JP2016219477A - Electronic component built-in wiring board and manufacturing method therefor - Google Patents

Electronic component built-in wiring board and manufacturing method therefor Download PDF

Info

Publication number
JP2016219477A
JP2016219477A JP2015099628A JP2015099628A JP2016219477A JP 2016219477 A JP2016219477 A JP 2016219477A JP 2015099628 A JP2015099628 A JP 2015099628A JP 2015099628 A JP2015099628 A JP 2015099628A JP 2016219477 A JP2016219477 A JP 2016219477A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
electronic component
conductor
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015099628A
Other languages
Japanese (ja)
Inventor
公輔 池田
Kosuke Ikeda
公輔 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2015099628A priority Critical patent/JP2016219477A/en
Publication of JP2016219477A publication Critical patent/JP2016219477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component built-in wiring board capable of enhancing the connection reliability of a via conductor and an electronic component, by suppressing exfoliation of the via conductor from the electronic component more than conventional, and to provide a manufacturing method therefor.SOLUTION: In the electronic component built-in wiring board 10, a first insulation resin layer 21 has a two-layer structure consisting of a support insulation layer 29 and an underlying covering insulating layer 28. A first conductor layer 22 is formed on the support insulation layer 29, and the covering insulating layer 28 is covering a conductor circuit layer 12 and a MLCC17 on the core substrate 11. The covering insulating layer 28 has a larger percentage content of inorganic filler and a smaller coefficient of thermal expansion than the support insulation layer 29.SELECTED DRAWING: Figure 1

Description

本発明は、コア基板のキャビティに電子部品を収容して備えると共に、そのコア基板が絶縁層に覆われている電子部品内蔵配線板及びその製造方法に関する。   The present invention relates to an electronic component built-in wiring board in which an electronic component is accommodated in a cavity of a core substrate, and the core substrate is covered with an insulating layer, and a method for manufacturing the same.

この種の電子部品内蔵配線板には、絶縁層を貫通して電子部品に接続するビア導体が設けられている(例えば、特許文献1参照)。   This type of electronic component built-in wiring board is provided with via conductors that penetrate the insulating layer and connect to the electronic component (see, for example, Patent Document 1).

特開2001−345560(図1)JP 2001-345560 (FIG. 1)

上述した従来の電子部品内蔵配線板においては、熱変形によりビア導体が電子部品から剥離してしまうことが考えられる。   In the above-described conventional electronic component built-in wiring board, the via conductor may be peeled off from the electronic component due to thermal deformation.

本発明は、上記事情に鑑みてなされたもので、従来よりも電子部品からのビア導体の剥離を抑え、ビア導体と電子部品との接続の信頼性を向上することが可能な電子部品内蔵配線板及びその製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and has an electronic component built-in wiring that can suppress the peeling of the via conductor from the electronic component and improve the reliability of the connection between the via conductor and the electronic component. It aims at providing a board and its manufacturing method.

上記目的を達成するためなされた請求項1に係る発明は、電子部品が収容されているキャビティを有するコア基板と、上面に導体層が積層されていない被覆絶縁層と、前記被覆絶縁層の上に重ねられ、上面に導体層が積層される支持絶縁層と、からなり、少なくとも前記コア基板の表裏の一方の面に重ねられて前記キャビティ及び前記電子部品を覆う二層絶縁層と、前記支持絶縁層上の前記導体層と前記電子部品との間を接続する素子接続ビア導体と、を備える電子部品内蔵配線板であって、前記被覆絶縁層は、前記支持絶縁層より熱膨張率が小さく、かつ、前記支持絶縁層よりも厚い。   The invention according to claim 1, which has been made to achieve the above object, includes a core substrate having a cavity in which an electronic component is accommodated, a covering insulating layer on which no conductor layer is laminated, and an upper surface of the covering insulating layer. And a supporting insulating layer having a conductor layer laminated on the upper surface, and a two-layer insulating layer covering at least one of the front and back surfaces of the core substrate and covering the cavity and the electronic component, and the supporting An electronic component built-in wiring board comprising an element connection via conductor for connecting between the conductor layer on the insulating layer and the electronic component, wherein the covering insulating layer has a smaller coefficient of thermal expansion than the supporting insulating layer. And thicker than the supporting insulating layer.

本発明の第1実施形態に係る電子部品内蔵配線板の側断面図Side sectional view of the electronic component built-in wiring board according to the first embodiment of the present invention. 電子部品内蔵配線板の平断面図Cross-sectional view of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board 電子部品内蔵配線板の製造工程を示す側断面図Side sectional view showing the manufacturing process of the electronic component built-in wiring board

[第1実施形態]
以下、本発明の第1実施形態を図1〜図10に基づいて説明する。図1に示すように、本実施形態の電子部品内蔵配線板10は、コア基板11の表裏の両面にビルドアップ層20,20を積層してなる。コア基板11は、絶縁性部材で構成され、その表側面であるF面11Fと裏側面であるS面11Sとには、導体回路層12(本発明の「導体層」に相当する)がそれぞれ形成されている。また、コア基板11には、キャビティ16と導電用貫通孔14とが形成されている。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the electronic component built-in wiring board 10 of the present embodiment is formed by stacking buildup layers 20 and 20 on both front and back surfaces of a core substrate 11. The core substrate 11 is made of an insulating member, and a conductor circuit layer 12 (corresponding to the “conductor layer” of the present invention) is provided on the F surface 11F which is the front side surface and the S surface 11S which is the back side surface. Is formed. The core substrate 11 is formed with a cavity 16 and a conductive through hole 14.

コア基板11のキャビティ16には、本発明の「電子部品」としての積層セラミックコンデンサ17(以下、「MLCC17」という)が収容されている。MLCC17は、セラミックス製の角柱体の両端部を1対の電極31,31で覆った構造になっていて、MLCC17の平面形状はキャビティ16の平面形状より一回り小さくなっている。また、MLCC17の厚さ(即ち、MLCC17の電極31の表裏の一方の面である第1主面31Fと、表裏の他方の面である第2主面31Bとの間の距離)は、コア基板11の板厚より大きくなっていて、MLCC17の各電極31,31の第1主面31F,31Fがコア基板11のF面11F側の導体回路層12における最外面と面一になる一方、MLCC17の各電極31,31の第2主面31B,31Bがコア基板11のB面11Bにおける導体回路層12における最外面と面一になる。なお、MLCC17とキャビティ16の内側面との間には素子保持樹脂16Jが充填され、MLCC17はキャビティ16の内側面の全体から離間する位置に配置されている。   The cavity 16 of the core substrate 11 accommodates a multilayer ceramic capacitor 17 (hereinafter referred to as “MLCC 17”) as an “electronic component” of the present invention. The MLCC 17 has a structure in which both ends of a ceramic prismatic body are covered with a pair of electrodes 31, 31, and the planar shape of the MLCC 17 is slightly smaller than the planar shape of the cavity 16. In addition, the thickness of the MLCC 17 (that is, the distance between the first main surface 31F that is one of the front and back surfaces of the electrode 31 of the MLCC 17 and the second main surface 31B that is the other surface) is the core substrate. The first main surfaces 31F and 31F of the electrodes 31 and 31 of the MLCC 17 are flush with the outermost surface of the conductor circuit layer 12 on the F surface 11F side of the core substrate 11, while the MLCC 17 The second main surfaces 31B and 31B of the electrodes 31 and 31 are flush with the outermost surface of the conductor circuit layer 12 on the B surface 11B of the core substrate 11. The element holding resin 16J is filled between the MLCC 17 and the inner surface of the cavity 16, and the MLCC 17 is disposed at a position away from the entire inner surface of the cavity 16.

導電用貫通孔14は、コア基板11のF面11F及びS面11Sの両面からそれぞれ穿孔しかつF面11F及びS面11Sの各々から遠ざかるにつれて徐々に縮径したテーパー孔14A,14Aの小径側端部を互いに連通させた中間括れ形状をなしている。導電用貫通孔14内にはめっきが充填されてスルーホール導電導体15が形成され、そのスルーホール導電導体15によってF面11Fの導体回路層12とS面11Sの導体回路層12との間が接続されている。   The conductive through-holes 14 are formed on the small-diameter side of the tapered holes 14A and 14A that are perforated from both the F surface 11F and the S surface 11S of the core substrate 11 and gradually reduce in diameter as they move away from the F surface 11F and the S surface 11S. It has an intermediate constriction shape with the ends communicating with each other. The through hole 14 for conduction is filled with plating to form a through-hole conductive conductor 15, and the through-hole conductive conductor 15 forms a gap between the conductor circuit layer 12 on the F surface 11 F and the conductor circuit layer 12 on the S surface 11 S. It is connected.

コア基板11のF面11F側のビルドアップ層20も、S面11S側のビルドアップ層20も共に、コア基板11側から順番に、第1絶縁樹脂層21、第1導体層22、第2絶縁樹脂層23、第2導体層24を積層してなり、第2導体層24上には、ソルダーレジスト層25が積層されている。なお、第1絶縁樹脂層21及び第2絶縁樹脂層23が本発明の「二層絶縁層」に相当する。   Both the build-up layer 20 on the F surface 11F side of the core substrate 11 and the build-up layer 20 on the S surface 11S side, in order from the core substrate 11 side, the first insulating resin layer 21, the first conductor layer 22, the second An insulating resin layer 23 and a second conductor layer 24 are laminated, and a solder resist layer 25 is laminated on the second conductor layer 24. The first insulating resin layer 21 and the second insulating resin layer 23 correspond to the “two-layer insulating layer” of the present invention.

ソルダーレジスト層25には、複数のパッド用孔が形成され、第2導体層24の一部がパッド用孔内に位置してパッドになっている。電子部品内蔵配線板10全体の表側面であるF面10Fにおいては、複数のパッドが、中パッド26A群と小パッド26C群とからなり、小パッド26C群が行列状に並べられ、その回りを中パッド26A群が枠状に並べられて囲んでいる。一方、電子部品内蔵配線板10全体の裏側面であるS面10Sのパッドは、中パッド26Aより大きな大パッド26Bになっている。   A plurality of pad holes are formed in the solder resist layer 25, and a part of the second conductor layer 24 is located in the pad hole and serves as a pad. On the F surface 10F, which is the front side surface of the electronic component built-in wiring board 10, the plurality of pads are composed of a middle pad 26A group and a small pad 26C group, and the small pads 26C group are arranged in a matrix and around it. The middle pad 26A group is arranged in a frame shape and surrounds it. On the other hand, the pad on the S surface 10S, which is the back surface of the entire electronic component built-in wiring board 10, is a large pad 26B larger than the middle pad 26A.

第1絶縁樹脂層21及び第2絶縁樹脂層23には、それぞれ複数のビアホール21H,23Hが形成されている。ビアホール21H,23Hは、本実施形態では、コア基板11側に向かって徐々に縮径したテーパー状になっているが、テーパー状になっていなくてもよい。これらビアホール21H,23H内にめっきが充填されて複数のビア導体21D,23Dが形成されている。そして、第1絶縁樹脂層21のビア導体21Dによって、導体回路層12と第1導体層22との間及び、MLCC17と第1導体層22との間が接続され、第2絶縁樹脂層23のビア導体23Dによって、第1導体層22と第2導体層24との間が接続されている。これら複数のビア導体21D,23DのうちMLCC17と第1導体層22との間を接続するものが本発明の「素子接続ビア導体」に相当し、導体回路層12と第1導体層22との間を接続するものが本発明の「導体層間ビア導体」に相当する。なお、第1及び第2の導体層22,24においては、配線パターンの最小幅W及び配線パターン間の最小距離Hがそれぞれ15μm以下となっている(図2参照)。また、ビア導体21Dのうち下方の導体回路層12又は MLCC17との接続部分(いわゆる、ビア底)及びビア導体23Dのうち下方の第1導体層22との接続部分の径が共に50μm以下となっている。   A plurality of via holes 21H and 23H are formed in the first insulating resin layer 21 and the second insulating resin layer 23, respectively. In the present embodiment, the via holes 21H and 23H have a tapered shape that is gradually reduced in diameter toward the core substrate 11 side, but may not be a tapered shape. The via holes 21H and 23H are filled with plating to form a plurality of via conductors 21D and 23D. The via conductor 21D of the first insulating resin layer 21 connects between the conductor circuit layer 12 and the first conductor layer 22 and between the MLCC 17 and the first conductor layer 22. The first conductor layer 22 and the second conductor layer 24 are connected by the via conductor 23D. Of the plurality of via conductors 21D and 23D, the connection between the MLCC 17 and the first conductor layer 22 corresponds to the “element connection via conductor” of the present invention, and the conductor circuit layer 12 and the first conductor layer 22 are connected to each other. What connects them corresponds to the “conductor interlayer via conductor” of the present invention. In the first and second conductor layers 22 and 24, the minimum width W of the wiring pattern and the minimum distance H between the wiring patterns are each 15 μm or less (see FIG. 2). In addition, the diameters of the connection portion with the lower conductor circuit layer 12 or the MLCC 17 (so-called via bottom) in the via conductor 21D and the connection portion with the lower first conductor layer 22 in the via conductor 23D are both 50 μm or less. ing.

さて、図1に示すように、本実施形態の電子部品内蔵配線板10では、第1絶縁樹脂層21と第2絶縁樹脂層23とのそれぞれが、支持絶縁層29と支持絶縁層29より厚い被覆絶縁層28とからなる二層構造になっている。具体的には、支持絶縁層29の厚みは被覆絶縁層28の厚みの15〜50%となっていて、第1及び第2の絶縁樹脂層21,23それぞれにおけるコア基板11側に被覆絶縁層28が配され、外側に支持絶縁層29が配されている。各支持絶縁層29には上面に第1導体層22又は第2導体層24がそれぞれ形成されている。これら支持絶縁層29の上面は粗化面となっている。また、第2絶縁樹脂層23の被覆絶縁層28は、第1絶縁樹脂層21の支持絶縁層29上の第1導体層22を覆っていて、第1絶縁樹脂層21の被覆絶縁層28は、コア基板11上の導体回路層12及びMLCC17を覆うと共にキャビティ16とMLCC17との間に入り込み素子保持樹脂16Jを形成している。   As shown in FIG. 1, in the electronic component built-in wiring board 10 of the present embodiment, each of the first insulating resin layer 21 and the second insulating resin layer 23 is thicker than the supporting insulating layer 29 and the supporting insulating layer 29. It has a two-layer structure composed of a covering insulating layer 28. Specifically, the thickness of the supporting insulating layer 29 is 15 to 50% of the thickness of the covering insulating layer 28, and the covering insulating layer on the core substrate 11 side in each of the first and second insulating resin layers 21 and 23. 28 is disposed, and a support insulating layer 29 is disposed outside. The first conductor layer 22 or the second conductor layer 24 is formed on the upper surface of each support insulating layer 29. The upper surfaces of these supporting insulating layers 29 are roughened surfaces. The covering insulating layer 28 of the second insulating resin layer 23 covers the first conductor layer 22 on the support insulating layer 29 of the first insulating resin layer 21, and the covering insulating layer 28 of the first insulating resin layer 21 is The conductor circuit layer 12 and the MLCC 17 on the core substrate 11 are covered, and the element holding resin 16J is formed between the cavity 16 and the MLCC 17.

被覆絶縁層28及び支持絶縁層29は共に、シリカ、アルミナ又はムライト等の無機フィラーを含有している絶縁樹脂により構成されている。ここで、一般的に絶縁樹脂においては、無機フィラーの含有率が大きくなる程、熱膨張率が小さくなる。本実施形態では、支持絶縁層29の無機フィラー含有率が42wt%、熱膨張率が39ppm/℃になっているのに対し、被覆絶縁層28の無機フィラー含有率が77wt%、熱膨張率が12ppm/℃となっていて、被覆絶縁層28が支持絶縁層29よりも無機フィラー含有率が大きく熱膨張率が小さい構成となっている。なお、導体の熱膨張率は16.8ppm/℃であり、MLCC17の厚さ方向の熱膨張率は9〜13ppm/℃程度である。   Both the covering insulating layer 28 and the supporting insulating layer 29 are made of an insulating resin containing an inorganic filler such as silica, alumina, or mullite. Here, generally in an insulating resin, a thermal expansion coefficient becomes small, so that the content rate of an inorganic filler becomes large. In this embodiment, while the inorganic filler content of the support insulating layer 29 is 42 wt% and the thermal expansion coefficient is 39 ppm / ° C., the inorganic filler content of the covering insulating layer 28 is 77 wt% and the thermal expansion coefficient is The coating insulating layer 28 has a larger inorganic filler content and a smaller thermal expansion coefficient than the supporting insulating layer 29. The thermal expansion coefficient of the conductor is 16.8 ppm / ° C., and the thermal expansion coefficient in the thickness direction of the MLCC 17 is about 9 to 13 ppm / ° C.

また、支持絶縁層29内の無機フィラーの平均粒径は0.5μmであり、支持絶縁層29の誘電正接tanδ(絶縁体内部での電気エネルギー損失を示す)は0.017である一方、被覆絶縁層28内の無機フィラーの平均粒径は1.0μmであり、被覆絶縁層28の誘電正接tanδは0.0093となっている。なお、被覆絶縁層28及び支持絶縁層29には共にガラスクロスは含有されていない。   The average particle size of the inorganic filler in the support insulating layer 29 is 0.5 μm, and the dielectric loss tangent tan δ (indicating electric energy loss inside the insulator) of the support insulating layer 29 is 0.017. The average particle diameter of the inorganic filler in the insulating layer 28 is 1.0 μm, and the dielectric loss tangent tan δ of the covering insulating layer 28 is 0.0093. Note that neither the coating insulating layer 28 nor the supporting insulating layer 29 contains glass cloth.

本実施形態の電子部品内蔵配線板10は、以下のようにして製造される。
(1)図3(A)に示すように、コア基板11としてエポキシ樹脂又はBT(ビスマレイミドトリアジン)樹脂とガラスクロスなどの補強材からなる絶縁性基材11Kの表裏の両面に、銅箔11Cがラミネートされているものが用意される。
The electronic component built-in wiring board 10 of this embodiment is manufactured as follows.
(1) As shown in FIG. 3 (A), copper foil 11C is formed on both sides of an insulating base material 11K made of a reinforcing material such as epoxy resin or BT (bismaleimide triazine) resin and glass cloth as a core substrate 11. Is prepared.

(2)図3(B)に示すように、コア基板11にF面11F側から例えばCO2レーザが照射されて導電用貫通孔14(図1参照)を形成するためのテーパー孔14Aが穿孔される。   (2) As shown in FIG. 3B, the core substrate 11 is irradiated with, for example, CO2 laser from the F surface 11F side to form a tapered hole 14A for forming a conductive through hole 14 (see FIG. 1). The

(3)図3(C)に示すように、コア基板11のS面11Sのうち前述したF面11F側のテーパー孔14Aの真裏となる位置にCO2レーザが照射されてテーパー孔14Aが穿孔され、それらテーパー孔14A,14Aから導電用貫通孔14が形成される。   (3) As shown in FIG. 3C, CO2 laser is irradiated to a position directly behind the tapered hole 14A on the F surface 11F side in the S surface 11S of the core substrate 11 to drill the tapered hole 14A. The conductive through-hole 14 is formed from the tapered holes 14A and 14A.

(4)無電解めっき処理が行われ、銅箔11C上と導電用貫通孔14の内面に無電解めっき膜(図示せず)が形成される。   (4) An electroless plating process is performed, and an electroless plating film (not shown) is formed on the copper foil 11 </ b> C and the inner surface of the conductive through hole 14.

(5)図3(D)に示すように、銅箔11C上の無電解めっき膜上に、所定パターンのめっきレジスト33が形成される。   (5) As shown in FIG. 3D, a predetermined pattern of plating resist 33 is formed on the electroless plating film on the copper foil 11C.

(6)電解めっき処理が行われ、図4(A)に示すように、電解めっきが導電用貫通孔14内に充填されてスルーホール導電導体15が形成されると共に、銅箔11C上の無電解めっき膜(図示せず)のうちめっきレジスト33から露出している部分に電解めっき膜34が形成される。   (6) The electrolytic plating process is performed, and as shown in FIG. 4A, the electrolytic plating is filled in the conductive through holes 14 to form the through-hole conductive conductors 15 and the copper foil 11C on the copper foil 11C. An electrolytic plating film 34 is formed on a portion of the electrolytic plating film (not shown) exposed from the plating resist 33.

(7)めっきレジスト33が剥離されると共に、めっきレジスト33の下方の無電解めっき膜(図示せず)及び銅箔11Cが除去され、図4(B)に示すように、残された電解めっき膜34、無電解めっき膜及び銅箔11Cにより、コア基板11のF面11F上に導体回路層12が形成されると共に、コア基板11のS面11S上に導体回路層12が形成される。そして、F面11Fの導体回路層12とS面11Sの導体回路層12とがスルーホール導電導体15によって接続された状態になる。   (7) The plating resist 33 is peeled off, and the electroless plating film (not shown) and the copper foil 11C below the plating resist 33 are removed. As shown in FIG. The conductor circuit layer 12 is formed on the F surface 11F of the core substrate 11 and the conductor circuit layer 12 is formed on the S surface 11S of the core substrate 11 by the film 34, the electroless plating film, and the copper foil 11C. Then, the conductor circuit layer 12 on the F surface 11F and the conductor circuit layer 12 on the S surface 11S are connected by the through-hole conductive conductor 15.

(8)図4(C)に示すように、コア基板11に、ルーター又はCO2レーザによってキャビティ16が形成される。   (8) As shown in FIG. 4C, the cavity 16 is formed in the core substrate 11 by a router or a CO2 laser.

(9)図4(D)に示すように、キャビティ16が塞がれるように、PETフィルムからなるテープ90がコア基板11のF面11F上に張り付けられる。   (9) As shown in FIG. 4D, a tape 90 made of a PET film is stuck on the F surface 11 </ b> F of the core substrate 11 so that the cavity 16 is closed.

(10)MLCC17が用意される。   (10) MLCC 17 is prepared.

(11)図5(A)に示すように、MLCC17がマウンター(図示せず)によってキャビティ16に収められる。   (11) As shown in FIG. 5A, the MLCC 17 is stored in the cavity 16 by a mounter (not shown).

(12)図5(B)に示すように、コア基板11のS面11S上の導体回路層12上に、第1絶縁樹脂層21として、被覆絶縁層28と支持絶縁層29とが一体になった絶縁シート30が、被覆絶縁層28側がコア基板11側になるように積層されてから加熱プレスされる。その際、コア基板11のS面11Sの導体回路層12,12同士の間が被覆絶縁層28にて埋められ、被覆絶縁層28から染み出た樹脂がキャビティ16の内面とMLCC17との隙間に充填される。   (12) As shown in FIG. 5B, the covering insulating layer 28 and the supporting insulating layer 29 are integrally formed as the first insulating resin layer 21 on the conductor circuit layer 12 on the S surface 11S of the core substrate 11. The formed insulating sheet 30 is laminated with the covering insulating layer 28 side on the core substrate 11 side, and then heated and pressed. At that time, the space between the conductor circuit layers 12 and 12 on the S surface 11S of the core substrate 11 is filled with the coating insulating layer 28, and the resin exuded from the coating insulating layer 28 is in the gap between the inner surface of the cavity 16 and the MLCC 17 Filled.

(13)図5(C)に示すように、テープ90が除去される。   (13) As shown in FIG. 5C, the tape 90 is removed.

(14)図6(A)に示すように、コア基板11のF面11F上の導体回路層12上に第1絶縁樹脂層21としての絶縁シート30が被覆絶縁層28側を下にして積層されてから、加熱プレスされる。その際、コア基板11のF面11Fの導体回路層12,12同士の間が被覆絶縁層28にて埋められ、被覆絶縁層28から染み出た熱硬化性樹脂がキャビティ16の内面とMLCC17との隙間に充填される。また、コア基板11のF面11F側及びS面11S側の被覆絶縁層28から染み出てキャビティ16の内面とMLCC17との隙間に充填された熱硬化性樹脂によって素子保持樹脂16Jが形成される。   (14) As shown in FIG. 6A, the insulating sheet 30 as the first insulating resin layer 21 is laminated on the conductor circuit layer 12 on the F surface 11F of the core substrate 11 with the covering insulating layer 28 side down. Then, it is heated and pressed. At that time, the space between the conductor circuit layers 12 and 12 on the F surface 11F of the core substrate 11 is filled with the coating insulating layer 28, and the thermosetting resin exuded from the coating insulating layer 28 is formed on the inner surface of the cavity 16 and the MLCC 17. The gap is filled. In addition, the element holding resin 16J is formed of a thermosetting resin that oozes out from the coating insulating layer 28 on the F surface 11F side and the S surface 11S side of the core substrate 11 and fills a gap between the inner surface of the cavity 16 and the MLCC 17. .

(15)薬液により支持絶縁層29の上面が粗化される。   (15) The upper surface of the support insulating layer 29 is roughened by the chemical solution.

(16)図6(B)に示すように、コア基板11の表裏の両側の第1絶縁樹脂層21,21にCO2レーザが照射されて、複数のビアホール21Hが形成される。それら複数のビアホール21Hの一部のビアホール21Hは、導体回路層12上に配置され、他の一部のビアホール21HはMLCC17の各電極31,31上に配置される。   (16) As shown in FIG. 6B, the first insulating resin layers 21 and 21 on both sides of the front and back of the core substrate 11 are irradiated with CO2 laser to form a plurality of via holes 21H. Some of the via holes 21H of the plurality of via holes 21H are arranged on the conductor circuit layer 12, and the other part of the via holes 21H are arranged on the electrodes 31 and 31 of the MLCC 17.

(17)無電解めっき処理が行われ、第1絶縁樹脂層21,21上と、ビアホール21H,21H内とに無電解めっき膜(図示せず)が形成される。   (17) An electroless plating process is performed to form an electroless plating film (not shown) on the first insulating resin layers 21 and 21 and in the via holes 21H and 21H.

(18)図6(C)に示すように、無電解めっき膜上に、所定パターンのめっきレジスト40が形成される。   (18) As shown in FIG. 6C, a plating resist 40 having a predetermined pattern is formed on the electroless plating film.

(19)電解めっき処理が行われ、図7(A)に示すように、めっきがビアホール21H,21H内に充填されてビア導体21D,21Dが形成され、さらには、第1絶縁樹脂層21,21上の無電解めっき膜(図示せず)のうちめっきレジスト40から露出している部分に電解めっき膜39,39が形成される。   (19) The electrolytic plating process is performed, and as shown in FIG. 7A, the plating is filled in the via holes 21H and 21H to form the via conductors 21D and 21D. Further, the first insulating resin layer 21 and Electrolytic plating films 39 and 39 are formed on portions of the electroless plating film (not shown) 21 that are exposed from the plating resist 40.

(20)めっきレジスト40が剥離されると共に、めっきレジスト40の下方の無電解めっき膜(図示せず)が除去され、図7(B)に示すように、残された電解めっき膜39及び無電解めっき膜により、コア基板11の表裏の各第1絶縁樹脂層21上に第1導体層22が形成される。そして、コア基板11の表裏の各第1導体層22の一部と導体回路層12とがビア導体21Dによって接続されると共に、各第1導体層22の他の一部とMLCC17とがビア導体21Dによって接続された状態になる。   (20) The plating resist 40 is peeled off and the electroless plating film (not shown) below the plating resist 40 is removed. As shown in FIG. The first conductor layer 22 is formed on each first insulating resin layer 21 on the front and back of the core substrate 11 by the electrolytic plating film. A part of each first conductor layer 22 on the front and back sides of the core substrate 11 and the conductor circuit layer 12 are connected by the via conductor 21D, and another part of each first conductor layer 22 and the MLCC 17 are connected to the via conductor. It will be in the state connected by 21D.

(21)上記した(12)〜(20)と同様の処理により、図8に示すように、コア基板11の表裏の各第1導体層22上に第2絶縁樹脂層23と第2導体層24とが形成されて、各第2導体層24の一部と第1導体層22とがビア導体23Dによって接続された状態になる。   (21) By the same processing as the above (12) to (20), the second insulating resin layer 23 and the second conductor layer are formed on the first conductor layers 22 on the front and back of the core substrate 11 as shown in FIG. 24 and a part of each second conductor layer 24 and the first conductor layer 22 are connected by the via conductor 23D.

(22)図9に示すように、コア基板11の表裏の各第2導体層24上にソルダーレジスト層25,25が積層される。   (22) As shown in FIG. 9, solder resist layers 25, 25 are laminated on the second conductor layers 24 on the front and back sides of the core substrate 11.

(23)図10に示すように、コア基板11の表裏のソルダーレジスト層25,25の所定箇所にテーパー状のパッド用孔が形成され、コア基板11の表裏の各第2導体層24のうちパッド用孔から露出した部分がパッド26になる。   (23) As shown in FIG. 10, tapered pad holes are formed at predetermined locations of the solder resist layers 25, 25 on the front and back of the core substrate 11, and each of the second conductor layers 24 on the front and back of the core substrate 11 The portion exposed from the pad hole becomes the pad 26.

(24)パッド26上に、例えば、ニッケル層、パラジウム層、金層の順に積層されて図1に示した金属膜41が形成される。なお、金属膜41は、Sn、Ni/Au層等でもよい。また、金属膜41の代わりに、OSP被膜としてもよい。以上で電子部品内蔵配線板10が完成する。   (24) On the pad 26, for example, a nickel layer, a palladium layer, and a gold layer are laminated in this order to form the metal film 41 shown in FIG. The metal film 41 may be a Sn, Ni / Au layer, or the like. Further, an OSP film may be used instead of the metal film 41. Thus, the electronic component built-in wiring board 10 is completed.

本実施形態の電子部品内蔵配線板10の構造及び製造方法に関する説明は以上である。次に電子部品内蔵配線板10の使用例と作用効果とを説明する。本実施形態の電子部品内蔵配線板10は、パッド26上に、半田バンプ(図示せず)が形成されて、その上にCPU等が搭載されて半田付けされることで使用される。このとき、CPUのパッドがビア導体21D,23Dを介してMLCC17の各電極31,31に接続される。   This completes the description of the structure and manufacturing method of the electronic component built-in wiring board 10 of the present embodiment. Next, usage examples and operational effects of the electronic component built-in wiring board 10 will be described. The wiring board 10 with a built-in electronic component of this embodiment is used by forming solder bumps (not shown) on the pads 26 and mounting a CPU or the like on the solder bumps. At this time, the CPU pad is connected to each of the electrodes 31 and 31 of the MLCC 17 via the via conductors 21D and 23D.

ここで、第1絶縁樹脂層21の熱膨張率が大きい(第1絶縁樹脂層21の熱膨張率と導体の熱膨張率との差が大きい)と、ビア導体21D(特に最小径となるビア底部分)にかかる熱応力が大きくなり、ビア導体21DがMLCC17から剥離しやすくなるという問題が生じると考えられる。これに対し、本実施形態の電子部品内蔵配線板10では、第1絶縁樹脂層21のうちの被覆絶縁層28、即ち、MLCC17の上面やビア導体21Dのビア底の周辺を覆う部分の熱膨張率が小さく(被覆絶縁層28の熱膨張率と導体の熱膨張率との差が小さく)なっているので、ビア導体21Dが第1絶縁樹脂層21の熱膨張の影響を受けてMLCC17から剥離することを防ぐことができ、ビア導体21DとMLCC17との接続の信頼性を向上することができる。ビア導体21DとMLCC17との接続の信頼性と同様に、コア基板11上の導体回路層12とビア導体21Dとの接続の信頼性や第1導体層22とビア導体23Dとの接続の信頼性も向上する。   Here, if the thermal expansion coefficient of the first insulating resin layer 21 is large (the difference between the thermal expansion coefficient of the first insulating resin layer 21 and the thermal expansion coefficient of the conductor is large), the via conductor 21D (particularly the via having the minimum diameter). It is considered that there is a problem that the thermal stress applied to the bottom portion is increased and the via conductor 21D is easily peeled off from the MLCC 17. In contrast, in the electronic component built-in wiring board 10 of the present embodiment, the thermal expansion of the covering insulating layer 28 of the first insulating resin layer 21, that is, the portion covering the upper surface of the MLCC 17 and the periphery of the via bottom of the via conductor 21D. Since the rate is small (the difference between the thermal expansion coefficient of the covering insulating layer 28 and the thermal expansion coefficient of the conductor is small), the via conductor 21D is peeled off from the MLCC 17 by the influence of the thermal expansion of the first insulating resin layer 21. Therefore, the reliability of connection between the via conductor 21D and the MLCC 17 can be improved. Similar to the reliability of the connection between the via conductor 21D and the MLCC 17, the reliability of the connection between the conductor circuit layer 12 and the via conductor 21D on the core substrate 11 and the reliability of the connection between the first conductor layer 22 and the via conductor 23D. Will also improve.

また、第1絶縁樹脂層21のうちの被覆絶縁層28の熱膨張率とMLCC17の熱膨張率との差が小さいので、ビア導体21D内の応力集中が防がれ、ビア導体21DがMLCC17から剥離することがより防がれる。さらに、被覆絶縁層28がキャビティ16とMLCC17との間に染み出て形成される素子保持樹脂16Jの無機フィラー含有率が大きいので、MLCC17がキャビティ16内で動くことが規制され、ビア導体21DとMLCC17との接続の信頼性がより一層向上する。   In addition, since the difference between the thermal expansion coefficient of the covering insulating layer 28 in the first insulating resin layer 21 and the thermal expansion coefficient of the MLCC 17 is small, stress concentration in the via conductor 21D is prevented, and the via conductor 21D is separated from the MLCC 17. Peeling is more prevented. Furthermore, since the inorganic filler content of the element holding resin 16J formed by the covering insulating layer 28 oozing out between the cavity 16 and the MLCC 17 is large, the MLCC 17 is restricted from moving in the cavity 16, and the via conductor 21D The reliability of connection with the MLCC 17 is further improved.

ところで、第1及び第2の絶縁樹脂層21,23を、熱膨張率の小さい被覆絶縁層28のみにより形成すると、第1及び第2の絶縁樹脂層21,23全体に亘って無機フィラーの含有率が大きくなる。この場合、第1及び第2の絶縁樹脂層21,23の表面にも無機フィラーが多く存在することとなるが、無機フィラー上にはめっきレジスト40が接着しにくいため、第1及び第2の絶縁樹脂層21,23上のめっきレジスト40を緻密にすることが困難となり、配線パターンを密(ファイン)にすることができなくなる。   By the way, if the first and second insulating resin layers 21 and 23 are formed only by the covering insulating layer 28 having a small coefficient of thermal expansion, the inclusion of the inorganic filler over the entire first and second insulating resin layers 21 and 23. The rate increases. In this case, a large amount of inorganic filler is also present on the surfaces of the first and second insulating resin layers 21 and 23. However, since the plating resist 40 is difficult to adhere on the inorganic filler, the first and second It becomes difficult to make the plating resist 40 on the insulating resin layers 21 and 23 dense, and the wiring pattern cannot be made fine.

これに対し、本実施形態の電子部品内蔵配線板10では、第1絶縁樹脂層21及び第2絶縁樹脂層23が、熱膨張率が比較的小さい(無機フィラーの含有率が大きい)被覆絶縁層28と、熱膨張率が比較的大きい(無機フィラーの含有率が小さい)支持絶縁層29との二層構造になっている。そして、それらのうち無機フィラーの含有率が小さい支持絶縁層29に導体層22,24が形成されるため、めっきレジスト40の形成時にアンカー効果が得られ、めっきレジスト40を緻密にすることができ、配線パターンを密(ファイン)にすることができる。これにより、第1及び第2の導体層22,24における配線パターンの最小幅W及び配線パターン間の最小距離Hをそれぞれ15μm以下にすることができる。   On the other hand, in the electronic component built-in wiring board 10 according to the present embodiment, the first insulating resin layer 21 and the second insulating resin layer 23 have a relatively small thermal expansion coefficient (a large content of the inorganic filler). 28 and a support insulating layer 29 having a relatively large thermal expansion coefficient (small content of inorganic filler). And since the conductor layers 22 and 24 are formed in the support insulating layer 29 with a small content of the inorganic filler among them, an anchor effect is obtained when the plating resist 40 is formed, and the plating resist 40 can be made dense. The wiring pattern can be made fine. Thereby, the minimum width W of the wiring pattern and the minimum distance H between the wiring patterns in the first and second conductor layers 22 and 24 can be set to 15 μm or less, respectively.

また、支持絶縁層29内の無機フィラーの平均粒径が被覆絶縁層28内の無機フィラーの平均粒径よりも小さくなっているため、めっきレジスト40の第1及び第2の絶縁樹脂層21,23への接着性をより高めることができる。さらに、支持絶縁層29の上面が粗化面となっているため、めっきレジスト40の形成時にアンカー効果がより強まり、めっきレジスト40を緻密にすることが容易となる。また、導体層22,24の支持絶縁層29への固定強度も高まる。   Further, since the average particle size of the inorganic filler in the support insulating layer 29 is smaller than the average particle size of the inorganic filler in the covering insulating layer 28, the first and second insulating resin layers 21 of the plating resist 40, The adhesion to 23 can be further increased. Furthermore, since the upper surface of the support insulating layer 29 is a roughened surface, the anchor effect is further enhanced when the plating resist 40 is formed, and it becomes easy to make the plating resist 40 dense. Further, the fixing strength of the conductor layers 22 and 24 to the support insulating layer 29 is also increased.

また、第1及び第2の絶縁樹脂層21,23の熱膨張率が大きいと加熱による膨張と冷却による収縮とにより電子部品内蔵配線板10全体が反ってしまうことが考えられるが、第1及び第2の絶縁樹脂層21,23が熱膨張率の比較的小さい被覆絶縁層28を有していることにより、第1及び第2の絶縁樹脂層21,23全体の熱膨張率が小さくなり、電子部品内蔵配線板10全体の反りを抑えることもできる。   Moreover, if the first and second insulating resin layers 21 and 23 have a large coefficient of thermal expansion, it is considered that the entire electronic component built-in wiring board 10 is warped due to expansion due to heating and contraction due to cooling. Since the second insulating resin layers 21 and 23 have the coating insulating layer 28 having a relatively low thermal expansion coefficient, the thermal expansion coefficient of the entire first and second insulating resin layers 21 and 23 is reduced, Warpage of the entire electronic component built-in wiring board 10 can also be suppressed.

また、本実施形態の電子部品内蔵配線板10では、配線パターンが上面及び側面から支持絶縁層29よりも誘電正接tanδが小さい被覆絶縁層28に覆われているため、配線パターンが支持絶縁層29のみにより覆われている構成よりも電気エネルギー損失を少なくすることができる。   Further, in the electronic component built-in wiring board 10 of the present embodiment, the wiring pattern is covered from the upper surface and the side surface with the covering insulating layer 28 having a smaller dielectric loss tangent tan δ than the supporting insulating layer 29. Electric energy loss can be reduced as compared with the configuration covered only by the above.

また、本実施形態では、被覆絶縁層28が比較的厚く、支持絶縁層29が比較的薄くなっているので、配線パターンの密(ファイン)具合を確保しながらビア導体21DとMLCC17との接続等の信頼性を向上させたり電子部品内蔵配線板10全体の反りを抑えるという効果を得つつも、支持絶縁層29と被覆絶縁層28とが同じ厚さになっているものと比べて、電子部品内蔵配線板10を薄くすることができる。   In the present embodiment, since the covering insulating layer 28 is relatively thick and the supporting insulating layer 29 is relatively thin, the connection between the via conductor 21D and the MLCC 17 and the like while ensuring the fineness of the wiring pattern, etc. Compared with the case where the supporting insulating layer 29 and the covering insulating layer 28 have the same thickness, while improving the reliability of the electronic component and suppressing the warpage of the electronic component built-in wiring board 10 as a whole, the electronic component The built-in wiring board 10 can be made thin.

[他の実施形態]
本発明は、上記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various modifications are possible within the scope of the invention other than the following. It can be changed and implemented.

(1)上記実施形態では、熱伝導率の大小が無機フィラー含有率の大小により異なっていたが、例えば、無機フィラーの含有率を同じにして、樹脂の種類により熱伝導率の大小を異ならせる構成であってもよい。   (1) In the above embodiment, the thermal conductivity differs depending on the inorganic filler content. For example, the inorganic filler content is the same, and the thermal conductivity varies depending on the type of resin. It may be a configuration.

(2)上記実施形態では、被覆絶縁層28と支持絶縁層29とが一体となった絶縁シート30を積層する構成であったが、被覆絶縁層28と支持絶縁層29とを一層ずつ別個に積層する構成であってもよい。   (2) In the above embodiment, the insulating sheet 30 in which the covering insulating layer 28 and the supporting insulating layer 29 are integrated is laminated. However, the covering insulating layer 28 and the supporting insulating layer 29 are separately provided one by one. The structure which laminates | stacks may be sufficient.

(3)上記実施形態では、被覆絶縁層28の無機フィラー含有率が77wt%で、支持絶縁層29の無機フィラー含有率が42wt%であったが、これに限られるものではない。なお、被覆絶縁層28の無機フィラー含有率を65〜85wt%とし、支持絶縁層29の無機フィラー含有率を30〜50wt%とすることが好ましい。   (3) In the above embodiment, the inorganic filler content of the covering insulating layer 28 is 77 wt%, and the inorganic filler content of the supporting insulating layer 29 is 42 wt%. However, the present invention is not limited to this. In addition, it is preferable that the inorganic filler content rate of the coating insulating layer 28 is 65 to 85 wt%, and the inorganic filler content rate of the support insulating layer 29 is 30 to 50 wt%.

(4)上記実施形態では、コア基板11の表裏にそれぞれ積層されている絶縁樹脂層が2層ずつであったが、1層ずつであってもよいし、3層以上ずつであってもよい。   (4) In the above embodiment, the insulating resin layers laminated on the front and back of the core substrate 11 are two layers each, but may be one layer each, or may be three layers or more. .

(5)上記実施形態では、第2絶縁樹脂層23が、第1絶縁樹脂層21と同様に被覆絶縁層28と支持絶縁層29とからなる二層構造になっていたが、支持絶縁層29のみからなる構成であってもよい。   (5) In the above embodiment, the second insulating resin layer 23 has a two-layer structure including the covering insulating layer 28 and the supporting insulating layer 29 as in the case of the first insulating resin layer 21. The structure which consists only of may be sufficient.

(6)上記実施形態では、コア基板11の表裏の両方の第1絶縁樹脂層21が二層構造になっていたが、一方の第1絶縁樹脂層21のみが二層構造になっている構成であってもよい。   (6) In the above embodiment, both the first insulating resin layers 21 on the front and back sides of the core substrate 11 have a two-layer structure, but only one first insulating resin layer 21 has a two-layer structure. It may be.

(7)上記実施形態では、電子部品内蔵配線板10にMLCC17のみが内蔵されていたが、MLCC17とともに例えば金属ブロックが内蔵されていてもよい。   (7) In the above embodiment, only the MLCC 17 is built in the electronic component built-in wiring board 10. However, for example, a metal block may be built together with the MLCC 17.

(8)上記実施形態では、本発明の「電子部品」がMLCC17であったが、例えば、コンデンサ、抵抗、サーミスタ、コイル等の受動部品や、IC回路等の能動部品などであってもよい。   (8) In the above embodiment, the “electronic component” of the present invention is the MLCC 17. However, for example, it may be a passive component such as a capacitor, a resistor, a thermistor, or a coil, or an active component such as an IC circuit.

10 電子部品内蔵配線板
11 コア基板
12 導体回路層(導体層)
16 キャビティ
17 MLCC(積層セラミックコンデンサ,電子部品)
21 第1絶縁樹脂層(二層絶縁層)
21D ビア導体(素子接続ビア導体,導体層間ビア導体)
22 第1導体層(導体層)
23 第2絶縁樹脂層(二層絶縁層)
28 被覆絶縁層
29 支持絶縁層
10 Wiring board with built-in electronic components 11 Core substrate 12 Conductor circuit layer (conductor layer)
16 Cavity 17 MLCC (Multilayer Ceramic Capacitor, Electronic Components)
21 First insulating resin layer (two-layer insulating layer)
21D via conductor (element connection via conductor, conductor interlayer via conductor)
22 First conductor layer (conductor layer)
23 Second insulating resin layer (two-layer insulating layer)
28 Insulating layer 29 Support insulating layer

Claims (15)

電子部品が収容されているキャビティを有するコア基板と、
上面に導体層が積層されていない被覆絶縁層と、前記被覆絶縁層の上に重ねられ、上面に導体層が積層される支持絶縁層と、からなり、少なくとも前記コア基板の表裏の一方の面に重ねられて前記キャビティ及び前記電子部品を覆う二層絶縁層と、
前記支持絶縁層上の前記導体層と前記電子部品との間を接続する素子接続ビア導体と、を備える電子部品内蔵配線板であって、
前記被覆絶縁層は、前記支持絶縁層より熱膨張率が小さく、かつ、前記支持絶縁層よりも厚い。
A core substrate having a cavity in which an electronic component is accommodated;
A covering insulating layer in which no conductor layer is laminated on the upper surface, and a supporting insulating layer laminated on the covering insulating layer and having a conductor layer laminated on the upper surface, at least one surface of the front and back surfaces of the core substrate A two-layer insulating layer overlaid on and covering the cavity and the electronic component;
An electronic component built-in wiring board comprising: an element connection via conductor connecting between the conductive layer on the support insulating layer and the electronic component;
The covering insulating layer has a smaller coefficient of thermal expansion than the supporting insulating layer and is thicker than the supporting insulating layer.
請求項1に記載の電子部品内蔵配線板であって、
前記二層絶縁層が前記コア基板の表側及び裏側の両方に備えられている。
The electronic component built-in wiring board according to claim 1,
The two-layer insulating layer is provided on both the front side and the back side of the core substrate.
請求項2に記載の電子部品内蔵配線板であって、
前記素子接続ビア導体が前記コア基板の表側及び裏側の両方に備えられている。
The electronic component built-in wiring board according to claim 2,
The element connection via conductor is provided on both the front side and the back side of the core substrate.
請求項1乃至3の何れか1の請求項に記載の電子部品内蔵配線板であって、
前記コア基板のうち前記被覆絶縁層により覆われた面には、導体層が積層され、
前記コア基板上の前記導体層と前記支持絶縁層上の前記導体層との間を接続する導体層間ビア導体を有する。
The electronic component built-in wiring board according to any one of claims 1 to 3,
A conductor layer is laminated on the surface of the core substrate covered with the covering insulating layer,
A conductor interlayer via conductor connecting between the conductor layer on the core substrate and the conductor layer on the supporting insulating layer;
請求項1乃至4の何れか1の請求項に記載の電子部品内蔵配線板であって、
前記二層絶縁層は、前記被覆絶縁層と前記支持絶縁層とがフィルム状に一体形成された状態で積層されている。
An electronic component built-in wiring board according to any one of claims 1 to 4,
The two-layer insulating layer is laminated in a state where the covering insulating layer and the supporting insulating layer are integrally formed in a film shape.
請求項1乃至5の何れか1の請求項に記載の電子部品内蔵配線板であって、
前記被覆絶縁層と前記支持絶縁層とは共に無機フィラーを含有し、
前記被覆絶縁層の前記無機フィラーの含有率は、前記支持絶縁層の前記無機フィラーの含有率よりも大きい。
An electronic component built-in wiring board according to any one of claims 1 to 5,
Both the covering insulating layer and the supporting insulating layer contain an inorganic filler,
The content of the inorganic filler in the covering insulating layer is greater than the content of the inorganic filler in the supporting insulating layer.
請求項1乃至6の何れか1の請求項に記載の電子部品内蔵配線板であって、
前記被覆絶縁層と前記支持絶縁層とには、ガラスクロスが含まれていない。
The electronic component built-in wiring board according to any one of claims 1 to 6,
The covering insulating layer and the supporting insulating layer do not contain glass cloth.
請求項1乃至7の何れか1の請求項に記載の電子部品内蔵配線板であって、
前記電子部品は、積層セラミックコンデンサである。
The electronic component built-in wiring board according to any one of claims 1 to 7,
The electronic component is a multilayer ceramic capacitor.
請求項1乃至8の何れか1の請求項に記載の配線基板であって、
前記キャビティと前記電子部品との隙間には、前記被覆絶縁層と同成分の絶縁材が充填されている。
A wiring board according to any one of claims 1 to 8,
A gap between the cavity and the electronic component is filled with an insulating material having the same component as the covering insulating layer.
請求項1乃至9の何れか1の請求項に記載の配線基板であって、
前記素子接続ビア導体は、前記電子部品へ向かうにつれて徐々に縮径している。
A wiring board according to any one of claims 1 to 9,
The element connection via conductor is gradually reduced in diameter toward the electronic component.
コア基板のキャビティに電子部品を収容することと、
前記コア基板の表裏の一方の面に前記被覆絶縁層と前記支持絶縁層とからなる二層絶縁層を積層し、前記被覆絶縁層により前記キャビティ及び前記電子部品を覆うことと、
前記支持絶縁層の上面に導体層を積層することと、
前記支持絶縁層上の前記導体層と前記電子部品との間を素子接続ビア導体により接続することと、を行う電子部品内蔵配線板の製造方法であって、
前記被覆絶縁層を、前記支持絶縁層より熱膨張率を小さくし、かつ、前記支持絶縁層よりも厚くする。
Housing electronic components in the core substrate cavity;
Laminating a two-layer insulating layer composed of the covering insulating layer and the supporting insulating layer on one surface of the front and back of the core substrate, and covering the cavity and the electronic component by the covering insulating layer;
Laminating a conductor layer on the upper surface of the supporting insulating layer;
Connecting the conductor layer on the support insulating layer and the electronic component by an element connection via conductor, and a method of manufacturing an electronic component built-in wiring board,
The covering insulating layer has a smaller coefficient of thermal expansion than the supporting insulating layer and is thicker than the supporting insulating layer.
請求項11に記載の電子部品内蔵配線板の製造方法であって、
前記二層絶縁層を前記コア基板の表側及び裏側の両方に備える。
It is a manufacturing method of the electronic component built-in wiring board according to claim 11,
The two-layer insulating layer is provided on both the front side and the back side of the core substrate.
請求項12に記載の電子部品内蔵配線板の製造方法であって、
前記素子接続ビア導体を前記コア基板の表側及び裏側の両方に備える。
It is a manufacturing method of the electronic component built-in wiring board according to claim 12,
The element connection via conductor is provided on both the front side and the back side of the core substrate.
請求項11乃至13の何れか1の請求項に記載の電子部品内蔵配線板の製造方法であって、
前記コア基板のうち前記被覆絶縁層により覆われた面に、導体層を積層することと、
前記コア基板上の前記導体層と前記支持絶縁層上の前記導体層との間を、導体層間ビア導体により接続することと、を行う。
A method for manufacturing an electronic component built-in wiring board according to any one of claims 11 to 13,
Laminating a conductor layer on the surface of the core substrate covered with the covering insulating layer;
The conductor layer on the core substrate and the conductor layer on the support insulating layer are connected by a conductor interlayer via conductor.
請求項11乃至14の何れか1の請求項に記載の電子部品内蔵配線板の製造方法であって、
前記二層絶縁層の積層を、前記被覆絶縁層と前記支持絶縁層とがフィルム状に一体形成されている絶縁シートを積層することにより行う。
A method for manufacturing an electronic component built-in wiring board according to any one of claims 11 to 14,
The two-layer insulating layer is laminated by laminating an insulating sheet in which the covering insulating layer and the supporting insulating layer are integrally formed in a film shape.
JP2015099628A 2015-05-15 2015-05-15 Electronic component built-in wiring board and manufacturing method therefor Pending JP2016219477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015099628A JP2016219477A (en) 2015-05-15 2015-05-15 Electronic component built-in wiring board and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099628A JP2016219477A (en) 2015-05-15 2015-05-15 Electronic component built-in wiring board and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2016219477A true JP2016219477A (en) 2016-12-22

Family

ID=57582063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099628A Pending JP2016219477A (en) 2015-05-15 2015-05-15 Electronic component built-in wiring board and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2016219477A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264941A (en) * 1995-03-24 1996-10-11 Ibiden Co Ltd Build-up multilayer printed board and manufacture thereof
WO2010137421A1 (en) * 2009-05-29 2010-12-02 イビデン株式会社 Wiring board and method for manufacturing same
JP2013243345A (en) * 2012-03-27 2013-12-05 General Electric Co <Ge> Ultrathin buried die module and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264941A (en) * 1995-03-24 1996-10-11 Ibiden Co Ltd Build-up multilayer printed board and manufacture thereof
WO2010137421A1 (en) * 2009-05-29 2010-12-02 イビデン株式会社 Wiring board and method for manufacturing same
JP2013243345A (en) * 2012-03-27 2013-12-05 General Electric Co <Ge> Ultrathin buried die module and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2016219478A (en) Wiring board and manufacturing method therefor
US9554462B2 (en) Printed wiring board
KR100653249B1 (en) Metal core, package board and fabricating method therefore
JP2016207940A (en) Electronic component built-in wiring board and manufacturing method thereof
US9307643B2 (en) Substrate with built-in electronic component and method for manufacturing substrate with built-in electronic component
JP2008085089A (en) Resin wiring board and semiconductor device
US10186486B2 (en) Wiring board
US9601422B2 (en) Printed wiring board, semiconductor package, and method for manufacturing printed wiring board
JP2018026392A (en) Wiring board and manufacturing method thereof
JP6084283B2 (en) Component built-in substrate and manufacturing method thereof
JP5462450B2 (en) Component built-in printed wiring board and method for manufacturing component built-in printed wiring board
KR101905879B1 (en) The printed circuit board and the method for manufacturing the same
JP2014154594A (en) Electronic component built-in wiring board
JP5660462B2 (en) Printed wiring board
US9433108B2 (en) Method of fabricating a circuit board structure having an embedded electronic element
JP2013219204A (en) Core board for wiring board manufacturing and wiring board
JP2008091377A (en) Printed wiring board and its manufacturing method
JP2019212692A (en) Wiring board and manufacturing method thereof
JP2019067858A (en) Printed wiring board and manufacturing method thereof
JP2016219477A (en) Electronic component built-in wiring board and manufacturing method therefor
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP6110084B2 (en) Printed wiring board and manufacturing method thereof
JP4492071B2 (en) Wiring board manufacturing method
JP2017108034A (en) Wiring board and method of manufacturing the same
JP2023170480A (en) wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702