JP2016217741A - Apparatus and method for measuring concentration of dissolved component - Google Patents

Apparatus and method for measuring concentration of dissolved component Download PDF

Info

Publication number
JP2016217741A
JP2016217741A JP2015099275A JP2015099275A JP2016217741A JP 2016217741 A JP2016217741 A JP 2016217741A JP 2015099275 A JP2015099275 A JP 2015099275A JP 2015099275 A JP2015099275 A JP 2015099275A JP 2016217741 A JP2016217741 A JP 2016217741A
Authority
JP
Japan
Prior art keywords
temperature
water
concentration
absorbance
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015099275A
Other languages
Japanese (ja)
Other versions
JP6531483B2 (en
Inventor
信太郎 森
Shintaro Mori
信太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015099275A priority Critical patent/JP6531483B2/en
Publication of JP2016217741A publication Critical patent/JP2016217741A/en
Application granted granted Critical
Publication of JP6531483B2 publication Critical patent/JP6531483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately simply measure a concentration of a dissolved component in a sample water without using a large-scaled apparatus for keeping the temperature of the sample water constant when measuring the concentration of the dissolved component on the basis of transmissivity or absorbance whose measurement values vastly vary depending upon the temperature of the sample water.SOLUTION: The apparatus for measuring the concentration of a dissolved component in water stores information including the variation with time of transmissivity or absorbance when a plurality of standard sample waters having known concentrations of the dissolved component to be measured and different temperatures are irradiated with visible light, and measures the concentration of the dissolved component of the water by absorption photometry that determines the concentration of the dissolved component in unknown sample waters on the basis of the stored data. A calibration curve to be used and/or a timing of reading transmissivity or absorbance is changed on the basis of the temperature of the unknown sample water.SELECTED DRAWING: Figure 1

Description

本発明は、冷却水系やボイラ水等の水中の溶存成分濃度を測定する装置及び方法に関する。   The present invention relates to an apparatus and method for measuring the concentration of dissolved components in water such as a cooling water system and boiler water.

水を利用するプラントを安全かつ効率よく運転するためには、そのプラントに適した水質管理を行うことが必要であり、障害が発生する水質にならないよう、常に適切な薬品濃度の維持や濃縮管理といった水質条件を制御することが求められている。
そこで、冷却水系等においては、循環水中の溶存成分濃度を、現場にてオンラインやバッチで測定することが行われている。
In order to operate a plant that uses water safely and efficiently, it is necessary to perform water quality management suitable for the plant, and always maintain appropriate chemical concentration and concentrate management so that the water quality does not cause trouble. It is required to control the water quality conditions.
Therefore, in a cooling water system or the like, the concentration of dissolved components in circulating water is measured on-site or batchwise.

例えば、バッチでの水質測定装置として、特許文献1には、吸光光度法での残留塩素の検出方法と試験具が記載されている。   For example, Patent Document 1 discloses a method for detecting residual chlorine by an absorptiometric method and a test device as a water quality measuring device in a batch.

また、特許文献2には、冷却水系やボイラ等の蒸気発生設備を備える水系のスケール、腐食、及び汚れ防止等、水処理の目的のために添加されるアクリル酸重合体、アクリル酸共重合体、マレイン酸重合体、マレイン酸共重合体等のアニオン性ポリマー濃度の測定方法として、エチレンジアミン四酢酸塩(EDTA)等のキレート剤の水溶液を封入した測定セルに、検水を注入後、塩化ベンゼトニウム等の第四級アンモニウム塩の水溶液を添加し、攪拌してアニオン性ポリマーと反応させて白濁を生じさせ、波長が400〜900nmのいずれかの可視光線の透過率又は吸光度を測定してアニオン性ポリマーの濃度を測定する方法が記載されている。   Patent Document 2 discloses an acrylic acid polymer and an acrylic acid copolymer that are added for the purpose of water treatment, such as a water scale having a steam generation facility such as a cooling water system and a boiler, corrosion, and contamination prevention. As a method for measuring the concentration of anionic polymers such as maleic acid polymer and maleic acid copolymer, benzethonium chloride is injected into a measuring cell in which an aqueous solution of a chelating agent such as ethylenediaminetetraacetate (EDTA) is sealed. An aqueous solution of quaternary ammonium salt such as the above is added, stirred and reacted with an anionic polymer to cause white turbidity, and the visible light transmittance or absorbance at any wavelength of 400 to 900 nm is measured to be anionic. A method for measuring the concentration of the polymer is described.

また、吸光度測定による水中のリン酸イオン濃度の分析試薬として、硫酸、七モリブデン酸六アンモニウム四水和物、酒石酸アンチモニルカリウムおよびアルコルビン酸を含む試薬(JIS K0101:1998)が提供されている。   In addition, a reagent (JIS K0101: 1998) containing sulfuric acid, hexaammonium heptamolybdate tetrahydrate, antimonyl potassium tartrate, and ascorbic acid is provided as an analysis reagent for phosphate ion concentration in water by absorbance measurement.

特開平5−346425号公報JP-A-5-346425 特開2014−228467号公報JP 2014-228467 A

一般的に、吸光光度法では、測定の前にサンプル水の温度調整を行い、充分な反応時間を確保して、透過率又は吸光度測定を行う。しかし、屋外等の現場で実施するバッチ測定の場合、ヒーターやクーラーなどを用いてサンプル水の温度を調整するには、大掛かりな機材の準備が必要な上、温度調整に時間を要するため、操作性が大きく低下する問題があった。   Generally, in the absorptiometry, the temperature of sample water is adjusted before measurement, and a sufficient reaction time is ensured to measure transmittance or absorbance. However, in the case of batch measurement performed outdoors such as outdoors, adjusting the temperature of the sample water using a heater or cooler requires preparation of large-scale equipment and requires time for temperature adjustment. There was a problem that the performance was greatly reduced.

この対策として、特許文献1には換算式を用いて温度補正することが記載されているが、測定対象によっては発色が安定する時間がズレたり、検量線そのものが異なったりし、定量的な温度補正では正しい結果が得られない場合があった。
また、現場で多くのサンプルを分析するために、測定に要する時間の短縮が望まれている。
As a countermeasure, Patent Document 1 describes that temperature correction is performed using a conversion formula. However, depending on the measurement target, the time during which the color development is stabilized may be shifted, the calibration curve itself may be different, and the quantitative temperature may be changed. In some cases, correct results could not be obtained.
Further, in order to analyze many samples on site, it is desired to shorten the time required for measurement.

本発明は、サンプル水の温度によって測定値が大きく変化する透過率又は吸光度に基づいて溶存成分濃度を測定するに当たり、サンプル水温を一定にするための大掛かりな装置を用いることなく、サンプル水の溶存成分濃度を精度よく簡便に測定することができる装置と測定方法を提供することを目的とする。本発明はまた、測定に要する時間を短縮することができる水中の溶存成分濃度の測定装置と測定方法を提供することを目的とする。   In the present invention, when measuring the concentration of dissolved components on the basis of transmittance or absorbance whose measured values vary greatly depending on the temperature of the sample water, the sample water can be dissolved without using a large-scale device for keeping the sample water temperature constant. It is an object of the present invention to provide an apparatus and a measuring method that can easily and accurately measure component concentrations. Another object of the present invention is to provide an apparatus and a method for measuring the concentration of dissolved components in water that can reduce the time required for measurement.

本発明者は、上記目的を達成するため、鋭意研究を行った結果、測定時のサンプル水の温度に応じて検量線や測定値の読み込みタイミングを変更することにより、測定精度を向上させることができ、また、測定時間を短縮することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of earnest research to achieve the above object, the inventor can improve the measurement accuracy by changing the calibration curve and the reading timing of the measurement value according to the temperature of the sample water at the time of measurement. It has also been found that the measurement time can be shortened.
That is, the gist of the present invention is as follows.

[1] 測定する溶存成分の濃度が既知である、温度の異なる複数の標準サンプル水に対して、可視光を照射した際の透過率又は吸光度の経時変化を含む情報を記憶し、この記憶データに基づいて、未知サンプル水の溶存成分濃度を求める吸光光度法による水中の溶存成分濃度の測定装置であって、該未知サンプル水の温度に基づいて、使用する検量線、及び/又は透過率又は吸光度の読み込みタイミングを変更するように設定されていることを特徴とする水中の溶存成分濃度の測定装置。 [1] Stores information including changes over time in transmittance or absorbance when a plurality of standard sample waters having different temperatures, whose concentrations of dissolved components to be measured are known, are irradiated with visible light. Is a measuring apparatus for the concentration of dissolved components in water by an absorptiometric method for determining the concentration of dissolved components in an unknown sample water based on the calibration curve used and / or transmittance or An apparatus for measuring the concentration of dissolved components in water, wherein the apparatus is set to change the reading timing of absorbance.

[2] [1]において、温度の異なる複数の標準サンプル水について測定した透過率又は吸光度に基づいて、温度毎に複数の検量線が作製され、前記未知サンプル水の温度に最も近い温度の検量線を選択使用するように設定されていることを特徴とする水中の溶存成分濃度の測定装置。 [2] In [1], a plurality of calibration curves are prepared for each temperature based on the transmittance or absorbance measured for a plurality of standard sample waters having different temperatures, and the calibration at the temperature closest to the temperature of the unknown sample water is performed. An apparatus for measuring the concentration of dissolved components in water, wherein the line is set to be selectively used.

[3] [1]又は[2]において、前記未知サンプル水の温度に最も近い温度の標準サンプル水の透過率又は吸光度の経時変化から、該未知サンプル水の透過率又は吸光度の読み込みタイミングを決定するように設定されていることを特徴とする水中の溶存成分濃度の測定装置。 [3] In [1] or [2], the reading timing of the transmittance or absorbance of the unknown sample water is determined from the change over time in the transmittance or absorbance of the standard sample water at a temperature closest to the temperature of the unknown sample water. An apparatus for measuring the concentration of dissolved components in water, characterized by being set to

[4] 測定する溶存成分の濃度が既知である、温度の異なる複数の標準サンプル水に対して、可視光を照射した際の透過率又は吸光度の経時変化を含む情報を記憶し、この記憶データに基づいて、未知サンプル水の溶存成分濃度を求める吸光光度法による水中の溶存成分濃度の測定方法であって、該未知サンプル水の温度に基づいて、使用する検量線、及び/又は透過率又は吸光度の読み込みタイミングを変更することを特徴とする水中の溶存成分濃度の測定方法。 [4] Information including time-dependent changes in transmittance or absorbance when irradiated with visible light is stored in a plurality of standard sample waters having different temperatures and known concentrations of dissolved components to be measured. Is a method for measuring the concentration of a dissolved component in water by an absorptiometric method for determining the concentration of a dissolved component in an unknown sample water, wherein a calibration curve to be used and / or a transmittance or A method for measuring the concentration of a dissolved component in water, wherein the absorbance reading timing is changed.

[5] [4]において、温度の異なる複数の標準サンプル水について測定した透過率又は吸光度に基づいて、温度毎に複数の検量線を作製し、前記未知サンプル水の温度に最も近い温度の検量線を選択使用することを特徴とする水中の溶存成分濃度の測定方法。 [5] In [4], a plurality of calibration curves are prepared for each temperature based on the transmittance or absorbance measured for a plurality of standard sample waters having different temperatures, and the calibration at the temperature closest to the temperature of the unknown sample water is made. A method for measuring the concentration of dissolved components in water, wherein a line is selectively used.

[6] [4]又は[5]において、前記未知サンプル水の温度に最も近い温度の標準サンプル水の透過率又は吸光度の経時変化から、該未知サンプル水の透過率又は吸光度の読み込みタイミングを決定することを特徴とする水中の溶存成分濃度の測定方法。 [6] In [4] or [5], the reading timing of the transmittance or absorbance of the unknown sample water is determined from the change over time in the transmittance or absorbance of the standard sample water at a temperature closest to the temperature of the unknown sample water. A method for measuring the concentration of dissolved components in water.

本発明によれば、サンプル水の温度によって測定値が大きく変化する透過率又は吸光度に基づいて溶存成分濃度を測定するに当たり、サンプル水の水温に影響を受けることなく、高精度な測定を行える。このため、サンプル水温を一定にするための大掛かりな装置を用いることなく、サンプル水の溶存成分濃度を精度よく簡便に測定することができる。また、本発明によれば、サンプル水の水温に応じて透過率又は吸光度の読み込みタイミングを変更することで、測定に要する時間を短縮することも可能であり、測定精度の向上と測定時間の短縮で、冷却水系等における水質管理を確実かつ効率的に行うことが可能となる。   According to the present invention, when measuring the concentration of a dissolved component based on the transmittance or absorbance at which the measured value greatly changes depending on the temperature of the sample water, high-precision measurement can be performed without being affected by the water temperature of the sample water. For this reason, the dissolved component density | concentration of sample water can be measured accurately and simply, without using the large apparatus for making sample water temperature constant. In addition, according to the present invention, it is possible to shorten the time required for measurement by changing the reading timing of the transmittance or absorbance according to the water temperature of the sample water, thereby improving the measurement accuracy and shortening the measurement time. Thus, it is possible to reliably and efficiently perform water quality management in the cooling water system or the like.

本発明の水中の溶存成分濃度の測定装置の実施の形態の一例を示す構成ブロック図である。It is a block diagram which shows an example of embodiment of the measuring apparatus of the dissolved component density | concentration in water of this invention. 実施例1で得られた各温度の検量線を示すグラフである。2 is a graph showing a calibration curve for each temperature obtained in Example 1. FIG. 比較例2におけるJIS法との比較結果を示すグラフである。10 is a graph showing a comparison result with a JIS method in Comparative Example 2. 実施例2における各温度での吸光度の経時変化を示すグラフである。6 is a graph showing changes with time in absorbance at various temperatures in Example 2. 図4のデータを再プロットしたグラフである。It is the graph which re-plotted the data of FIG. 実施例2におけるJIS法との比較結果を示すグラフである。6 is a graph showing a comparison result with a JIS method in Example 2.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の水中の溶存成分濃度の測定装置の実施の形態の一例を示す構成ブロック図である。   FIG. 1 is a configuration block diagram showing an example of an embodiment of an apparatus for measuring dissolved component concentration in water according to the present invention.

吸光度測定部1で得た吸光度(又は透過率)と、温度測定部2で得られた温度の検出信号がA/D変換器3でデジタル信号に変換され、コンピュータ10の演算部4に入力される。この演算部4は、記憶部5から与えられる各温度における透過率や吸光度の読み込みタイミング(反応時間)と検量線情報に応じて溶存成分濃度の演算を行い、その結果を液晶などからなる表示部6に表示する。なお、記憶部5は、新しい薬剤種類が追加された際に入力部7を通して新規な検量線を追加することができる。これらの検量線や上記の演算結果は通信回線を通じて管理センター等に送信されてもよい。また、測定はオンラインでもバッチでもいずれの方法で実施してもよい。   The absorbance (or transmittance) obtained by the absorbance measurement unit 1 and the temperature detection signal obtained by the temperature measurement unit 2 are converted into digital signals by the A / D converter 3 and input to the calculation unit 4 of the computer 10. The The calculation unit 4 calculates the dissolved component concentration according to the reading timing (reaction time) of the transmittance and absorbance at each temperature given from the storage unit 5 and the calibration curve information, and displays the result as a display unit made of liquid crystal or the like. 6 is displayed. The storage unit 5 can add a new calibration curve through the input unit 7 when a new drug type is added. These calibration curves and the above calculation results may be transmitted to a management center or the like through a communication line. Further, the measurement may be carried out either online or batchwise.

[態様I]
本発明の一態様では、測定する溶存成分の濃度が既知の、温度が異なる複数の標準サンプル水に対して、可視光を照射した際の透過率又は吸光度を測定し、その測定値の経時変化を含む情報を記憶部5に入力して記憶させる。一方、溶存成分濃度を測定するべき未知サンプル水について温度と可視光の透過率又は吸光度を測定して測定値を演算部4に入力する。演算部4では、記憶部5に記憶された各温度の標準サンプル水の透過率又は吸光度の測定値に基づいて作成された各温度毎の検量線の中から、未知サンプル水の温度に対応する検量線(未知サンプル水の温度と同一の温度の検量線又は未知サンプル水の温度に最も近い温度の検量線)を選択し、この検量線に基づいて、未知サンプル水の透過率又は吸光度の測定値から、未知サンプル水の溶存成分濃度を求める。
なお、上記の未知サンプル水の温度に対応する検量線として、未知サンプル水の温度よりも高いか低いかを問うことなく、未知サンプル水の温度に最も近い温度の検量線を選択してもよく、未知サンプル水の温度よりも高い温度であって、未知サンプル水の温度に最も近い温度の検量線(検量線1という)を選択してもよく、未知サンプル水の温度よりも低い温度であって、未知サンプル水の温度に最も近い温度の検量線(検量線2という)を選択してもよく、検量線1と検量線2とに基づき補間して作成した検量線に基づいて未知サンプル水の溶存成分濃度を求めるようにしてもよい。
[Aspect I]
In one embodiment of the present invention, the transmittance or absorbance when irradiated with visible light is measured on a plurality of standard sample waters whose concentrations of dissolved components to be measured are known and different in temperature, and the measured values change over time. Is input to and stored in the storage unit 5. On the other hand, the temperature and the transmittance or absorbance of the visible light are measured for the unknown sample water whose dissolved component concentration is to be measured, and the measured value is input to the calculation unit 4. The calculation unit 4 corresponds to the temperature of the unknown sample water from the calibration curve for each temperature created based on the measured value of the transmittance or absorbance of the standard sample water at each temperature stored in the storage unit 5. Select a calibration curve (a calibration curve with the same temperature as the temperature of the unknown sample water or a calibration curve with the temperature closest to the temperature of the unknown sample water), and measure the transmittance or absorbance of the unknown sample water based on this calibration curve. From the value, determine the concentration of dissolved components in the unknown sample water.
Note that the calibration curve corresponding to the temperature of the unknown sample water may be selected as the calibration curve corresponding to the temperature of the unknown sample water, regardless of whether the temperature is higher or lower than the temperature of the unknown sample water. A calibration curve (referred to as calibration curve 1) that is higher than the temperature of the unknown sample water and closest to the temperature of the unknown sample water may be selected, and the temperature is lower than the temperature of the unknown sample water. The calibration curve (referred to as calibration curve 2) having the temperature closest to the temperature of the unknown sample water may be selected, and the unknown sample water based on the calibration curve created by interpolation based on the calibration curve 1 and the calibration curve 2 The dissolved component concentration may be obtained.

[態様II]
本発明の別の態様では、測定する溶存成分の濃度が既知の、温度が異なる複数の標準サンプル水に対して、可視光を照射した際の透過率又は吸光度を測定し、その測定値の経時変化を含む情報を記憶部5に入力して記憶させる。一方、演算部4では、この記憶部5から取得した測定値の経時変化から、各温度毎に測定値が安定するに要する時間を決定し、これを未知サンプル水の測定値の読み込みタイミングとし、未知サンプル水について測定された温度に対して決定された読み込みタイミングにおける透過率又は吸光度の測定値を取り込む。この場合においても、上記態様Iと同様に、演算部4では、記憶部5からの情報に基づいて、各温度の標準サンプル水の透過率又は吸光度の測定値に基づいて、各温度毎の検量線が作製され、未知サンプル水の温度に対応する検量線(未知サンプル水の温度と同一の温度の検量線又は未知サンプル水の温度に最も近い温度の検量線(検量線1又は検量線2、あるいは検量線1と検量線1から補間して作成した検量線))を選択して、この検量線に基づいて、未知サンプル水の透過率又は吸光度の測定値から、未知サンプル水の溶存成分濃度を求めることが好ましい。
[Aspect II]
In another aspect of the present invention, the transmittance or absorbance when irradiated with visible light is measured on a plurality of standard sample waters having different concentrations of dissolved components to be measured, and the measured values are measured over time. Information including changes is input to the storage unit 5 and stored. On the other hand, the calculation unit 4 determines the time required for the measurement value to stabilize for each temperature from the change over time of the measurement value acquired from the storage unit 5, which is used as the reading timing of the measurement value of the unknown sample water, Capture the measured value of transmittance or absorbance at the read timing determined for the temperature measured for the unknown sample water. Also in this case, similarly to the above-described aspect I, the calculation unit 4 performs calibration for each temperature based on the measured value of the transmittance or absorbance of the standard sample water at each temperature based on the information from the storage unit 5. A calibration curve corresponding to the temperature of the unknown sample water (a calibration curve of the same temperature as the temperature of the unknown sample water or a calibration curve of the temperature closest to the temperature of the unknown sample water (calibration curve 1 or calibration curve 2, Alternatively, a calibration curve created by interpolating from the calibration curve 1 and the calibration curve 1)) is selected, and based on this calibration curve, the dissolved component concentration of the unknown sample water is determined from the measured transmittance or absorbance of the unknown sample water. Is preferably obtained.

上記態様Iでは、未知サンプル水の温度により測定値が変動する透過率又は吸光度に基づいて溶存成分濃度を求める場合において、未知サンプル水の温度に対応して検量線を選択して用いることにより、温度による測定誤差をなくして精度のよい測定を行うことができる。   In the above aspect I, when obtaining the dissolved component concentration based on the transmittance or absorbance at which the measured value varies depending on the temperature of the unknown sample water, by selecting and using a calibration curve corresponding to the temperature of the unknown sample water, Measurement error due to temperature can be eliminated and accurate measurement can be performed.

また、上記態様IIでは、例えば、未知サンプル水の発色のための試薬等を添加して透過率又は吸光度を測定する場合、その発色が安定するに要する時間が温度によって異なる場合において、温度に応じて測定値を得るまでの必要な反応時間を確保して読み込みタイミングを決定し、反応時間の過不足をなくして測定に要する時間を短縮することができる。   Further, in the above aspect II, for example, when measuring transmittance or absorbance by adding a reagent or the like for coloring of unknown sample water, depending on the temperature, the time required for the coloring to stabilize varies depending on the temperature. Thus, it is possible to secure the necessary reaction time until obtaining the measured value and determine the reading timing, eliminate the excess and deficiency of the reaction time, and shorten the time required for the measurement.

なお、温度の異なる複数の標準サンプル水の温度間隔には特に制限はなく、測定する溶存成分や未知サンプル水の温度の変動幅に応じて適宜決定されるが、徒に標準サンプル水数を多くすることなく、高精度な測定を行う上で、5〜60℃程度の温度間隔で標準サンプル水を調製して検量線を作製することが好ましい。   There are no particular restrictions on the temperature interval between multiple standard sample waters with different temperatures, and they are determined as appropriate depending on the dissolved component to be measured and the temperature fluctuation range of the unknown sample water. Without performing the measurement, it is preferable to prepare a standard curve by preparing standard sample water at a temperature interval of about 5 to 60 ° C. in order to perform highly accurate measurement.

以下、実施例及び比較例により本発明を具体的に示すが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example show this invention concretely, this invention is not limited to the following Example.

<実施例1>
光路長10mm、光路幅10mm、高さ45mm、外幅12.5mmのポリスチレン製の測定セルに、EDTA0.7重量%水溶液1.5mLを封入した。このセルに、5℃、15℃又は35℃に調整した、5mg/L、10mg/L、15mg/L、20mg/L又は25mg/Lのポリアクリル酸ナトリウムの検水を1mL添加した後、塩化ベンゼトニウム5重量%水溶液を約20μLスポイトで滴下した。その後、攪拌・反応させて白濁を生じさせ、波長525nmで可視光線の吸光度測定を行い、吸光度とポリアクリル酸ナトリウム濃度とを各温度毎にグラフにプロットした。この結果を図2に示す。また、図2の中で調整ポリマー濃度が25mg/Lのときの各温度の吸光度を表1に示す。
<Example 1>
A polystyrene measurement cell having an optical path length of 10 mm, an optical path width of 10 mm, a height of 45 mm, and an outer width of 12.5 mm was encapsulated with 1.5 mL of an EDTA 0.7 wt% aqueous solution. After adding 1 mL of 5 mg / L, 10 mg / L, 15 mg / L, 20 mg / L or 25 mg / L sodium polyacrylate test water adjusted to 5 ° C., 15 ° C. or 35 ° C. A 5% by weight aqueous solution of benzethonium was added dropwise with an about 20 μL dropper. Thereafter, the mixture was stirred and reacted to cause white turbidity, and the absorbance of visible light was measured at a wavelength of 525 nm, and the absorbance and the sodium polyacrylate concentration were plotted on a graph for each temperature. The result is shown in FIG. Further, Table 1 shows the absorbance at each temperature when the adjusted polymer concentration is 25 mg / L in FIG.

<比較例1>
25℃に調整した、5mg/L、10mg/L、15mg/L、20mg/L又は25mg/Lのポリアクリル酸ナトリウムの検水のみを用いて、実施例1と同様に検量線を作製した。この検量線における調整ポリマー濃度が25mg/Lのときの吸光度を表1に示す。
<Comparative Example 1>
A calibration curve was prepared in the same manner as in Example 1 using only 5 mg / L, 10 mg / L, 15 mg / L, 20 mg / L or 25 mg / L sodium polyacrylate test water adjusted to 25 ° C. Table 1 shows the absorbance when the adjusted polymer concentration in the calibration curve is 25 mg / L.

Figure 2016217741
Figure 2016217741

表1より明らかなように、検水の温度によらず、25℃で作製した検量線で濃度換算する比較例1では、例えば、検水温度が5℃の場合、吸光度を元に検量線で換算した測定値は15%以上((1.37−1.13)/1.37 ×100=17.5)の乖離が見られることが分かる。
これに対して、実施例1では、各検水の温度を測定し、その温度に応じた検量線を適用するため、検量線が温度によって異なる場合や、定量的な温度補正が適用できない測定対象であっても、精度良く溶存成分の濃度を換算できる。
As is clear from Table 1, in Comparative Example 1 in which the concentration is converted using a calibration curve prepared at 25 ° C., regardless of the temperature of the sample water, for example, when the sample temperature is 5 ° C., the calibration curve is based on the absorbance. It can be seen that the converted measurement value shows a divergence of 15% or more ((1.37-1.13) /1.37×100=17.5).
On the other hand, in Example 1, the temperature of each test water is measured, and a calibration curve corresponding to the temperature is applied. Therefore, when the calibration curve varies depending on the temperature, or a measurement object to which quantitative temperature correction cannot be applied. Even so, the concentration of the dissolved component can be accurately converted.

<比較例2>
光路長10mm、光路幅10mm、高さ45mm、外幅12.5mmのポリスチレン製の測定セルに、硫酸8重量%、七モリブデン酸六アンモニウム四水和物0.5重量%および酒石酸アンチモニルカリウム0.05重量%からなるリン酸分析試薬を封入し、温度を25℃に調整した各濃度のリン酸の検水を1mL添加した後、アスコルビン酸0.05gを添加し、攪拌、反応させて波長660nmの可視光線の吸光度測定を行い、吸光度とリン酸濃度との関係をグラフにプロットして検量線を作成した。
上述の通り作成した検量線をもとに、屋外の現場で種々の温度で求めた実機冷却水のリン酸濃度の測定値(従来例)をJIS法による測定値と比較した結果を図3に示す。従来法とJIS法との相関係数は0.94であった。
<Comparative example 2>
In a measurement cell made of polystyrene having an optical path length of 10 mm, an optical path width of 10 mm, a height of 45 mm, and an outer width of 12.5 mm, 8% by weight of sulfuric acid, 0.5% by weight of hexaammonium heptamolybdate tetrahydrate, and potassium antimonyl tartrate 0 Enclose a phosphate analysis reagent consisting of 0.05% by weight, add 1 mL of test water of phosphoric acid with each concentration adjusted to 25 ° C., add 0.05 g of ascorbic acid, and stir and react to react. Absorbance measurement of visible light at 660 nm was performed, and a calibration curve was created by plotting the relationship between absorbance and phosphoric acid concentration on a graph.
Based on the calibration curve created as described above, the measured value (conventional example) of the actual cooling water phosphoric acid concentration obtained at various temperatures in the outdoor field is compared with the measured value by the JIS method in FIG. Show. The correlation coefficient between the conventional method and the JIS method was 0.94.

<実施例2>
5℃、15℃、25℃、35℃の各温度において、比較例1と同様に10mg−PO 3−/Lのリン酸溶液について測定した際の、吸光度の経時変化を図4に示す。図4より、吸光度は時間の経過とともに増加した後、一定の反応時間で安定した吸光度を維持すること、および温度が異なると安定する吸光度が異なることが確認された。
<Example 2>
FIG. 4 shows the change in absorbance over time when the 10 mg-PO 4 3− / L phosphoric acid solution was measured in the same manner as in Comparative Example 1 at each temperature of 5 ° C., 15 ° C., 25 ° C., and 35 ° C. From FIG. 4, it was confirmed that after the absorbance increased with time, the stable absorbance was maintained for a certain reaction time, and the stable absorbance was different at different temperatures.

そこで、図4において、反応時間が10分の時点を100%として、再プロットしたものを図5に示す。
図5より明らかなように、例えば、検水の温度が5℃のときであれば、吸光度が安定するには8分必要であるが、25℃であれば4分でほぼ安定する。
この結果から、サンプル水温を測定し、その温度に対する吸光度が安定するに要する時間を選択すれば、反応時間を、例えば8分から4分へと短縮することが可能であることが確認できた。
Therefore, FIG. 5 shows a replotted graph with the reaction time of 10 minutes as 100% in FIG.
As is clear from FIG. 5, for example, when the temperature of the test water is 5 ° C., it takes 8 minutes for the absorbance to be stable, but when it is 25 ° C., it becomes almost stable in 4 minutes.
From this result, it was confirmed that the reaction time can be shortened from, for example, 8 minutes to 4 minutes by measuring the sample water temperature and selecting the time required for the absorbance to stabilize at that temperature.

更に、図4において、温度が異なると安定する吸光度が異なることから、吸光度の読み取りタイミングに加え、使用する検量線を変更させた際のJIS法との比較結果を図6に示す。このときの相関係数は0.999となった。   Furthermore, in FIG. 4, since the stable absorbance differs depending on the temperature, in addition to the absorbance reading timing, the comparison result with the JIS method when the calibration curve to be used is changed is shown in FIG. The correlation coefficient at this time was 0.999.

図6と図3の比較から、本発明法によりリン酸分析値の信頼性が著しく改善されたことが明らかである。また、温度が高い検水については反応時間の短縮に伴い、吸光度の読み込みタイミングを早めた結果、検量線の換算値を得る時間が半分にまで短縮できた。   From the comparison between FIG. 6 and FIG. 3, it is clear that the reliability of the phosphoric acid analysis value is remarkably improved by the method of the present invention. In addition, with respect to the test water having a high temperature, as a result of shortening the reaction time with the shortening of the reaction time, the time for obtaining the converted value of the calibration curve could be reduced to half as a result.

以上より、本発明によれば、測定精度の向上と測定時間の短縮を図ることができることが分かる。   From the above, it can be seen that according to the present invention, it is possible to improve the measurement accuracy and shorten the measurement time.

1 吸光度測定部
2 温度測定部
3 A/D交換器
4 演算部
5 記憶部
6 表示部
7 入力部
10 コンピュータ
DESCRIPTION OF SYMBOLS 1 Absorbance measuring part 2 Temperature measuring part 3 A / D exchanger 4 Arithmetic part 5 Storage part 6 Display part 7 Input part 10 Computer

Claims (6)

測定する溶存成分の濃度が既知である、温度の異なる複数の標準サンプル水に対して、可視光を照射した際の透過率又は吸光度の経時変化を含む情報を記憶し、この記憶データに基づいて、未知サンプル水の溶存成分濃度を求める吸光光度法による水中の溶存成分濃度の測定装置であって、該未知サンプル水の温度に基づいて、
使用する検量線、
及び/又は
透過率又は吸光度の読み込みタイミング
を変更するように設定されていることを特徴とする水中の溶存成分濃度の測定装置。
Stores information including change over time in transmittance or absorbance when irradiated with visible light for a plurality of standard sample waters with different concentrations of dissolved components to be measured. Based on this stored data , A device for measuring dissolved component concentration in water by an absorptiometric method for determining the dissolved component concentration of unknown sample water, based on the temperature of the unknown sample water,
Calibration curve to use,
And / or a measuring device for measuring the concentration of dissolved components in water, wherein the reading timing of transmittance or absorbance is set to be changed.
請求項1において、温度の異なる複数の標準サンプル水について測定した透過率又は吸光度に基づいて、温度毎に複数の検量線が作製され、前記未知サンプル水の温度に最も近い温度の検量線を選択使用するように設定されていることを特徴とする水中の溶存成分濃度の測定装置。   In Claim 1, based on the transmittance | permeability or the light absorbency which measured about several standard sample water from which temperature differs, several calibration curves are produced for every temperature, and the calibration curve of the temperature nearest to the temperature of the said unknown sample water is selected. A device for measuring the concentration of dissolved components in water, which is set to be used. 請求項1又は2において、前記未知サンプル水の温度に最も近い温度の標準サンプル水の透過率又は吸光度の経時変化から、該未知サンプル水の透過率又は吸光度の読み込みタイミングを決定するように設定されていることを特徴とする水中の溶存成分濃度の測定装置。   In Claim 1 or 2, it is set to determine the reading timing of the transmittance or absorbance of the unknown sample water from the change over time of the transmittance or absorbance of the standard sample water at a temperature closest to the temperature of the unknown sample water. An apparatus for measuring the concentration of dissolved components in water. 測定する溶存成分の濃度が既知である、温度の異なる複数の標準サンプル水に対して、可視光を照射した際の透過率又は吸光度の経時変化を含む情報を記憶し、この記憶データに基づいて、未知サンプル水の溶存成分濃度を求める吸光光度法による水中の溶存成分濃度の測定方法であって、該未知サンプル水の温度に基づいて、
使用する検量線、
及び/又は
透過率又は吸光度の読み込みタイミング
を変更することを特徴とする水中の溶存成分濃度の測定方法。
Stores information including change over time in transmittance or absorbance when irradiated with visible light for a plurality of standard sample waters with different concentrations of dissolved components to be measured. Based on this stored data , A method for measuring the concentration of dissolved components in water by an absorptiometric method for determining the concentration of dissolved components in unknown sample water, based on the temperature of the unknown sample water,
Calibration curve to use,
And / or a method for measuring the concentration of dissolved components in water, wherein the reading timing of transmittance or absorbance is changed.
請求項4において、温度の異なる複数の標準サンプル水について測定した透過率又は吸光度に基づいて、温度毎に複数の検量線を作製し、前記未知サンプル水の温度に最も近い温度の検量線を選択使用することを特徴とする水中の溶存成分濃度の測定方法。   In Claim 4, based on the transmittance | permeability or the light absorbency which measured about several standard sample water from which temperature differs, several calibration curves are produced for every temperature, and the calibration curve of the temperature nearest to the temperature of the said unknown sample water is selected. A method for measuring the concentration of dissolved components in water, characterized by being used. 請求項4又は5において、前記未知サンプル水の温度に最も近い温度の標準サンプル水の透過率又は吸光度の経時変化から、該未知サンプル水の透過率又は吸光度の読み込みタイミングを決定することを特徴とする水中の溶存成分濃度の測定方法。   6. The reading timing of the transmittance or absorbance of the unknown sample water is determined from the change over time of the transmittance or absorbance of the standard sample water at a temperature closest to the temperature of the unknown sample water according to claim 4 or 5. To measure the concentration of dissolved components in water.
JP2015099275A 2015-05-14 2015-05-14 Apparatus and method for measuring concentration of dissolved component Active JP6531483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015099275A JP6531483B2 (en) 2015-05-14 2015-05-14 Apparatus and method for measuring concentration of dissolved component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099275A JP6531483B2 (en) 2015-05-14 2015-05-14 Apparatus and method for measuring concentration of dissolved component

Publications (2)

Publication Number Publication Date
JP2016217741A true JP2016217741A (en) 2016-12-22
JP6531483B2 JP6531483B2 (en) 2019-06-19

Family

ID=57578287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099275A Active JP6531483B2 (en) 2015-05-14 2015-05-14 Apparatus and method for measuring concentration of dissolved component

Country Status (1)

Country Link
JP (1) JP6531483B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112444A (en) * 2017-01-11 2018-07-19 Q’z株式会社 Device for measuring concentration of two-gas mixture
JP2018119885A (en) * 2017-01-26 2018-08-02 京都電子工業株式会社 Total phosphorus automatic measurement device
CN111678877A (en) * 2020-07-29 2020-09-18 深圳市长隆科技有限公司 Water quality detection method and device for eliminating temperature influence and computer equipment
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439541A (en) * 1987-08-06 1989-02-09 Teijin Ltd Simplified apparatus for analyzing absorbancy
JPH0688782A (en) * 1992-09-07 1994-03-29 Kurabo Ind Ltd Method and device for measuring concentration
JP2008057996A (en) * 2006-08-29 2008-03-13 Miura Co Ltd Measuring method of concentration of component to be inspected in water to be measured
JP2008232747A (en) * 2007-03-19 2008-10-02 Miura Co Ltd Silica concentration measuring instrument
US20110104807A1 (en) * 2009-10-30 2011-05-05 Noel Hallinan Method for quantifying permanganate-reducing compounds
JP2014228468A (en) * 2013-05-24 2014-12-08 栗田工業株式会社 Silica concentration measuring method and device
JP2015083945A (en) * 2013-10-25 2015-04-30 三浦工業株式会社 Silica concentration measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439541A (en) * 1987-08-06 1989-02-09 Teijin Ltd Simplified apparatus for analyzing absorbancy
JPH0688782A (en) * 1992-09-07 1994-03-29 Kurabo Ind Ltd Method and device for measuring concentration
JP2008057996A (en) * 2006-08-29 2008-03-13 Miura Co Ltd Measuring method of concentration of component to be inspected in water to be measured
JP2008232747A (en) * 2007-03-19 2008-10-02 Miura Co Ltd Silica concentration measuring instrument
US20110104807A1 (en) * 2009-10-30 2011-05-05 Noel Hallinan Method for quantifying permanganate-reducing compounds
JP2014228468A (en) * 2013-05-24 2014-12-08 栗田工業株式会社 Silica concentration measuring method and device
JP2015083945A (en) * 2013-10-25 2015-04-30 三浦工業株式会社 Silica concentration measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112444A (en) * 2017-01-11 2018-07-19 Q’z株式会社 Device for measuring concentration of two-gas mixture
JP2018119885A (en) * 2017-01-26 2018-08-02 京都電子工業株式会社 Total phosphorus automatic measurement device
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
CN111678877A (en) * 2020-07-29 2020-09-18 深圳市长隆科技有限公司 Water quality detection method and device for eliminating temperature influence and computer equipment

Also Published As

Publication number Publication date
JP6531483B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
Yao et al. Impurities in indicators used for spectrophotometric seawater pH measurements: Assessment and remedies
JP2016217741A (en) Apparatus and method for measuring concentration of dissolved component
JP6876283B2 (en) Concentration measurement system
US9791427B2 (en) System and method for calculating concentration of water treatment chemical
Helm et al. Micro-Winkler titration method for dissolved oxygen concentration measurement
CN108152444A (en) Method for detecting content of free nitric acid in bismuth nitrate solution
Hudson-Heck et al. Purification and characterization of thymol blue for spectrophotometric pH measurements in rivers, estuaries, and oceans
CN102435560B (en) Method for testing nitrification inhibition rate of stabilized fertilizer
JP5480108B2 (en) pH measurement method
Głab et al. Effects of some complex-forming ligands on the potential of antimony pH-sensors
Liu et al. Modifications of the curcumin method enabling precise and accurate measurement of seawater boron concentration
Bogaerts Reference Electrodes for electrochemical measurements in high-temperature high-pressure aqueous environments—Review of potential corrections for ‘external’reference systems
CN106290198A (en) A kind of sodium carbonate Precipitation Determination is containing the method for Biuret Content in manganese carbamide
JP2010261895A (en) Method and apparatus for measuring concentration of trace constituent in solution
Sajó et al. Rapid analysis of plating baths by a direct-reading thermometric method
Chen et al. Derivative analysis of potentiometric titration data to obtain protonation constants
Cacho et al. Evaluation of color changes of indicators
Yuan et al. Evaluation of indicator-based pH measurements for freshwater over a wide range of buffer intensities
JP4299696B2 (en) Method for measuring persulfate concentration
Li-Blatter et al. A Familiar Protein–Ligand Interaction Revisited with Multiple Methods
McGuigan et al. Calculated and measured [Ca2+] in buffers used to calibrate Ca2+ macroelectrodes
KR101833145B1 (en) A simultaneous measurement method and measurement kit for water-soluble potassium and ammonium in the soil
Jaselskis et al. Polarographic determination of perbromate in the presence of bromate
JP6212957B2 (en) Method for measuring silica concentration
EP4206652A1 (en) A method for measuring the concentration of a chemical species using a reagent baseline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250