that does not cause distortion. This is not the case when an appropriate Wf is selected for molding and no distortion occurs. At this time, the calculation of the fiber weight content (Wf) is determined by the following equation using w f : fiber weight and w re : resin weight.
Wf = w f / (w re + w f ) × 100 (%)

前記のようにして得られた複合積層板1Cをそのまま電子機器筺体として用いてもよいが、成形した複合積層板を射出成形型にインサートした上で型締めを行い、複合積層板外周の少なくとも一部を覆うように熱可塑性樹脂1Dをアウトサート射出成形し一体化することにより、例えば筐体形状のボスやリブなど詳細形状の部位を付与することができる。   The composite laminate 1C obtained as described above may be used as an electronic device casing as it is. However, the molded composite laminate is inserted into an injection mold, and then clamped to provide at least one outer periphery of the composite laminate. By subjecting the thermoplastic resin 1D to outsert injection molding so as to cover the part and integrating it, a part having a detailed shape such as a casing-shaped boss or rib can be provided.

また、接合強度を効果的に向上するため、アウトサート射出成形前に複合積層板の外周端部に接合部形状を設けるように加工しておくことが好ましい。好ましいスロープ形状を図7に示す。   Further, in order to effectively improve the bonding strength, it is preferable to process the outer peripheral end portion of the composite laminated plate so as to provide a bonding portion shape before outsert injection molding. A preferred slope shape is shown in FIG.

図7は、複合積層板のスロープ加工実施例の縦断面斜視図である。   FIG. 7 is a longitudinal sectional perspective view of a slope processing example of a composite laminate.

図7に示す射出成形品IMA7は、一方の熱可塑性樹脂部材7A(本発明の1Aに相当)と他方の熱可塑性樹脂部材7B(本発明の1Bに相当)からなる。   An injection molded product IMA7 shown in FIG. 7 is composed of one thermoplastic resin member 7A (corresponding to 1A of the present invention) and the other thermoplastic resin member 7B (corresponding to 1B of the present invention).

射出成形品IMA7は、熱可塑性樹脂部材7Bの長手方向の一方側の側端面SEAに対し、熱可塑性樹脂部材7Aを形成する樹脂が射出成形されることにより、熱可塑性樹脂部材7Aに熱可塑性樹脂部材7Bが接合され、双方の部材が一体化した射出成形品である。側端面SEBと熱可塑性樹脂部材7Aの長手方向の一方側の側端面SEAとは、互いに接合され、接合面JABが形成されている。   The injection-molded product IMA7 is obtained by injection-molding a resin that forms the thermoplastic resin member 7A on one side end surface SEA in the longitudinal direction of the thermoplastic resin member 7B, so that the thermoplastic resin member 7A has a thermoplastic resin. This is an injection molded product in which the member 7B is joined and both members are integrated. The side end face SEB and the side end face SEA on one side in the longitudinal direction of the thermoplastic resin member 7A are joined together to form a joined face JAB.

射出成形品IMA7の縦断面LCS7と接合面JABとの交わりにより描かれる接合線JL7は、射出成形品の表面FS7から内側に延び内側に終端を有する第1の接合線分7a、射出成形品の裏面BS7から内側に延び内側に終端を有する第2の接合線分7b、および、第1の接合線分7aの前記終端と第2の接合線分7bの前記終端とを結ぶ第3の接合線分7abから形成されている。射出成形品において、第3の接合線分7abは、表面FS7の法線の方向、あるいは、裏面BS7の法線の方向に対し傾斜している。   The joint line JL7 drawn by the intersection of the longitudinal section LCS7 of the injection molded product IMA7 and the joint surface JAB is a first joint line segment 7a extending inward from the surface FS7 of the injection molded product and having an end on the inside. A second joint line 7b extending inward from the back surface BS7 and having an end on the inside, and a third joint line connecting the end of the first joint line 7a and the end of the second joint line 7b It is formed from the minute 7ab. In the injection molded product, the third joint line segment 7ab is inclined with respect to the direction of the normal line of the front surface FS7 or the direction of the normal line of the back surface BS7.

射出成形品IMA7において、第1の接合線分7aの方向は、表面FS7の法線に対し傾斜し、また、第2の接合線分7bの方向は、裏面BS7の法線に対し傾斜している。   In the injection molded product IMA7, the direction of the first bonding line segment 7a is inclined with respect to the normal line of the front surface FS7, and the direction of the second bonding line segment 7b is inclined with respect to the normal line of the back surface BS7. Yes.

第1の接合線分7a、第2の接合線分7b、および、第3の接合線分7abは、直線であることが好ましいが、成形性を考慮して必要に応じて、射出成形品の厚み方向、すなわち、法線方向に、緩やかに曲折していても良い。また、第3の接合線分7abは、法線に対する角度が異なる複数のサブ線分の組み合わせから形成されていても良い。この場合の接合線分7abの法線に対する角度は、各サブ線分の法線に対する角度の平均値とする。   The first joint line segment 7a, the second joint line segment 7b, and the third joint line segment 7ab are preferably straight lines. It may be gently bent in the thickness direction, that is, in the normal direction. Further, the third joint line segment 7ab may be formed of a combination of a plurality of sub line segments having different angles with respect to the normal line. In this case, the angle with respect to the normal line of the joint line segment 7ab is an average value of the angles with respect to the normal lines of the sub-line segments.

射出成形品IMA7において、表面FS7の法線の方向と裏面BS7の法線の方向とは、一致していても、異なっていても良い。射出成形品において、第1の接合線分7aの方向は、表面FS7の法線に実質的に平行であり、第2の接合線分7bの方向は、裏面BS7の法線に対し傾斜していても良い、あるいは、第1の接合線分7aの方向は、表面FS7の法線に対し傾斜し、第2の接合線分7bの方向は、裏面BS7の法線に実質的に平行であっても良い。   In the injection molded product IMA7, the normal direction of the front surface FS7 and the normal direction of the back surface BS7 may be the same or different. In the injection molded product, the direction of the first joint line segment 7a is substantially parallel to the normal line of the surface FS7, and the direction of the second joint line segment 7b is inclined with respect to the normal line of the back surface BS7. Alternatively, the direction of the first bonding line segment 7a is inclined with respect to the normal line of the front surface FS7, and the direction of the second bonding line segment 7b is substantially parallel to the normal line of the back surface BS7. May be.

第1の接合線分7aの方向が、表面FS7の法線に実質的に平行であり、第2の接合線分7bの方向が、裏面BS7の法線に対し傾斜している場合、第2の接合線分7bの傾斜角度は、第3の接合線分7abの傾斜角度と異なるように選定される。これにより、接合面JABに、法線に対する角度が異なる3種類の接合面が形成される。すなわち、接合面JABは、角度の異なる2種類のスロープ面と直立面で形成される。   When the direction of the first joint line segment 7a is substantially parallel to the normal line of the surface FS7 and the direction of the second joint line segment 7b is inclined with respect to the normal line of the back surface BS7, the second The inclination angle of the joining line segment 7b is selected to be different from the inclination angle of the third joining line segment 7ab. As a result, three types of bonding surfaces having different angles with respect to the normal line are formed on the bonding surface JAB. That is, the joint surface JAB is formed by two types of slope surfaces having different angles and an upright surface.

第2の接合線分7bの方向が、裏面BS7の法線に実質的に平行であり、第1の接合線分7aの方向が、表面FS7の法線に対し傾斜している場合、第1の接合線分7aの傾斜角度は、第3の接合線分7abの傾斜角度と異なるように選定される。これにより、接合面JABに、法線に対する角度が異なる3種類の接合面が形成される。すなわち、接合面JABは、角度の異なる2種類のスロープ面と直立面で形成される。   When the direction of the second bonding line segment 7b is substantially parallel to the normal line of the back surface BS7 and the direction of the first bonding line segment 7a is inclined with respect to the normal line of the surface FS7, the first The inclination angle of the joining line segment 7a is selected to be different from the inclination angle of the third joining line segment 7ab. As a result, three types of bonding surfaces having different angles with respect to the normal line are formed on the bonding surface JAB. That is, the joint surface JAB is formed by two types of slope surfaces having different angles and an upright surface.

第1の接合線分7aの方向が、表面FS7の法線に対し傾斜し、第2の接合線分7bの方向が、裏面BS7の法線に対し傾斜し、かつ、これらの傾斜角度が異なっている場合、これらの傾斜角度は、第3の接合線分7abの傾斜角度とも異なるように選定される。これにより、接合面JABに、法線に対する角度が異なる3種類の接合面が形成される。すなわち、接合面JABは、角度の異なる3種類のスロープ面で形成される。   The direction of the first bonding line segment 7a is inclined with respect to the normal line of the front surface FS7, the direction of the second bonding line segment 7b is inclined with respect to the normal line of the back surface BS7, and the inclination angles thereof are different. If so, these inclination angles are selected so as to be different from the inclination angle of the third joint line segment 7ab. As a result, three types of bonding surfaces having different angles with respect to the normal line are formed on the bonding surface JAB. That is, the joint surface JAB is formed by three types of slope surfaces having different angles.

第1の接合線分7aの方向が、表面FS7の法線に対し傾斜し、第2の接合線分7bの方向が、裏面BS7の法線に対し傾斜し、かつ、これらの傾斜角度が同じ場合、これらの傾斜角度は、第3の接合線分7abの傾斜角度とも異なるように選定される。これにより、接合面JABに、法線に対する角度が異なる2種類の接合面が形成される。すなわち、接合面JABは、同じ角度を有する2つのスロープ面とこれらとは角度の異なる1つのスロープ面で形成される。   The direction of the first bonding line segment 7a is inclined with respect to the normal line of the front surface FS7, the direction of the second bonding line segment 7b is inclined with respect to the normal line of the back surface BS7, and these inclination angles are the same. In this case, these inclination angles are selected so as to be different from the inclination angle of the third joint line segment 7ab. Thereby, two types of joint surfaces having different angles with respect to the normal line are formed on the joint surface JAB. That is, the joint surface JAB is formed by two slope surfaces having the same angle and one slope surface having a different angle.

接合面JABが表面FS7あるいは裏面BS7と交わって形成される幅方向接合線WJL7は、射出成形品IMA7においては、直線で描かれている。しかしながら、幅方向接合線WJL7は、曲線を描いていても良い。   A width direction joint line WJL7 formed by joining the joint surface JAB to the front surface FS7 or the back surface BS7 is drawn as a straight line in the injection molded product IMA7. However, the width direction joining line WJL7 may draw a curve.

本射出成形品において、一方の熱可塑性樹脂部材7Aと他方の熱可塑性樹脂部材7Bとは、法線方向において、互いに重なり合わない領域を有していることが好ましい。図7に、互いに重なり合わない領域7A1および7B1が示される。互いに重なり合わない領域が存在することにより、それぞれの樹脂部材の特性が、それぞれの互いに重なり合わない領域において、最大限に発現される。これにより、射出成形品の更なる薄肉化が可能となる。互いに重なり合わない領域が存在しない、すなわち、一方の熱可塑性樹脂部材7Aおよび他方の熱可塑性樹脂部材7Bのいずれかが射出成形品の表裏いずれかに偏って存在する場合、一方の熱可塑性樹脂部材7Aと他方の熱可塑性樹脂部材7Bとの成形収縮差により、射出成形品の反りが増大する場合がある。   In this injection-molded product, it is preferable that one thermoplastic resin member 7A and the other thermoplastic resin member 7B have regions that do not overlap with each other in the normal direction. FIG. 7 shows regions 7A1 and 7B1 that do not overlap each other. Since there are regions that do not overlap each other, the characteristics of the respective resin members are maximized in the regions that do not overlap each other. Thereby, the thickness of the injection molded product can be further reduced. When there is no region that does not overlap each other, that is, when one of the thermoplastic resin member 7A and the other thermoplastic resin member 7B is biased to either the front or back of the injection molded product, one thermoplastic resin member Due to the difference in molding shrinkage between 7A and the other thermoplastic resin member 7B, the warpage of the injection molded product may increase.

本射出成形品において、第3の接合線分の法線に直角方向に対する鋭角をなす側の角度(スロープ角度)が最大となる縦断面における射出成形品の厚み7t0が、0.5乃至3.0mmであることが好ましい。   In this injection molded product, the thickness 7t0 of the injection molded product in the vertical cross section where the angle (slope angle) that forms an acute angle with respect to the direction perpendicular to the normal to the third joining line segment is maximum is 0.5 to 3. It is preferably 0 mm.

本射出成形品において、スロープ角度が最大となる縦断面において、第1の接合線分が位置する接合面における射出成形品の厚みを7t1、第3の接合線分が位置する接合面における射出成形品の厚みを7t2、第2の接合線分が位置する接合面における射出成形品の厚みを7t3、第3の接合線分を法線方向に投影したときの長さをL7としたとき、次に示す式(1)乃至(4)を同時に満たすことが好ましい。
0.7>7t1/7t0>0.1 ・・・(1)
0.8>7t2/7t0≧0 ・・・(2)
0.7>7t3/7t0>0.1 ・・・(3)
1.0>7t2/L7≧0 ・・・(4)
In this injection molded product, in the longitudinal section where the slope angle is maximum, the thickness of the injection molded product at the joint surface where the first joint line segment is located is 7t1, and the injection molding at the joint surface where the third joint line segment is located. When the thickness of the product is 7t2, the thickness of the injection-molded product at the joint surface where the second joint line is located is 7t3, and the length when the third joint line is projected in the normal direction is L7, It is preferable to satisfy the formulas (1) to (4) shown in FIG.
0.7> 7t1 / 7t0> 0.1 (1)
0.8> 7t2 / 7t0 ≧ 0 (2)
0.7> 7t3 / 7t0> 0.1 (3)
1.0> 7t2 / L7 ≧ 0 (4)

なお、7t2の値は、(7t0−7t1−7t3)の値に等しい関係にある。   Note that the value of 7t2 is equal to the value of (7t0-7t1-7t3).

(7t1/7t0)および(7t3/7t0)の各値が0.7を上回ると、第1の接合線分および第2の接合線分の長さが長くなりすぎ、熱可塑性樹脂部材を形成する樹脂を射出成形したときに、射出圧力に基づく応力集中が発生しやすく、接合強度が低下することがある。   When each value of (7t1 / 7t0) and (7t3 / 7t0) exceeds 0.7, the length of the first joining line segment and the second joining line segment becomes too long, and a thermoplastic resin member is formed. When resin is injection-molded, stress concentration based on injection pressure is likely to occur, and bonding strength may be reduced.

(7t1/7t0)および(7t3/7t0)の各値が0.1を下回るか、(7t2/7t0)の値が0.8を上回ると、両部材の接合面と金型面の交点がシャープエッジとなり、射出圧力がエッジの先端に集中するため、射出成形中にバリが発生しやすくなる。   When each value of (7t1 / 7t0) and (7t3 / 7t0) is less than 0.1 or (7t2 / 7t0) is greater than 0.8, the intersection of the joint surface of both members and the mold surface is sharp. Since it becomes an edge and the injection pressure is concentrated on the tip of the edge, burrs are likely to occur during injection molding.

(7t2/7t0)の値が0.1を下回ると、第3の接合線分の傾斜が実質的に無くなり、接合面の面積を大きくすることができないため、接合強度が低下することがある。   If the value of (7t2 / 7t0) is less than 0.1, the inclination of the third joining line segment is substantially eliminated and the area of the joining surface cannot be increased, so that the joining strength may be lowered.

0.8>7t2/7t0>0.1の関係が満足されていることが、より好ましい。また、1.0>7t2/L7≧0の関係が満足されることにより、樹脂不足(ドロップ)の低減と接合強度の維持が図られる。   It is more preferable that the relationship of 0.8> 7t2 / 7t0> 0.1 is satisfied. Further, by satisfying the relationship of 1.0> 7t2 / L7 ≧ 0, it is possible to reduce the resin shortage (drop) and maintain the bonding strength.

第1の接合線分と第3の接合線分との境界部や第2の接合線分と第3の接合線分との境界部には、これらの境界部により形成されるシャープエッジを避けるためや、接合部の強度補強のために、適宜曲面部が設けられていると良い。曲面部の半径Rは、0.1乃至1.5mmであることが好ましい。   Avoid sharp edges formed by these boundary portions at the boundary portion between the first joint line segment and the third joint line segment and at the boundary portion between the second joint line segment and the third joint line segment. For this reason, it is preferable that a curved surface portion is appropriately provided for reinforcing the strength of the joint portion. The radius R of the curved surface portion is preferably 0.1 to 1.5 mm.

接合面には、リブや突起などの凸部、あるいは、孔や溝などの凹部が、必要に応じて、射出成形性を損なわない範囲で、設けられていても良い。   Convex portions such as ribs and protrusions, or concave portions such as holes and grooves may be provided on the joint surface as long as they do not impair the injection moldability.

本射出成形品において、一方の熱可塑性樹脂部材7Aの他方の熱可塑性樹脂部材7B側に接合面を介して突出している部分を含む表面あるいは裏面が、意匠面であることが好ましい。あらかじめ金型に配置される熱可塑性樹脂部材の第3の接合線分からなるスロープが意匠面側に張り出しており、後から射出成形される熱可塑性樹脂部材が意匠面とは反対側の面に配置されるようにすると、後から射出される樹脂の射出圧力によって、あらかじめ金型に配置されている熱可塑性樹脂部材が、金型の意匠面形成面に押し付けられながら後から射出される樹脂と一体成形されるので、意匠面側の各部材の面位置が揃い、意匠面に現れる各部材間の幅方向接合線およびその近傍部分がより平滑になる。   In the present injection-molded product, it is preferable that the front surface or the back surface including a portion protruding from the one thermoplastic resin member 7A on the other thermoplastic resin member 7B side through the bonding surface is a design surface. A slope consisting of the third joint line segment of the thermoplastic resin member that is preliminarily placed in the mold projects over to the design surface side, and the thermoplastic resin member that is subsequently injection-molded is placed on the surface opposite to the design surface As a result, the thermoplastic resin member arranged in advance in the mold is integrated with the resin injected later while being pressed against the design surface forming surface of the mold by the injection pressure of the resin injected later. Since it shape | molds, the surface position of each member by the side of a design surface aligns, and the width direction joining line between each member which appears on a design surface, and its vicinity part become smoother.

本射出成形品において、第1の接合線分7aと熱可塑性樹脂部材7Aの表面FS7の法線がなす角度をR1、第2の接合線分7bと熱可塑性樹脂部材7Bの裏面BS7の法線がなす角度をR2としたときに、10°<R1≦90°、および、10°<R2≦90°の関係が同時に満足されていることが好ましい。20°<R1<40°、および、20°<R2<40°の関係が同時に満足されていることがより好ましい。   In this injection molded product, the angle formed by the normal line between the first joint line segment 7a and the surface FS7 of the thermoplastic resin member 7A is R1, and the second joint line segment 7b and the normal line of the back surface BS7 of the thermoplastic resin member 7B. It is preferable that the relationship of 10 ° <R1 ≦ 90 ° and 10 ° <R2 ≦ 90 ° is simultaneously satisfied when the angle formed by R2 is R2. More preferably, the relationships of 20 ° <R1 <40 ° and 20 ° <R2 <40 ° are simultaneously satisfied.

角度R1および角度R2が90°を越えると表面あるいは裏面における幅方向接合線およびその近傍に、バリが発生する。角度R1および角度R2が10°以下では、樹脂の流動が阻害されるためにショートショットが発生して、表面あるいは裏面の平滑性が損なわれ、強度が低下することがある。   When the angle R1 and the angle R2 exceed 90 °, burrs are generated in the width direction joining line on the front surface or the back surface and in the vicinity thereof. When the angle R1 and the angle R2 are 10 ° or less, the flow of the resin is hindered, so that a short shot occurs, the smoothness of the front or back surface is impaired, and the strength may be lowered.

アウトサート射出成形する熱可塑性樹脂1Dには、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cと同様の熱可塑性樹脂を含んでいることが好ましい。好ましい形態として同様の熱可塑性樹脂は、3乃至100%含まれていることである。熱可塑性樹脂1Dは、さらに好ましくは熱可塑性樹脂を主成分としたマトリックス樹脂シート2cと同様のものとすることである。熱可塑性樹脂を主成分としたマトリックス樹脂シート2cと同様にすることにより、電磁波遮蔽領域となる成形材1A、電波透過領域となる成形材1Bと熱可塑性樹脂1Dの接合強度を良好なものとすることができるためである。強化物については特に制限はなく、熱可塑性樹脂のみでも強化繊維樹脂を用いることもできる。熱可塑性樹脂1Dに使用する強化繊維は、前記の導電性繊維であっても、絶縁性繊維でも良い。繊維含有量は5〜80重量%、好ましくは10〜60重量%、より好ましくは15〜50重量%である。一般的に強化繊維が5重量%未満では、成形品の力学特性の向上効果が少なく、70重量%を超えると射出成形などの成形加工の際に流動性が低下する場合がある。   The thermoplastic resin 1D for outsert injection molding preferably contains the same thermoplastic resin as that of the matrix resin sheet 2c containing the thermoplastic resin as a main component. As a preferable form, 3 to 100% of the same thermoplastic resin is contained. The thermoplastic resin 1D is more preferably the same as the matrix resin sheet 2c whose main component is a thermoplastic resin. By making it the same as the matrix resin sheet 2c which has a thermoplastic resin as a main component, the bonding strength of the molding material 1A serving as an electromagnetic wave shielding region and the molding material 1B serving as a radio wave transmission region and the thermoplastic resin 1D is improved. Because it can. There is no restriction | limiting in particular about a reinforcement, A reinforcement fiber resin can also be used only with a thermoplastic resin. The reinforcing fiber used for the thermoplastic resin 1D may be the conductive fiber or the insulating fiber. The fiber content is 5 to 80% by weight, preferably 10 to 60% by weight, more preferably 15 to 50% by weight. Generally, if the reinforcing fiber is less than 5% by weight, the effect of improving the mechanical properties of the molded product is small, and if it exceeds 70% by weight, the fluidity may be lowered during molding such as injection molding.

本発明のアウトサート射出成形は具体的には、図8に示すように、前記の製造方法で成形した部分的に電波透過領域を有した繊維強化プラスチック製複合積層板を、射出成形金型キャビティ側に配置した上で型締めを行い、熱可塑性樹脂8Dを射出成形機からスクリューで射出して、スプルーおよびランナーを経由して、複合積層板の外周上に射出成形して、複合積層板と、熱可塑性樹脂8Dで成形した部位を一体化させて一体成形品とする。   Specifically, as shown in FIG. 8, the outsert injection molding of the present invention comprises a composite laminate made of fiber reinforced plastic partially molded with the above-described manufacturing method and having a radio wave transmission region, and an injection mold cavity. After being placed on the side, the mold is clamped, the thermoplastic resin 8D is injected from the injection molding machine with a screw, and is injection molded onto the outer periphery of the composite laminate via a sprue and a runner. The parts molded with the thermoplastic resin 8D are integrated to form an integrally molded product.

また、本発明の立ち壁とは、図1の筐体形状成形品中の筐体天面となる複合積層板との角度が90度となるように形成された外枠部分である。本発明では、熱可塑性樹脂1Dで複合積層板外縁にアウトサート成形することにより形成することと複合積層板をプレス成形する際に同時に成形することを例示した。   Further, the standing wall of the present invention is an outer frame portion formed so that an angle with respect to the composite laminated plate serving as the casing top surface in the casing-shaped molded product of FIG. 1 is 90 degrees. In the present invention, the formation by outsert molding on the outer edge of the composite laminate with the thermoplastic resin 1D and the simultaneous molding when the composite laminate is press-molded are exemplified.

立ち壁の厚みは、0.5〜3.0mmであることが好ましい。より好ましくは1〜2mmである。厚みが薄すぎると強度が不足したり、射出成形の際に最薄部に樹脂が到達しなかったりすることによりショートショットやガス溜り等の成形不良の原因となる。成形品の大きさや、成形性強度の面から厚みは適宜変更しても良い。   The thickness of the standing wall is preferably 0.5 to 3.0 mm. More preferably, it is 1-2 mm. If the thickness is too thin, the strength may be insufficient, or the resin may not reach the thinnest part during injection molding, which may cause molding defects such as short shots and gas accumulation. The thickness may be appropriately changed in terms of the size of the molded product and the moldability strength.

また、立ち壁の厚みは、筐体天面を形成する複合積層板と同程度の厚みであることが望ましい。厚みは一方の天面側端部と他方の端部で異なる厚みであっても良い。立ち壁の長さは、5〜10mmであることが好ましい。また各々の四辺が異なる長さであっても良い。   Moreover, it is desirable that the thickness of the standing wall be approximately the same as the thickness of the composite laminate that forms the top surface of the housing. The thickness may be different at one end portion on the top surface side and the other end portion. The length of the standing wall is preferably 5 to 10 mm. Moreover, each four sides may have different lengths.

前記のようにして成形した本発明の複合積層板の電磁波遮蔽性は、電磁波遮蔽領域となる成形材1Aは良好な電磁波遮蔽性能を有し、具体的には、KEC法により測定される電界シールド性が周波数1GHz帯において10〜80dBとなる。また、電波透過領域となる成形材1Bは良好な電波透過性能を有し、具体的には、KEC法により測定される電界シールド性が周波数1GHz帯において0〜10dBとなる。複合積層板を有する一体成形品において、電磁波遮蔽領域の電界シールド性や電波透過領域それぞれの部位における電界シールド性は、各部位を形成する電磁波遮蔽領域となる成形材1Aや電波透過領域となる成形材1Bを単一で使用した参照成形体により測定する。具体的には複合積層板を有する一体成形品を製造する場合と同一の積層枚数を積層して単一の成形材料基材を用いた成形前駆体を形成し、複合積層板を有する一体成形品を製造する場合と同一の成形プロセス条件で成形し、成形品厚みを同一相当とした参照成形体について電界シールド性を測定する。ここでいう厚みの同一相当とは、目標厚み±0.05mmである。材料厚みがこの範囲であれば電磁波遮蔽性に明確な優位差が見られないことが多い。図9に電界シールド性の測定装置示した。   The electromagnetic wave shielding property of the composite laminate of the present invention molded as described above is such that the molding material 1A serving as the electromagnetic wave shielding region has good electromagnetic wave shielding performance, and specifically, an electric field shield measured by the KEC method. The characteristic is 10 to 80 dB in the frequency band of 1 GHz. In addition, the molding material 1B serving as the radio wave transmission region has good radio wave transmission performance, and specifically, the electric field shielding property measured by the KEC method is 0 to 10 dB in the frequency 1 GHz band. In the integrally molded product having the composite laminate, the electric field shielding property of the electromagnetic wave shielding region and the electric field shielding property at each part of the radio wave transmission region are the molding material 1A that becomes the electromagnetic wave shielding region that forms each part and the molding that becomes the radio wave transmission region. It is measured by a reference molded body using a single material 1B. Specifically, an integral molded product having a composite laminate is formed by forming a molding precursor using a single molding material base by laminating the same number of laminates as in the case of producing an integrally molded product having a composite laminate. Is molded under the same molding process conditions as in the case of manufacturing, and the electric field shielding property is measured for a reference molded body having the same thickness as the molded product. The same equivalent thickness here is the target thickness ± 0.05 mm. If the material thickness is within this range, there is often no clear difference in electromagnetic shielding properties. FIG. 9 shows an electric field shielding measuring device.

電磁波遮蔽領域となる成形材1Aにおける導電性繊維の繊維重量含有量(Wf)の好ましい形態は、その重量当たり、好ましくは5〜80重量%、より好ましくは10〜70質量%、さらに好ましくは15〜60質量%の割合で含有されていることである。5重量%を下回ると得られる製品の剛性が不足し変形しやすくなることがあり、また80質量%を上回ると熱可塑性樹脂の流動性が著しく低下しプレス成形が困難となる場合がある。   The preferred form of the fiber weight content (Wf) of the conductive fibers in the molding material 1A to be an electromagnetic wave shielding region is preferably 5 to 80% by weight, more preferably 10 to 70% by weight, and still more preferably 15% per weight. It is contained at a ratio of ˜60% by mass. If the amount is less than 5% by weight, the resulting product may have insufficient rigidity and may be easily deformed. If the amount exceeds 80% by weight, the fluidity of the thermoplastic resin may be significantly reduced and press molding may be difficult.

電波透過領域となる成形材1Bにおける絶縁性繊維の繊維重量含有量Wfの好ましい形態は、その重量当たり、好ましくは0〜80重量%、より好ましくは5〜70質量%、さらに好ましくは10〜60質量%の割合で含有されていることである。   A preferable form of the fiber weight content Wf of the insulating fiber in the molding material 1B to be the radio wave transmission region is preferably 0 to 80% by weight, more preferably 5 to 70% by weight, and further preferably 10 to 60% by weight. It is contained in the ratio of the mass%.

さらに、電磁波遮蔽領域となる成形材1Aおよび電波透過領域となる成形材1Bに含有される強化繊維の重量平均繊維長は好ましくは1〜15mm、より好ましくは1.5〜10mm、さらに好ましくは2〜6.5mmであるようにする。強化繊維の重量平均繊維長が1mmを下回ると得られる製品の剛性が不足し変形しやすくなることがあり、強化繊維の重量平均繊維長が15mmを上回ると、プレス後の外観に繊維浮き等の不良が発生しやすくなる場合がある。   Furthermore, the weight average fiber length of the reinforcing fibers contained in the molding material 1A serving as an electromagnetic wave shielding region and the molding material 1B serving as a radio wave transmission region is preferably 1 to 15 mm, more preferably 1.5 to 10 mm, and even more preferably 2 ˜6.5 mm. If the weight average fiber length of the reinforcing fiber is less than 1 mm, the resulting product may have insufficient rigidity and may be easily deformed. If the weight average fiber length of the reinforcing fiber is more than 15 mm, the appearance after pressing, such as fiber floating Defects are likely to occur.

本発明の複合積層板1Cは、電磁波遮蔽領域となる成形材1A、電波透過領域となる成形材1B、熱可塑性樹脂を主成分としたマトリックス樹脂シート2cに加え、さらに図11に示すようにコア層11Eを有することもできる。本発明において、コア層とは、フィルム、シート、発泡体から選択される1種以上である。   The composite laminate 1C of the present invention includes a molding material 1A serving as an electromagnetic wave shielding region, a molding material 1B serving as a radio wave transmission region, a matrix resin sheet 2c mainly composed of a thermoplastic resin, and a core as shown in FIG. It can also have a layer 11E. In the present invention, the core layer is at least one selected from a film, a sheet, and a foam.

材料力学上、曲げ剛性は積層部材の表層側における剛性の影響が、コア層の剛性の影響に比べ極めて大きいため、表層は電磁波遮蔽領域となる成形材1A層および電波透過領域となる成形材1B層で、コア層11Eは発泡材や軽量樹脂シートなどのコア部材層で構成することにより、積層部材の軽量化を図りつつ、剛性も確保することができる。   In terms of material mechanics, the bending rigidity of the laminated member on the surface layer side is much larger than the rigidity of the core layer, so that the surface layer is a molding material 1A layer serving as an electromagnetic shielding region and a molding material 1B serving as an electromagnetic wave transmission region. By configuring the core layer 11E with a core member layer such as a foam material or a lightweight resin sheet, the laminated member can be reduced in weight and rigidity can be ensured.

コア層となるフィルム、シート、発泡体は、表層側の成形材との接着力が確保されるのであれば特に制限はなく、例えば、熱可塑性樹脂、熱硬化性樹脂、または金属などを用いることができる。さらに、コア層に強化繊維を含んだフィルム、シートを用いてもよい。   The film, sheet, and foam used as the core layer are not particularly limited as long as the adhesive force with the molding material on the surface layer side is ensured. For example, a thermoplastic resin, a thermosetting resin, or a metal is used. Can do. Further, a film or sheet containing reinforcing fibers in the core layer may be used.

コア層を構成する熱可塑性樹脂としては特に制限はなく、具体例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。熱可塑性樹脂成分としては、耐熱性、耐薬品性の観点からPPSが、成形品外観、寸法安定性の観点からポリカーボネートやスチレン系樹脂が、成形品の強度や耐衝撃性の観点からポリアミドが好ましく用いられる。   The thermoplastic resin constituting the core layer is not particularly limited, and specific examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), liquid crystal polyester. Polyester such as polyethylene, polyolefin such as polyethylene (PE), polypropylene (PP), polybutylene, styrene resin, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA) ), Polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), poly Luhon (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), poly Fluorine resins such as ether nitrile (PEN), phenolic resin, phenoxy resin, polytetrafluoroethylene, polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, fluorine, etc. It may be a thermoplastic elastomer or the like, a copolymer, a modified body thereof, or a resin blended with two or more. As the thermoplastic resin component, PPS is preferable from the viewpoint of heat resistance and chemical resistance, polycarbonate and styrene resin are preferable from the viewpoint of molded product appearance and dimensional stability, and polyamide is preferable from the viewpoint of the strength and impact resistance of the molded product. Used.

コア層を構成する熱硬化性樹脂としては、例えば不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、および、これらの少なくとも2種をブレンドした樹脂などを使用することができる。さらに耐衝撃性向上等のために、前記熱硬化性樹脂に熱可塑性樹脂またはその他のエラストマーもしくはゴム成分等を添加した樹脂を用いてもよい。コア層を構成する熱可塑性樹脂、および熱硬化性樹脂には、用途等に応じ、樹脂に加えて、耐衝撃性向上のために、ゴム成分などの他のエラストマーを含有しても良いし、種々の機能を与えるために、他の充填材や添加剤を含有してもよい。かかる充填材や添加剤としては、例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。   Examples of the thermosetting resin constituting the core layer include unsaturated polyesters, vinyl esters, epoxies, phenols (resol type), urea melamines, polyimides, copolymers thereof, modified products, and at least of these. A resin in which two kinds are blended can be used. Further, in order to improve impact resistance, a resin obtained by adding a thermoplastic resin or other elastomer or rubber component to the thermosetting resin may be used. The thermoplastic resin and the thermosetting resin constituting the core layer may contain other elastomers such as a rubber component in order to improve impact resistance, in addition to the resin, depending on the application. In order to provide various functions, other fillers and additives may be contained. Examples of such fillers and additives include inorganic fillers, flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, and coloring prevention. Agents, heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.

コア層を構成するマトリックスに含まれる強化繊維としては、例えばアルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系等の炭素繊維や黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維や、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維等が使用できる。これらの強化繊維は単独で用いても、また、2種以上併用しても良い。強化繊維は必ずしもコア層内全体にわたって連続している必要はなく、途中で分断されていても特に問題はない。   Examples of the reinforcing fibers contained in the matrix constituting the core layer include metal fibers such as aluminum fibers, brass fibers and stainless fibers, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, and glass fibers. , Inorganic fibers such as silicon carbide fiber and silicon nitride fiber, organic fibers such as aramid fiber, polyparaphenylene benzobisoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, polyethylene fiber, etc. Can be used. These reinforcing fibers may be used alone or in combination of two or more. The reinforcing fibers do not necessarily have to be continuous throughout the core layer, and there is no particular problem even if they are divided in the middle.

または、本発明の製造方法で作製される成形品には、応用形態をとることが可能である。前記の応用形態を図12、図13および図14に示す。図12には加熱溶融プレス含浸した後、型内で冷却して賦形する際に筐体形状の立ち壁の一部を同時に一体化成形した複合積層板の外周の少なくとも一部を囲うように、(1D)熱可塑性樹脂を用い射出成形して得られることを特徴とする複合積層板1Cを有する一体成形品を、また、図14には一体化成形した複合積層板14Aと別成形しておいた小部品14Fの絶縁材料を同時に金型内にインサートして、これらの外周の少なくとも一部を囲うように、熱可塑性樹脂1Dを用い射出成形して得られることを特徴とする複合積層板1Cを有する一体成形品の形態を示した。   Alternatively, the molded product produced by the production method of the present invention can take an applied form. The application forms are shown in FIGS. 12, 13 and 14. FIG. In FIG. 12, after impregnating with a hot-melt press, when cooling and shaping in a mold, a part of the casing-shaped standing wall is simultaneously molded so as to surround at least a part of the outer periphery of the composite laminate. (1D) An integrally molded product having a composite laminate 1C obtained by injection molding using a thermoplastic resin is formed separately from the integrally formed composite laminate 14A in FIG. A composite laminate obtained by inserting the insulating material of the small component 14F into the mold at the same time and injection-molding it using the thermoplastic resin 1D so as to surround at least a part of the outer periphery thereof. The form of an integrally molded product having 1C was shown.

前記の筐体形状の立ち壁の一部を同時に一体化成形した複合積層板は板の一部を折り曲げて成形する応用を加えることにより可能となる。折り曲げ加工をする際には、立ち壁を賦形する金型部に勾配を持たせることにより、立ち壁部に効果的に成形圧力を加えられる。   A composite laminate in which a part of the casing-shaped standing wall is integrally formed at the same time can be obtained by adding an application in which a part of the plate is bent and formed. When bending is performed, a molding pressure can be effectively applied to the standing wall portion by providing a gradient to the mold portion that shapes the standing wall.

前記の小部品14Fの絶縁材料の成形方法は、特に制限はなく、具体例としては、一般工業的に用いられている射出成形、プレス成形、引き抜き成形、RTM成形、オートクレーブ成形、ハンドレイアップ成形や旋盤加工、フライス盤加工等の機械加工成形などでもよい。これらの中でも生産性の観点から射出成形法が好適である。   The method for molding the insulating material of the small component 14F is not particularly limited, and specific examples include injection molding, press molding, pultrusion molding, RTM molding, autoclave molding, and hand layup molding that are generally used in industry. Machining and forming such as lathe processing and milling. Among these, the injection molding method is preferable from the viewpoint of productivity.

小部品14Fの絶縁材料は、特に制限はなく、例えば、熱可塑性樹脂、熱硬化性樹脂、または金属などを用いることができる。さらに、小部品14Fの絶縁材料に強化繊維を用いてもよい。   There is no restriction | limiting in particular in the insulating material of the small components 14F, For example, a thermoplastic resin, a thermosetting resin, or a metal can be used. Furthermore, you may use a reinforced fiber for the insulating material of the small components 14F.

小部品14Fの絶縁材料を構成する熱可塑性樹脂としては特に制限はなく、具体例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。熱可塑性樹脂成分としては、耐熱性、耐薬品性の観点からPPSが、成形品外観、寸法安定性の観点からポリカーボネートやスチレン系樹脂が、成形品の強度や耐衝撃性の観点からポリアミドが好ましく用いられる。   The thermoplastic resin constituting the insulating material of the small component 14F is not particularly limited, and specific examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), and polyethylene naphthalate (PEN). ), Polyesters such as liquid crystal polyester, polyolefins such as polyethylene (PE), polypropylene (PP) and polybutylene, styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), poly Methylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide PEI), polysulfone (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR) ), Polyether nitrile (PEN), phenolic resin, phenoxy resin, polytetrafluoroethylene, and other fluorine resins, polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, fluorine It may be a thermoplastic elastomer such as a system, a copolymer, a modified body thereof, or a resin blended with two or more kinds. As the thermoplastic resin component, PPS is preferable from the viewpoint of heat resistance and chemical resistance, polycarbonate and styrene resin are preferable from the viewpoint of molded product appearance and dimensional stability, and polyamide is preferable from the viewpoint of the strength and impact resistance of the molded product. Used.

小部品14Fの絶縁材料を構成する熱硬化性樹脂としては、例えば不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、および、これらの少なくとも2種をブレンドした樹脂などを使用することができる。さらに耐衝撃性向上等のために、前記熱硬化性樹脂に熱可塑性樹脂またはその他のエラストマーもしくはゴム成分等を添加した樹脂を用いてもよい。コア層を構成する熱可塑性樹脂、および熱硬化性樹脂には、用途等に応じ、樹脂に加えて、耐衝撃性向上のために、ゴム成分などの他のエラストマーを含有しても良いし、種々の機能を与えるために、他の充填材や添加剤を含有してもよい。かかる充填材や添加剤としては、例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。   Examples of the thermosetting resin constituting the insulating material of the small component 14F include unsaturated polyester, vinyl ester, epoxy, phenol (resole type), urea melamine, polyimide, and their copolymers, modified products, and the like. A resin in which at least two of these are blended can be used. Further, in order to improve impact resistance, a resin obtained by adding a thermoplastic resin or other elastomer or rubber component to the thermosetting resin may be used. The thermoplastic resin and the thermosetting resin constituting the core layer may contain other elastomers such as a rubber component in order to improve impact resistance, in addition to the resin, depending on the application. In order to provide various functions, other fillers and additives may be contained. Examples of such fillers and additives include inorganic fillers, flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, and coloring prevention. Agents, heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.

小部品14Fの絶縁材料を構成するマトリックスに含まれる強化繊維としては、例えばポリアクリロニトリル系、レーヨン系、リグニン系、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維や、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維等が使用できる。これらの強化繊維は単独で用いても、また、2種以上併用しても良い。   Examples of the reinforcing fibers contained in the matrix constituting the insulating material of the small component 14F include inorganic fibers such as polyacrylonitrile, rayon, lignin, glass fiber, silicon carbide fiber, silicon nitride fiber, aramid fiber, Organic fibers such as polyparaphenylene benzobisoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, and polyethylene fiber can be used. These reinforcing fibers may be used alone or in combination of two or more.

以下、実施例により本発明をさらに詳細に説明する。以下、実施例によって、本発明を具体的に説明するが、下記の実施例は本発明を制限するものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the following Example does not restrict | limit this invention.

[電界シールド性の測定方法(KEC法)]
図9は、電界シールド性の測定装置の概略縦断面図である。図9において、電界シールド性の測定装置9bは、金属管9fからなる測定筐体からなる。金属管9fの内部空間は、外界から遮蔽されている。金属管9fの内部空間には、信号発信用アンテナ9cと信号受信用アンテナ9eが設けられている。金属管9fは、両アンテナの間に、測定試料9aをその外側から挿入可能とされている。測定試料9aは、測定試料厚み9dを有する。
[Measurement method of electric field shielding properties (KEC method)]
FIG. 9 is a schematic longitudinal sectional view of an electric field shielding measuring apparatus. In FIG. 9, the electric field shielding measuring device 9b is composed of a measuring casing made of a metal tube 9f. The internal space of the metal tube 9f is shielded from the outside. A signal transmission antenna 9c and a signal reception antenna 9e are provided in the internal space of the metal tube 9f. In the metal tube 9f, a measurement sample 9a can be inserted between both antennas from the outside. The measurement sample 9a has a measurement sample thickness 9d.

金属管9fにより遮蔽された空間において信号発信用アンテナ9cと信号受信用アンテナ9eの間に、測定試料9aを挿入し、試料の有無による電界の強度を測定する。
測定装置9bにより、測定試料9aの有無による電界の強度が測定される。測定試料が無い場合の空間の電界強度をE[V/m]とし、測定試料が有る場合の空間の電界強度をE[V/m]として、遮蔽効果を次の式で求める。測定された値の符号は、正方向がシールド効果を有する方向である。
電界シールド性(シールド効果)=−20log10/E[dB]
A measurement sample 9a is inserted between the signal transmitting antenna 9c and the signal receiving antenna 9e in the space shielded by the metal tube 9f, and the strength of the electric field due to the presence or absence of the sample is measured.
The measuring device 9b measures the strength of the electric field depending on the presence or absence of the measurement sample 9a. The shielding effect is obtained by the following equation, where E 0 [V / m] is the electric field strength in the space when there is no measurement sample, and E X [V / m] is the electric field strength in the space when the measurement sample is present. The sign of the measured value is the direction in which the positive direction has a shielding effect.
Field shielding (shield effect) = - 20log 10 E 0 / E X [dB]

[繊維強化プラスチック成形体における接合部の段差]
複数の成形材料基材が接合されてなる繊維強化プラスチック成形体の接合部において、表面粗さ測定器を用いて、接合部を横切るように表面粗さ計測定ヘッド10aを走査し、成形体表面の粗さを測定(測定方法はJISB0633(2001)に準拠)して、図10に例示されるような方法により、Y方向変位(単位:μm)−測定ストローク(単位:mm)の粗さ曲線10eを得る。測定条件として、測定ストロークは20mm、測定速度0.3mm/s、カットオフ値0.3mm、フィルタ種別はガウシアン、傾斜補正無し、が選択される。接合部は測定ストロークの中間点である10mmの部分にセットする。ここで、接合部の段差10fとは、得られた粗さ曲線における最大の山頂のY方向変位と最小の谷底のY方向変位との差をいう。なお本実施例では、表面粗さ測定器として、(株)東京精密製サーフコム480Aを用い、接合部を垂直に横切るように表面粗さ計測定ヘッド10aを走査した。
[Step difference of joint in fiber reinforced plastic molding]
At the joint portion of the fiber reinforced plastic molded body in which a plurality of molding material base materials are joined, the surface roughness meter measuring head 10a is scanned across the joint portion by using a surface roughness measuring device, and the surface of the molded body The roughness curve of Y direction displacement (unit: μm) -measurement stroke (unit: mm) is measured by the method as illustrated in FIG. 10e is obtained. As measurement conditions, a measurement stroke is 20 mm, a measurement speed is 0.3 mm / s, a cutoff value is 0.3 mm, a filter type is Gaussian, and no tilt correction is selected. The joint is set at a 10 mm portion which is the midpoint of the measurement stroke. Here, the step 10f of the joint portion refers to a difference between the maximum Y-direction displacement of the peak and the minimum Y-direction displacement of the bottom of the obtained roughness curve. In this example, Surfcom 480A manufactured by Tokyo Seimitsu Co., Ltd. was used as the surface roughness measuring instrument, and the surface roughness meter measuring head 10a was scanned so as to cross the joint vertically.

(参考例1)
東レ(株)製“トレカ(登録商標)”T700S−24Kの炭素繊維連続束を、カートリッジカッターでカットし、繊維長6.4mmのチョップド糸を得た。これに界面活性剤を添加し撹拌した後、抄紙機に流し込み、吸引により脱水し、その後乾燥し炭素繊維からなる不織材料を得た。次にこの不織材料を製品外寸サイズにカットした後、不織材料3枚、ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001(融点:225℃、ガラス転移温度47℃、結晶性樹脂)製の樹脂フィルム4層をサンドイッチ状に挟み込み、温度260℃、圧力5MPaでプレスした後、冷却することで厚み1.0mmの電磁波遮蔽領域となる成形材1Aを得た。電磁波遮蔽領域となる成形材1Aにおける炭素繊維の含有率は35重量%であった。得られた参照成形体はKEC法における電界シールド性が1GHz帯において35dBであった。
(Reference Example 1)
A carbon fiber continuous bundle of “Torayca (registered trademark)” T700S-24K manufactured by Toray Industries, Inc. was cut with a cartridge cutter to obtain a chopped yarn having a fiber length of 6.4 mm. A surfactant was added thereto and stirred, then poured into a paper machine, dehydrated by suction, and then dried to obtain a non-woven material composed of carbon fibers. Next, this non-woven material was cut into a size outside the product, and then three non-woven materials, polyamide 6 resin (“Amilan” (registered trademark) CM1001 manufactured by Toray Industries, Inc., melting point: 225 ° C., glass transition temperature) A resin material 4A made of 47 ° C., a crystalline resin) was sandwiched, pressed at a temperature of 260 ° C. and a pressure of 5 MPa, and then cooled to obtain a molding material 1A serving as an electromagnetic wave shielding region having a thickness of 1.0 mm. The content of the carbon fiber in the molding material 1A serving as the electromagnetic shielding region was 35% by weight, and the obtained reference molded product had an electric field shielding property in the KEC method of 35 dB in the 1 GHz band.

(参考例2)
炭素繊維連続束を、日東紡製ガラスチョップドストランドCS13C―897に変えた以外は、参考例1と同様の方法で製造することで厚み1.0mmの電波透過領域となる成形材1Bを得た。得られた参照成形体は、KEC法における電界シールド性が1GHz帯において2dBであった。
(Reference Example 2)
Except for changing the carbon fiber continuous bundle to a glass chopped strand CS13C-897 made by Nittobo, a molding material 1B that becomes a radio wave transmission region having a thickness of 1.0 mm was obtained by the same method as in Reference Example 1. The obtained reference molded product had an electric field shielding property in the KEC method of 2 dB in the 1 GHz band.

(参考例3)
炭素繊維からなる不織材料とガラス繊維からなる不織材料を隣り合うように、同様の重量繊維含有率Wfになるように積層し、樹脂フィルム4層をサンドイッチ状に挟み込み、温度260℃、圧力5MPaでプレスした後、冷却することで厚み1.0mmの電磁波遮蔽領域となる成形材1Aと電波透過領域となる成形材1Bからなる複合積層板1Cを得た。
(Reference Example 3)
A non-woven material made of carbon fiber and a non-woven material made of glass fiber are laminated so as to have the same weight fiber content Wf, and the resin film 4 layers are sandwiched, and the temperature is 260 ° C., pressure After pressing at 5 MPa, cooling was performed to obtain a composite laminate 1C composed of a molding material 1A serving as an electromagnetic wave shielding region having a thickness of 1.0 mm and a molding material 1B serving as a radio wave transmission region.

得られた複合積層板1Cの電磁波遮蔽領域となる成形材1Aと電波透過領域となる成形材1Bとの接合部の段差を表面粗さ測定器にて測定したところ、段差は10μmであった。   When the level difference of the joint portion between the molding material 1A serving as an electromagnetic wave shielding region and the molding material 1B serving as a radio wave transmission region of the obtained composite laminate 1C was measured with a surface roughness measuring instrument, the level difference was 10 μm.

(実施例1)
東レ(株)製“トレカ(登録商標)”T700S−24Kの炭素繊維連続束を、カートリッジカッターでカットし、繊維長6.4mmのチョップド糸を得た。これに界面活性剤を添加し撹拌した後、抄紙機に流し込み、吸引により脱水し、その後乾燥し炭素繊維からなる不織材料を得た。
Example 1
A carbon fiber continuous bundle of “Torayca (registered trademark)” T700S-24K manufactured by Toray Industries, Inc. was cut with a cartridge cutter to obtain a chopped yarn having a fiber length of 6.4 mm. A surfactant was added thereto and stirred, then poured into a paper machine, dehydrated by suction, and then dried to obtain a non-woven material composed of carbon fibers.

日東紡(株)製ガラスチョップドストランドCS13C―897に界面活性剤を添加し撹拌した後、抄紙機に流し込み、吸引により脱水し、その後乾燥しガラスチョップドストランドからなる不織材料を得た。   A surfactant was added to a glass chopped strand CS13C-897 manufactured by Nittobo Co., Ltd. and stirred, then poured into a paper machine, dehydrated by suction, and then dried to obtain a nonwoven material composed of glass chopped strands.

次に、これらの不織材料を製品外寸サイズにカットした後、炭素繊維からなる不織材料とガラス繊維からなる不織材料を隣り合うように積層し、炭素繊維からなる不織材料が重量繊維含有率Wf25%、ガラス繊維からなる不織材料を重量繊維含有率Wf30%になるように、ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001(融点:225℃、ガラス転移温度47℃、結晶性樹脂)製の樹脂フィルムをサンドイッチ状に挟み込み、成形前積層体を得た。   Next, after these non-woven materials are cut to the outer size of the product, non-woven materials made of carbon fibers and non-woven materials made of glass fibers are laminated so that the non-woven materials made of carbon fibers are Polyamide 6 resin (manufactured by Toray Industries, Inc., “Amilan” (registered trademark) CM1001 (melting point: 225 ° C.), so that the non-woven material made of glass fiber has a fiber content Wf of 25% and a weight fiber content Wf of 30%. A resin film made of a glass transition temperature of 47 ° C. and a crystalline resin) was sandwiched in a sandwich shape to obtain a laminate before molding.

加熱プレス(温度260℃、圧力5MPa)にて溶融含浸させた後、冷却プレス(温度100℃、圧力5MPa)することで厚み1.45mmの複合積層板1Cを得た。   After melt impregnation with a heating press (temperature 260 ° C., pressure 5 MPa), a composite laminate 1C having a thickness of 1.45 mm was obtained by cooling press (temperature 100 ° C., pressure 5 MPa).

次に、得られた複合積層板をRoland社製NC加工機MDX−540にて筐体天面の形状に切削加工した。この際に複合積層板の外周端部にはアウトサート樹脂との接合スロープ形状を設けるように加工した。   Next, the obtained composite laminate was cut into the shape of the top surface of the casing with an NC processing machine MDX-540 manufactured by Roland. At this time, the composite laminate was processed so as to have a slope shape with the outsert resin at the outer peripheral end portion.

以上のようにして得た複合積層板を、射出成形金型キャビティ側に配置した上で型締めを行い、熱可塑性樹脂1Dを、複合積層板の外周上に射出成形して、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品とした。   The composite laminate obtained as described above is placed on the injection mold cavity side and clamped, and the thermoplastic resin 1D is injection-molded on the outer periphery of the composite laminate, and the composite laminate 1C is obtained. And the site | part shape | molded with the thermoplastic resin 1D was integrated, and it was set as the integrally molded product.

接合部曲げ強度は成形した一体成形品から、切り出して曲げ試験を行い、筐体稜線の反りは、定盤上に置いた成形品に定規を当てて測定した。特性評価結果はまとめて表1に記載した。   The joint bending strength was cut out from the molded integrally molded product and subjected to a bending test, and the warpage of the casing ridge line was measured by applying a ruler to the molded product placed on a surface plate. The characteristic evaluation results are collectively shown in Table 1.

(実施例2)
成形前積層体の炭素繊維からなる不織材料とガラス繊維からなる不織材料を、隣り合うように積層する際に、接合部が5mmオーバーラップするように積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Example 2)
The non-woven material made of carbon fiber and the non-woven material made of glass fiber in the pre-molded laminate were laminated so as to be adjacent to each other, except that they were laminated so that the joints overlap each other by 5 mm. Then, the composite laminate 1C and the part molded with the thermoplastic resin 1D were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例3)
成形前積層体の炭素繊維からなる不織材料とガラス繊維からなる不織材料を、隣り合うように積層する際に、接合部が10mmオーバーラップするように積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Example 3)
The non-woven material made of carbon fiber and the non-woven material made of glass fiber in the pre-molded laminate were laminated so as to be adjacent to each other, except that they were laminated so that the joints overlap each other by 10 mm. Then, the composite laminate 1C and the part molded with the thermoplastic resin 1D were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例4)
成形前積層体を得る際に、ガラス繊維からなる不織材料を重量繊維含有率Wf50%になるように、積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
Example 4
The composite laminate 1C and the thermoplastic resin 1D are obtained in the same manner as in Example 1 except that the nonwoven material made of glass fiber is laminated so that the weight fiber content Wf is 50% when the laminate before molding is obtained. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例5)
成形前積層体を得る際に、ガラス繊維からなる不織材料を重量繊維含有率Wf80%になるように、積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Example 5)
The composite laminate 1C and the thermoplastic resin 1D are obtained in the same manner as in Example 1 except that the non-woven material made of glass fiber is laminated so that the weight fiber content Wf is 80% when the laminate before molding is obtained. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例6)
成形前積層体を得る際に、炭素繊維からなる不織材料を重量繊維含有率Wf7%になるように、積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Example 6)
The composite laminate 1C and the thermoplastic resin 1D are obtained in the same manner as in Example 1 except that the non-woven material made of carbon fibers is laminated so that the weight fiber content Wf is 7% when the laminate before molding is obtained. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例7)
成形前積層体を得る際に、炭素繊維からなる不織材料を重量繊維含有率Wf60%になるように、積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Example 7)
The composite laminate 1C and the thermoplastic resin 1D are obtained in the same manner as in Example 1 except that the non-woven material made of carbon fiber is laminated so that the weight fiber content Wf is 60% when obtaining the laminate before molding. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例8)
成形前積層体を得る際に、電波透過領域となる成形材1Bとなるガラス繊維からなる不織材料の代わりに樹脂フィルムを使用する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Example 8)
In the same manner as in Example 1 except that a resin film is used instead of the non-woven material made of glass fiber that becomes the molding material 1B that becomes the radio wave transmission region when obtaining the laminate before molding, the composite laminate 1C, The parts molded with the thermoplastic resin 1D were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(実施例9)
成形前積層体を得る際に、中央にコア層となる樹脂フィルムN66シート(厚みt=0.5mm)を積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
Example 9
A composite laminate 1C and a thermoplastic resin 1D are obtained in the same manner as in Example 1 except that a resin film N66 sheet (thickness t = 0.5 mm) serving as a core layer is laminated at the center when obtaining a laminate before molding. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(比較例1)
東レ(株)製“トレカ(登録商標)”T700S−24Kの炭素繊維連続束を、カートリッジカッターでカットし、繊維長6.4mmのチョップド糸を得た。これに界面活性剤を添加し撹拌した後、抄紙機に流し込み、吸引により脱水し、その後乾燥し炭素繊維からなる不織材料を得た。次にこの不織材料を製品外寸サイズにカットした後、炭素繊維からなる不織材料が重量繊維含有率Wf25%になるように、ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001(融点:225℃、ガラス転移温度47℃、結晶性樹脂)製の樹脂フィルム4層をサンドイッチ状に挟み込み、温度260℃、圧力5MPaでプレスした後、冷却することで厚み1.45mmの電磁波遮蔽領域となる成形材1Aを得た。
(Comparative Example 1)
A carbon fiber continuous bundle of “Torayca (registered trademark)” T700S-24K manufactured by Toray Industries, Inc. was cut with a cartridge cutter to obtain a chopped yarn having a fiber length of 6.4 mm. A surfactant was added thereto and stirred, then poured into a paper machine, dehydrated by suction, and then dried to obtain a non-woven material composed of carbon fibers. Next, the nonwoven material is cut into an outer size of the product, and then the polyamide 6 resin (“Amilan” (manufactured by Toray Industries, Inc.) is used so that the nonwoven material made of carbon fiber has a weight fiber content Wf of 25%. 4 layers of resin films made of registered trademark CM1001 (melting point: 225 ° C., glass transition temperature 47 ° C., crystalline resin) are sandwiched, pressed at a temperature of 260 ° C. and a pressure of 5 MPa, and then cooled to a thickness of 1. A molding material 1A to be a 45 mm electromagnetic wave shielding region was obtained.

次に、得られた成形材を、射出成形金型キャビティ側に配置した上で型締めを行い、熱可塑性樹脂1Dを、複合積層板1Cの外周上に射出成形して、成形材1Aと熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品とした。   Next, the obtained molding material is placed on the injection mold cavity side and then clamped, and the thermoplastic resin 1D is injection-molded on the outer periphery of the composite laminate 1C, so that the molding material 1A and the heat are heated. The parts molded with the plastic resin 1D were integrated into an integrally molded product.

また、日東紡(株)製ガラスチョップドストランドCS13C―897に界面活性剤を添加し撹拌した後、抄紙機に流し込み、吸引により脱水し、その後乾燥しガラスチョップドストランドからなる不織材料を得た。次にこの不織材料を製品外寸サイズにカットした後、炭素繊維からなる不織材料が重量繊維含有率Wf50%になるように、ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001(融点:225℃、ガラス転移温度47℃、結晶性樹脂)製の樹脂フィルム4層をサンドイッチ状に挟み込み、温度260℃、圧力5MPaでプレスした後、冷却することで厚み1.45mmの電波透過領域となる成形材1Bを得た。   Further, a surfactant was added to Nittobo Co., Ltd. glass chopped strand CS13C-897 and stirred, then poured into a paper machine, dehydrated by suction, and then dried to obtain a nonwoven material composed of glass chopped strands. Next, the nonwoven material is cut into an outer size of the product, and then the polyamide 6 resin (“Amilan” (manufactured by Toray Industries, Inc.) is used so that the nonwoven material made of carbon fiber has a weight fiber content Wf of 50%. 4 layers of resin films made of registered trademark CM1001 (melting point: 225 ° C., glass transition temperature 47 ° C., crystalline resin) are sandwiched, pressed at a temperature of 260 ° C. and a pressure of 5 MPa, and then cooled to a thickness of 1. A molding material 1B to be a 45 mm radio wave transmission region was obtained.

次に一体成形品の一部をNC加工機にて切り抜き、成形材1Bを一体成形品の切り抜き部にはめこむことで成形前前駆体を得た。   Next, a part of the integrally molded product was cut out with an NC processing machine, and the molding material 1B was fitted into the cut-out portion of the integrally molded product to obtain a pre-molding precursor.

その後、成形前駆体を、その表面温度が235℃になるまで遠赤外線ヒーターを具備したオーブン中で加熱する。下型として雄金型と、上型として雌金型を具備する成形型の表面温度を85℃に温調し、型開きし、加熱された成形前駆体をセットしてキャビティの厚みが1.45mmとなるまで型締めしてプレス成形を行い成形品を得た。特性評価結果はまとめて表1に記載した。   Thereafter, the molding precursor is heated in an oven equipped with a far-infrared heater until the surface temperature reaches 235 ° C. The surface temperature of a molding die having a male die as a lower die and a female die as an upper die is adjusted to 85 ° C., the die is opened, a heated molding precursor is set, and the thickness of the cavity is 1. The mold was clamped to 45 mm and press-molded to obtain a molded product. The characteristic evaluation results are collectively shown in Table 1.

(比較例2)
成形前積層体を得る際に、ガラス繊維からなる不織材料を重量繊維含有率Wf50%になるように積層し、含浸樹脂に液状の熱硬化性エポキシ樹脂を使用して、加熱プレス(温度160℃、圧力2MPa)にて熱硬化させること以外は実施例1と同様にして、厚み1.45mmの複合積層板1Cを得た。
(Comparative Example 2)
When obtaining a laminate before molding, a nonwoven material made of glass fibers is laminated so as to have a weight fiber content Wf of 50%, and a liquid thermosetting epoxy resin is used as the impregnating resin, and a heating press (temperature 160). A composite laminate 1C having a thickness of 1.45 mm was obtained in the same manner as in Example 1 except that it was thermally cured at 0 ° C. and a pressure of 2 MPa.

次に、得られた複合積層板をRoland社製NC加工機MDX−540にて筐体天面の形状に切削加工した。この際に複合積層板の外周端部にはアウトサート樹脂との接合スロープ形状を設けるように加工した。   Next, the obtained composite laminate was cut into the shape of the top surface of the casing with an NC processing machine MDX-540 manufactured by Roland. At this time, the composite laminate was processed so as to have a slope shape with the outsert resin at the outer peripheral end portion.

以上のようにして得た複合積層板を、射出成形金型キャビティ側に配置した上で型締めを行い、熱可塑性樹脂1Dを、複合積層板1Cの外周上に射出成形して、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品とした。特性評価結果はまとめて表1に記載した。   The composite laminate obtained as described above is placed on the injection mold cavity side, and then clamped, and the thermoplastic resin 1D is injection-molded on the outer periphery of the composite laminate 1C. The part molded with 1C and the thermoplastic resin 1D was integrated into an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(比較例3)
成形前積層体を得る際に、炭素繊維からなる不織材料を重量繊維含有率Wf90%になるように、積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Comparative Example 3)
The composite laminate 1C and the thermoplastic resin 1D are obtained in the same manner as in Example 1 except that the non-woven material made of carbon fibers is laminated so that the weight fiber content Wf is 90% when the laminate before molding is obtained. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(比較例4)
成形前積層体を得る際に、ガラス繊維からなる不織材料を重量繊維含有率Wf90%になるように、積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Comparative Example 4)
The composite laminate 1C and the thermoplastic resin 1D are obtained in the same manner as in Example 1 except that the nonwoven material made of glass fiber is laminated so that the weight fiber content Wf is 90% when the laminate before molding is obtained. The parts molded in step 1 were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

(比較例5)
成形前積層体を得る際に、樹脂フィルムをプライムポリマー(株)製プライムポリプロJ105G樹脂製の樹脂フィルムを積層する他は実施例1と同様にして、複合積層板1Cと、熱可塑性樹脂1Dで成形した部位を一体化させて一体成形品を得た。特性評価結果はまとめて表1に記載した。
(Comparative Example 5)
In the same manner as in Example 1 except that the resin film made of Prime Polypro J105G resin made by Prime Polymer Co., Ltd. is used to obtain the laminate before molding, the composite laminate 1C and the thermoplastic resin 1D are used. The molded parts were integrated to obtain an integrally molded product. The characteristic evaluation results are collectively shown in Table 1.

以上の特性評価結果を、まとめて表1および表2に記載した。   The above characteristic evaluation results are collectively shown in Tables 1 and 2.

Figure 2013075447
Figure 2013075447

Figure 2013075447
Figure 2013075447

本発明により、電波遮断性能と無線通信性能とを両立させ、かつ表面意匠性に優れた電子機器筺体を製造できるので、前記機能的な両立が必要な分野に制限無く利用可能であり、例えば自動車の内蔵部品を構成する一部品などにも利用できるが、とりわけノートパソコンや携帯電話などの小型電子機器向けの筐体を製造するにあたり好適に利用できる。また本発明の一体成形品は、電気・電子機器、OA機器、家電機器、または自動車の部品、内部部材および筐体などの各種部品・部材に極めて有用である。   According to the present invention, an electronic device housing having both radio wave blocking performance and wireless communication performance and excellent surface design can be manufactured. Therefore, the electronic device housing can be used without limitation in the field where the functional compatibility is required. It can also be used as a single component constituting a built-in component, but it can be suitably used especially for manufacturing a case for a small electronic device such as a notebook computer or a mobile phone. The integrally molded product of the present invention is extremely useful for various parts and members such as electrical / electronic equipment, OA equipment, home appliances, or automobile parts, internal members, and housings.

1A 電磁波遮蔽領域となる成形材
1B 電波透過領域となる成形材
1C 複合積層板
1D 熱可塑性樹脂
1AB 基材AとBの接合部
2a 導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材
2b 第1の基材と異なる第2の基材
2c 熱可塑性樹脂を主成分としたマトリックス樹脂シート
2d プレス定盤
2A 電磁波遮蔽領域となる成形材
2B 電波透過領域となる成形材
2C 複合積層板
3a 導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材
3b 第1の基材と異なる第2の基材
3c 熱可塑性樹脂を主成分としたマトリックス樹脂シート
4a 導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材
4b 第1の基材と異なる第2の基材
4c 熱可塑性樹脂を主成分としたマトリックス樹脂シート
4L オーバーラップ長
5a 加熱工程
5b 含浸工程
5c 冷却工程
5d 温度履歴カーブ
5e 温度データ収集装置
5f 強化基材複合材
5g プレス成形機
5t 時間軸
5t1 溶融温度
5t2 固化温度
5T 温度軸
6A 電磁波遮蔽領域となる成形材
6B 電波透過領域となる成形材
IMA7 射出成形品
7A 一方の熱可塑性樹脂部材
7B 他方の熱可塑性樹脂部材
7a 第1の接合線分
7b 第2の接合線分
7ab 第3の接合線分
L7 第3の接合線分を法線方向に投影したときの長さ
JL7 縦断面LCS7と接合面JABとの交わりにより描かれる接合線
WJL7 幅方向接合線
7A1 一方の熱可塑性樹脂部材7A側の7A7B両部材が互いに重なり合わない領域
7B1 他方の熱可塑性樹脂部材7B側の7A7B両部材が互いに重なり合わない領域
7t0 射出成形品の厚み
7t1 第1の接合線分が位置する接合面における射出成形品の厚み
7t2 第3の接合線分が位置する接合面における射出成形品の厚み
7t3 第2の接合線分が位置する接合面における射出成形品の厚み
R1 第1の接合線分7aと熱可塑性樹脂部材Aの表面FS7の法線がなす角度
R2 第2の接合線分7bと熱可塑性樹脂部材7Bの裏面BS7の法線がなす角度
SEA 一方側の側端面
SEB 他方側の側端面
JAB 接合面
LCS7 縦断面
FS7 射出成形品の表面
BS7 射出成形品の裏面
8A 電磁波遮蔽領域となる成形材
8B 電波透過領域となる成形材
8C 複合積層板
8D 熱可塑樹脂
8F 小部品
8a 射出成形機金型
8b 射出成形機ノズル
9a 測定試料
9b 電界シールド性の測定装置
9c 信号発信用アンテナ
9d 測定試料厚み
9e 信号受信用アンテナ
9f 金属管
10A 電磁波遮蔽領域となる成形材
10B 電波透過領域となる成形材
10a 表面粗さ計測定ヘッド
10b 測定開始点
10c 測定終了点
10d 走査方向
10e 粗さ曲線
10f 段差
10L 測定ストローク
10XL X方向ストローク軸
10YL Y方向変位軸
11A 電磁波遮蔽領域となる成形材
11B 電波透過領域となる成形材
11C 複合積層板
11D 熱可塑樹脂
11E コア層
11AB 基材AとBの接合部
12A 電磁波遮蔽領域となる成形材
12B 電波透過領域となる成形材
12D 熱可塑樹脂
12AB 基材AとBの接合部
13A 電磁波遮蔽領域となる成形材
13B 電波透過領域となる成形材
13D 熱可塑樹脂
13AB 基材AとBの接合部
14A 電磁波遮蔽領域となる成形材
14B 電波透過領域となる成形材
14D 熱可塑樹脂
14DB 基材DとBの接合部
14DF 基材DとFの接合部
14F 小部品
DESCRIPTION OF SYMBOLS 1A Molding material 1B used as an electromagnetic wave shielding region Molding material 1C used as a radio wave transmission region 1C Composite laminate 1D Thermoplastic resin 1AB Joining portion 2a of base materials A and B First sheet-shaped paper having conductive discontinuous reinforcing fibers Reinforced base material 2b Second base material 2c different from the first base material 2c Matrix resin sheet 2d containing thermoplastic resin as a main component Press surface plate 2A Molding material 2B serving as an electromagnetic wave shielding region 2C Molding material 2C serving as an electromagnetic wave transmission region Composite laminated board 3a First reinforced base material 3b which is a sheet-like paper having conductive discontinuous reinforcing fibers Second base material 3c different from the first base material Matrix resin sheet 4a mainly composed of a thermoplastic resin First reinforcing substrate 4b which is a sheet-like paper having conductive discontinuous reinforcing fibers Second substrate 4c which is different from the first substrate Matrix resin sheet 4L comprising a thermoplastic resin as a main component -Burr length 5a Heating step 5b Impregnation step 5c Cooling step 5d Temperature history curve 5e Temperature data collection device 5f Reinforced base material composite material 5g Press molding machine 5t Time axis 5t1 Melting temperature 5t2 Solidification temperature 5T Temperature axis 6A Molding material to be an electromagnetic shielding region 6B Molding material IMA7 serving as a radio wave transmission region 7A Injection molded product 7A One thermoplastic resin member 7B The other thermoplastic resin member 7a First joint line segment 7b Second joint line segment 7ab Third joint line segment L7 Third Length JL7 when projected in the normal direction The joint line WJL7 drawn by the intersection of the longitudinal section LCS7 and the joint surface JAB 7 in the width direction joint line 7A1 Both members 7A7B on the one thermoplastic resin member 7A side are Region 7B1 that does not overlap each other Region 7t0 where both members 7A7B on the other thermoplastic resin member 7B side do not overlap each other Molded product thickness 7t1 Injection molded product thickness 7t2 at the joint surface where the first joint line segment is located Injection molding product thickness 7t3 at the joint surface where the third joint line segment is located The second joint line segment is located Thickness R1 of injection-molded product on the joint surface Angle R2 formed by the first joint line segment 7a and the normal line of the surface FS7 of the thermoplastic resin member A Method of the second joint line segment 7b and the back surface BS7 of the thermoplastic resin member 7B Angle SEA formed by one side Side end surface SEB on one side JAB side end surface JAB Joint surface LCS7 Longitudinal section FS7 Surface of injection molded product BS7 Back surface of injection molded product 8A Molding material 8B serving as electromagnetic wave shielding region Molding material serving as radio wave transmission region 8C Composite laminated plate 8D Thermoplastic resin 8F Small part 8a Injection molding machine die 8b Injection molding machine nozzle 9a Measurement sample 9b Electric field shielding measuring device 9c Signal transmission antenna 9d Measurement sample Thickness 9e Signal receiving antenna 9f Metal tube 10A Molding material 10B serving as an electromagnetic wave shielding region Molding material 10a serving as a radio wave transmission region Surface roughness meter measuring head 10b Measurement start point 10c Measurement end point 10d Scanning direction 10e Roughness curve 10f Step 10L Measurement stroke 10XL X-direction stroke axis 10YL Y-direction displacement axis 11A Molding material 11B serving as an electromagnetic wave shielding region Molding material 11C serving as a radio wave transmission region Composite laminate 11D Thermoplastic resin 11E Core layer 11AB Joining portion 12A between base materials A and B Electromagnetic wave Molding material 12B serving as shielding region Molding material 12D serving as radio wave transmission region 12D Thermoplastic resin 12AB Joining portion 13A of base materials A and B Molding material 13B serving as electromagnetic wave shielding region 13D Molding material 13D serving as radio wave transmission region Thermoplastic resin 13AB Base material A and B joint 14A Molding material 14B which becomes electromagnetic wave shielding region 14B Radio wave transmission Joint 14F small part of the joint 14DF substrate D and F of the molding material 14D thermoplastic resin 14DB substrate D and B to be the frequency

Claims (15)

導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材(2a)と第1の基材と異なる第2の基材(2b)とを突き合わせ接合した複合基材を、少なくとも複数積層した基材積層体の層間の少なくとも一部に、熱可塑性樹脂を主成分としたマトリックス樹脂シート(2c)を挟入した成形前積層体を形成し、前記成形前積層体を内部に配置した成形型を加熱溶融プレスによりマトリックス樹脂を前記複合基材内に含浸させた後、前記成形型内で冷却することにより一体化成形した複合積層板(1C)の製造方法。 A composite base material obtained by butt-joining a first base material (2a) which is a sheet-like paper having conductive discontinuous reinforcing fibers and a second base material (2b) different from the first base material, A pre-molding laminate is formed in which a matrix resin sheet (2c) mainly composed of a thermoplastic resin is sandwiched between at least a part of the layers of the laminated substrate laminate, and the pre-molding laminate is disposed inside. A method for producing a composite laminate (1C) in which a molded resin is impregnated with a matrix resin by a hot melt press and then integrally molded by cooling in the mold. 隣接する前記複合基材の境界部分の一部が重なり合うように積層することを特徴とした請求項1に記載の複合積層板(1C)の製造方法。 The method for producing a composite laminate (1C) according to claim 1, wherein the laminates are laminated so that a part of the boundary portion between the adjacent composite substrates overlaps. 前記加熱溶融プレスにおいて、前記成形前積層体温度を融点以上の温度で加熱溶融プレスしたのち、固化温度以下になるまで冷却する間、圧力を保持することを特徴とした請求項1または2に記載の複合積層板(1C)の製造方法。 3. The heat-melt press, wherein the pressure is maintained during cooling until the temperature of the laminated body before molding is equal to or higher than the melting point and then cooled to a solidification temperature or lower. A method for producing a composite laminate (1C). 前記第1の強化基材(2a)にマトリックス樹脂が含浸した電磁波遮蔽領域となる成形材(1A)のKEC法により測定される電磁波遮蔽性が周波数1GHz帯において10〜80dBとなる材料を使用することを特徴とする請求項1から3のいずれかに記載の複合積層板(1C)の製造方法。 A material having an electromagnetic wave shielding property measured by the KEC method of 10 to 80 dB in the frequency 1 GHz band of the molding material (1A) to be an electromagnetic wave shielding region impregnated with the matrix resin in the first reinforced substrate (2a) is used. The manufacturing method of the composite laminated sheet (1C) in any one of Claim 1 to 3 characterized by the above-mentioned. 前記第2の基材(2b)にマトリックス樹脂が含浸した電波透過領域となる成形材(1B)のKEC法により測定される電磁波遮蔽性が周波数1GHz帯において0〜10dBとなる材料を使用することを特徴とする請求項1から4のいずれかに記載の複合積層板(1C)の製造方法。 Use a material in which the electromagnetic wave shielding property measured by the KEC method of the molding material (1B) which becomes the radio wave transmission region in which the matrix resin is impregnated in the second base material (2b) is 0 to 10 dB in the frequency 1 GHz band. The manufacturing method of the composite laminated sheet (1C) in any one of Claim 1 to 4 characterized by these. 前記電磁波遮蔽領域となる成形材(1A)の繊維重量含有率(Wf)が5%から80%であることを特徴とする請求項1から5のいずれかに記載の複合積層板(1C)の製造方法。 The composite laminate (1C) according to any one of claims 1 to 5, wherein a fiber weight content (Wf) of the molding material (1A) serving as the electromagnetic wave shielding region is 5% to 80%. Production method. 前記電波透過領域となる成形材(1B)は強化繊維を含むことができ、強化繊維が非導電繊維であるガラス繊維、アラミド繊維、化学繊維、強化フィラーから選択される少なくとも1種を含む、請求項1から6のいずれかに記載の複合積層板(1C)の製造方法。 The molding material (1B) to be the radio wave transmission region can include reinforcing fibers, and the reinforcing fibers include at least one selected from glass fibers, aramid fibers, chemical fibers, and reinforcing fillers that are non-conductive fibers. Item 7. A method for producing a composite laminate (1C) according to any one of Items 1 to 6. 前記電波透過領域となる成形材(1B)の繊維重量含有率(Wf)の範囲が0%から80%であることを特徴とする請求項1から7のいずれかに記載の複合積層板(1C)の製造方法。 The composite laminate (1C) according to any one of claims 1 to 7, wherein a range of fiber weight content (Wf) of the molding material (1B) serving as the radio wave transmission region is 0% to 80%. ) Manufacturing method. 請求項1から3のいずれかに記載の前記複合積層板(1C)の周縁部の少なくとも一部に接合部となるスロープ形状を設けた後に、前記周縁部の少なくとも一部を覆うように熱可塑性樹脂(1D)を射出成形して一体化することを特徴とする一体成形品の製造方法。 Thermoplastic so as to cover at least a part of the peripheral part after providing a slope shape as a joint part on at least a part of the peripheral part of the composite laminate (1C) according to any one of claims 1 to 3. A method for producing an integrally molded product, wherein the resin (1D) is integrated by injection molding. 請求項1から9のいずれかに記載の前記複合積層板(1C)の層間に、コア層(11E)として樹脂フィルム、シート、発泡体から選択される1種以上を積層することを特徴とする一体成形品の製造方法。 One or more types selected from a resin film, a sheet, and a foam are laminated as a core layer (11E) between the layers of the composite laminate (1C) according to any one of claims 1 to 9. A method for manufacturing an integrally molded product. 電気・電子機器筐体、家電機器筐体のいずれかの用途に用いること特徴とする請求項9または10に記載の一体成形品の製造方法。 The method for producing an integrally molded product according to claim 9 or 10, wherein the method is used for any one of an electrical / electronic device housing and a household electrical appliance housing. 導電性の不連続強化繊維を有するシート状抄紙である第1の強化基材(2a)と第1の基材と異なる第2の基材(2b)とを突き合わせ接合した複合基材を、少なくとも複数積層した基材積層体の層間の少なくとも一部に、熱可塑性樹脂を主成分としたマトリックス樹脂シート(2c)を挟入した成形前積層体に、加熱溶融プレスによりマトリックス樹脂を含浸させ、該マトリックス樹脂を冷却して一体化成形した複合積層板(1C)。 A composite base material obtained by butt-joining a first base material (2a) which is a sheet-like paper having conductive discontinuous reinforcing fibers and a second base material (2b) different from the first base material, A laminate body before molding in which a matrix resin sheet (2c) mainly composed of a thermoplastic resin is sandwiched between at least a part of the layers of a plurality of laminated substrate laminates is impregnated with a matrix resin by a hot melt press, A composite laminate (1C) in which matrix resin is cooled and integrally molded. 前記成形前積層体の一部を折り曲げて立ち壁の一部とする請求項12に記載の複合積層板(1C)。 The composite laminate (1C) according to claim 12, wherein a part of the laminate before molding is bent to form part of a standing wall. 請求項12または13のいずれかに記載の前記複合積層板(1C)の周縁部の少なくとも一部にスロープ形状を有する接合部を設けるとともに、前記周縁部の少なくとも一部を覆うように熱可塑性樹脂(1D)を射出成形して一体化することを特徴とする一体成形品。 A thermoplastic resin is provided so as to provide at least a part of the peripheral part of the composite laminate plate (1C) according to any one of claims 12 and 13 with a joining part having a slope shape and to cover at least a part of the peripheral part. (1D) is integrally molded by injection molding. 別成形した小部品(14F)の絶縁材料を、熱可塑性樹脂(1D)とともに一体成形されたことを特徴とする請求項14に記載の一体成形品。 15. The integrally molded product according to claim 14, wherein the insulating material of the separately molded small part (14F) is integrally molded together with the thermoplastic resin (1D).
JP2011217022A 2011-09-30 2011-09-30 Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items Withdrawn JP2013075447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217022A JP2013075447A (en) 2011-09-30 2011-09-30 Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217022A JP2013075447A (en) 2011-09-30 2011-09-30 Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items

Publications (1)

Publication Number Publication Date
JP2013075447A true JP2013075447A (en) 2013-04-25

Family

ID=48479303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217022A Withdrawn JP2013075447A (en) 2011-09-30 2011-09-30 Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items

Country Status (1)

Country Link
JP (1) JP2013075447A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148111A (en) * 2013-02-01 2014-08-21 Toray Ind Inc Production method of fiber-reinforced plastic molding article and production method of integral molding article
KR20170023973A (en) 2014-06-30 2017-03-06 도레이 카부시키가이샤 Laminate and integrally molded article
WO2018061905A1 (en) * 2016-09-30 2018-04-05 本田技研工業株式会社 Resin component, and molding method and molding device for same
JP2018176576A (en) * 2017-04-14 2018-11-15 トヨタ紡織株式会社 Resin molding and method for producing the same
JP2019025847A (en) * 2017-08-02 2019-02-21 株式会社栗本鐵工所 Laminated structure and compact
WO2019131045A1 (en) 2017-12-26 2019-07-04 帝人株式会社 Method for producing press molded body
US10390828B2 (en) 2014-06-10 2019-08-27 Ethicon Llc Devices and methods for sealing staples in tissue
WO2021157652A1 (en) * 2020-02-06 2021-08-12 東レ株式会社 Carbon fiber-reinforced composite material, laminated carbon fiber composite material, laminated composite material, case for wireless power feeder, and case for wireless power receiver
EP3950282A4 (en) * 2019-03-28 2022-05-11 Teijin Limited Method for producing press-molded body
CN116826264A (en) * 2023-08-29 2023-09-29 深圳海辰储能控制技术有限公司 Energy storage device and electric equipment

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148111A (en) * 2013-02-01 2014-08-21 Toray Ind Inc Production method of fiber-reinforced plastic molding article and production method of integral molding article
US10390828B2 (en) 2014-06-10 2019-08-27 Ethicon Llc Devices and methods for sealing staples in tissue
KR20170023973A (en) 2014-06-30 2017-03-06 도레이 카부시키가이샤 Laminate and integrally molded article
US10175728B2 (en) 2014-06-30 2019-01-08 Toray Industries, Inc. Laminate and integrally molded article
WO2018061905A1 (en) * 2016-09-30 2018-04-05 本田技研工業株式会社 Resin component, and molding method and molding device for same
CN109789619A (en) * 2016-09-30 2019-05-21 本田技研工业株式会社 Resin component and its manufacturing process, forming device
JPWO2018061905A1 (en) * 2016-09-30 2019-06-27 本田技研工業株式会社 Resin parts, molding method therefor, molding apparatus
GB2570418A (en) * 2016-09-30 2019-07-24 Honda Motor Co Ltd Resin component, and molding method and molding device for same
US11701806B2 (en) 2016-09-30 2023-07-18 Honda Motor Co., Ltd. Resin component, and molding method and molding device for same
US11220029B2 (en) 2017-04-14 2022-01-11 Toyota Boshoku Kabushiki Kaisha Resin molding and method for producing the same
JP2018176576A (en) * 2017-04-14 2018-11-15 トヨタ紡織株式会社 Resin molding and method for producing the same
JP2019025847A (en) * 2017-08-02 2019-02-21 株式会社栗本鐵工所 Laminated structure and compact
WO2019131045A1 (en) 2017-12-26 2019-07-04 帝人株式会社 Method for producing press molded body
EP3885097A1 (en) 2017-12-26 2021-09-29 Teijin Limited Method for producing press molded body
US11883989B2 (en) 2017-12-26 2024-01-30 Teijin Limited Method for producing press molded body
EP3950282A4 (en) * 2019-03-28 2022-05-11 Teijin Limited Method for producing press-molded body
WO2021157652A1 (en) * 2020-02-06 2021-08-12 東レ株式会社 Carbon fiber-reinforced composite material, laminated carbon fiber composite material, laminated composite material, case for wireless power feeder, and case for wireless power receiver
CN116826264A (en) * 2023-08-29 2023-09-29 深圳海辰储能控制技术有限公司 Energy storage device and electric equipment
CN116826264B (en) * 2023-08-29 2023-12-22 深圳海辰储能控制技术有限公司 Energy storage device and electric equipment

Similar Documents

Publication Publication Date Title
JP2013075447A (en) Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items
CN110062687B (en) Integrated molded body and method for producing same
JP6167537B2 (en) Manufacturing method of fiber-reinforced plastic molded product and manufacturing method of integrally molded product
JP6617557B2 (en) Laminates and integrated molded products
JP4858544B2 (en) Composite molded article and manufacturing method thereof
JP5344032B2 (en) Injection molded product and manufacturing method thereof
US20210162638A1 (en) Integrated molded body and method of manufacturing same
JP2006044262A (en) Hollow molded article and its production method
WO2016002457A1 (en) Layered body and integrated molded article
JP2011093213A (en) Manufacturing method of fiber reinforced plastic cabinet for electronic device
JP2011166124A (en) Electrical and electronic equipment housing
JP2009202580A (en) Electromagnetic wave shield molded product and its manufacturing process
JP2021142671A (en) Integrally molded body and method of manufacturing the same
WO2019198015A1 (en) Portable electronic device housings with composite backs and methods of making the same
JP2010131804A (en) Composite molding and method for manufacturing the same
JP2005285923A (en) Electromagnetic interference sealed molded article
EP3699725A1 (en) Portable electronic device housings having translucent layers and methods of making the same
CN110877477A (en) Composite molded article, and method for producing and use thereof
WO2023248914A1 (en) Integrated molded body and electronic device casing
JP2010046938A (en) Composite molded product and method of manufacturing the same
JP2004140255A (en) Electromagnetic wave shield molding
TW202310999A (en) Integrated molded body
JP2015147378A (en) Fiber-reinforced plastic molded article, and production method thereof
JP2004358828A (en) Housing molded product made of fiber-reinforced thermosetting resin and its manufacturing method
TW202404798A (en) Integrated molded body and electronic device casing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202