JP2016221447A - Adsorbent-photocatalyst hybrid type deodorization material, method for producing the same, deodorization filter, deodorization material, and method for producing the same - Google Patents

Adsorbent-photocatalyst hybrid type deodorization material, method for producing the same, deodorization filter, deodorization material, and method for producing the same Download PDF

Info

Publication number
JP2016221447A
JP2016221447A JP2015109343A JP2015109343A JP2016221447A JP 2016221447 A JP2016221447 A JP 2016221447A JP 2015109343 A JP2015109343 A JP 2015109343A JP 2015109343 A JP2015109343 A JP 2015109343A JP 2016221447 A JP2016221447 A JP 2016221447A
Authority
JP
Japan
Prior art keywords
adsorbent
photocatalyst
deodorizing material
inorganic compound
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015109343A
Other languages
Japanese (ja)
Other versions
JP6568402B2 (en
Inventor
友宇子 工藤
Yuuko Kudo
友宇子 工藤
武志 工藤
Takeshi Kudo
武志 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andes Electric Co Ltd
Original Assignee
Andes Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andes Electric Co Ltd filed Critical Andes Electric Co Ltd
Priority to JP2015109343A priority Critical patent/JP6568402B2/en
Publication of JP2016221447A publication Critical patent/JP2016221447A/en
Application granted granted Critical
Publication of JP6568402B2 publication Critical patent/JP6568402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent-photocatalyst hybrid type deodorization material provided with sufficient performance in any of adsorption function, photocatalyst function and fixing strength to a base material, and a deodorization material.SOLUTION: Provided is a method for producing an adsorbent-photocatalyst hybrid type deodorization material characterized in that a titanium oxide nano-dispersion liquid 1, an adsorbent 2, an inorganic compound dispersion liquid 3, a silica compound 4 and metal fine particles 5 are subjected to mixing treatment (P1) to produce an adsorbent-photocatalytic hybrid type deodorization material 10 for coating, in which the inorganic compound dispersion liquid 3 is composed in such a manner that an inorganic compound is included by 0.02-0.2 in a weight ratio to the amount of the adsorbent 2, and the other binders and other materials having a binder effect are not used.SELECTED DRAWING: Figure 1

Description

本発明は吸着材‐光触媒ハイブリッド型脱臭材料、その製造方法、脱臭フィルター、脱臭材およびその製造方法に係り、特に、吸着材‐光触媒ハイブリッド型脱臭材料における吸着機能、酸化分解機能(光触媒機能)等の性能低下を有効に防止することのできる、吸着材‐光触媒ハイブリッド型脱臭材料等に関するものである。   The present invention relates to an adsorbent-photocatalyst hybrid type deodorizing material, a production method thereof, a deodorizing filter, a deodorizing material, and a production method thereof, and in particular, an adsorption function, an oxidative decomposition function (photocatalytic function), etc. in an adsorbent-photocatalyst hybrid type deodorizing material. The present invention relates to an adsorbent-photocatalyst hybrid type deodorizing material and the like that can effectively prevent performance degradation.

図2は、従来からの吸着材‐光触媒ハイブリッド型脱臭材料の基本構成を示す概念図である。図示するように吸着材‐光触媒ハイブリッド型脱臭材料は、ゼオライト等の吸着材と酸化チタン等の光触媒を、混合(複合)した脱臭材料であり、吸着機能を有する前者が主たる脱臭作用を担い、一方後者は、吸着材が吸着した臭い物質を分解して吸着材を再生する作用を担う。   FIG. 2 is a conceptual diagram showing a basic configuration of a conventional adsorbent-photocatalyst hybrid type deodorizing material. As shown in the figure, the adsorbent-photocatalyst hybrid type deodorizing material is a deodorizing material in which an adsorbing material such as zeolite and a photocatalyst such as titanium oxide are mixed (composite), and the former having an adsorbing function bears the main deodorizing action. The latter is responsible for regenerating the adsorbent by decomposing the odorous material adsorbed by the adsorbent.

光触媒を用いたハイブリッド型脱臭材料については従来、技術的な提案も多くなされている。たとえば後掲特許文献1には、従前の吸着材に光触媒を付加させる方式では吸着材と光触媒の接触面積が小さくなり、吸着材に吸着された臭気成分を効率よく光触媒の光活性により分解されない等の問題を解決する技術として、基材に担持する光触媒と金属酸化物系常温触媒との配合割合を、光触媒と常温触媒との合計重量に対して常温触媒の重量割合を22%以下とする方法が開示されている。   Conventionally, many technical proposals have been made on hybrid deodorizing materials using photocatalysts. For example, in Patent Document 1 described later, in the method of adding a photocatalyst to a conventional adsorbent, the contact area between the adsorbent and the photocatalyst is reduced, and the odor component adsorbed on the adsorbent is not efficiently decomposed by the photocatalytic photoactivity. As a technique for solving the above problem, the blending ratio of the photocatalyst supported on the substrate and the metal oxide-based room temperature catalyst is a method in which the weight ratio of the room temperature catalyst is 22% or less with respect to the total weight of the photocatalyst and the room temperature catalyst. Is disclosed.

特開平11−137656号公報「脱臭触媒素子及びその製造方法」Japanese Patent Application Laid-Open No. 11-137656 “Deodorizing Catalyst Element and Method for Producing the Same”

しかしながら、従来の吸着材‐光触媒ハイブリッド型脱臭材料には次のような問題がある。すなわち、光触媒と吸着材を混合して脱臭材料とすると、吸着材の吸着サイトと光触媒の表面反応サイトとが互いに覆い合ってしまうことになり、それぞれの作用が十分になされなくなり、結局、脱臭材としての性能が低下してしまい、所期の効果が得られないという問題である。また、粉体である光触媒と吸着材とを固定して膜強度を高めるためにはバインダーの添加が不可欠だが、このバインダーによって吸着サイトおよび光触媒表面サイトが覆われてしまい、これによっても脱臭性能が低下してしまう。
また、光触媒は一般的に悪臭ガスを酸化分解する際に中間生成物が発生し、それが空間に放出されるという問題があった。
However, the conventional adsorbent-photocatalyst hybrid type deodorizing material has the following problems. That is, if a photocatalyst and an adsorbent are mixed to form a deodorizing material, the adsorbent adsorption site and the photocatalyst surface reaction site will cover each other, and the respective functions will not be sufficiently performed. As a result, the desired performance will not be obtained. In addition, in order to fix the photocatalyst that is a powder and the adsorbent to increase the film strength, addition of a binder is indispensable, but this binder covers the adsorption site and the photocatalyst surface site, which also improves the deodorization performance. It will decline.
In addition, the photocatalyst generally has a problem in that an intermediate product is generated when the malodorous gas is oxidatively decomposed and released into the space.

そこで本発明が解決しようとする課題は、かかる従来技術の問題点をなくし、吸着機能、光触媒機能、および基材への固着強度のいずれにおいても十分な性能を備えた吸着材‐光触媒ハイブリッド型脱臭材料や脱臭材を提供することである。合わせて、吸着機能、酸化分解機能(光触媒機能)等の性能低下を有効に防止することのできる、吸着材‐光触媒ハイブリッド型脱臭材料等を提供することである。また、吸着機能を十分に発揮できる構造であることから、酸化分解で生成する中間生成物を吸着材が吸着し、空間への放出を抑制することができる、吸着材‐光触媒ハイブリッド型脱臭材料等を提供することである。   Therefore, the problem to be solved by the present invention is to eliminate such problems of the prior art and to provide an adsorbent-photocatalyst hybrid type deodorization having sufficient performance in any of the adsorption function, photocatalyst function, and adhesion strength to the substrate. It is to provide materials and deodorizing materials. In addition, it is to provide an adsorbent-photocatalyst hybrid type deodorizing material and the like that can effectively prevent performance degradation such as an adsorption function and an oxidative decomposition function (photocatalytic function). In addition, the adsorbent adsorbent adsorbs intermediate products produced by oxidative decomposition because it has a structure that can fully exert its adsorption function, and can suppress release into space. Adsorbent-photocatalyst hybrid deodorizing material, etc. Is to provide.

本願発明者は上記課題について検討した結果、酸化チタンナノ分散液、吸着材、無機化合物分散液、シリカ化合物および金属微粒子を含有してなる混合液をフィルター基材等の基材に塗布形成することによって課題解決できることを見出し、これに基づいて本発明を完成するに至った。すなわち、上記課題を解決するための手段として本願で特許請求される発明、もしくは少なくとも開示される発明は、以下の通りである。   As a result of studying the above problems, the present inventor has applied a mixed liquid containing a titanium oxide nano-dispersion, an adsorbent, an inorganic compound dispersion, a silica compound, and metal fine particles to a substrate such as a filter substrate. The present inventors have found that the problem can be solved, and have completed the present invention based on this. That is, the invention claimed in the present application, or at least the disclosed invention, as means for solving the above-described problems is as follows.

〔1〕 酸化チタンナノ分散液、吸着材、無機化合物分散液、シリカ化合物および金属微粒子を含む塗布用の吸着材‐光触媒ハイブリッド型脱臭材料であって、該無機化合物分散液は無機化合物が該吸着材の量に対して重量比で0.02〜0.2(「〜」は0.02以上0.2以下の意。以下同様。)含まれてなることを特徴とする、吸着材‐光触媒ハイブリッド型脱臭材料。
〔2〕 バインダーとして用いる別材料、またはバインダー効果のある別材料のいずれも含まないことを特徴とする、〔1〕に記載の吸着材‐光触媒ハイブリッド型脱臭材料。
〔3〕 前記無機化合物分散液中の無機化合物の平均一次粒子径が5〜100nmであり、平均一次粒子径が1〜30nmの前記酸化チタンナノ分散液を固形分濃度として1〜20重量%、前記吸着材を1〜20重量%、前記シリカ化合物の配合量をSiO固形分として酸化チタンの量に対して重量比で0.01〜0.2、および前記金属微粒子の配合量を酸化チタンの量に対して重量比で0.00001〜0.05の範囲でそれぞれ含むことを特徴とする、〔1〕または〔2〕に記載の吸着材‐光触媒ハイブリッド型脱臭材料。
[1] Titanium oxide nano-dispersion, adsorbent, inorganic compound dispersion, adsorbent-photocatalyst hybrid deodorizing material for coating containing silica compound and fine metal particles, wherein the inorganic compound dispersion is composed of an inorganic compound and the adsorbent The adsorbent-photocatalyst hybrid is characterized in that it is contained in an amount of 0.02 to 0.2 ("~" means 0.02 or more and 0.2 or less; the same shall apply hereinafter). Mold deodorizing material.
[2] The adsorbent-photocatalyst hybrid deodorizing material according to [1], which does not include any of another material used as a binder or another material having a binder effect.
[3] The average primary particle diameter of the inorganic compound in the inorganic compound dispersion is 5 to 100 nm, and the titanium oxide nano-dispersion having an average primary particle diameter of 1 to 30 nm as a solid content concentration is 1 to 20 wt%. The adsorbent is 1 to 20% by weight, the amount of the silica compound is SiO 2 solid content, the weight ratio of 0.01 to 0.2 with respect to the amount of titanium oxide, and the amount of the metal fine particles is the amount of titanium oxide. The adsorbent-photocatalyst hybrid type deodorizing material according to [1] or [2], wherein the adsorbent-photocatalyst hybrid type deodorizing material is contained in a range of 0.00001 to 0.05 by weight with respect to the amount.

〔3´〕 平均一次粒子径が1〜30nmの酸化チタンナノ分散液を固形分濃度として0.1〜20重量%、吸着材を1〜20重量%、平均一次粒子径が5〜100nmの無機化合物分散液を固形分濃度として0.01〜5重量%、シリカ化合物をSiO固形分濃度として0.001〜5重量%、金属微粒子を酸化チタンに対して0.001〜5重量%含むことを特徴とする、〔1〕または〔2〕に記載の吸着材‐光触媒ハイブリッド型脱臭材料。
〔4〕 前記吸着材として、ゼオライト、シリカゲル、活性アルミナ、活性炭、粘土鉱物または珪藻土の少なくともいずれかが含有されることを特徴とする、〔1〕ないし〔3〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。
〔5〕 前記無機化合物分散液として、酸化チタン、シリカ、アルミナまたは酸化ジルコニウムの少なくともいずれかが分散した液が含有されることを特徴とする、〔1〕ないし〔4〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。
〔6〕 前記シリカ化合物として、アルコキシシラン、アルコキシシランの加水分解物、またはシリコーンレジンの少なくともいずれかが含有されることを特徴とする、〔1〕ないし〔5〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。
[3 ′] Inorganic compound having a titanium oxide nanodispersion with an average primary particle size of 1 to 30 nm as a solid content concentration of 0.1 to 20% by weight, an adsorbent of 1 to 20% by weight, and an average primary particle size of 5 to 100 nm 0.01 to 5 wt% of the dispersion as a solid concentration, 0.001 to 5 wt% of the silica compound as a SiO 2 solid content concentration, to include 0.001 to 5% by weight of metal particles against oxidation of titanium The adsorbent-photocatalyst hybrid deodorizing material according to [1] or [2], which is characterized by
[4] The adsorbent according to any one of [1] to [3], wherein the adsorbent contains at least one of zeolite, silica gel, activated alumina, activated carbon, clay mineral, or diatomaceous earth. -Photocatalyst hybrid type deodorizing material.
[5] The inorganic compound dispersion liquid according to any one of [1] to [4], wherein a liquid in which at least one of titanium oxide, silica, alumina, or zirconium oxide is dispersed is contained. Adsorbent-photocatalyst hybrid type deodorizing material.
[6] The adsorbent according to any one of [1] to [5], wherein the silica compound contains at least one of alkoxysilane, a hydrolyzate of alkoxysilane, or a silicone resin. -Photocatalyst hybrid type deodorizing material.

〔7〕 前記金属微粒子として、白金、銀、パラジウム、金、鉄、銅、またはニッケルの少なくともいずれかが含有されることを特徴とする、〔1〕ないし〔6〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。
〔8〕 酸化チタンナノ分散液、吸着材、無機化合物分散液、シリカ化合物および金属微粒子を混合することによって塗布用の吸着材‐光触媒ハイブリッド型脱臭材料を製造する方法であって、該無機化合物分散液は無機化合物が該吸着材の量に対して重量比で0.02〜0.2含まれてなることを特徴とする、吸着材‐光触媒ハイブリッド型脱臭材料製造方法。
〔9〕 〔1〕ないし〔7〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料が基材に塗布されてなることを特徴とする、脱臭材。
[7] The adsorption according to any one of [1] to [6], wherein the metal fine particles contain at least one of platinum, silver, palladium, gold, iron, copper, or nickel. Material-photocatalyst hybrid type deodorizing material.
[8] A method for producing an adsorbent-photocatalyst hybrid deodorizing material for coating by mixing a titanium oxide nano-dispersion, an adsorbent, an inorganic compound dispersion, a silica compound, and metal fine particles, the inorganic compound dispersion Is a method for producing an adsorbent-photocatalyst hybrid deodorizing material, characterized in that the inorganic compound is contained in an amount of 0.02 to 0.2 by weight with respect to the amount of the adsorbent.
[9] A deodorizing material, wherein the adsorbent-photocatalyst hybrid deodorizing material according to any one of [1] to [7] is applied to a base material.

〔10〕 前記基材がガラス不織布、セラミック不織布、金属不織布、ガラス板、セラミック板、または金属板のいずれかであることを特徴とする、〔9〕に記載の脱臭材。
〔11〕 〔1〕ないし〔7〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料がフィルター基材に塗布されてなることを特徴とする、脱臭フィルター。
〔12〕 前記フィルター基材が多孔質金属フィルター基材または多孔質セラミックフィルター基材であることを特徴とする、〔11〕に記載の脱臭フィルター。
〔13〕 〔1〕ないし〔7〕のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料をフィルター基材またはその他の基材に塗布し、これを乾燥および焼成処理することを特徴とする、脱臭材製造方法。
[10] The deodorizing material according to [9], wherein the substrate is any one of a glass nonwoven fabric, a ceramic nonwoven fabric, a metal nonwoven fabric, a glass plate, a ceramic plate, and a metal plate.
[11] A deodorizing filter, wherein the adsorbent-photocatalyst hybrid deodorizing material according to any one of [1] to [7] is applied to a filter substrate.
[12] The deodorizing filter according to [11], wherein the filter base material is a porous metal filter base material or a porous ceramic filter base material.
[13] The adsorbent-photocatalyst hybrid type deodorizing material according to any one of [1] to [7] is applied to a filter substrate or other substrate, and this is dried and baked. Deodorizing material manufacturing method.

本発明の吸着材‐光触媒ハイブリッド型脱臭材料、その製造方法、脱臭フィルター、脱臭材およびその製造方法は上述のように構成されるため、これらによれば、吸着機能、光触媒機能、および基材への固着強度のいずれにおいても十分な性能を備えた脱臭材料や脱臭材を提供することができ、吸着機能、酸化分解機能(光触媒機能)等の性能低下を有効に防止することができる。また、吸着機能を十分に発揮できる構造であることから、酸化分解で生成する中間生成物を吸着材が吸着し、空間への放出を抑制することができる。   Since the adsorbent-photocatalyst hybrid type deodorizing material, the manufacturing method thereof, the deodorizing filter, the deodorizing material and the manufacturing method thereof of the present invention are configured as described above, according to these, the adsorption function, the photocatalytic function, and the substrate Therefore, it is possible to provide a deodorizing material and a deodorizing material having sufficient performance in any of the fixing strengths, and it is possible to effectively prevent performance degradation such as an adsorption function and an oxidative decomposition function (photocatalytic function). Moreover, since it has a structure capable of sufficiently exhibiting the adsorption function, the adsorbent adsorbs the intermediate product produced by oxidative decomposition, and can be prevented from being released into the space.

本発明の吸着材‐光触媒ハイブリッド型脱臭材料製造方法および脱臭材製造方法の基本構成を示すフロー図である。It is a flowchart which shows the basic composition of the adsorption material-photocatalyst hybrid type deodorizing material manufacturing method of this invention, and a deodorizing material manufacturing method. 従来からの吸着材‐光触媒ハイブリッド型脱臭材料の基本構成を示す概念図である。It is a conceptual diagram which shows the basic composition of the conventional adsorbent-photocatalyst hybrid type deodorizing material. 実施例8および比較例6における、エタノール分解時に生成するアセトアルデヒド濃度測定結果を示すグラフである。It is a graph which shows the acetaldehyde density | concentration measurement result produced | generated at the time of ethanol decomposition | disassembly in Example 8 and Comparative Example 6.

以下、図面により本発明を詳細に説明する。
図1は、本発明の吸着材‐光触媒ハイブリッド型脱臭材料製造方法および脱臭材製造方法の基本構成を示すフロー図である。図示するように本発明の吸着材‐光触媒ハイブリッド型脱臭材料製造方法は、酸化チタンナノ分散液1、吸着材2、無機化合物分散液3、シリカ化合物4および金属微粒子5を混合処理(P1)することによって塗布用の吸着材‐光触媒ハイブリッド型脱臭材料10を製造するものであり、無機化合物分散液3は、無機化合物が吸着材2の量に対して重量比で0.02〜0.2含まれてなるものであることを、主たる構成とする。特に、その他のバインダーやバインダー効果のある別材料を含まない製造方法とすることができる。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flowchart showing the basic configuration of the adsorbent-photocatalyst hybrid deodorizing material manufacturing method and the deodorizing material manufacturing method of the present invention. As shown in the figure, the adsorbent-photocatalyst hybrid type deodorizing material manufacturing method of the present invention includes mixing treatment (P1) with titanium oxide nano-dispersion 1, adsorbent 2, inorganic compound dispersion 3, silica compound 4, and metal fine particles 5. The adsorbent-photocatalyst hybrid type deodorizing material 10 for coating is manufactured by the above, and the inorganic compound dispersion liquid 3 contains 0.02-0.2 by weight ratio of the inorganic compound to the amount of the adsorbent 2. The main structure is that In particular, it can be a production method that does not include other binders or other materials having a binder effect.

かかる構成の本製造方法により、酸化チタンナノ分散液1、吸着材2、無機化合物が吸着材2の量に対して重量比で0.02〜0.2含まれている無機化合物分散液3、シリカ化合物4および金属微粒子5を含む、本発明の塗布用吸着材‐光触媒ハイブリッド型脱臭材料10が得られる。本発明に係る吸着材‐光触媒ハイブリッド型脱臭材料10は、吸着機能、光触媒機能、および基材への固着強度のいずれにおいても十分な性能を備えており、またこれらの性能低下を有効に防止することができる脱臭材料である。   By this production method having such a structure, the titanium oxide nano-dispersion 1, the adsorbent 2, and the inorganic compound dispersion 3, in which the inorganic compound is contained in an amount of 0.02 to 0.2 by weight with respect to the amount of the adsorbent 2, silica The coating adsorbent-photocatalyst hybrid deodorizing material 10 of the present invention containing the compound 4 and the metal fine particles 5 is obtained. The adsorbent-photocatalyst hybrid deodorizing material 10 according to the present invention has sufficient performance in any of the adsorption function, the photocatalytic function, and the adhesion strength to the base material, and effectively prevents the performance degradation. Deodorizing material that can.

上記製造方法において、無機化合物分散液3中の無機化合物の平均一次粒子径が5〜100nmであり、平均一次粒子径が1〜30nmの酸化チタンナノ分散液1を固形分濃度として1〜20重量%、吸着材2を1〜20重量%、シリカ化合物4の配合量をSiO固形分として酸化チタンの量に対して重量比で0.03〜0.13、もしくは0.01〜0.13、および金属微粒子5の配合量を酸化チタンの量に対して重量比で0.00001〜0.05の範囲でそれぞれ含むものとすることが、本発明所期の吸着材‐光触媒ハイブリッド型脱臭材料10を得る上で、より望ましい。 In the said manufacturing method, the average primary particle diameter of the inorganic compound in the inorganic compound dispersion liquid 3 is 5-100 nm, and the titanium oxide nano-dispersion liquid 1 whose average primary particle diameter is 1-30 nm is 1-20 weight% as solid content concentration. 1 to 20% by weight of the adsorbent 2 and the amount of silica compound 4 as a solid content of SiO 2 is 0.03 to 0.13 or 0.01 to 0.13 by weight with respect to the amount of titanium oxide. In addition, the adsorbent-photocatalyst hybrid deodorizing material 10 according to the present invention is obtained by including the blending amount of the metal fine particles 5 and the amount of the metal fine particles 5 in the range of 0.00001 to 0.05 by weight with respect to the amount of titanium oxide. Above, more desirable.

また、これに替えて、平均一次粒子径が1〜30nmの酸化チタンナノ分散液1を固形分濃度として0.1〜20重量%、吸着材2を1〜20重量%、平均一次粒子径が5〜100nmの無機化合物分散液3を固形分濃度として0.01〜5重量%、シリカ化合物4をSiO固形分濃度として0.001〜5重量%、金属微粒子5を酸化チタンに対して0.001〜5重量%含む、吸着材‐光触媒ハイブリッド型脱臭材料10としてもよい。 Alternatively, the titanium oxide nano-dispersion liquid 1 having an average primary particle diameter of 1 to 30 nm is 0.1 to 20% by weight, the adsorbent 2 is 1 to 20% by weight, and the average primary particle diameter is 5 as a solid content concentration. The inorganic compound dispersion 3 of ˜100 nm as a solid content concentration of 0.01 to 5% by weight, the silica compound 4 as a SiO 2 solid content concentration of 0.001 to 5% by weight, and the metal fine particles 5 of 0.1% with respect to titanium oxide. It is good also as the adsorbent-photocatalyst hybrid type deodorizing material 10 containing 001-5 weight%.

なお、酸化チタンナノ分散液1はナノ微粒子のため、高い光触媒活性を有し、かつバインダー効果も得ることができる。上述のとおり平均一次粒子径1〜30nmの酸化チタンナノ微粒子を用い、本脱臭材料10中の濃度が固形分として1〜20重量%含まれるように調整することができる。結晶形はアナターゼ型であることが必要だが、少量のルチル型を含んでいてもよい。分散液の形態は、ゾル状、スラリー状など特に限定せず、均質に分散されていればよい。製造方法についても特に限定されない。   In addition, since the titanium oxide nano-dispersion liquid 1 is a nano fine particle, it has high photocatalytic activity and can also obtain a binder effect. As described above, titanium oxide nanoparticles having an average primary particle diameter of 1 to 30 nm can be used, and the concentration in the deodorizing material 10 can be adjusted so as to be contained in an amount of 1 to 20% by weight as a solid content. The crystal form needs to be anatase type, but may contain a small amount of rutile type. The form of the dispersion liquid is not particularly limited, such as a sol form or a slurry form, and it may be dispersed uniformly. The manufacturing method is not particularly limited.

また、吸着材2としては、たとえば、ゼオライト、シリカゲル、活性アルミナ、活性炭、粘土鉱物または珪藻土の少なくともいずれかを好適に用いることができる。もちろんこれらに限定されず、吸着材‐光触媒ハイブリッド型脱臭材料を構成するための吸着材として機能し得るものであれば、全て用いることができる。上述のとおり、本脱臭材料10中の濃度1〜20重量%の範囲で用いるのが望ましい。なお、20重量%を超えると吸着材が固定化されにくくなる可能性があるので注意を要する。   Moreover, as the adsorbent 2, for example, at least one of zeolite, silica gel, activated alumina, activated carbon, clay mineral, or diatomaceous earth can be suitably used. Of course, the material is not limited to these, and any material that can function as an adsorbent for constituting the adsorbent-photocatalyst hybrid deodorizing material can be used. As described above, it is desirable to use the deodorizing material 10 in a concentration range of 1 to 20% by weight. Note that if it exceeds 20% by weight, the adsorbent may become difficult to be fixed, so care should be taken.

また、無機化合物分散液3としては、たとえば、酸化チタン、シリカ、アルミナまたは酸化ジルコニウムの少なくともいずれかが分散した液が含有されるものとすることができるが、本発明はこの限りではない。分散性のよい無機化合物を添加することにより、液の分散性が向上し、成膜時の膜厚を厚くできる効果がある。上述のとおり、無機化合物は平均一次粒子径5〜100nmとすること、および、無機化合物の配合量は吸着材2に対する重量比0.02〜0.2とすることが望ましい。配合量が0.2を超えると、吸着性能が低下し、膜硬度が低下する。   In addition, as the inorganic compound dispersion liquid 3, for example, a liquid in which at least one of titanium oxide, silica, alumina, or zirconium oxide is dispersed can be contained, but the present invention is not limited thereto. By adding an inorganic compound with good dispersibility, the dispersibility of the liquid is improved, and the film thickness during film formation can be increased. As described above, it is desirable that the inorganic compound has an average primary particle diameter of 5 to 100 nm, and the blending amount of the inorganic compound is 0.02 to 0.2 by weight with respect to the adsorbent 2. If the blending amount exceeds 0.2, the adsorption performance is lowered and the film hardness is lowered.

また、シリカ化合物4としては、たとえば、アルコキシシラン、アルコキシシランの加水分解物、またはシリコーンレジンの少なくともいずれかが含有されるものとすることができるが、本発明はこの限りではない。シリカ化合物はバインダーとして機能する。上述のとおりシリカ化合物4の配合量は、SiO固形分として、酸化チタンに対する重量比が0.01〜0.13とすることが望ましい。なお、配合量が0.01未満の場合には膜硬度が十分ではなく、一方0.13を超える場合には光触媒分解性能が低下する。 Further, as the silica compound 4, for example, at least one of alkoxysilane, a hydrolyzate of alkoxysilane, or a silicone resin can be contained, but the present invention is not limited thereto. The silica compound functions as a binder. As described above, it is desirable that the compounding amount of the silica compound 4 is 0.01 to 0.13 in terms of the weight ratio with respect to titanium oxide as the SiO 2 solid content. When the blending amount is less than 0.01, the film hardness is not sufficient, while when it exceeds 0.13, the photocatalytic degradation performance is lowered.

また、金属微粒子5としては、たとえば、白金、銀、パラジウム、金、鉄、銅、またはニッケルの少なくともいずれかを好適に用いることができるが、本発明はこの限りではない。上述のとおり配合量は、酸化チタンに対して0.01〜5の範囲とすることが望ましい。なお、金属微粒子5は光触媒機能の向上に効果がある。   In addition, as the metal fine particles 5, for example, at least one of platinum, silver, palladium, gold, iron, copper, or nickel can be preferably used, but the present invention is not limited thereto. As described above, the blending amount is desirably in the range of 0.01 to 5 with respect to titanium oxide. The metal fine particles 5 are effective in improving the photocatalytic function.

図1に示すように、得られた塗布用吸着材‐光触媒ハイブリッド型脱臭材料10を、フィルター基材またはその他の基材20に塗布処理(P2)し、これを乾燥および焼成処理(P3)することによって、本発明に係る脱臭材30を製造することができる。   As shown in FIG. 1, the obtained coating adsorbent-photocatalyst hybrid deodorizing material 10 is coated (P2) on a filter substrate or other substrate 20, and dried and fired (P3). Thus, the deodorizing material 30 according to the present invention can be manufactured.

基材20としては、たとえば、ガラス不織布、セラミック不織布、金属不織布、ガラス板、セラミック板、または金属板など、脱臭材30を構成し得る材料を特に限定なく用いることができる。また、フィルター基材に塗布用吸着材‐光触媒ハイブリッド型脱臭材料10が塗布された脱臭フィルターの場合、たとえばが多孔質金属フィルター基材や多孔質セラミックフィルター基材を好適に用いることができるが、もちろんこれも限定されない。   As the base material 20, for example, a material that can constitute the deodorizing material 30 such as a glass nonwoven fabric, a ceramic nonwoven fabric, a metal nonwoven fabric, a glass plate, a ceramic plate, or a metal plate can be used without any particular limitation. Further, in the case of a deodorizing filter in which a coating adsorbent-photocatalyst hybrid type deodorizing material 10 is applied to a filter substrate, for example, a porous metal filter substrate or a porous ceramic filter substrate can be suitably used. Of course, this is not limited.

以下、本発明を実施例により説明するが、本発明がこれに限定されるものではない。なお以下、「吸着材‐光触媒ハイブリッド型脱臭材料」を単に「光触媒塗布材料」ともいう。

〔吸着材‐光触媒ハイブリッド型脱臭材料の作製および評価〕
種々の条件にて吸着材‐光触媒ハイブリッド型脱臭材料(光触媒塗布材料)を作製し、その評価を行った。
〔1 酸化チタンナノ分散液の調製〕
蒸留水500gを95〜100℃に加熱撹拌して硝酸0.7gを添加し、チタンテトライソプロポキシド100gを20g/minの速度で滴下した。その後、30分間加熱撹拌し、酸化チタンスラリーを得た。得られた酸化チタンスラリーに蒸留水を固形分濃度で10重量%になるように加え、超音波処理を30分間施し、平均粒径10nm以下の酸化チタンナノ分散液を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this. Hereinafter, “adsorbent-photocatalyst hybrid type deodorizing material” is also simply referred to as “photocatalyst coating material”.

[Production and Evaluation of Adsorbent-Photocatalyst Hybrid Deodorizing Material]
Adsorbent-photocatalyst hybrid type deodorizing material (photocatalyst coating material) was prepared and evaluated under various conditions.
[1. Preparation of titanium oxide nano-dispersion]
Distilled water (500 g) was heated and stirred at 95 to 100 ° C., 0.7 g of nitric acid was added, and 100 g of titanium tetraisopropoxide was added dropwise at a rate of 20 g / min. Thereafter, the mixture was heated and stirred for 30 minutes to obtain a titanium oxide slurry. Distilled water was added to the obtained titanium oxide slurry so as to have a solid content concentration of 10% by weight, and ultrasonic treatment was performed for 30 minutes to obtain a titanium oxide nanodispersion having an average particle size of 10 nm or less.

〔2 無機化合物分散液の調製〕
エタノール90gに無機化合物粉体10gを添加して超音波処理を30分間施し、10重量%の無機化合物分散液を得た。無機化合物としては、平均一次粒子径21nmの酸化チタン粉体(日本アエロジル(株)製P25)、平均一次粒子径5nmの酸化チタン粉体(石原産業(株)製MC−150)、およびシリカ粉体(日本アエロジル(株)製アエロジル200、平均一次粒子径12nm)を用いた。
[2 Preparation of inorganic compound dispersion]
10 g of inorganic compound powder was added to 90 g of ethanol and subjected to ultrasonic treatment for 30 minutes to obtain a 10 wt% inorganic compound dispersion. Examples of inorganic compounds include titanium oxide powder having an average primary particle diameter of 21 nm (P25 manufactured by Nippon Aerosil Co., Ltd.), titanium oxide powder having an average primary particle diameter of 5 nm (MC-150 manufactured by Ishihara Sangyo Co., Ltd.), and silica powder. The body (Aerosil 200 manufactured by Nippon Aerosil Co., Ltd., average primary particle size 12 nm) was used.

〔3 シリカ化合物の調製〕
2−イソプロピルアルコール58.0gに、硝酸1.8g、蒸留水3.8g、オルトケイ酸テトラエチル36.5gを添加して30分間撹拌し、SiO固形分濃度で10wt%のシリカゾルを得た。
[3. Preparation of silica compound]
To 58.0 g of 2-isopropyl alcohol, 1.8 g of nitric acid, 3.8 g of distilled water, and 36.5 g of tetraethyl orthosilicate were added and stirred for 30 minutes to obtain a silica sol having a SiO 2 solid content concentration of 10 wt%.

〔4 光触媒塗布材料の作製〕
[実施例1]
上記方法により作製した酸化チタンナノ分散液(10重量%、平均粒径10nm以下)50g、無機化合物分散液(平均一次粒子径21nmの酸化チタン分散液)10g、シリカ化合物(SiO 固形分濃度10重量%)1.0g、ゼオライト(東ソー(株)製HSZ−891HOA)8.0g、および金属微粒子として硝酸鉄9水和物0.0125g、また溶媒としてエタノール31.0gを入れ、超音波処理を30分間施し、光触媒塗布材料を調製した。調製した光触媒塗布材料を浸漬法によりシリカ繊維フィルター(75mm×75mm、アドバンテック製QR−100)またはガラス基板(76mm×26mm、松浪硝子工業製)に塗布し、150℃で30分間乾燥した後、450℃で30分間焼成して、成膜を行った。
[4. Preparation of photocatalyst coating material]
[Example 1]
50 g of titanium oxide nano-dispersion (10% by weight, average particle size of 10 nm or less) prepared by the above method, 10 g of inorganic compound dispersion (titanium oxide dispersion with an average primary particle size of 21 nm), silica compound (SiO 2 solid content concentration of 10%) %) 1.0 g, zeolite (HSZ-891HOA manufactured by Tosoh Co., Ltd.) 8.0 g, 0.0125 g of iron nitrate nonahydrate as metal fine particles, and 31.0 g of ethanol as a solvent, and ultrasonication 30 It was applied for a minute to prepare a photocatalyst coating material. The prepared photocatalyst coating material was applied to a silica fiber filter (75 mm × 75 mm, manufactured by Advantech QR-100) or a glass substrate (76 mm × 26 mm, manufactured by Matsunami Glass Industrial Co., Ltd.) by an immersion method, dried at 150 ° C. for 30 minutes, and then 450 The film was formed by baking at 30 ° C. for 30 minutes.

[実施例2]
無機化合物分散液を2g、エタノールを39.0gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[実施例3]
無機化合物分散液を5g、エタノールを36.0gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[実施例4]
無機化合物分散液を13g、エタノールを28.0gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[Example 2]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that 2 g of the inorganic compound dispersion and 39.0 g of ethanol were used.
[Example 3]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that 5 g of the inorganic compound dispersion and 36.0 g of ethanol were used.
[Example 4]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that 13 g of the inorganic compound dispersion and 28.0 g of ethanol were used.

[実施例5]
シリカ化合物を0.6g、エタノールを31.4gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[実施例6]
無機化合物分散液を平均一次粒子径5nmの酸化チタン分散液10gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[実施例7]
無機化合物分散液をシリカ分散液10gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[Example 5]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that the silica compound was 0.6 g and ethanol was 31.4 g.
[Example 6]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that the inorganic compound dispersion was changed to 10 g of a titanium oxide dispersion having an average primary particle diameter of 5 nm.
[Example 7]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that the inorganic compound dispersion was changed to 10 g of silica dispersion.

[比較例1]
無機化合物分散液を添加せず、エタノールを37.0gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[比較例2]
無機化合物分散液を20g、エタノールを21.0gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[比較例3]
シリカ化合物を添加せず、エタノールを32.0gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[Comparative Example 1]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that the inorganic compound dispersion was not added and ethanol was changed to 37.0 g.
[Comparative Example 2]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that 20 g of the inorganic compound dispersion and 21.0 g of ethanol were used.
[Comparative Example 3]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that the silica compound was not added and ethanol was changed to 32.0 g.

[比較例4]
シリカ化合物を0.2g、エタノールを31.8gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
[比較例5]
シリカ化合物を1.4g、エタノールを30.6gとした以外は実施例1と同様にして、光触媒塗布材料を調製し、成膜を行った。
各実施例および比較例光触媒塗布材料の概要を表1にまとめる。
[Comparative Example 4]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that 0.2 g of the silica compound and 31.8 g of ethanol were used.
[Comparative Example 5]
A photocatalyst coating material was prepared and formed into a film in the same manner as in Example 1 except that 1.4 g of silica compound and 30.6 g of ethanol were used.
Table 1 summarizes the photocatalyst coating materials for each example and comparative example.

〔5 評価方法〕
上記方法で作製した光触媒塗布材料および成膜した試料について、下記の方法で評価を行った。
(1)液分散性
作製した光触媒塗布材料について超音波処理を施し、1時間静置後の分散性を目視で確認した。分散状態は、○:均一に分散、×:沈殿あり、の2段階で評価した。
[5 Evaluation method]
The photocatalyst coating material prepared by the above method and the film-formed sample were evaluated by the following method.
(1) Liquid dispersibility The produced photocatalyst coating material was subjected to ultrasonic treatment, and the dispersibility after standing for 1 hour was visually confirmed. The dispersion state was evaluated in two stages: ◯: uniformly dispersed, x: precipitated.

(2)膜硬度
芯先が平らで角が鋭くなるように研いだ鉛筆の芯を、ガラス基板に成膜した試料に対して45°の角度で当て、強く塗面に押し付けながら前方に均一な速さで約1cm押し出して塗面を引っかき、膜の状態を確認した。塗膜の破れまたは切り傷が、5回の試験で2回以上発生する鉛筆の硬さの一段下の濃度記号を膜硬度とした。測定結果は、○:硬度3H以上、△:2H〜HB、×:B 以下、の3段階で評価した。
(2) Film hardness A pencil core sharpened so that the core tip is flat and has a sharp edge is applied to the sample formed on the glass substrate at an angle of 45 °, and it is uniformly pushed forward while pressing strongly against the coating surface. The coated surface was scratched by extruding about 1 cm at a speed, and the state of the film was confirmed. The film hardness was defined as a density symbol one step lower than the pencil hardness at which the coating film was torn or cut twice in five tests. The measurement results were evaluated in three stages: ◯: hardness 3H or more, Δ: 2H to HB, x: B or less.

(3)脱臭性能
20Lの反応容器内にシリカ繊維フィルター基材に成膜した試料を設置し、アセトアルデヒド約20ppmを注入後、暗所下およびブラックライト照射時のアセトアルデヒドの濃度減少を測定した。初期濃度とガス注入10分後の濃度から、除去率を算出し、評価した。
(3) Deodorizing performance A sample formed on a silica fiber filter substrate was placed in a 20 L reaction vessel, and after about 20 ppm of acetaldehyde was injected, a decrease in the concentration of acetaldehyde was measured in the dark and under black light irradiation. The removal rate was calculated and evaluated from the initial concentration and the concentration 10 minutes after gas injection.

〔6 評価結果〕
表2に、各実施例および比較例の評価結果をまとめて示す。ここに示すように、実施例1〜7で作製した試料は、いずれも液分散性良好、膜硬度3H以上、除去率70%以上となった。液分散性の良さはすなわち均質性の高さを示すものであり、これによって均質性の高い膜が得られ、成膜時の膜厚を厚くすることができ、製品化上好ましい。
[6 Evaluation results]
Table 2 summarizes the evaluation results of each example and comparative example. As shown here, the samples prepared in Examples 1 to 7 all had good liquid dispersibility, a film hardness of 3H or more, and a removal rate of 70% or more. The good liquid dispersibility means high homogeneity, whereby a highly homogenous film can be obtained, and the film thickness during film formation can be increased, which is preferable for commercialization.

また、除去率の高さはすなわち、本発明の吸着材‐光触媒ハイブリッド型脱臭材料における吸着機能と光触媒機能との相互減殺が生じず、いずれの機能も十分に発揮されたことを示すものである。このように各実施例は、吸着機能、光触媒機能、および基材への固着強度のいずれにおいても十分な性能を備えていることが確認できた。   In addition, the high removal rate means that the adsorption function and the photocatalyst function in the adsorbent-photocatalyst hybrid type deodorizing material of the present invention did not cause mutual depletion, and both functions were sufficiently exhibited. . Thus, it was confirmed that each example had sufficient performance in any of the adsorption function, the photocatalytic function, and the adhesion strength to the substrate.

一方、無機化合物分散液を用いなかった比較例1は液分散性が悪く、成膜時の膜厚を厚くすることができなかった。また、無機化合物分散液が多過ぎたり、あるいはシリカ化合物を用いなかった比較例2〜4では膜硬度が不十分であった。また、シリカ化合物が多過ぎた比較例5では除去率が不十分であった。   On the other hand, Comparative Example 1 in which the inorganic compound dispersion was not used had poor liquid dispersibility, and the film thickness during film formation could not be increased. In Comparative Examples 2 to 4 in which there were too many inorganic compound dispersions or no silica compound was used, the film hardness was insufficient. Further, in Comparative Example 5 in which the silica compound was too much, the removal rate was insufficient.

〔7 中間生成物の抑制効果〕
本発明における、酸化分解で生成する中間生成物発生を抑制する効果について、試験した。
〔7−1 光触媒塗布材料の作製〕
[実施例8]
実施例1で調製した光触媒塗布材料を、浸漬法により多孔質金属フィルター基材(75mm×75mm、住友電工製セルメットNi♯1)に塗布し、150℃で30分間乾燥した後、450℃で30分間焼成して、成膜を行った。
[7 Effect of inhibiting intermediate products]
The effect of suppressing the generation of intermediate products generated by oxidative decomposition in the present invention was tested.
[7-1 Production of photocatalyst coating material]
[Example 8]
The photocatalyst coating material prepared in Example 1 was applied to a porous metal filter substrate (75 mm × 75 mm, Celmet Ni # 1 manufactured by Sumitomo Electric Industries) by a dipping method, dried at 150 ° C. for 30 minutes, and then dried at 450 ° C. for 30 minutes. The film was formed by baking for a minute.

[比較例6]
酸化チタンナノ分散液50g、金属微粒子として硝酸鉄9水和物0.0125g、およびエタノール50gを混合し、光触媒塗布材料を調製した。調製した光触媒塗布材料を、浸漬法によりシリカ繊維フィルター(75mm×75mm、アドバンテック製QR−100)に塗布し、150℃で30分間乾燥して、成膜を行った。
[Comparative Example 6]
A photocatalyst coating material was prepared by mixing 50 g of titanium oxide nanodispersion, 0.0125 g of iron nitrate nonahydrate as metal fine particles, and 50 g of ethanol. The prepared photocatalyst coating material was applied to a silica fiber filter (75 mm × 75 mm, manufactured by Advantech QR-100) by a dipping method, and dried at 150 ° C. for 30 minutes to form a film.

[7−2 評価方法]
20Lの反応容器内に成膜した試料を設置し、エタノール約30ppmを注入後、ブラックライトを照射し、エタノール及び中間生成物であるアセトアルデヒドの濃度を測定した。初期濃度とガス注入5分後の濃度から、除去率を算出し、評価した。
[7-2 Evaluation method]
A sample formed into a film in a 20 L reaction vessel was placed, and after injecting about 30 ppm of ethanol, the sample was irradiated with black light, and the concentrations of ethanol and acetaldehyde as an intermediate product were measured. The removal rate was calculated and evaluated from the initial concentration and the concentration 5 minutes after gas injection.

[7−3 評価結果]
表3に評価結果、図3にエタノール分解時に生成するアセトアルデヒド濃度の測定結果を示す。実施例8で作製した試料は除去率93.3%と高く、アセトアルデヒド最大濃度は1ppm以下に抑えられていた。一方、酸化チタンナノ分散液と金属微粒子だけで成膜した比較例6は、除去率が低く、アセトアルデヒドが大量に生成した。吸着剤−光触媒ハイブリッド型脱臭材料は、光触媒機能で生成する中間生成物の空間への放出を大幅に抑制できることが確認された。
[7-3 Evaluation results]
Table 3 shows the evaluation results, and FIG. 3 shows the measurement results of the acetaldehyde concentration generated during ethanol decomposition. The sample prepared in Example 8 had a high removal rate of 93.3%, and the maximum acetaldehyde concentration was suppressed to 1 ppm or less. On the other hand, Comparative Example 6 in which the film was formed using only the titanium oxide nanodispersion and the metal fine particles had a low removal rate and produced a large amount of acetaldehyde. It was confirmed that the adsorbent-photocatalyst hybrid type deodorizing material can significantly suppress the release of the intermediate product generated by the photocatalytic function into the space.

本発明の吸着材‐光触媒ハイブリッド型脱臭材料、その製造方法、脱臭フィルター、脱臭材およびその製造方法によれば、吸着機能、光触媒機能、および基材への固着強度のいずれにおいても十分な性能を備えた脱臭材料や脱臭材を提供することができる。したがって、空気清浄機製造分野および関連する全分野において、産業上利用性が高い発明である。   According to the adsorbent-photocatalyst hybrid type deodorizing material, the production method thereof, the deodorizing filter, the deodorizing material and the production method thereof of the present invention, sufficient performance can be achieved in any of the adsorption function, the photocatalytic function, and the fixing strength to the substrate. The provided deodorizing material and deodorizing material can be provided. Therefore, the invention is highly industrially applicable in the field of air cleaner manufacturing and all related fields.

1…酸化チタンナノ分散液
2…吸着材
3…無機化合物分散液
4…シリカ化合物
5…金属微粒子
10…吸着材‐光触媒ハイブリッド型脱臭材料
20…基材
30…脱臭材
P1…混合処理
P2…塗布処理
P3…乾燥および焼成処理
DESCRIPTION OF SYMBOLS 1 ... Titanium oxide nano-dispersion 2 ... Adsorbent 3 ... Inorganic compound dispersion 4 ... Silica compound 5 ... Metal fine particle 10 ... Adsorbent-photocatalyst hybrid type deodorizing material 20 ... Base material 30 ... Deodorizing material P1 ... Mixing process P2 ... Coating process P3 ... Drying and baking treatment

Claims (13)

酸化チタンナノ分散液、吸着材、無機化合物分散液、シリカ化合物および金属微粒子を含む塗布用の吸着材‐光触媒ハイブリッド型脱臭材料であって、該無機化合物分散液は無機化合物が該吸着材の量に対して重量比で0.02〜0.2(「〜」は0.02以上0.2以下の意。以下同様。)含まれてなることを特徴とする、吸着材‐光触媒ハイブリッド型脱臭材料。 An adsorbent-photocatalyst hybrid deodorizing material for coating containing a titanium oxide nano-dispersion, an adsorbent, an inorganic compound dispersion, a silica compound, and fine metal particles, and the inorganic compound dispersion has an inorganic compound in the amount of the adsorbent. On the other hand, the adsorbent-photocatalyst hybrid deodorizing material is contained in a weight ratio of 0.02 to 0.2 ("~" means 0.02 or more and 0.2 or less; the same shall apply hereinafter). . バインダーとして用いる別材料、またはバインダー効果のある別材料のいずれも含まないことを特徴とする、請求項1に記載の吸着材‐光触媒ハイブリッド型脱臭材料。 2. The adsorbent-photocatalyst hybrid deodorizing material according to claim 1, wherein the adsorbent-photocatalyst hybrid deodorizing material does not include another material used as a binder or another material having a binder effect. 前記無機化合物分散液中の無機化合物の平均一次粒子径が5〜100nmであり、平均一次粒子径が1〜30nmの前記酸化チタンナノ分散液を固形分濃度として1〜20重量%、前記吸着材を1〜20重量%、前記シリカ化合物の配合量をSiO固形分として酸化チタンの量に対して重量比で0.01〜0.2、および前記金属微粒子の配合量を酸化チタンの量に対して重量比で0.00001〜0.05の範囲でそれぞれ含むことを特徴とする、請求項1または2に記載の吸着材‐光触媒ハイブリッド型脱臭材料。 The average primary particle diameter of the inorganic compound in the inorganic compound dispersion is 5 to 100 nm, and the titanium oxide nano-dispersion having an average primary particle diameter of 1 to 30 nm is used as a solid content concentration of 1 to 20% by weight, and the adsorbent is used. 1 to 20% by weight, the amount of the silica compound as SiO 2 solid content in a weight ratio of 0.01 to 0.2 with respect to the amount of titanium oxide, and the amount of metal fine particles to the amount of titanium oxide The adsorbent-photocatalyst hybrid deodorizing material according to claim 1 or 2, wherein the adsorbent-photocatalyst hybrid deodorizing material is contained in a weight ratio of 0.00001 to 0.05. 前記吸着材として、ゼオライト、シリカゲル、活性アルミナ、活性炭、粘土鉱物または珪藻土の少なくともいずれかが含有されることを特徴とする、請求項1ないし3のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。 The adsorbent-photocatalyst hybrid deodorization according to any one of claims 1 to 3, wherein the adsorbent contains at least one of zeolite, silica gel, activated alumina, activated carbon, clay mineral, or diatomaceous earth. material. 前記無機化合物分散液として、酸化チタン、シリカ、アルミナまたは酸化ジルコニウムの少なくともいずれかが分散した液が含有されることを特徴とする、請求項1ないし4のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。 The adsorbent-photocatalyst hybrid according to any one of claims 1 to 4, wherein the inorganic compound dispersion contains a liquid in which at least one of titanium oxide, silica, alumina, and zirconium oxide is dispersed. Mold deodorizing material. 前記シリカ化合物として、アルコキシシラン、アルコキシシランの加水分解物、またはシリコーンレジンの少なくともいずれかが含有されることを特徴とする、請求項1ないし5のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。 The adsorbent-photocatalyst hybrid type deodorization according to any one of claims 1 to 5, wherein the silica compound contains at least one of alkoxysilane, a hydrolyzate of alkoxysilane, and a silicone resin. material. 前記金属微粒子として、白金、銀、パラジウム、金、鉄、銅、またはニッケルの少なくともいずれかが含有されることを特徴とする、請求項1ないし6のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料。 The adsorbent-photocatalyst hybrid type according to any one of claims 1 to 6, wherein the metal fine particles contain at least one of platinum, silver, palladium, gold, iron, copper, or nickel. Deodorizing material. 酸化チタンナノ分散液、吸着材、無機化合物分散液、シリカ化合物および金属微粒子を混合することによって塗布用の吸着材‐光触媒ハイブリッド型脱臭材料を製造する方法であって、該無機化合物分散液は無機化合物が該吸着材の量に対して重量比で0.02〜0.2(「〜」は0.02以上0.2以下の意。以下同様。)含まれてなることを特徴とする、吸着材‐光触媒ハイブリッド型脱臭材料製造方法。 A method for producing an adsorbent-photocatalyst hybrid deodorizing material for coating by mixing a titanium oxide nano-dispersion, an adsorbent, an inorganic compound dispersion, a silica compound and metal fine particles, wherein the inorganic compound dispersion is an inorganic compound Is contained in an amount of 0.02 to 0.2 ("~" means 0.02 or more and 0.2 or less; the same shall apply hereinafter) by weight with respect to the amount of the adsorbent. Material-photocatalyst hybrid type deodorizing material manufacturing method. 請求項1ないし7のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料が基材に塗布されてなることを特徴とする、脱臭材。 A deodorizing material comprising the substrate and the adsorbent-photocatalyst hybrid deodorizing material according to any one of claims 1 to 7. 前記基材がガラス不織布、セラミック不織布、金属不織布、ガラス板、セラミック板、または金属板のいずれかであることを特徴とする、請求項9に記載の脱臭材。 The deodorizing material according to claim 9, wherein the base material is any one of a glass nonwoven fabric, a ceramic nonwoven fabric, a metal nonwoven fabric, a glass plate, a ceramic plate, and a metal plate. 請求項1ないし7のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料がフィルター基材に塗布されてなることを特徴とする、脱臭フィルター。 A deodorizing filter comprising the filter substrate and the adsorbent-photocatalyst hybrid deodorizing material according to any one of claims 1 to 7. 前記フィルター基材が多孔質金属フィルター基材または多孔質セラミックフィルター基材であることを特徴とする、請求項11に記載の脱臭フィルター。 The deodorizing filter according to claim 11, wherein the filter substrate is a porous metal filter substrate or a porous ceramic filter substrate. 請求項1ないし7のいずれかに記載の吸着材‐光触媒ハイブリッド型脱臭材料をフィルター基材またはその他の基材に塗布し、これを乾燥および焼成処理することを特徴とする、脱臭材製造方法。
A method for producing a deodorizing material, comprising applying the adsorbent-photocatalyst hybrid deodorizing material according to any one of claims 1 to 7 to a filter base material or another base material, followed by drying and baking treatment.
JP2015109343A 2015-05-29 2015-05-29 Adsorbent-photocatalyst hybrid deodorizing material, method for producing the same, deodorizing filter, deodorizing material, and method for producing the same Active JP6568402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109343A JP6568402B2 (en) 2015-05-29 2015-05-29 Adsorbent-photocatalyst hybrid deodorizing material, method for producing the same, deodorizing filter, deodorizing material, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109343A JP6568402B2 (en) 2015-05-29 2015-05-29 Adsorbent-photocatalyst hybrid deodorizing material, method for producing the same, deodorizing filter, deodorizing material, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016221447A true JP2016221447A (en) 2016-12-28
JP6568402B2 JP6568402B2 (en) 2019-08-28

Family

ID=57745286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109343A Active JP6568402B2 (en) 2015-05-29 2015-05-29 Adsorbent-photocatalyst hybrid deodorizing material, method for producing the same, deodorizing filter, deodorizing material, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6568402B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107890747A (en) * 2017-11-15 2018-04-10 江苏齐力涂装机械制造有限公司 One kind spraying filter cotton and preparation method thereof
CN110479233A (en) * 2019-09-06 2019-11-22 山东利特纳米技术有限公司 For purifying the photocatalyst particle and preparation method of the high utilization rate of ultraviolet light of air
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
US10563018B2 (en) 2017-09-08 2020-02-18 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst-forming composition, and photocatalyst
KR102081879B1 (en) * 2018-11-27 2020-02-26 삼중테크 주식회사 A manufacturing method of adsorption tower coating solution comprising mof and a coating method of the adsorption tower using the same
US10807070B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst
US10807058B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218635A (en) * 1988-02-29 1989-08-31 Hitachi Ltd Deodorizing agent, its manufacturing method, deodorizing method, deodorizing apparatus and refrigeration cycle apparatus with said deodorizing apparatus
WO1998015600A1 (en) * 1996-10-08 1998-04-16 Nippon Soda Co., Ltd. Photocatalytic coating composition and photocatalyst-bearing structure
JP2000051712A (en) * 1998-08-13 2000-02-22 Hitachi Metals Ltd Photocatalyst body
JP2000107610A (en) * 1998-08-03 2000-04-18 Toto Ltd Substrate for photocatalyst deodorization body and photocatalytic deodorization body provided with the same
JP2000317313A (en) * 1999-05-14 2000-11-21 Sharp Corp Photocatalytic material and air cleaning film
JP2001061948A (en) * 1999-08-27 2001-03-13 Matsushita Seiko Co Ltd Material for purifying air
JP2008229236A (en) * 2007-03-23 2008-10-02 Toshiba Corp Controller of deodorizing device and deodorizing system having its controller
JP2015024352A (en) * 2013-07-24 2015-02-05 学校法人東京理科大学 Visible light-responsive photocatalyst film and production method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218635A (en) * 1988-02-29 1989-08-31 Hitachi Ltd Deodorizing agent, its manufacturing method, deodorizing method, deodorizing apparatus and refrigeration cycle apparatus with said deodorizing apparatus
WO1998015600A1 (en) * 1996-10-08 1998-04-16 Nippon Soda Co., Ltd. Photocatalytic coating composition and photocatalyst-bearing structure
JP2000107610A (en) * 1998-08-03 2000-04-18 Toto Ltd Substrate for photocatalyst deodorization body and photocatalytic deodorization body provided with the same
JP2000051712A (en) * 1998-08-13 2000-02-22 Hitachi Metals Ltd Photocatalyst body
JP2000317313A (en) * 1999-05-14 2000-11-21 Sharp Corp Photocatalytic material and air cleaning film
JP2001061948A (en) * 1999-08-27 2001-03-13 Matsushita Seiko Co Ltd Material for purifying air
JP2008229236A (en) * 2007-03-23 2008-10-02 Toshiba Corp Controller of deodorizing device and deodorizing system having its controller
JP2015024352A (en) * 2013-07-24 2015-02-05 学校法人東京理科大学 Visible light-responsive photocatalyst film and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
US10563018B2 (en) 2017-09-08 2020-02-18 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst-forming composition, and photocatalyst
US10807070B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica titania composite aerogel particle, photocatalyst forming composition, and photocatalyst
US10807058B2 (en) 2017-09-12 2020-10-20 Fuji Xerox Co., Ltd. Silica-titania composite aerogel particle, photocatalyst-forming composition, and photocatalyst
CN107890747A (en) * 2017-11-15 2018-04-10 江苏齐力涂装机械制造有限公司 One kind spraying filter cotton and preparation method thereof
KR102081879B1 (en) * 2018-11-27 2020-02-26 삼중테크 주식회사 A manufacturing method of adsorption tower coating solution comprising mof and a coating method of the adsorption tower using the same
CN110479233A (en) * 2019-09-06 2019-11-22 山东利特纳米技术有限公司 For purifying the photocatalyst particle and preparation method of the high utilization rate of ultraviolet light of air
CN110479233B (en) * 2019-09-06 2021-09-28 山东利特纳米技术有限公司 Photocatalyst particles with high ultraviolet light utilization rate for purifying air and preparation method thereof

Also Published As

Publication number Publication date
JP6568402B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6568402B2 (en) Adsorbent-photocatalyst hybrid deodorizing material, method for producing the same, deodorizing filter, deodorizing material, and method for producing the same
JP6113781B2 (en) Antiviral fiber
TW200827024A (en) Photocatalyst composite and fabrication method thereof
JP2015116526A (en) Photocatalytic complex, production method thereof, and photocatalytic deodorization system including photocatalytic complex
JPS6397234A (en) Fixation photocatalyst
JP2017170441A (en) Photocatalytic filter for degrading mixed gas efficiently and manufacturing method thereof
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
JPWO2012023612A1 (en) Method for producing photocatalytic film and photocatalytic film
JP2009172574A (en) Metal particle carrying catalyst and its manufacturing method
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JP4300280B2 (en) Photocatalyst
JP3689754B2 (en) Photocatalyst material and air purification film
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP2008104996A (en) Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst
JP6144311B2 (en) Photocatalytic filter excellent in removal performance for mixed gas and method for producing the same
JP2003192347A (en) Titanium oxide, and photocatalyst body and photocatalyst coating agent obtained by using the same
KR20160121852A (en) Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
JP2017104809A (en) Method for producing photocatalyst-silica composite molding
JP7436992B2 (en) Photocatalytic antibacterial deodorizing material, its manufacturing method, antibacterial deodorizing material, and antibacterial deodorizing filter
JP2011212299A (en) Antivirus sheet
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film
JP2006231113A (en) Photocatalyst and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190802

R150 Certificate of patent or registration of utility model

Ref document number: 6568402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250