JP6876283B2 - Concentration measurement system - Google Patents

Concentration measurement system Download PDF

Info

Publication number
JP6876283B2
JP6876283B2 JP2016223004A JP2016223004A JP6876283B2 JP 6876283 B2 JP6876283 B2 JP 6876283B2 JP 2016223004 A JP2016223004 A JP 2016223004A JP 2016223004 A JP2016223004 A JP 2016223004A JP 6876283 B2 JP6876283 B2 JP 6876283B2
Authority
JP
Japan
Prior art keywords
concentration
color information
less
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016223004A
Other languages
Japanese (ja)
Other versions
JP2018080990A (en
Inventor
創 田島
創 田島
熊澤直人
徳田敬二
昌 麦島
昌 麦島
亮 麦島
亮 麦島
亜希子 田島
亜希子 田島
千早 平良
千早 平良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2016223004A priority Critical patent/JP6876283B2/en
Publication of JP2018080990A publication Critical patent/JP2018080990A/en
Application granted granted Critical
Publication of JP6876283B2 publication Critical patent/JP6876283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、濃度測定システムと濃度測定方法に関する。 The present invention relates to a concentration measuring system and a concentration measuring method.

従来、土壌中の物質や残留農薬、更には物質などを分析しようと考えると、溶出し、必要な薬剤による発色操作を行なって、比色計にかけて、予め用意された検量線と対比して濃度を求めることが通常の作業手順である。
しかしながら、比色計を備えた場所、かつ検量線の用意がないと分析作業が出来ないという問題があった。
Conventionally, when trying to analyze substances in soil, residual pesticides, and even substances, elution is performed, color development is performed with the necessary chemicals, and a colorimetric meter is applied to compare the concentration with the calibration curve prepared in advance. Is the normal working procedure.
However, there is a problem that the analysis work cannot be performed unless the place where the colorimeter is provided and the calibration curve is prepared.

このような問題を解決するため、例えば特許文献1には溶液中に溶解した物質を発色剤で発色させて、その物質量の濃度測定をカメラ撮影で3刺激値(R、G、Bの値)から、予め用意した検量線によって求める発明について記載されている。この文献で測定対象として想定しているのは工場排水や河川、セメントなどである。 In order to solve such a problem, for example, in Patent Document 1, a substance dissolved in a solution is colored with a color-developing agent, and the concentration of the substance is measured by camera photography with three stimulus values (values of R, G, B). ), Describes the invention obtained by the calibration curve prepared in advance. In this document, factory wastewater, rivers, cement, etc. are assumed to be measured.

また、特許文献2には溶液中の試料濃度の連続比色分析について記載されている。溶液を斜面を流して発色のための薬剤を投入し、その発色の状況をテレビカメラで撮影し、データをRGB数値化して既知のデータと比較して濃度を求める発明である。 Further, Patent Document 2 describes continuous colorimetric analysis of sample concentration in a solution. It is an invention in which a solution is flowed on a slope, a chemical for color development is added, the state of color development is photographed with a television camera, the data is converted into RGB numerical values, and the concentration is obtained by comparing with known data.

特開2007―33036号JP-A-2007-33036 特開平2−208543号Japanese Patent Application Laid-Open No. 2-208543

特許文献1に記載されている方法では予め対象物質の検量線の作成が必要であるし、光源が一定しないような条件では測定される溶液の濃度のバラツキが大きくなったり、更には、シャーレを測定に用いているために、シャーレ底面が撮影時に暗くなるため、測定に誤差が生じるなどの問題があった。更には、正面から撮影をする際には、光源を撮像手段により遮るため測定結果のバラツキが大きくなるなどの問題があった。また特許文献2では溶液を流す装置や画像処理装置など特別な装置が必要なので準備が煩雑である。いずれも、測定すると瞬時に対象物質の濃度を知る事及びその測定された濃度を共有化することが出来ないことが課題となっていた。 In the method described in Patent Document 1, it is necessary to prepare a calibration curve of the target substance in advance, and under conditions where the light source is not constant, the concentration of the measured solution varies widely, and further, a petri dish is used. Since it is used for measurement, the bottom surface of the petri dish becomes dark at the time of shooting, which causes a problem such as an error in measurement. Further, when shooting from the front, there is a problem that the measurement result varies widely because the light source is blocked by the imaging means. Further, in Patent Document 2, preparation is complicated because a special device such as a device for flowing a solution or an image processing device is required. In each case, it has been a problem that the concentration of the target substance cannot be known instantly when measured and the measured concentration cannot be shared.

本発明者は、上記課題を解決するために鋭意検討した結果、試料の濃度と色情報との相関があるのであれば、濃度が既知の物質の色情報をもとにして、測定試料の色情報から濃度を数値化することができるのではないかと考えた。 As a result of diligent studies to solve the above problems, the present inventor, if there is a correlation between the density of the sample and the color information, the color of the measurement sample is based on the color information of the substance whose concentration is known. I thought that the concentration could be quantified from the information.

即ち本発明は、化学状態として濃度が既知の試料の色情報をもとに濃度を数値化し、また濃度が既知の試料の色情報から検量線を作成し、測定試料の色情報との相関から単体又は混合物の濃度を数値化する濃度測定システムである。この濃度測定システムでは、少なくとも被測定物保持手段である被測定物を収納して保持できる光路長1mm以上10mm以下で波長220nm以上800nm以下の光を透過する光学セルと、この光学セルを固定する固定治具と、撮像手段と、光源と、前記光学セルに収納された前記被測定物より方の前記撮像手段から離れた位置又は前記被測定物より方の前記撮像手段に近づいた位置に置少なくとも2つの異なる基準着色部及びこの基準着色部の位置を示す指示記号を含む基準となる基準と、前記光学セルに収納された被測定物より後方に離間して置かれ当該被測定物を介し光学セルに収納された前記被測定物と同時に前記撮像手段により画像として取得される測定部を備える測定板と、を具備し、前記撮像手段が、前記指示記号により位置を示された前記少なくとも2つの異なる基準着色部と、前記測定部と、を画像として同時に取得し、取得した前記画像を前記色情報として処理する画像処理手段と、前記色情報を基に濃度を演算する演算手段と、データ保存表示手段と、データ送信手段と、を具備する濃度測定システムである。 That is, in the present invention, the concentration is quantified based on the color information of the sample whose concentration is known as a chemical state, and a calibration curve is created from the color information of the sample whose concentration is known, and the correlation with the color information of the measurement sample is used. Ru concentration measurement system der to quantify the concentration of a single or a mixture. In this concentration measurement system, an optical cell having an optical path length of 1 mm or more and 10 mm or less and transmitting light having a wavelength of 220 nm or more and 800 nm or less, which can store and hold at least the object to be measured, which is a means for holding the object to be measured, and the optical cell are fixed. a fixture, and an imaging device, light source, the closer to the imaging unit of the lower side than the position or the object to be measured away from the imaging means of the upper side than the object to be measured housed in an optical cell location a reference plate serving as a reference including an indication symbol indicating the position of at least two different reference colored portions and the reference colored portions rather location in, the placed spaced from the rear measured object stored in the optical cell to be A measuring plate including a measuring unit acquired as an image by the imaging means at the same time as the object to be measured housed in the optical cell via the measuring object is provided, and the position of the imaging means is indicated by the instruction symbol. An image processing means for simultaneously acquiring at least two different reference coloring units and the measuring unit as images and processing the acquired images as the color information, and an operation for calculating the density based on the color information. It is a concentration measurement system including means, data storage display means, and data transmission means.

本発明の濃度測定システムでは、被測定物が液体であることを特徴としている。 The concentration measuring system of the present invention is characterized in that the object to be measured is a liquid.

本発明の濃度測定システムでは、被測定物保持手段が、光路長1mm以上10mm以下で波長220nm以上800nm以下の光を透過する光学セルであることを特徴とする。 The concentration measuring system of the present invention is characterized in that the object holding means is an optical cell that transmits light having an optical path length of 1 mm or more and 10 mm or less and a wavelength of 220 nm or more and 800 nm or less.

本発明の濃度測定システムでは、前記基準板に備えられる第1の前記基準着色部が、1の色情報を与えるためにカーボンブラックを0%以上50%未満含む着色剤を施した前記第1の基準着色部であり、前記撮像手段により測定される前記第1の基準着色部の前記第1の色情報を数値として255分割したとき、R(赤と記すこともある)で100以上255以下、G(緑と記すこともある)で100以上255以下、B(青と記すこともある)で100以上255以下であり、第2の前記基準着色部が、第2の色情報を与えるためにカーボンブラックを50%以上95%未満含み且つ前記1の色情報を与えるカーボンブラック含有量と比べて10%以上の含有量である着色剤を施した第2の基準着色部であり撮像手段により測定される色情報を数値として255分割した時、Rで1以上99以下、Gで1以上99以下、Bで1以上99以下であることを特徴としている。この基準は、光源に対し平行に配置されると特に好ましい。 In the concentration measurement system of the present invention, the first reference coloring portion provided on the reference plate is subjected to the first colorant containing 0% or more and less than 50% of carbon black in order to give the first color information. of a reference colored portion, when 255 dividing the first color information of the first reference colored portion is measured by the image pickup means as a numerical value, R (sometimes referred to as red) 100 and 255 in , G (sometimes referred to as green) at 100 to 255, B (sometimes referred to as blue) with and from 100 to 255, the reference color portions of the second is to provide the second color information Is a second reference coloring portion to which a colorant containing 50% or more and less than 95% of carbon black and having a content of 10% or more as compared with the content of carbon black that gives the first color information is applied, and is an imaging means. When the color information measured by is divided into 255 as numerical values, it is characterized in that R is 1 or more and 99 or less, G is 1 or more and 99 or less, and B is 1 or more and 99 or less. It is particularly preferable that the reference plate is arranged parallel to the light source.

この基準に3つ以上の色情報を利用する場合には、第3以上の色情報を与えるために用いられるカーボンブラック量は、前記第1の基準着色部及び第2の基準着色部に施すために用いたそれぞれのカーボンブラック量と比べて10%以上含有量に差があることを特徴としている。 When three or more color information is used for this reference plate , the amount of carbon black used to give the third or more color information is applied to the first reference coloring portion and the second reference coloring portion. It is characterized in that there is a difference in content of 10% or more as compared with the amount of each carbon black used for the purpose.

本発明の濃度測定システムでは、前記基準板に前記基準着色部の位置を示す指示記号を有している。この指示記号があると、カーボンブラックを含まない着色剤を基準着色部に施した場合の位置の不確かさを解消し、正確な色情報の取得が行えるため好適である。 In the concentration measuring system of the present invention, the reference plate has an indicator symbol indicating the position of the reference colored portion. The presence of this indicator symbol is preferable because it eliminates the uncertainty of the position when a colorant containing no carbon black is applied to the reference coloring portion and can acquire accurate color information.

本発明の濃度測定システムでは、前記測定板に備えられる前記測定部、この測定部の色情報を与えるためにカーボンブラックを0%以上95%未満含む着色剤を施した測定部であり前記撮像手段により測定される前記測定部の前記色情報を数値として255分割した場合、Rで1以上255以下、Gで1以上255以下、Bで1以上255以下であることを特徴としている。 A concentration measurement system of the present invention, wherein the measuring unit provided in the measurement plate, a measuring unit which has been subjected to a coloring agent comprising carbon black less than 95% 0% in order to provide color information of the measuring portion the imaging When the color information of the measuring unit measured by the means is divided into 255 as numerical values, it is characterized in that R is 1 or more and 255 or less, G is 1 or more and 255 or less, and B is 1 or more and 255 or less.

本発明の濃度測定システムでは、光源がLED又は蛍光灯であることを特徴としている。 The concentration measuring system of the present invention is characterized in that the light source is an LED or a fluorescent lamp.

本発明の濃度測定システムでは、前記撮像手段が、少なくとも2つの異なる前記基準着色部、前記測定部と、を画像として同時に取得できるデジタルカメラ、CCDカメラ、画像取得機能を持つメディアタブレット端末のいずれかから選択される。 A concentration measurement system of the present invention, the imaging means, at least two different said reference colored portion, the digital camera can be acquired at the same time a measurement unit, as an image, any of the media tablet device having a CCD camera, an image acquisition function Is selected from.

本発明の濃度測定システムでは、前記画像処理手段が、前記撮像手段により得られた前記2つの異なる基準着色部の画像からそれぞれの画像部位毎に取得した色情報をこの色情報毎にRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を基準色情報とする手段と、それぞれ光学セルに収納された少なくとも2つの異なる既知濃度の物質とこの光学セルに収納したこれら物質より後方に離間して置かれた測定板に備えられた測定の画像からそれぞれの画像部位毎に取得した色情報をこの色情報毎にRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を基準濃度色情報とする手段と、光学セルに収納された少なくとも1点の未知濃度の物質の被測定物この光学セルに収納したこの被測定物より後方に離間して置かれた測定板に備えられた測定の画像と前記基準着色部の画像とを同時に取得しそれぞれの画像を基に、この測定の画像から得られた色情報をRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を補正前濃度色情報とする手段と、この測定の画像と同時に取得された前記基準着色部の画像をそれぞれの測定部位毎にRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を測定用基準色情報とする手段と、を含むことを特徴としている。 A concentration measurement system of the present invention, the image processing means, the color information obtained for each image portion from the obtained said two different reference color portions of the image by the image pickup means every the color information R 1 A means for converting to any of more than 255, more than 1 and more than 255 for G, and 1 or more and less than 255 for B and using this RGB numerical information as reference color information, and at least two different known densities stored in each optical cell. substance with R color information obtained for each image region from an image of the measurement unit provided in the measurement plate placed spaced rearwardly from these materials housed in the optical cell for each the color information A means for converting 1 or more and 255 or less, G for 1 or more and 255 or less, and B for 1 or more and 255 or less and using this RGB numerical information as reference density color information, and at least one unknown point stored in the optical cell. The image of the measurement unit provided on the object to be measured of the substance of concentration and the measurement plate placed behind the object to be measured and stored in the optical cell and the image of the reference coloring area are simultaneously acquired and respectively. Based on the image of, the color information obtained from the image of this measuring unit is converted into any of 1 or more and 255 or less for R, 1 or more and 255 or less for G, and 1 or more and 255 or less for B, and this RGB numerical information is converted. means for the uncorrected concentration color information, 255 or less 1 or more R to image for each site of measurement of the reference colored portion which is acquired simultaneously with the image of the measuring portion, one or more 255 or less in G, 1 in B It is characterized in that it comprises, means for the 255 following converts any numerical information measurement reference color information in the RGB or more.

本発明の濃度測定システムでは、前記演算手段が、前記基準色情報前記基準濃度色情報前記補正前濃度色情報前記測定用基準色情報前記既知濃度と、を用い、この基準濃度色情報とそれぞれの基準濃度色情報を与えた前記既知濃度とから濃度に対する濃度測定用検量線を作成する。更にこの濃度測定用検量線の傾きから(式1)を作成する工程と、前記測定用基準色情報と前記基準色情報とから補正検量線を作成しこの補正検量線の直線の傾きから(式2)を作成する工程と、前記補正前濃度色情報と(式3)により測定濃度色情報を算出する工程と、前記測定濃度色情報と(式4)により前記未知濃度の物質の濃度を算出する工程と、を実施する演算手段である。これらの演算手段がプログラムもしくは手動の計算にて行える。
(式1) 既知濃度 = 基準濃度色情報 × α
(式2) β = 基準色情報 ÷ 測定用基準色情報
(式3) 測定濃度色情報 = β × 補正前濃度色情報
(式4) 濃度 = α × 測定濃度色情報
ここで、αは基準濃度色情報に対する既知濃度を示す。βは、補正前濃度色情報に対する測定濃度色情報を示す。
The concentration measurement system of the present invention, the calculating means, using said reference color information, and the reference density color information, and the pre-correction density color information, wherein the measurement reference color information, and the known concentration, and, and the reference density color information, and the known concentration gave respective reference density color information, to create a concentration measurement calibration curve for the concentration of. Further the step of creating from the slope of the concentration determination calibration curve (Equation 1), to create a corrected calibration curve from said measurement reference color information and the reference color information from a straight line the slope of the correction calibration curve (Equation The step of creating 2), the step of calculating the measured density color information by the pre-correction density color information and (Equation 3), and the calculation of the concentration of the substance having the unknown density by the measurement density color information and (Equation 4). a step of a calculation means for performing. These arithmetic means can be performed programmatically or manually.
(Equation 1) Known density = standard density color information x α
(Equation 2) β = Reference color information ÷ Measurement reference color information (Equation 3) Measurement density color information = β × Pre-correction density color information (Equation 4) Density = α × Measurement density color information
Here, α indicates a known density with respect to the reference density color information. β indicates the measured density color information with respect to the density color information before correction.

本発明の濃度測定システムでは、データ保存手段が前記基準色情報、前記基準濃度色情報、前記補正前濃度色情報、前記測定用基準色情報、前記既知濃度、前記濃度測定用検量線、前記補正検量線、前記測定濃度色情報、前記未知濃度の物質の前記濃度、前記(式1)、前記(式2)、前記(式3)及び前記(式4)を保存する濃度測定システムである。 A concentration measuring system of the present invention, the data storage means the reference color information, the reference density color information, the uncorrected concentration color information, the measurement reference color information, the known concentration, the concentration measurement calibration curve, the correction calibration curve, the measured concentration color information, the concentration of the substance of the unknown concentration, the (formula 1), the equation (2), wherein the concentration measurement system that stores (equation 3) and the (equation 4).

本発明の濃度測定システムでは、データ送信手段を具備することもできる。このデータ送信手段は、インターネットを介した電子メール、電子データの送信及び有線による電子データの送信、電子データの記録媒体を介したデータ送信及び赤外線通信のいずれかから選択し通信できる手段である。 The concentration measuring system of the present invention may also be provided with data transmission means. This data transmission means is a means capable of selecting and communicating from any of e-mail via the Internet, transmission of electronic data and transmission of electronic data by wire, data transmission via a recording medium of electronic data, and infrared communication.

本発明の濃度測定システムでは、前記少なくとも2点の異なる既知濃度の物質を含む可視光域における光透過性を有する光学セルに入れられた液体より後方に離間して置かれた前記測定板の測定部側及び前記少なくとも1点の未知濃度の物質の可視光域における光透過性を有する光学セルに入れられた液体より後方に離間して置かれた測定板の測定部側と、光学セルのこの測定板と相対する表面との距離が1mm以上20mm以下である。 In the concentration measurement system of the present invention, the measurement plate is placed behind the liquid contained in the optical cell having light transmission in the visible light region containing the substances having at least two different known concentrations. The measurement part side of the measuring plate placed at a distance behind the liquid contained in the optical cell having light transmission in the visible light region of the substance of unknown concentration at the part side and at least one point, and this of the optical cell. The distance between the measuring plate and the surface facing it is 1 mm or more and 20 mm or less.

本発明の濃度測定システムでは、前記光学セルの前後方向の角度が鉛直方向に対し角度マイナス(−と記すこともある)5度(°と記すこともある)以上角度プラス(+と記すこともある)5度以下であり、この光学セルと前記測定板に具備された測定角度−5度以上角度50度以下である。 A concentration measurement system of the present invention, the front-rear direction of the angle is the angle minus with respect to the vertical direction of the optical cell (- and sometimes referred) (sometimes referred to as °) 5 degrees angle plus (+ and also referred there) is 5 degrees or less, the angle between the measuring portion which is provided the optical cell and the measuring plate is less than -5 degrees angle of 50 degrees.

本発明の濃度測定システムでは、前記画像として取得される基準着色部及び測定の被測定面の重心を頂点とした光源の光軸の中心と、前記撮像手段の角度が角度1度以上角度135度以下である。
この位置関係をよりわかりやすく説明すると、本発明の濃度測定システムでは、前記基準着色部と前記測定部の色情報を与えるそれぞれの面の重心同士を結んだ線の中点と、光源の中心と、を直線で結んだ線を光源の光軸の中心線とした場合、この光軸の中心線と、前記撮像手段と前記中点とを結んだ線と、の成す角度が角度1度以上角度135度以下である。
In the density measurement system of the present invention , the angle between the center of the optical axis of the light source having the center of gravity of the reference colored portion and the surface to be measured of the measurement portion acquired as the image as the apex and the imaging means is an angle of 1 degree or more. The angle is 135 degrees or less.
To explain this positional relationship in a more understandable manner, in the density measurement system of the present invention, the midpoint of the line connecting the centers of gravity of the reference colored portion and the planes giving the color information of the measuring portion, and the center of the light source. When the line connecting the above with a straight line is used as the center line of the optical axis of the light source, the angle formed by the center line of the optical axis and the line connecting the imaging means and the midpoint is an angle of 1 degree or more. It is 135 degrees or less.

本発明の濃度測定システムでは、前記基準着色部及び前記測定の色情報を与える面積が1mm以上500mm以下であり、測定される形状が円、楕円、三角形、四角形、六角形、8角形から選択されるいずれかである。 In the density measurement system of the present invention, the area for giving color information of the reference coloring portion and the measuring portion is 1 mm 2 or more and 500 mm 2 or less, and the measured shapes are a circle, an ellipse, a triangle, a quadrangle, a hexagon, and an octagon. It is one of the choices from.

測定される物質の濃度は、前記既知濃度以下である。濃度は、100分率で表示する事もできるし、異物の混入などにより正確な濃度の決定が困難な試料を基準として用いる場合には、使用者が任意に濃度を決定して利用する事もできる。 The concentration of the substance to be measured is less than or equal to the known concentration. The concentration can be displayed in parts per 100, and when using a sample whose accurate concentration is difficult to determine due to foreign matter, etc., the user can arbitrarily determine the concentration and use it. it can.

濃度を測定される物質は、撮像手段により得られる色情報が濃度と相関があれば良い。具体的には、鉄、マンガン、マグネシウム、リン、カルシウム、カリウム、フッ素、水素、塩素、六価クロム、ニッケル、アルミニウム、銀、金、銅、ホウ素、モリブデン、パラジウム、亜鉛、硝酸イオン、アンモニウムイオン、水素イオン、水酸化物イオン、リンゴ酸、アスコルビン酸、腐植物質、ヨウ素、リコピン鉄、マンガン、マグネシウム、リン、カルシウム、カリウム、水素、塩素、ニッケル、アルミニウム、銅、ホウ素、モリブデン、パラジウム、亜鉛、窒素の酸化物、又はアスコルビン酸、ヨウ素、メタンフェタミン及びその誘導体と形成される錯体、コリンエステラーゼと酢酸インドキシル又は5−bromo−6−chloro−3−indoxyl butyrate又は5−bromo−6−chloro−3−indoxyl caprylate、5−bromo−4−chloro―3−indoxyl palmitateのいずれか一つと反応し発色する際にコリンエステラーゼの働きを阻害してこの発色を阻害する物質、大腸菌、黄色ブドウ球菌、酵母から選択される。 As for the substance whose density is to be measured, it is sufficient that the color information obtained by the imaging means correlates with the density. Specifically, iron, manganese, magnesium, phosphorus, calcium, potassium, fluorine, hydrogen, chlorine, hexavalent chromium, nickel, aluminum, silver, gold, copper, boron, molybdenum, palladium, zinc, nitrate ion, ammonium ion. , Hydrogen ion, hydroxide ion, indoxyl, ascorbic acid, rot plant, iodine, lycopene , iron, manganese, magnesium, phosphorus, calcium, potassium, hydrogen, chlorine, nickel, aluminum, copper, boron, molybdenum, palladium, Zinc, nitrogen oxides, or complexes formed with ascorbic acid, iodine, methanephetamine and derivatives thereof, cholineesterase and indoxyl acetate or 5-blomo-6-chloro-3-indoxyl butylate or 5-blomo-6-chloro- From substances such as Escherichia coli, chlorophyll, and yeast that inhibit the action of cholinesterase and inhibit this color development when it reacts with any one of 3-indoxyl capsule, 5-blomo-4-chloro-3-indoxyl palmite and develops color. Be selected.

本発明の濃度測定システムは、土壌中に含まれる養分を測定する土壌分析器として利用する事ができる。 The concentration measuring system of the present invention can be used as a soil analyzer for measuring nutrients contained in soil.

本発明の濃度測定システムを利用する場合、土壌分析器として利用するならば農業分野における土壌管理・評価の簡易化が成される。複数の畑を所有する大規模農家では各畑の土壌管理を行なえる。また、食品分野における品質管理・評価の簡易化、更には薬品などの危険物質の有無の簡易検査ができる。 When the concentration measurement system of the present invention is used, if it is used as a soil analyzer, soil management and evaluation in the agricultural field can be simplified. Large-scale farmers who own multiple fields can manage the soil in each field. In addition, quality control and evaluation in the food field can be simplified, and the presence or absence of dangerous substances such as chemicals can be easily inspected.

本発明の濃度測定システムの概略構成図(側面図)である。It is a schematic block diagram (side view) of the concentration measurement system of this invention. 本発明の濃度測定システムの概略構成図(一部正面図)である。It is a schematic block diagram (partial front view) of the concentration measurement system of this invention. 本発明の濃度測定システムの画像処理手段で実施される工程の図である。It is a figure of the process carried out by the image processing means of the density measurement system of this invention. 本発明の濃度測定システムの演算手段で実施される工程のフローチャート図である。It is a flowchart of the process carried out by the calculation means of the concentration measurement system of this invention. 補正検量線の図である。It is a figure of the correction calibration curve. 濃度測定用検量線の図である。It is a figure of the calibration curve for concentration measurement. 本発明の実施例1で作成した濃度測定システムを利用した土壌分析器の一部の写真である。この写真では、撮像手段と光学セルなどとの位置関係は、濃度を測定する図1で示した位置とは異なる。 It is a photograph of a part of the soil analyzer using the concentration measurement system created in Example 1 of the present invention. In this photograph, the positional relationship between the imaging means and the optical cell or the like is different from the position shown in FIG. 1 for measuring the density. 本発明の実施例1で作成した濃度測定システムを組み込んだプログラムの出力画面の一部である。This is a part of the output screen of the program incorporating the concentration measurement system created in Example 1 of the present invention.

以下、本発明につき、図面を利用してより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明の濃度測定システム1では、被測定物5が液体である。被測定物5、光路長1mm以上10mm以下で波長220nm以上800nm以下の光を透過する光学セル3に入れ、この光学セル3を固定治具7に設置することにより好適に分析が行える。 In the concentration measuring system 1 of the present invention, the object to be measured 5 is a liquid. The object 5 to be measured is placed in an optical cell 3 that transmits light having an optical path length of 1 mm or more and 10 mm or less and a wavelength of 220 nm or more and 800 nm or less, and the optical cell 3 is placed on a fixing jig 7 to perform suitable analysis.

本発明の濃度測定システム1に用いられる基準着色部を備える基準4Aは、光学セル3に収納した被測定物5より方の撮像手段8Aから離れた位置又はこの光学セル3に収納した被測定物5より方の撮像手段8Aに近づいた位置に置。この基準4Aは、少なくとも2つの異なる基準着色部4を含む基準となる基準着色部を備える基準板である。2つの異なる色情報を利用する場合には、第一の色情報を与える着色剤としてカーボンブラックを0%以上50%未満含む着色剤を施す。これを撮像手段8Aにより測定し、図3や図4の画像処理手段により数値として255分割した場合、Rで100以上255以下、Gで100以上255以下、Bで100以上255以下とする。基準着色部を備える基準4Aに2の色情報を与える着色剤としてカーボンブラックを50%以上95%未満含み且つ1の色情報を与えるカーボンブラック含有量と比べて10%以上の含有量である着色剤を施す。この第2の色情報を数値として255分割した場合、Rで1以上99以下、Gで1以上99以下、Bで1以上99以下である基準着色部を備える基準4Aを用いることができる。基準着色部を備える基準4Aの基準着色部4の個数は特に限定されないが、2点以上21点未満が好ましく用いられ、5点以上15点以下がより好ましく、6点以上8点以下が更に好ましく用いられる。21点以上でも測定上特に問題は無いが、この基準着色部を備える基準4Aの作成が煩雑になる傾向にある。また、これら基準着色部4を2点以上用いる場合のそれぞれの数値化された色情報は、R、G、Bそれぞれで10以上離れていると好ましく用いられる。 Reference plate 4A having a reference colored part used in a concentration measuring system 1 of the present invention, the housed in the position or the optical cell 3 away from the imaging means 8A above side than the object to be measured 5 housed in the optical cell 3 location from the measurement object 5 at a position close to the imaging means 8A under side rather. The reference plate 4A is a reference plate including a reference reference coloring portion including at least two different reference coloring portions 4. When two different color information is used, a colorant containing 0% or more and less than 50% of carbon black is applied as a colorant that gives the first color information. When this is measured by the image pickup means 8 A and divided into 255 numerical values by the image processing means of FIGS. 3 and 4 , R is 100 or more and 255 or less, G is 100 or more and 255 or less, and B is 100 or more and 255 or less. The content of carbon black as a colorant that gives the second color information to the reference plate 4A provided with the reference coloring portion is 50% or more and less than 95%, and is 10% or more as compared with the carbon black content that gives the first color information. Apply a colorant that is. When this second color information is divided into 255 as numerical values, a reference plate 4A having a reference coloring portion having R of 1 or more and 99 or less, G of 1 or more and 99 or less, and B of 1 or more and 99 or less can be used. The number of reference coloring portions 4 of the reference plate 4A provided with the reference coloring portion 4 is not particularly limited, but 2 points or more and less than 21 points are preferably used, 5 points or more and 15 points or less are more preferable, and 6 points or more and 8 points or less are used. It is more preferably used. There is no particular problem in measurement even if the number of points is 21 or more, but the production of the reference plate 4A provided with this reference coloring portion tends to be complicated. Further, when two or more points of these reference coloring portions 4 are used, the quantified color information of each is preferably used when they are separated by 10 or more in each of R, G, and B.

前記基準板に備えられ、前記基準着色部の位置を示す指示記号41には、点や線などの記号を用いることができる。この指示記号41を複数用い、その間の任意の基準着色部4の位置を決定し、色情報を得ることもできるし、指示記号41を単数利用して指示記号41からの決められた距離の基準着色部4を読み込むことにより色情報を得ることもできる。 Provided in the reference plate, the designator 41 indicative of the position of the reference colored portion may be used symbols such as points and lines. Using a plurality of the indication symbol 41 to determine the position of any of the reference colored portion 4 therebetween, also to be possible to obtain the color information, determined distance criterion in the instruction symbol 41 from the instruction symbol 41 using singular Color information can also be obtained by reading the coloring unit 4.

光学セル3に収納した被測定物5の後方離間して置かれ被測定物5を介し同時に画像として取得される測定部を備える測定板4Bは、色情報を与える着色剤としてカーボンブラックを0%以上95%未満含む着色剤を施した測定部を備え、撮像手段8Aにより測定される色情報を数値として255分割した場合、Rで1以上255以下、Gで1以上255以下、Bで1以上255以下で好ましく用いられる。後述する実施例に記載のように、土壌及び溶液中のカリウムの濃度を測定する場合、測定にカーボンブラックを80%以上95%以下含む着色剤を施すと、カリウムの濃度を好適に測定できる。 The measuring plate 4B provided with a measuring unit which is placed at a distance behind the object to be measured 5 housed in the optical cell 3 and is simultaneously acquired as an image through the object 5 to be measured uses carbon black as a colorant which gives color information. When a measuring unit provided with a colorant containing% or more and less than 95% is provided and the color information measured by the imaging means 8A is divided into 255 as numerical values, R is 1 or more and 255 or less, G is 1 or more and 255 or less, and B is 1. It is preferably used in the above 255 or less. As described in Examples described later, when measuring the potassium concentration in soil and solution, the potassium concentration can be suitably measured by applying a colorant containing 80% or more and 95% or less of carbon black to the measuring portion. ..

本発明の濃度測定システム1では、光源2としてLED(Light emitting diode)又は蛍光灯を好ましく用いることができる。また、電気を利用し発光する光源がない場合においては、太陽光などの自然光を好ましく用いることができる。光源2としてLEDを選択する場合、LEDの波長については、被測定物5の濃度測定用検量線(図6)を作ることができれば良い。LEDの場合、R、G、Bそれぞれの光を発色すると好ましく用いられる。Rの光の波長としては、600nmより長く800nm以下が好ましく、610nm以上700nm以下がより好ましく、620nm以上650nmがより好ましく用いられる。これ以上の波長の光源を用いることもできるが、光源が高価になる傾向にある。Gの光の波長としては495nm以上600nm以下が好ましく、500nm以上550nm以下がより好ましく、520nm以上540nmがより好ましく用いられる。Bの光の波長としては、300nm以上495nm以下が好ましく用いられ、330nm以上480nm以下がより好ましく、350nm以上475nmがより好ましく用いられる。300nm以下の波長だと、やはり光源が高価に成る傾向にある。蛍光灯についても、波長300nm以上800nm以下の光を発するものを好ましく用いることができる。また、これらの波長については、測定対象により任意に選択することができる。 In the concentration measurement system 1 of the present invention, an LED (Light emitting diode) or a fluorescent lamp can be preferably used as the light source 2. Further, when there is no light source that emits light by using electricity, natural light such as sunlight can be preferably used. When an LED is selected as the light source 2, it is sufficient that a calibration curve (FIG. 6) for measuring the concentration of the object to be measured 5 can be formed for the wavelength of the LED. In the case of an LED, it is preferably used to develop the light of each of R, G, and B. The wavelength of R light is preferably longer than 600 nm and preferably 800 nm or less, more preferably 610 nm or more and 700 nm or less, and more preferably 620 nm or more and 650 nm. A light source having a wavelength higher than this can be used, but the light source tends to be expensive. The wavelength of G light is preferably 495 nm or more and 600 nm or less, more preferably 500 nm or more and 550 nm or less, and more preferably 520 nm or more and 540 nm. The wavelength of the light of B is preferably 300 nm or more and 495 nm or less, more preferably 330 nm or more and 480 nm or less, and more preferably 350 nm or more and 475 nm. If the wavelength is 300 nm or less, the light source tends to be expensive. As the fluorescent lamp, one that emits light having a wavelength of 300 nm or more and 800 nm or less can be preferably used. Further, these wavelengths can be arbitrarily selected depending on the measurement target.

本発明の濃度測定システム1に用いられる、画像を取得する撮像手段8Aは、カメラ、デジタルカメラ、CCDカメラ、撮像手段8Aを持つメディアタブレット端末等の撮像装置8のいずれかから選択することができる。また、パーソナルコンピュータに搭載したデジタルカメラについても好適に用いられる。メディアタブレット端末等の撮像装置8に位置情報を取得する機能や日時を記録する機能、天候や温度を取得する機能がある場合には、後述する濃度を測定した位置や場所、日時、天候や温度を同時に保存し、やはり後述するデータ送信手段によりデータを送ることができる。また、被測定物5に係わる情報なども電子データとして保存し、やはり送信することが可能となる。撮像装置8にタイマー機能を持つと好ましく利用できる。これは、測定対象を発色液により発色する場合に一定の経過時間が必要な場合には特に好ましい。 The image pickup means 8A for acquiring an image used in the density measurement system 1 of the present invention can be selected from any of an image pickup device 8 such as a camera, a digital camera, a CCD camera, and a media tablet terminal having the image pickup means 8A. .. It is also preferably used for a digital camera mounted on a personal computer. If the image pickup device 8 of a media tablet terminal or the like has a function of acquiring position information, a function of recording the date and time, and a function of acquiring the weather and temperature, the position and place where the density is measured, the date and time, the weather and temperature, which will be described later, Can be saved at the same time, and data can be transmitted by the data transmission means described later. In addition, information related to the object to be measured 5 can also be stored as electronic data and transmitted. It can be preferably used when the image pickup apparatus 8 has a timer function. This is particularly preferable when a certain elapsed time is required when the measurement target is colored by the coloring liquid.

本発明の濃度測定システム1に用いられる画像処理手段は撮像手段8Aを持つ撮像装置8にプログラムとして実装することもできる。
この画像処理手段は、撮像手段8Aにより得られた前記2つの異なる色情報4を含む基準となる基準着色部4Aの画像からそれぞれの画像部位毎に取得した色情報を色情報毎にRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を基準色情報とする手段を含んでいる。
更にこの画像処理手段は、少なくとも2つの異なる既知濃度の物質の光学セル3に収納された液体とこれより後方に離間して置かれた測定板に備えられた測定部との画像からそれぞれの画像部位毎に取得した色情報を色情報毎にRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を基準濃度色情報とする手段を含んでいる。
更にまたこの画像処理手段は、少なくとも1点の未知濃度の物質の光学セル3に収納された液体これらより後方に離間して置かれた測定板に備えられた測定の画像と、前記基準着色部の画像とを同時に取得して、それぞれの画像を基にこの測定の画像から得られた色情報をRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を補正前濃度色情報とする手段と、この測定の画像と同時に取得された基準着色部の色情報の画像をそれぞれの測定部位毎にRで1以上255以下、Gで1以上255以下、Bで1以上255以下のいずれかに変換しこのRGBの数値情報を測定用基準色情報とする手段とを少なくとも含んでいる。
Image processing means used in the concentration measuring system 1 of the present invention is Ru can also be implemented as a program in the imaging device 8 having the imaging unit 8A.
This image processing means obtains the color information acquired for each image portion from the image of the reference coloring unit 4A as a reference including the two different color information 4 obtained by the imaging means 8A, and the color information is 1 for each color information. It includes means for converting to any one of 25 or more, 255 or less in G, 1 or more and 255 or less in B, and 1 or more and 255 or less in B, and using this RGB numerical information as reference color information.
Further, this image processing means obtains each image from an image of a liquid stored in an optical cell 3 of at least two different known concentrations of a substance and a measuring unit provided on a measuring plate placed behind the liquid. The color information acquired for each part is converted into any of 1 or more and 255 or less for R, 1 or more and 255 or less for G, and 1 or more and 255 or less for B for each color information, and this RGB numerical information is used as the reference density color information. Including means .
Furthermore the image processing means includes an image of the measuring unit provided in the measurement plate is placed apart from the liquid accommodated in the optical cell 3 substances unknown concentration of at least one point than those at the rear, the reference The image of the colored part and the image of the colored part are acquired at the same time , and the color information obtained from the image of the measuring part based on each image is 1 or more and 255 or less for R, 1 or more and 255 or less for G, and 1 or more and 255 or less for B. means to convert to any numerical information before correction density color information of the RGB of 1 R image color information of the reference colored portion image to have been acquired at the same time of the measurement unit for each site of measurement It includes at least a means for converting the numerical value information of RGB into any one of 255 or more, 1 or more and 255 or less for G, and 1 or more and 255 or less for B, and using this RGB numerical information as the reference color information for measurement.

本発明の濃度測定システム1の演算手段は撮像手段8Aを持つ撮像装置8にプログラムとして実装することもでき、画像処理手段により得られた前記基準色情報前記基準濃度色情報前記補正前濃度色情報前記測定用基準色情報前記既知濃度と、を用い、前記基準濃度色情報とそれぞれの前記基準濃度色情報を与えた前記既知濃度とから濃度に対する濃度測定用検量線を作成しこの濃度測定用検量線の傾きから(式1)を作成する工程と、前記測定用基準色情報と前記基準色情報とから補正検量線を作成しこの補正検量線の直線の傾きから(式2)を作成する工程と、前記補正前濃度色情報と(式3)により測定濃度色情報を算出する工程と、未知濃度の物質の濃度をこの測定濃度色情報と(式4)により算出する工程と、を実施する演算手段である。
(式1) 濃度 = 基準濃度色情報 × α
(式2) β = 基準色情報 ÷ 測定用基準色情報
(式3) 測定濃度色情報 = β × 補正前濃度色情報
(式4) 濃度 = α × 測定濃度色情報
Computing means concentration measurement system 1 of the present invention can also be implemented as a program in the imaging device 8 having the imaging unit 8A, and the reference color information obtained by the image processing means, and the reference density color information, wherein and uncorrected density color information, wherein the measurement reference color information, the known concentration and a reference, calibrator concentration measurement to the concentration of said known concentration gave the reference density color information of each said reference density color information create a line, from the slope of the concentration determination calibration curve the steps of creating (equation 1), to create a corrected calibration curve from said reference color information and the measurement reference color information in the linear of the correction calibration curve a step of creating from the slope (equation 2), the uncorrected concentration color information and calculating a measured density color information by (equation 3), and the measured density color information to the concentration of a substance of unknown concentration (equation 4 ) , And a calculation means for carrying out.
(Equation 1) Density = Reference density Color information x α
(Equation 2) β = Reference color information ÷ Measurement reference color information (Equation 3) Measurement density color information = β × Pre-correction density color information (Equation 4) Density = α × Measurement density color information

本発明の濃度測定システム1の(式1)、(式2)、(式3)、(式4)において、検量線に切片を加えない場合に比べ検量線に切片を加えた場合の相関係数が高くなる場合には、もちろん切片を利用する事ができる。 In the concentration measurement system 1 of the present invention (Equation 1), (Equation 2), (Equation 3), and (Equation 4), the phase relationship when the intercept is added to the calibration curve as compared with the case where the intercept is not added to the calibration curve. Of course, if the number is high, the intercept can be used.

本発明のシステムのデータ保存表示手段は撮像手段8Aを持つ撮像装置8にプログラムとして実装することもでき、前記基準色情報、前記基準濃度色情報、前記補正前濃度色情報、前記測定用基準色情報、前記既知濃度、前記濃度測定用検量線、前記補正検量線、前記測定濃度色情報、未知濃度の物質の前記濃度、前記(式1)、前記(式2)、前記(式3)及び前記(式4)を保存する事や、任意で図7や図8のように、画面などに表示することができる。また、前述した様に、濃度を測定した位置や場所、日時、天候や温度を同時に保存できる。また、測定対象に係わる情報なども電子データとして好ましく保存できる。 Data storage and display unit of the system of the present invention can also be implemented as a program in the imaging device 8 having the imaging means 8A, the reference color information, the reference density color information, the uncorrected concentration color information, the measurement reference color information, the known concentration, the concentration measurement calibration curve, the correction calibration curve, the measured concentration color information, the concentration of the substance of unknown concentration, the (formula 1), the equation (2), the equation (3) And the above (Equation 4) can be saved and optionally displayed on a screen or the like as shown in FIGS. 7 and 8. Further, as described above, the position and place where the concentration was measured, the date and time, the weather and the temperature can be saved at the same time. In addition, information related to the measurement target can be preferably stored as electronic data.

本発明の濃度測定システム1では、データ送信手段を具備することもできる。このデータ送信手段として、インターネットを介した電子メール、電子データの送信及び有線による電子データの送信、電子データの記録媒体を介したデータ送信を少なくとも利用できる。 The concentration measurement system 1 of the present invention may also be provided with data transmission means. As this data transmission means , at least electronic mail via the Internet, transmission of electronic data, transmission of electronic data by wire, and data transmission via a recording medium of electronic data can be used.

本発明の濃度測定システム1では、前記少なくとも2点の異なる既知濃度の物質を含む液体(被測定物5)を光学セル3に入れ、この光学セル3に入れられた既知濃度の物質を含む液体の後方に離間して置かれた測定4B及びこの光学セル3に入れられた未知濃度の液体(被測定物5)の後方に離間して置かれた測定4Bの前記光学セル3との相対する面の距離が1mm以上20mm以下であると好ましく、測定4Bの光学セル3との相対する面の距離が5mm以上18mm以下であると好ましく、
測定4Bと、光学セル3との相対する面の距離が6mm以上17mm以下であると更に好ましい。測定4Bの光学セル3との相対する面の距離が近すぎると測定4Bに光学セル3の影がうつるため、既知濃度と基準濃度色情報から作成される濃度測定用検量線の相関係数が低下して測定された濃度が実際と異なる場合が有り、離れすぎると撮像する際に焦点が合わなくなることがある。
In the concentration measurement system 1 of the present invention, a liquid (object 5 to be measured) containing a substance having a known concentration at least two different points is placed in an optical cell 3, and a liquid containing the substance having a known concentration contained in the optical cell 3 is placed. the measurement plate 4B placed spaced rearwardly and unknown concentration placed in the optical cell 3 the liquid between the optical cell 3 of the measuring plate 4B placed spaced to the rear of (object to be measured 5) The distance between the opposing surfaces is preferably 1 mm or more and 20 mm or less, and the distance between the opposing surfaces of the measuring plate 4B with the optical cell 3 is preferably 5 mm or more and 18 mm or less.
It is more preferable that the distance between the surface of the measuring plate 4B and the optical cell 3 facing each other is 6 mm or more and 17 mm or less. The distance opposing surfaces of the optical cell 3 measured plate 4B is too close shadow of the optical cell 3 moves to the measurement plate 4B, the phase relationship between the concentration measurement calibration curve created from a known concentration and the reference concentration color information The number may decrease and the measured density may differ from the actual one, and if it is too far away, it may become out of focus when imaging.

本発明の濃度測定システム1では、前記光学セル3の前後方向の角度が、鉛直方向に対し角度マイナス5度以上角度プラス5度以下で好適に用いられる。この光学セルの角度が鉛直方向に対しプラスマイナス5度より傾くと内部の被測定物5がこぼれやすくなる傾向にある。また、撮像する際に光源や他の外部からの光が光学セル3表面に写り込み測定結果に誤差を生じることがある。既知濃度と基準濃度色情報から作成される濃度測定用検量線の相関係数が低下して測定された濃度が実際と異なる場合が有る。
これら光学セル3の後方に離間して置かれた測定4Bと光学セル3の角度は、角度マイナス5度以上角度50度以下であると好適であり、角度+10度以上角度+50度以下がより好適であり、角度+30度以上角度+50度以下が更に好適である。光学セル3の後方に離間して置かれた測定4Bと光学セル3の角度が小さいと撮像する際に光源2や他の外部からの光が光学セル3表面に写り込み測定結果に誤差を生じることがある。また、光学セル3の影が測定4Bの撮像部に写り込むことにより測定結果に誤差が生じたり、既知濃度と基準濃度色情報から作成される濃度測定用検量線の相関係数が低下して測定された濃度が実際と異なる場合が有る。
The density measuring system 1 of the present invention, the longitudinal direction of the angle of the optical cell 3 are preferably used in the following angle minus 5 degrees angle plus 5 degrees with respect to the vertical direction. If the angle of the optical cell is tilted more than plus or minus 5 degrees with respect to the vertical direction, the object 5 inside tends to spill easily. Further, when taking an image, light from a light source or other outside may be reflected on the surface of the optical cell 3 and cause an error in the measurement result. If the correlation coefficient of the concentration measuring a calibration curve created from a known concentration and a reference density color information is measured by reduced concentrations differ from actual is Ru Yes.
The angle between the measuring plate 4B and the optical cell 3 placed apart from each other behind the optical cell 3 is preferably an angle of -5 degrees or more and an angle of 50 degrees or less, and an angle of +10 degrees or more and an angle of +50 degrees or less. It is more preferable, and an angle of +30 degrees or more and an angle of +50 degrees or less is further preferable. If the angle between the measuring plate 4B placed behind the optical cell 3 and the optical cell 3 is small, light from the light source 2 and other outside is reflected on the surface of the optical cell 3 and an error occurs in the measurement result. May occur. In addition, the shadow of the optical cell 3 is reflected in the imaging unit of the measuring plate 4B, which causes an error in the measurement result, and the correlation coefficient between the known density and the calibration curve for density measurement created from the reference density color information is lowered. The measured concentration may differ from the actual one.

本発明の濃度測定システム1では、光学セル3の個数に関しては特に限定されないが、好ましく1個以上20個以下を同時に測定することができる。光学セル3に収納した被測定物を撮像手段8Aにより同時に測定することにより、測定工程の回数を減らすことができるため好適である。光学セル3の固定治具7は、光学セル3底面と固定治具7との距離が5mm以上20mm以下離間していると好適で有り、10mm以上18mm以下離間しているとより好適であり、12mm以上16mm以下離間していると更に好適である。現時点では,どのような現象で離間した方が良いかは分かっていないが、固定治具7による光学的影響があると推測している。 In the concentration measuring system 1 of the present invention, the number of optical cells 3 is not particularly limited, but preferably 1 or more and 20 or less can be measured at the same time. By simultaneously measuring the object to be measured stored in the optical cell 3 with the imaging means 8A, the number of measurement steps can be reduced, which is preferable. The fixing jig 7 of the optical cell 3 preferably has a distance of 5 mm or more and 20 mm or less between the bottom surface of the optical cell 3 and the fixing jig 7, and more preferably 10 mm or more and 18 mm or less. It is more preferable that the distance is 12 mm or more and 16 mm or less. At present, it is not known what kind of phenomenon should be separated, but it is presumed that the fixing jig 7 has an optical effect.

本発明の濃度測定システム1では、前記画像として取得される基準着色部及び測定の被測定面の重心を頂点とした光源2の光軸の中心と撮像手段8Aとの角度が角度1度以上角度135度以下であると好適に用いられる。この位置関係をよりわかりやすく説明すると、本発明の濃度測定システム1では、基準着色部と測定部の色情報を与える面の重心同士を結んだ線の中点と光源の中心とを直線で結んだ線を光源の光軸の中心線とし、この光軸の中心線と、撮像手段8Aと前記中点を結んだ直線と、の成す角度が角度1度以上角度135度以下である。この角度を光源と撮像手段との角度と記すこともある。また、この角度が角度60度以上角度120度以下であるとより好ましく、角度80度以上角度100度以下であると更に好ましい。この角度が広すぎると基準着色部4を撮像する際に実際よりも白色が強くなり誤差の原因となる。既知濃度と基準濃度色情報から作成される濃度測定用検量線の相関係数が低下して測定された濃度が実際と異なる場合が有る。 In the density measurement system 1 of the present invention, the angle between the center of the optical axis of the light source 2 and the image pickup means 8A with the center of gravity of the reference colored portion and the measurement surface of the measurement portion acquired as the image as the apex is 1 degree or more. It is preferably used when the angle is 135 degrees or less. To explain this positional relationship more easily, in the density measurement system 1 of the present invention, the midpoint of the line connecting the center of gravity of the reference colored portion and the surface giving the color information of the measuring portion and the center of the light source are connected by a straight line. The vertical line is the center line of the optical axis of the light source, and the angle formed by the center line of the optical axis and the straight line connecting the imaging means 8A and the midpoint is 1 degree or more and 135 degrees or less. This angle may be referred to as the angle between the light source and the imaging means. Further, it is more preferable that this angle is 60 degrees or more and 120 degrees or less, and further preferably 80 degrees or more and 100 degrees or less. If this angle is too wide, the white color becomes stronger than it actually is when the reference colored portion 4 is imaged, which causes an error. The correlation coefficient of the calibration curve for density measurement created from the known density and the reference density color information may decrease and the measured density may differ from the actual density.

基準4Aと測定4Bの素材は同一のものでも別のものでも良い。また、基準4Aを被測定物5より方の撮像手段8Aから離れた位置に置く場合には、基準板4Aに備えられた基準着色部測定板4Bに備えられた測定とを同一の面上に施すことにより好適に利用することができる。この基準4Aと測定4Bの素材は特に限定されないが、白色の紙、画用紙、樹脂材料及び金属材料から選択される材料を好ましく用いることができる。 The materials of the reference plate 4A and the measuring plate 4B may be the same or different. Identical Also, when placing the reference plate 4A at a position away from the imaging means 8A above side than the object 5 includes a reference colored portion provided in the reference plate 4A and a measuring unit provided in the measurement plate 4B It can be suitably used by applying it on the surface of. The materials of the reference plate 4A and the measuring plate 4B are not particularly limited, but a material selected from white paper, drawing paper, a resin material, and a metal material can be preferably used.

本発明の濃度測定システム1では、基準板4Aに備えられた基準着色部及び測定板4Bに具備えられた測定の色情報を与える面積が1mm以上500mm以下が好適であり、面積が5mm以上200mm以下がより好適であり、面積が20mm以上100mm以下が更に好適であり、面積が20mm以上25mm以下が最も好適である。この面積が広すぎると外部の影響を強く受け誤差の原因となる傾向がある。また、この面積が狭すぎると測定面積の低下によりやはり誤差の原因となる傾向にある。この測定される形状については、円、楕円、三角形、四角形、六角形、8角形から選択する事ができる。四角形や三角形については、光学セル3の形状や撮像される環境により長方形や正方形、菱形、二等辺三角形、正三角形などを任意で選ぶことができる。これら撮像される面積や形状は、撮像手段8Aにより選択することもできるし、全体を撮像した後に施される画像処理手段や演算手段により好ましく設定することができる。 The density measuring system 1 of the present invention, the area providing the color information of the measuring unit which is example provided in reference colored portion and the measuring plate 4B provided the reference plate 4A is preferably 1 mm 2 or more 500 mm 2 or less, the area is 5 mm 2 or more 200 mm 2 or less is more preferable, the area is 20 mm 2 or more 100 mm 2 or less still more preferred, area is 20 mm 2 or more 25 mm 2 or less is most preferred. If this area is too large, it is strongly influenced by the outside and tends to cause an error. Further, if this area is too small, the measurement area tends to decrease, which also tends to cause an error. The shape to be measured can be selected from circle, ellipse, triangle, quadrangle, hexagon, and octagon. As for the quadrangle and the triangle, a rectangle, a square, a rhombus, an isosceles triangle, an equilateral triangle and the like can be arbitrarily selected depending on the shape of the optical cell 3 and the environment in which the image is taken. The area and shape to be imaged can be selected by the image pickup means 8A, or can be preferably set by the image processing means or the calculation means performed after the entire image is captured.

本発明の濃度測定システム1では、測定される物質の濃度が、前記既知濃度以下である。既知濃度を超える場合は、測定される物質について希釈処理をした後、本発明の濃度測定システム1により濃度を測定し、希釈倍率をこの測定された濃度にかけることにより、希釈前の濃度を算出することができる。この希釈率については、本発明の濃度測定システムの演算手段で行うことも勿論可能である。 In the concentration measuring system 1 of the present invention, the concentration of the substance to be measured is equal to or lower than the known concentration. If it exceeds the known concentration, after diluting the substance to be measured, the concentration is measured by the concentration measurement system 1 of the present invention, and the concentration before dilution is calculated by multiplying the measured concentration by the dilution ratio. can do. Of course, this dilution rate can also be determined by the calculation means of the concentration measurement system of the present invention.

本発明の濃度測定システム1では、濃度と撮像手段8Aにより測定される色情報4に相関があればどのような物質についても測定することが可能である。濃度を測定される物質が、鉄、マンガン、マグネシウム、リン、カルシウム、カリウム、フッ素、水素、塩素、六価クロム、ニッケル、アルミニウム、銀、金、銅、ホウ素、モリブデン、パラジウム、亜鉛、硝酸イオン、アンモニウムイオン、水素イオン、水酸化物イオン、リンゴ酸、アスコルビン酸、腐植物質、ヨウ素、リコピン鉄、マンガン、マグネシウム、リン、カルシウム、カリウム、水素、塩素、ニッケル、アルミニウム、銅、ホウ素、モリブデン、パラジウム、亜鉛及び窒素の酸化物、又はアスコルビン酸、ヨウ素、メタンフェタミン及びその誘導体と形成される錯体、コリンエステラーゼと酢酸インドキシル又は5−bromo−6−chloro−3−indoxyl butyrate又は5−bromo−6−chloro−3−indoxyl caprylate、5−bromo−4−chloro―3−indoxyl palmitateのいずれか一つと反応し発色する際にコリンエステラーゼの働きを阻害してこの発色を阻害する物質、大腸菌、黄色ブドウ球菌、酵母から選択される。樹脂材料の劣化により生じる茶色の物質の濃度について測定する事により、この樹脂材料の劣化状態についても推定する事が可能となる。また、ワインなど飲料、酒類、スープ類についてもそのポリフェノール量を測定できる。 In the density measurement system 1 of the present invention, any substance can be measured as long as there is a correlation between the density and the color information 4 measured by the imaging means 8A. The substances whose concentration is measured are iron, manganese, magnesium, phosphorus, calcium, potassium, fluorine, hydrogen, chlorine, hexavalent chromium, nickel, aluminum, silver, gold, copper, boron, molybdenum, palladium, zinc and nitrate ion. , Ammonium ion, hydrogen ion, hydroxide ion, indoxyl, ascorbic acid, rotten vegetable, iodine, lycopene , iron, manganese, magnesium, phosphorus, calcium, potassium, hydrogen, chlorine, nickel, aluminum, copper, boron, molybdenum , Palladium, zinc and nitrogen oxides, or complexes formed with ascorbic acid, iodine, methanephetamine and derivatives thereof, cholineesterase and indoxyl acetate or 5-blomo-6-chloro-3-indoxyl butylate or 5-blomo-6. A substance that inhibits the action of cholinesterase and inhibits this color development when it reacts with any one of -chloro-3-indoxyl caprylate and 5-blomo-4-chloro-3-indoxyl palmite and develops color, Escherichia coli, yellow staphylococcus. , Selected from yeast. By measuring the concentration of the brown substance generated by the deterioration of the resin material, it is possible to estimate the deterioration state of the resin material as well. In addition, the amount of polyphenols can be measured for beverages such as wine, alcoholic beverages, and soups.

本発明の濃度測定システム1では、前述した中から一つの物質を選択し測定する事もできるし、例えば図7及び図8に示したように土壌からの抽出物として、カリウム、カルシウム、腐植物質、マンガン、マグネシウム、鉄、及び又はこれらの酸化物、硝酸イオンなどを一度に測定する事も可能である。 In the concentration measuring system 1 of the present invention, one substance can be selected and measured from the above-mentioned substances, and for example, as shown in FIGS. 7 and 8, potassium, calcium and humus are used as extracts from soil. , Manganese, magnesium, iron, and / or their oxides, nitrate ions, etc. can be measured at once.

また、これらの物質をイオンとして含む飲料水、植物工場、下水汚泥、食物からの抽出液などについても物質の濃度を測定することができる。 In addition, the concentration of substances can be measured in drinking water containing these substances as ions, plant factories, sewage sludge, extracts from foods, and the like.

更に、酸化物の発生状況を面として捉えることもできるため、塩水噴霧試験による錆の発生状況を数値として簡便に捉えることもできる。更にまた、微生物試験を行う際、液体中に存在する微生物数をその液体の懸濁具合から判定し、微生物の数量調整を行うが、本発明の濃度測定システムでは、この微生物数の数量調整についても好ましく用いることができる。 Furthermore, since the oxide generation status can be grasped as a surface, the rust generation status in the salt spray test can be easily grasped as a numerical value. Furthermore, when conducting a microbial test, the number of microorganisms present in the liquid is determined from the degree of suspension of the liquid, and the quantity of microorganisms is adjusted. In the concentration measurement system of the present invention, the quantity adjustment of the number of microorganisms is performed. Can also be preferably used.

以下、実験例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Experimental Examples, Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
(装置)
撮像手段8Aを持つ撮像装置8としてメディアタブレット端末を利用した。メディアタブレット端末として、アップル社製iPhone5S(登録商標)を選択し、画像処理手段、演算手段データ保存手段、表示手段、データ送信手段をプログラムとして実装した。光源は、LEDのライン照明を作成し利用した。測定対象として、土壌に含まれる硝酸イオンに含まれる窒素(硝酸態窒素)を選択した。光路長8mmの光学セル及び位置決め用固定治具を用いた。被測定物より方の光源から離れた位置に基準を光源と平行になるように設置し、同一上に測定を設置した。測定と光学セルの距離は、15mmとした。光学セルの撮像手段側表面と測定との距離は25mmとした。光学セルの角度は、光学セルの影が測定板の測定部にかからないよう光学セルのを測定と反対側に鉛直方向に対し角度−2度傾けた。光学セルと測定及び基準との角度は、45度に設定した。光源と撮像手段との角度は、90度に設定した。基準板に備えられる基準着色部及び測定板に備えられる測定部の色情報を与える形状及び面積は、縦5mm、横4mmの長方形(面積20mm)とし、前述したプログラムにより制御した。光学セル下面と固定治具上面の距離は、15mmとした。
(基準
白色の紙にカーボンブラック量として0、10、30、45、65、85及び95%含む着色剤により色情報のための着色を施し、基準着色部を備える基準板を作成した。撮像手段により得られた色情報のRGB値を255分割し、それぞれのカーボンブラック量毎に数値を算出した。
(測定
基準と同じ紙を用い測定を作成した。
(既知濃度)
硝酸イオンに含まれる窒素(硝酸態窒素)として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、(式1)既知濃度=58.18−0.245×基準濃度色情報を得た。この時の相関係数は0.97であり、良好な結果であった。この時、最も相関が高かったGを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、硝酸態窒素の濃度として、濃度25mg/Lとなるように溶液を調整し、これを未知濃度のテストサンプルとした。このテストサンプルに合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。発色後の溶液について、本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ24mg/L、25/L、25mg/Lとなり、良好な結果であった。同様に硝酸態窒素として濃度45mg/Lとなるように調整したテストサンプルを作成し、同様に発色させた後、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、44mg/L、45/L、46mg/Lとなり、良好な結果であり、硝酸態窒素の溶液濃度測定が行える事が確認された。
(Example 1)
(apparatus)
A media tablet terminal was used as the image pickup device 8 having the image pickup means 8A. Apple's iPhone 5S (registered trademark) was selected as the media tablet terminal, and image processing means, calculation means , data storage means, display means, and data transmission means were implemented as programs. As the light source, LED line lighting was created and used. Nitrogen (nitrate nitrogen) contained in nitrate ions contained in soil was selected as a measurement target. An optical cell having an optical path length of 8 mm and a fixing jig for positioning were used. A reference plate at a position away from the upper side of the light source than the object to be measured is placed so as to be parallel to the light source, it was placed the measurement plate on the same board. The distance between the measuring plate and the optical cell was 15 mm. The distance between the surface of the optical cell on the imaging means side and the measuring plate was 25 mm. Angle of the optical cell, the shadow of the optical cell is tilted angle -2 ° with respect to the vertical direction on the opposite side of the measuring plate on part of the optical cell so as not to overlap the measuring portion of the measuring plate. The angle between the optical cell and the measuring plate and the reference plate was set to 45 degrees. The angle between the light source and the imaging means was set to 90 degrees. The shape and area of the reference colored portion provided on the reference plate and the measuring portion provided on the measuring plate to give color information were rectangular (area 20 mm 2 ) having a length of 5 mm and a width of 4 mm, and were controlled by the above-mentioned program. The distance between the lower surface of the optical cell and the upper surface of the fixing jig was 15 mm.
(Reference plate )
White paper was colored for color information with a colorant containing 0, 10, 30, 45, 65, 85 and 95% of carbon black as the amount of carbon black, and a reference plate provided with a reference coloring portion was prepared . The RGB values of the color information obtained by the imaging means were divided into 255, and the values were calculated for each amount of carbon black.
(Measuring plate )
A measuring plate was prepared using the same paper as the reference plate.
(Known concentration)
The solution was adjusted so that the concentration of nitrogen (nitrate nitrogen) contained in the nitrate ion was 10, 15, 20, 30 and 50 mg / L. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, (Equation 1) known density = 58.18-0.245 × reference density color information was obtained. The correlation coefficient at this time was 0.97, which was a good result. At this time, G having the highest correlation was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted so that the concentration of nitrate nitrogen was 25 mg / L, and this was used as a test sample having an unknown concentration. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this test sample to develop color. The solution after color development was measured by the concentration measurement system of the present invention, and after following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by performing the same measurement three times were 24 mg / L, 25 / L, and 25 mg / L, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 45 mg / L as nitrate nitrogen was prepared, the color was developed in the same manner, and then the measurement was performed by the concentration measurement system of the present invention and the result was displayed. The measurement results obtained by performing the same measurement three times were 44 mg / L, 45 / L, and 46 mg / L, which were good results, and it was confirmed that the solution concentration of nitrate nitrogen could be measured.

(実施例2)
実施例1と同じ装置、基準、測定を用い、リン酸について分析を行った。
(既知濃度)
リン酸として、濃度10、50、100、200及び300mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(リン用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は0.94であり、良好な結果であった。この時、相関が高かったRを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、リン酸として濃度250mg/Lとなるように溶液を調整し、これを未知濃度のテストサンプルとした。このテストサンプルに合同会社土づくり推進機構製発色液(リン用)を規定量加え、発色させた。発色後の溶液について、本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ245mg/L、251mg/L、253mg/Lとなり、良好な結果であった。同様に濃度75mg/Lとなるように調整したテストサンプルを作成し、同様に発色させた後、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、72mg/L、77mg/L、76mg/Lとなり、良好な結果であった。リン酸のようなイオンの濃度測定に利用できることが確認された。
(Example 2)
Phosphoric acid was analyzed using the same equipment, reference plate , and measuring plate as in Example 1.
(Known concentration)
The solution was adjusted to concentrations of 10, 50, 100, 200 and 300 mg / L of phosphoric acid. A specified amount of coloring liquid (for phosphorus) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.94, which was a good result. At this time, R, which had a high correlation, was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted so that the concentration of phosphoric acid was 250 mg / L, and this was used as a test sample having an unknown concentration. A specified amount of coloring liquid (for phosphorus) manufactured by GK Soil Making Promotion Organization was added to this test sample to develop color. The solution after color development was measured by the concentration measurement system of the present invention, and after following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by carrying out the same measurement three times were 245 mg / L and 251 mg / L and 253 mg / L, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 75 mg / L was prepared, the color was developed in the same manner, and then the measurement was performed by the concentration measurement system of the present invention and the result was displayed. The measurement results obtained by carrying out the same measurement three times were 72 mg / L, 77 mg / L, and 76 mg / L, which were good results. It was confirmed that it can be used for measuring the concentration of ions such as phosphoric acid.

(実施例3)
実施例1と同じ装置、基準、測定を用い、マグネシウムについて分析を行った。
(既知濃度)
マグネシウムとして、濃度10、50、100、200及び300mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(マグネシウム用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は0.96であり、良好な結果であった。この時、相関が高かったRを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、マグネシウムとして濃度200mg/Lとなるように溶液を調整し、これを未知濃度のテストサンプルとした。このテストサンプルに合同会社土づくり推進機構製発色液(マグネシウム用)を規定量加え、発色させた。発色後の溶液について、本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ205mg/L、202mg/L、198mg/Lとなり、良好な結果であった。同様に濃度75mg/Lとなるように調整したテストサンプルを作成し、同様に発色させた後、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、70mg/L、75mg/L、77mg/Lとなり、良好な結果であった。マグネシウムのように水溶液中で陽イオンとなる物質の濃度測定に利用できることが確認された。
(Example 3)
Magnesium was analyzed using the same equipment, reference plate , and measuring plate as in Example 1.
(Known concentration)
The solution was adjusted to concentrations of 10, 50, 100, 200 and 300 mg / L of magnesium. A specified amount of color-developing liquid (for magnesium) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.96, which was a good result. At this time, R, which had a high correlation, was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted so that the concentration of magnesium was 200 mg / L, and this was used as a test sample having an unknown concentration. A specified amount of coloring liquid (for magnesium) manufactured by GK Soil Making Promotion Organization was added to this test sample to develop color. The solution after color development was measured by the concentration measurement system of the present invention, and after following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by carrying out the same measurement three times were 205 mg / L, 202 mg / L, and 198 mg / L, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 75 mg / L was prepared, the color was developed in the same manner, and then the measurement was performed by the concentration measurement system of the present invention and the result was displayed. The measurement results obtained by carrying out the same measurement three times were 70 mg / L, 75 mg / L, and 77 mg / L, which were good results. It was confirmed that it can be used to measure the concentration of substances that become cations in aqueous solutions, such as magnesium.

(実施例4)
実施例1と同じ装置、基準、測定を用い、カルシウムについて分析を行った。
(既知濃度)
カルシウムとして、濃度100、200、300、400及び500mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(カルシウム用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と、基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は0.99であり、良好な結果であった。この時、相関が高かったGを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、カルシウムとして、濃度200mg/Lとなるように溶液を調整し、これを未知濃度のテストサンプルとした。このテストサンプルに合同会社土づくり推進機構製発色液(カルシウム用)を規定量加え、発色させた。発色後の溶液について、本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ198mg/L、196mg/L、202mg/Lとなり、良好な結果であった。同様に濃度100mg/Lとなるように調整したテストサンプルを作成し、同様に発色させた後、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、95mg/L、95mg/L、98mg/Lとなり、良好な結果であった。500mg/L程度の比較的高い濃度の物質についても測定できることが確認された。
(Example 4)
Calcium was analyzed using the same equipment, reference plate , and measuring plate as in Example 1.
(Known concentration)
The solution was adjusted to concentrations of 100, 200, 300, 400 and 500 mg / L of calcium. A specified amount of coloring liquid (for calcium) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.99, which was a good result. At this time, G having a high correlation was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted so that the concentration of calcium was 200 mg / L, and this was used as a test sample having an unknown concentration. A specified amount of coloring liquid (for calcium) manufactured by GK Soil Making Promotion Organization was added to this test sample to develop color. The solution after color development was measured by the concentration measurement system of the present invention, and after following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by carrying out the same measurement three times were 198 mg / L, 196 mg / L and 202 mg / L, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 100 mg / L was prepared, the color was developed in the same manner, and then the measurement was performed by the concentration measurement system of the present invention and the result was displayed. The measurement results obtained by carrying out the same measurement three times were 95 mg / L, 95 mg / L, and 98 mg / L, which were good results. It was confirmed that even a substance having a relatively high concentration of about 500 mg / L can be measured.

(実施例5)
実施例1と同じ装置、基準、測定を用い、マンガンについて分析を行った。
(既知濃度)
マンガンとして、濃度1、3、5、10及び25mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(マンガン用)を規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と、基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は0.98であり、良好な結果であった。この時、相関が高かったGを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、マンガンとして濃度15mg/Lとなるように溶液を調整し、これを未知濃度のテストサンプルとした。このテストサンプルに合同会社土づくり推進機構製発色液(マンガン用)を規定量加え、発色させた。発色後の溶液について、本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ14mg/L、116mg/L、16mg/Lとなり、良好な結果であった。同様に濃度2mg/Lとなるように調整したテストサンプルを作成し、同様に発色させた後、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、2.4mg/L、2.2mg/L、2.3mg/Lとなり、良好な結果であった。25mg/L程度の比較的低い濃度の溶液についての測定もできることが確認された。
(Example 5)
Manganese was analyzed using the same equipment, reference plate , and measuring plate as in Example 1.
(Known concentration)
The solution was adjusted to have concentrations of 1, 3, 5, 10 and 25 mg / L of manganese. A specified amount of color-developing liquid (for manganese) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.98, which was a good result. At this time, G having a high correlation was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted so that the concentration of manganese was 15 mg / L, and this was used as a test sample having an unknown concentration. A specified amount of coloring liquid (for manganese) manufactured by GK Soil Making Promotion Organization was added to this test sample to develop color. The solution after color development was measured by the concentration measurement system of the present invention, and after following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by performing the same measurement three times were 14 mg / L, 116 mg / L, and 16 mg / L, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 2 mg / L was prepared, the color was developed in the same manner, and then the measurement was performed by the concentration measurement system of the present invention and the result was displayed. The measurement result of performing the same measurement three times was 2.4 mg / L, 2.2 mg / L, and 2.3 mg / L, which were good results. It was confirmed that it is possible to measure a solution having a relatively low concentration of about 25 mg / L.

(実施例6)
実施例1と同じ装置、基準、測定を用い、腐植物質(土壌中有機物)について分析を行った。
(既知濃度)
腐植物質として、合同会社土づくり推進機構製腐植抽出液により土壌腐植物質を抽出し、腐植物質を含む溶液を作成した。濃度1、5、8及び15重量%となるように溶液を調整した。
(第一の撮像と濃度測定用検量線の作成)
既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は0.95であり、良好な結果であった。この時、相関が高かったBを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、腐植物質として濃度2.5重量%となるように溶液を調整し、これを未知濃度のテストサンプルとした。本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ2.6重量%、2.7重量%、2.6重量%となり、良好な結果であった。同様に濃度4重量%となるように調整したテストサンプルを作成し、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、4.2重量%、4.3重量%、4.3重量%となり、良好な結果であった。腐植物質の様な有機物についても濃度の測定ができることが確認された。
(Example 6)
Using the same equipment, reference plate , and measuring plate as in Example 1, humus (organic matter in soil) was analyzed.
(Known concentration)
As humus, soil humus was extracted with a humus extract manufactured by the Joint Company Soil Development Promotion Organization to prepare a solution containing humus. The solution was adjusted to concentrations 1, 5, 8 and 15% by weight.
(First imaging and preparation of calibration curve for density measurement)
A solution having a known concentration, a reference coloring portion provided on the reference plate, and a measurement portion provided on the measurement plate were imaged by an imaging means to prepare a calibration curve for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.95, which was a good result. At this time, B, which had a high correlation, was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted so as to have a concentration of 2.5% by weight as humus, and this was used as a test sample having an unknown concentration. After measuring with the concentration measuring system of the present invention and following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by carrying out the same measurement three times were 2.6% by weight, 2.7% by weight, and 2.6% by weight, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 4% by weight was prepared, measured by the concentration measuring system of the present invention, and the results were displayed. The measurement result of performing the same measurement three times was 4.2% by weight, 4.3% by weight, and 4.3% by weight, which were good results. It was confirmed that the concentration of organic matter such as humus can be measured.

(実施例7)
実施例1と同じ装置、基準を用い、カリウムについて分析を行った。測定には、白色の紙にカーボンブラック量として95%含む着色剤により着色を施したものを測定部として用いた。
(既知濃度)
Oとして、濃度30、50、100、200及び266mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(カリウム用)を規定量加えた。カリウムの場合、懸濁液となるため、測定板に黒色の前記測定部を備えた
(第一の撮像と濃度測定用検量線の作成)
既知濃度の溶液基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は0.98であり、良好な結果であった。この時、相関が高かったRを利用した。また、目視でも濃度毎の色の違いが矛盾無く確認できた。
(未知濃度の測定)
本発明の濃度測定システムの効果を検証するため、濃度100mg/Lとなるように溶液を調整し、これを未知濃度のテストサンプルとした。このテストサンプルに合同会社土づくり推進機構製発色液(カリウム用)を規定量加えた。この懸濁液について、本発明の濃度測定システムにより測定し図4に示したフローチャートに従った後、濃度の結果を表示した。同様の測定を3回実施した測定結果は、それぞれ105mg/L、110mg/L、107mg/Lとなり、良好な結果であった。同様に濃度200mg/Lとなるように調整したテストサンプルを作成し、同様に発色させた後、本発明の濃度測定システムにより測定し結果を表示した。同様の測定を3回実施した測定結果は、190mg/L、207mg/L、206mg/Lとなり、良好な結果であった。
(Example 7)
Potassium was analyzed using the same equipment and reference plate as in Example 1. As the measuring plate , a white paper colored with a colorant containing 95% of carbon black was used as the measuring unit.
(Known concentration)
As K 2 O, it was adjusted solution to a concentration 30,50,100,200 and 266 mg / L. A specified amount of coloring liquid (for potassium) manufactured by GK Soil Making Promotion Organization was added to this solution. In the case of potassium, since it is a suspension, the measuring plate is provided with the black measuring section.
(First imaging and preparation of calibration curve for density measurement)
The solution of known concentration, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit, a provided in the metering plates to prepare a concentration determination calibration curve. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.98, which was a good result. At this time, R, which had a high correlation, was used. In addition, the difference in color for each density could be confirmed visually without any contradiction.
(Measurement of unknown concentration)
In order to verify the effect of the concentration measurement system of the present invention, the solution was adjusted to a concentration of 100 mg / L, and this was used as a test sample having an unknown concentration. A specified amount of coloring liquid (for potassium) manufactured by GK Soil Making Promotion Organization was added to this test sample. This suspension was measured by the concentration measuring system of the present invention, and after following the flowchart shown in FIG. 4, the concentration result was displayed. The measurement results obtained by carrying out the same measurement three times were 105 mg / L, 110 mg / L, and 107 mg / L, respectively, which were good results. Similarly, a test sample adjusted to have a concentration of 200 mg / L was prepared, the color was developed in the same manner, and then the measurement was performed by the concentration measurement system of the present invention and the result was displayed. The measurement results obtained by performing the same measurement three times were 190 mg / L, 207 mg / L, and 206 mg / L, which were good results.

(実施例8)
本発明の濃度測定システムを土壌分析器として利用した。
実施例1と同じ装置、基準、測定を用いた。ナスを3ヶ月間にわたり栽培した土壌(黒ボク土)とナスを栽培する前に採取した同圃場の土壌をそれぞれ2g採取し、pH4.8の抽出液(合同会社土づくり推進機構製)を18mL加え5分間撹拌し、土壌から養分を抽出した。栽培後土壌から得られた抽出液をろ紙によりろ過後、これを光学セルに分注し、発色剤として、硝酸態窒素用、リン用、マグネシウム用、カリウム用、マンガン用、カルシウム用(いずれも合同会社土づくり推進機構製発色液)を規定量加え、発色させた。腐植物質については、実施例7と同様の抽出液を用い、同じ土壌から抽出した。これを本発明の濃度測定システムにより測定した。測定結果の一部を図8に示す。土壌からの抽出物であるため、生産者に分かりやすいように濃度の単位をmg/100gに変更した。測定は1回の撮像で完了した。測定結果は、硝酸態窒素13mg/100g土壌、リン酸16mg/100g土壌、カリウム68mg/100g土壌、カルシウム345mg/100g土壌、マグネシウム1mg/100g土壌、マンガン25mg/100g土壌及び腐植率0.9重量%を得た。腐植物質の濃度を除いたこれらの結果は、栽培前の土壌に対し、5%〜20%の低下を示し、栽培されたナスに養分の一部が吸収されたことが伺えた。腐植率については、0.9wt%であり、変化は確認されなかった。この結果から、本発明の濃度測定システムは、土壌分析器として利用できることが確認された。
(Example 8)
The concentration measurement system of the present invention was used as a soil analyzer.
The same equipment, reference plate , and measuring plate as in Example 1 were used. 2 g of each of the soil in which eggplants were cultivated for 3 months (Andosols) and the soil in the same field collected before cultivating eggplants were collected, and 18 mL of an extract of pH 4.8 (manufactured by the Joint Company Soil Making Promotion Organization) was collected. The mixture was stirred for an additional 5 minutes to extract nutrients from the soil. After cultivating, the extract obtained from the soil is filtered through a filter paper and then dispensed into an optical cell, which is used as a coloring agent for nitrate nitrogen, phosphorus, magnesium, potassium, manganese, and calcium (all). A specified amount of color-developing liquid manufactured by the Joint Company Soil Making Promotion Organization) was added to develop the color. The humus was extracted from the same soil using the same extract as in Example 7. This was measured by the concentration measuring system of the present invention. A part of the measurement result is shown in FIG. Since it is an extract from soil, the unit of concentration was changed to mg / 100g so that the producer could easily understand it. The measurement was completed with one imaging. The measurement results were nitrate nitrogen 13 mg / 100 g soil, phosphoric acid 16 mg / 100 g soil, potassium 68 mg / 100 g soil, calcium 345 mg / 100 g soil, magnesium 1 mg / 100 g soil, manganese 25 mg / 100 g soil and humus rate 0.9% by weight. Got These results, excluding the concentration of humus, showed a 5% to 20% decrease in the soil before cultivation, suggesting that some of the nutrients were absorbed by the cultivated eggplant. The humus rate was 0.9 wt%, and no change was confirmed. From this result, it was confirmed that the concentration measuring system of the present invention can be used as a soil analyzer.

以上、実施例1から8により、本発明の濃度測定システムにより、可視域において濃度とRBGで表すことができる色情報に相関がある無機物及び有機物については、その濃度を簡便に測定できることが示された。また、カリウムのように、懸濁液についても本発明の濃度測定システムで用いられる測定部を備える測定板を用いることにより、効果的に濃度が測定できることが示された。 As described above, Examples 1 to 8 show that the concentration measurement system of the present invention can easily measure the concentration of inorganic substances and organic substances having a correlation between the concentration and the color information that can be expressed by RBG in the visible region. It was. It was also shown that, like potassium, the concentration of a suspension can be effectively measured by using a measuring plate provided with a measuring unit used in the concentration measuring system of the present invention.

(実施例9)リコピンの分析
野菜中の有効成分であるリコピンを分析するため、トマトに含まれるリコピンの濃度測定効果を検証した。リコピンの濃度測定用検量線を作成し、トマトから抽出したリコピンの濃度を本発明の濃度測定システムにより測定した。リコピンの既存濃度は、試薬として購入したリコピンを所定の濃度に希釈し、これを高速液体クロマトグラフィーにより決定し、それぞれの濃度毎に準備した溶液を濃度測定システムの手順により測定、検量線を作成した。栽培された小玉トマト(播種4月、収穫9月)10個をミキサーにより砕き、ジエチルエーテルとメタノールの混合抽出液により、リコピンを抽出した。抽出されたリコピンの濃度を本発明の濃度測定システムにより測定したところ10mg/100gであった。高速液体クロマトグラフィーで測定した結果は、10.3mg/100gであったため、良い結果が得られたと判断された。野菜中に含まれる養分について、測定できることが確認された。
(Example 9) Analysis of lycopene In order to analyze lycopene, which is an active ingredient in vegetables, the effect of measuring the concentration of lycopene contained in tomato was verified. A calibration curve for measuring the concentration of lycopene was prepared, and the concentration of lycopene extracted from tomato was measured by the concentration measuring system of the present invention. The existing concentration of lycopene is determined by diluting lycopene purchased as a reagent to a predetermined concentration, determining this by high performance liquid chromatography, measuring the solution prepared for each concentration by the procedure of the concentration measurement system, and creating a calibration curve. did. Ten cultivated small tomatoes (sown April, harvest September) were crushed with a mixer, and lycopene was extracted with a mixed extract of diethyl ether and methanol. The concentration of the extracted lycopene was measured by the concentration measuring system of the present invention and found to be 10 mg / 100 g. The result measured by high performance liquid chromatography was 10.3 mg / 100 g, so it was judged that good results were obtained. It was confirmed that the nutrients contained in vegetables can be measured.

(実施例10)微生物試験
特許第5252737号に記載の除菌率測定方法を利用するため、微生物の調整を本発明の濃度測定システムにより実施した。微生物は、Escherichia coli(大腸菌)、Staphylococcus aureus(黄色ブドウ球菌)を用い、濃度として1.2×10個/mL及び2.4×10個/mLとなるように、波長632nmにおける吸光度がそれぞれ0.3及び0.6となる溶液を調整した。この波長632nmの吸光度は、紫外可視分光光度計を用いて測定した。この時の溶液を本発明の濃度測定システムにより測定し、検量線を作成した。一方で、大腸菌及び黄色ブドウ球菌をそれぞれ1×10個/mL調整するために溶液を調整し、本発明の濃度測定システムにより濃度を確認した。このとき表示された濃度は、1.05個/mLであった。この溶液をシャーレ上においた標準寒天培地に塗布し微生物数を計測したところ、0.9〜1.2×10個/mLの大腸菌及び黄色ブドウ球菌を確認した。この結果は微生物試験として良好な結果となった。この結果から、本発明の濃度測定装置で微生物の調整ができることが確認された。
(Example 10) Microorganism test In order to utilize the method for measuring the sterilization rate described in Japanese Patent No. 5252737, the adjustment of microorganisms was carried out by the concentration measurement system of the present invention. As the microorganism, Escherichia coli (Escherichia coli) and Staphylococcus aureus (Staphylococcus aureus) are used, and the absorbance at a wavelength of 632 nm is 1.2 × 10 5 / mL and 2.4 × 10 5 / mL. Solutions were prepared to be 0.3 and 0.6, respectively. The absorbance at a wavelength of 632 nm was measured using an ultraviolet-visible spectrophotometer. The solution at this time was measured by the concentration measuring system of the present invention, and a calibration curve was prepared. On the other hand, the solution was adjusted to adjust 1 × 10 5 cells / mL of Escherichia coli and Staphylococcus aureus, respectively, and the concentration was confirmed by the concentration measurement system of the present invention. The concentration displayed at this time was 1.05 5 pieces / mL. When this solution was applied to a standard agar medium placed on a petri dish and the number of microorganisms was measured, 0.9 to 1.2 × 10 5 cells / mL of Escherichia coli and Staphylococcus aureus were confirmed. This result was a good result as a microbial test. From this result, it was confirmed that the concentration measuring device of the present invention can adjust microorganisms.

(比較例1)
実施例1と同じ装置、基準、を用い、硝酸態窒素について分析を行った。この時、測定は置かなかった。
(既知濃度)
硝酸態窒素として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、実施例1で測定板があった部分(この比較例では、前述のように測定板を置いていない)を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は最も高いGにおいても0.30であり、十分な相関が確認されなかった。測定がないことによりセル後方が画像として処理されたことが原因と考えられた。
(Comparative Example 1)
Nitrate nitrogen was analyzed using the same equipment and reference plate as in Example 1. At this time, the measuring plate was not placed.
(Known concentration)
The solution was adjusted to have concentrations of 10, 15, 20, 30 and 50 mg / L as nitrate nitrogen. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate (in this comparative example, placing non measurement plate as described above) there was partial measurement plate in Example 1 imaging means A calibration curve for concentration measurement was created. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.30 even at the highest G, and sufficient correlation was not confirmed. It was considered that the cause was that the rear part of the cell was processed as an image due to the absence of the measuring plate.

(比較例2)
実施例1と同じ装置、基準、測定を用い、硝酸態窒素について分析を行った。測定と光学セルの距離を0mmとした。
(既知濃度)
硝酸態窒素として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。このときの相関係数は最も高いGにおいても0.60であり、良い相関は得られなかった。また、特に高い濃度において、実施例1とは異なる結果が得られた。これは、光学セルと測定が離間していないため、濃い溶液において、よりRGB値が共に低くなったことが原因と考えられた。
(Comparative Example 2)
Nitrate nitrogen was analyzed using the same equipment, reference plate , and measuring plate as in Example 1. The distance between the measuring plate and the optical cell was set to 0 mm.
(Known concentration)
The solution was adjusted to have concentrations of 10, 15, 20, 30 and 50 mg / L as nitrate nitrogen. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.60 even at the highest G, and no good correlation was obtained. Moreover, a result different from that of Example 1 was obtained especially at a high concentration. It was considered that this was because the optical cell and the measuring plate were not separated from each other, so that the RGB values were both lower in the concentrated solution.

(比較例3)
実施例1と同じ装置、基準、測定を用い、硝酸態窒素について分析を行った。測定と光学セルとの角度を−10度とし、測定を行った。
(既知濃度)
硝酸態窒素として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は最も高いGにおいても0.65であり、良い相関は得られなかった。特に低い濃度において、実施例1とは異なる結果が得られた。これは、測定の焦点のズレや色情報のバラツキが原因になったと考えられた。
(Comparative Example 3)
Nitrate nitrogen was analyzed using the same equipment, reference plate , and measuring plate as in Example 1. The measurement was performed with the angle between the measuring plate and the optical cell being −10 degrees.
(Known concentration)
The solution was adjusted to have concentrations of 10, 15, 20, 30 and 50 mg / L as nitrate nitrogen. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.65 even at the highest G, and no good correlation was obtained. Results different from those of Example 1 were obtained, especially at low concentrations. It was considered that this was caused by the deviation of the focal point of the measuring plate and the variation of the color information.

(比較例4)
実施例1と同じ装置、基準、測定を用い、硝酸態窒素について分析を行った。撮像手段と光源と光源の光軸の中心の角度を140度とし、試験を行った。
(既知濃度)
硝酸態窒素として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は最も高いGにおいても0.52であり全体的にバラツキが大きくなった。これは、撮像時に光源からの光の影響が撮像手段に影響し、色情報のバラツキが原因になったと考えられた。
(Comparative Example 4)
Nitrate nitrogen was analyzed using the same equipment, reference plate , and measuring plate as in Example 1. The test was conducted with the angle between the imaging means, the light source, and the center of the optical axis of the light source set to 140 degrees.
(Known concentration)
The solution was adjusted to have concentrations of 10, 15, 20, 30 and 50 mg / L as nitrate nitrogen. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.52 even at the highest G, and the variation became large as a whole. It is considered that this is because the influence of the light from the light source affects the imaging means at the time of imaging, and the variation in color information is the cause.

(比較例5)
実施例1と同じ装置、基準、測定を用い、硝酸態窒素について分析を行った。光学セルの下面と固定治具との距離を3mmとした。
(既知濃度)
硝酸態窒素として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と基準板に備えられた基準着色部と、測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は最も高いGにおいても0.7であり、全体的にバラツキが大きくなった。これは、光学セルの下面と固定治具との距離を5mm以上としたところ、良好な結果が得られたことから、固定治具が光学セル下面に近いことが、このバラツキの原因と考えられた。
(Comparative Example 5)
Nitrate nitrogen was analyzed using the same equipment, reference plate , and measuring plate as in Example 1. The distance between the lower surface of the optical cell and the fixing jig was set to 3 mm.
(Known concentration)
The solution was adjusted to have concentrations of 10, 15, 20, 30 and 50 mg / L as nitrate nitrogen. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, a reference colored portion provided in the reference plate, imaged by the imaging means and the measuring unit provided, to measure plate, a calibration curve was prepared for concentration measurement. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.7 even at the highest G, and the variation became large as a whole. This is because good results were obtained when the distance between the lower surface of the optical cell and the fixing jig was 5 mm or more, and it is considered that the fact that the fixing jig is close to the lower surface of the optical cell is the cause of this variation. It was.

(比較例6)
実施例1と同じ装置、測定を用い、硝酸態窒素について分析を行った。光学セルの下面と固定治具との距離を3mmとした。この際、基準を用いなかった。
(既知濃度)
硝酸態窒素として、濃度10、15、20、30及び50mg/Lとなるように溶液を調整した。この溶液に合同会社土づくり推進機構製発色液(硝酸態窒素用)規定量加え、発色させた。
(第一の撮像と濃度測定用検量線の作成)
発色させた既知濃度の溶液と測定板に備えられた測定部と、を撮像手段により撮像し、濃度測定用検量線を作成した。この濃度測定用検量線の傾きから、既知濃度と基準濃度色情報の関係式を得た。この時の相関係数は最も高いGにおいても0.65であり、全体的にバラツキが大きくなった。実施例1との比較から、本発明で用いた基準を利用する事が測定の誤差を低減していることが示された。
(Comparative Example 6)
Nitrate nitrogen was analyzed using the same equipment and measuring plate as in Example 1. The distance between the lower surface of the optical cell and the fixing jig was set to 3 mm. At this time, the reference plate was not used.
(Known concentration)
The solution was adjusted to have concentrations of 10, 15, 20, 30 and 50 mg / L as nitrate nitrogen. A specified amount of color-developing liquid (for nitrate nitrogen) manufactured by GK Soil Making Promotion Organization was added to this solution to develop color.
(First imaging and preparation of calibration curve for density measurement)
A solution of known concentration that was developed, imaged a measurement unit provided in the measurement plate, the image pickup means, creating the concentration determination calibration curve. From the slope of the calibration curve for density measurement, the relational expression between the known density and the reference density color information was obtained. The correlation coefficient at this time was 0.65 even at the highest G, and the variation became large as a whole. From the comparison with Example 1, it was shown that the use of the reference plate used in the present invention reduced the measurement error.

1 濃度測定システム
2 光源
2−1 光源位置決め及び保持手段
3 光学セル
4 基準着色部
4A 基準
4B 測定
5 被測定物
6 筐体
固定治具
8 撮像装置
8A 撮像手段
41 指示記号
1 Concentration measurement system 2 Light source 2-1 Light source positioning and holding means 3 Optical cell 4 Reference coloring part 4A Reference plate 4B Measurement plate 5 Measured object 6 Housing 7 Fixing jig 8 Imaging device 8A Imaging means 41 Instruction symbol

本発明の濃度測定システムを利用すれば、未知濃度の物質の測定が容易になり、農業関連から食品関連業界でも利用範囲が広がる。 By using the concentration measurement system of the present invention, it becomes easy to measure substances of unknown concentration, and the range of use is expanded from agriculture-related to food-related industries.

Claims (4)

被測定物を収納して保持できる光路長1mm以上10mm以下で波長220nm以上800nm以下の光を透過する光学セルと、
前記光学セルを固定する固定治具と、
光源と、
撮像手段と、
前記光学セルに収納された前記被測定物より方の前記撮像手段から離れた位置又は前記被測定物より方の前記撮像手段に近づいた位置に置少なくとも2つの異なる基準着色部及び前記基準着色部の位置を示す指示記号を備える基準と、
前記光学セルに収納された被測定物より後方に離間して置かれ当該被測定物を介し光学セルに収納された前記被測定物と同時に前記撮像手段により画像として取得される測定部を備える測定板と、を具備し、
前記撮像手段で前記指示記号により位置を示された少なくとも2つの異なる前記基準着色部、前記測定部と、を画像として同時に取得し、
取得した前記画像を色情報として処理する画像処理手段と、前記色情報を基に濃度を演算する演算手段と、データ保存表示手段と、
具備する濃度測定システム。
An optical cell that can store and hold an object to be measured and that transmits light with an optical path length of 1 mm or more and 10 mm or less and a wavelength of 220 nm or more and 800 nm or less.
A fixing jig for fixing the optical cell and
Light source and
Imaging means and
Said position distant from the imaging means or the object to be measured from the lower side at least two location rather at a position close to the imaging means of different criteria colored portions and the upper side than the device under test accommodated in the optical cell A reference plate with an indicator symbol indicating the position of the reference colored part, and
Measuring with a measuring unit which is acquired as an image by simultaneously said image pickup means and said measured object stored in the optical cell through the are from the object to be measured housed in an optical cell positioned spaced rearwardly the object to be measured Equipped with a board,
At least two different reference colored portions and the measuring portion whose positions are indicated by the instruction symbols by the imaging means are simultaneously acquired as images .
An image processing means for processing the acquired image as color information, a calculation means for calculating the density based on the color information , a data storage display means, and the like.
Concentration measurement system equipped with.
前記基準板に備えられる前記基準着色部の第1の基準着色部が、前記色情報として第1の色情報を与えるためにカーボンブラックを0%以上50%未満含む着色剤を施した前記第1の基準着色部であり、前記撮像手段により測定される前記第1の基準着色部の前記第1の色情報を数値として255分割したとき
R(赤と記すこともある)で100以上255以下、
G(緑と記すこともある)で100以上255以下、
B(青と記すこともある)で100以上255以下とし、
前記基準板に備えられる前記基準着色部の第2の基準着色部が、第2の色情報を与えるためにカーボンブラックを50%以上95%未満含み且つ前記第1の色情報を与えるカーボンブラック含有量と比べて10%以上の含有量である着色剤を施した前記第2の基準着色部であり、前記撮像手段により測定される前記第2の基準着色部の前記第2の色情報を数値として255分割したとき
Rで1以上99以下、
Gで1以上99以下、
Bで1以上99以下
とし、
以上の色情報を利用する場合には、第3の色情報を与えるために用いられるカーボンブラック量は、前記第1の基準着色部及び第2の基準着色部に施すために用いたそれぞれのカーボンブラック量と比べて10%以上含有量に差がある着色剤を施した前記基準着色部である
請求項1に記載の濃度測定システム。
The first reference coloring portion of the reference coloring portion provided on the reference plate is subjected to a coloring agent containing 0% or more and less than 50% of carbon black in order to give the first color information as the color information. of a reference colored portion, when 255 dividing the first color information of the first reference colored portion measured as a numerical value by the image pickup means,
R (sometimes written as red) is 100 or more and 255 or less,
G (sometimes referred to as green) is 100 or more and 255 or less,
B (sometimes referred to as blue) is 100 or more and 255 or less.
A second reference color portions of the reference colored portion provided in said reference plate, a carbon black-containing giving and the first color information includes carbon black less than 95% to 50% in order to give the second color information a second reference colored portion subjected to the colorant is a content of 10% or more compared to the amount, number of the second color information of the second reference colored portion is measured by the image pickup means When divided into 255 as
R is 1 or more and 99 or less,
1 or more and 99 or less in G,
B is 1 or more and 99 or less
When three or more color information is used, the amount of carbon black used to give the third color information is the amount used to apply to the first reference coloring portion and the second reference coloring portion, respectively. This is the reference colored portion to which a colorant having a content difference of 10% or more from the amount of carbon black in the above is applied.
The concentration measuring system according to claim 1.
前記測定板に備えられる前記測定、前記測定部の色情報を与えるためにカーボンブラックを0%以上95%未満含む着色剤を施した前記測定部であり、前記撮像手段により測定される前記測定部の前記色情報を数値として255分割した場合、
Rで1以上255以下、
Gで1以上255以下、
Bで1以上255以下である
請求項1乃至2のいずれか1項に記載の濃度測定システム。
Wherein the measuring unit provided in the measurement plate, and said measuring part having been subjected to colorant including carbon black less than 95% 0% in order to provide color information of the measuring portion, which is measured by the image pickup means When the color information of the measuring unit is divided into 255 as numerical values,
R is 1 or more and 255 or less,
1 or more and 255 or less in G,
The concentration measurement system according to any one of claims 1 to 2, wherein B is 1 or more and 255 or less.
前記撮像手段が、少なくとも2つの異なる前記基準着色部、前記測定部と、を画像として同時に取得できるデジタルカメラ、CCDカメラ、画像取得機能を持つメディアタブレット端末のいずれかから選択される請求項1乃至3のいずれか1項に記載の濃度測定システム。 Claim 1 in which the imaging means is selected from any of a digital camera, a CCD camera, and a media tablet terminal having an image acquisition function capable of simultaneously acquiring at least two different reference coloring units and the measuring unit as images. The concentration measuring system according to any one of 3 to 3.
JP2016223004A 2016-11-16 2016-11-16 Concentration measurement system Active JP6876283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223004A JP6876283B2 (en) 2016-11-16 2016-11-16 Concentration measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223004A JP6876283B2 (en) 2016-11-16 2016-11-16 Concentration measurement system

Publications (2)

Publication Number Publication Date
JP2018080990A JP2018080990A (en) 2018-05-24
JP6876283B2 true JP6876283B2 (en) 2021-05-26

Family

ID=62198732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223004A Active JP6876283B2 (en) 2016-11-16 2016-11-16 Concentration measurement system

Country Status (1)

Country Link
JP (1) JP6876283B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025042A (en) * 2018-08-29 2020-03-10 주식회사 핏펫 Computer program and terminal providing urine test using colorimetric table
KR102094277B1 (en) * 2018-08-31 2020-03-27 계명대학교 산학협력단 System and method for measuring environmental pollutants or disease tracers using smart device
CN109085162A (en) * 2018-09-07 2018-12-25 东莞精准通检测认证股份有限公司 A kind of chlorine residue detection method
CN109342408B (en) * 2018-10-08 2020-11-17 辽宁科技大学 Industrial chemistry intelligent titration method and system based on image color information extraction
CN111060459A (en) * 2019-12-17 2020-04-24 佛山科学技术学院 Method for rapidly detecting reducing sugar and protein in food based on RGB color system
CN117074322B (en) * 2023-08-15 2024-03-15 浙江大学 Method for detecting components of extracting solution based on smart phone

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1240549B1 (en) * 1999-09-23 2005-06-29 QP Card AB Reference card
JP3637328B2 (en) * 2001-12-28 2005-04-13 柴田科学株式会社 Density determination colorimetric plate and density measuring apparatus provided with the same
US6787108B2 (en) * 2002-04-02 2004-09-07 Cmc Daymark Corporation Plural intrinsic expiration initiation application indicators
JP2004108976A (en) * 2002-09-19 2004-04-08 Namitekku:Kk Spittle aspect checking kit and lesion in mouse determination method
JP2004144672A (en) * 2002-10-25 2004-05-20 Advance Co Ltd Component analyzing method and component analyzer based on color development information
US8094195B2 (en) * 2006-12-28 2012-01-10 Flextronics International Usa, Inc. Digital camera calibration method
JP5538804B2 (en) * 2009-10-07 2014-07-02 カモ井加工紙株式会社 Photographic adhesive tape and method for producing the same
CN102472707B (en) * 2010-05-20 2014-03-12 松下电器产业株式会社 Drug solution determination device and drug solution determination method
JP3166049U (en) * 2010-12-03 2011-02-17 公益財団法人 ライオン歯科衛生研究所 Simple oral cleanliness test kit
JP5800234B2 (en) * 2012-03-13 2015-10-28 日本電信電話株式会社 Determination method of microalgae concentration
WO2014099629A1 (en) * 2012-12-21 2014-06-26 The Regents Of The University Of California Rapid blood testing platform for use with mobile electronic devices
US10365214B2 (en) * 2014-01-14 2019-07-30 The Regents Of The University Of California Method and device for detection and spatial mapping of mercury concentration in water samples

Also Published As

Publication number Publication date
JP2018080990A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6876283B2 (en) Concentration measurement system
Sharma et al. A review of methods to improve nitrogen use efficiency in agriculture
Muñoz-Huerta et al. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances
Yang et al. Seawater pH measurements in the field: A DIY photometer with 0.01 unit pH accuracy
Han et al. Estimating and mapping chlorophyll‐a concentration in Pensacola Bay, Florida using Landsat ETM+ data
Wiwart et al. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis
Barros et al. Digital image analysis for the colorimetric determination of aluminum, total iron, nitrite and soluble phosphorus in waters
Stevens et al. Development and testing of an IoT spectroscopic nutrient monitoring system for use in micro indoor smart hydroponics
Gu et al. Using multiple radiometric correction images to estimate leaf area index
Alikas et al. Satellite-based products for monitoring optically complex inland waters in support of EU Water Framework Directive
Dou et al. Field analysis free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and accuracy
Vieira et al. Use of thermal imaging to assess water status in citrus plants in greenhouses
CN205067321U (en) Fast pesticide residue detection instrument
Rodrigues et al. Estimating the optical properties of inorganic matter-dominated oligo-to-mesotrophic inland waters
Schaeffer et al. Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data
Wong et al. TSWIFT: tower spectrometer on wheels for investigating frequent timeseries for high-throughput phenotyping of vegetation physiology
Zeng et al. A low-cost digital colorimetry setup to investigate the relationship between water color and its chemical composition
Yakushev et al. Correlation dependences between crop reflection indices, grain yield and optical characteristics of wheat leaves at different nitrogen level and seeding density
CA3111201A1 (en) Compositions and methods for the assessment of soil quality
Ahmad et al. Current trends of analytical techniques for total alkalinity measurement in water samples: A Review
Bargrizan et al. Spectrophotometric measurement of the pH of soil extracts using a multiple indicator dye mixture
JP2016217741A (en) Apparatus and method for measuring concentration of dissolved component
Biswas et al. Simultaneous multi-analyte sensing using a 2D quad-beam diffraction smartphone imaging spectrometer
Amrita et al. Analysing the water quality parameters from traditional to modern methods in aquaculture
KR20170012999A (en) Test kit for analysis of nitrate nitrogen concentration in soils and its analysis method for detection using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6876283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6876283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250