JP2016217716A - Ultrasonic wave measuring device and ultrasonic wave measuring method - Google Patents

Ultrasonic wave measuring device and ultrasonic wave measuring method Download PDF

Info

Publication number
JP2016217716A
JP2016217716A JP2015098827A JP2015098827A JP2016217716A JP 2016217716 A JP2016217716 A JP 2016217716A JP 2015098827 A JP2015098827 A JP 2015098827A JP 2015098827 A JP2015098827 A JP 2015098827A JP 2016217716 A JP2016217716 A JP 2016217716A
Authority
JP
Japan
Prior art keywords
ultrasonic
medium
measurement object
acoustic
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015098827A
Other languages
Japanese (ja)
Other versions
JP6492950B2 (en
Inventor
優貴 上川
Yuki Kamikawa
優貴 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015098827A priority Critical patent/JP6492950B2/en
Publication of JP2016217716A publication Critical patent/JP2016217716A/en
Application granted granted Critical
Publication of JP6492950B2 publication Critical patent/JP6492950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten reverberation time of an ultrasonic wave 25 that is multiply reflected on a surface of an object 2 to be measured, and to accurately measure a reflection wave from inside the object 2 to be measured.SOLUTION: An ultrasonic wave measuring device comprises: a propagating medium 3 that is immersed in an acoustic medium 6, and comes into contact with a first front surface of an object 2 to be measured; an ultrasonic wave transmitting element 10a that transmits an ultrasonic wave reaching inside the object 2 to be measured via the acoustic medium 6 and the propagating medium 3; and an ultrasonic wave receiving element 10b that receives an ultrasonic wave 27 reflected inside the object 2 to be measured via the acoustic medium 6 and the propagating medium 3. An acoustic impedance (Z) of the propagating medium 3 is greater than an acoustic impedance (Z) of the acoustic medium 6, and smaller than an acoustic impedance (Z) of the objet 2 to be measured.SELECTED DRAWING: Figure 2

Description

本発明は、超音波測定装置及び超音波測定方法に関する。   The present invention relates to an ultrasonic measurement device and an ultrasonic measurement method.

従来から、超音波を用いた電池内部状態検出装置が提案されている(特許文献1参照)。特許文献1では、電池要素の一方の側より電池要素の内部に向けて超音波を入射し、電池要素の内部で反射してきた超音波を受信し、この受信信号に基づいて電池要素の内部に気泡が生じているか否かを検出している。   Conventionally, a battery internal state detection device using ultrasonic waves has been proposed (see Patent Document 1). In Patent Document 1, an ultrasonic wave is incident from one side of the battery element toward the inside of the battery element, and an ultrasonic wave reflected inside the battery element is received. Based on this received signal, the inside of the battery element is received. It is detected whether or not bubbles are generated.

特開2012−069267号公報JP 2012-069267 A

ところが、電池要素の一方の側の表面と超音波の発信プローブとの間で多重反射が起こる。この多重反射する超音波の残響時間が長くなると、測定対象物の内部からの反射波と重畳してしまい、電池要素の内部構造の観察を阻害する場合がある。   However, multiple reflection occurs between the surface on one side of the battery element and the ultrasonic wave transmission probe. If the reverberation time of this multiple-reflected ultrasonic wave becomes long, it may overlap with the reflected wave from the inside of the measurement object, which may obstruct the observation of the internal structure of the battery element.

本発明は、上記課題に鑑みてなされたものであり、測定対象物の表面で多重反射する超音波の残響時間を短くして、測定対象物の内部からの反射波を精度良く測定する超音波測定装置及び超音波測定方法を提供することを目的としている。   The present invention has been made in view of the above problems, and reduces the reverberation time of ultrasonic waves that are multiple-reflected on the surface of the measurement object, and accurately measures reflected waves from the inside of the measurement object. It aims at providing a measuring device and an ultrasonic measuring method.

本発明の一態様に係わる超音波測定装置は、音響媒質の中に浸けられ、且つ測定対象物の第1表面に接する伝搬媒質と、音響媒質及び伝搬媒質を介して、測定対象物の内部に到達する超音波を発信する超音波発信素子と、測定対象物の内部で反射された超音波を、音響媒質及び伝搬媒質を介して受信する超音波受信素子と、超音波受信素子が受信した超音波に基づいて、測定対象物の内部構造を検出する内部構造検出部を備える。伝搬媒質の音響インピーダンスは、音響媒質の音響インピーダンスよりも大きく且つ測定対象物の音響インピーダンスよりも小さい。   An ultrasonic measurement apparatus according to an aspect of the present invention is immersed in an acoustic medium and is in contact with the first surface of the measurement object, and the measurement object is placed inside the measurement object via the acoustic medium and the propagation medium. An ultrasonic transmission element that transmits an ultrasonic wave that reaches, an ultrasonic reception element that receives an ultrasonic wave reflected inside the measurement object via an acoustic medium and a propagation medium, and an ultrasonic wave that is received by the ultrasonic reception element An internal structure detection unit that detects the internal structure of the measurement object based on the sound wave is provided. The acoustic impedance of the propagation medium is larger than the acoustic impedance of the acoustic medium and smaller than the acoustic impedance of the measurement object.

超音波測定装置によれば、測定対象物の表面で多重反射する超音波の残響時間を短くして、測定対象物の内部からの反射波を精度良く測定することができる。   According to the ultrasonic measurement apparatus, it is possible to shorten the reverberation time of ultrasonic waves that are multiple-reflected on the surface of the measurement object, and to accurately measure the reflected wave from the inside of the measurement object.

図1は、実施形態に係わる超音波測定装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of an ultrasonic measurement apparatus according to the embodiment. 図2(a)は、図1の超音波測定装置における反射波24bの強度の時間変化を示すグラフであり、図2(b)は、図2(a)に示す反射波24bの様々な反射経路を示す模式図である。FIG. 2A is a graph showing the change over time of the intensity of the reflected wave 24b in the ultrasonic measurement apparatus of FIG. 1, and FIG. 2B is a graph showing various reflections of the reflected wave 24b shown in FIG. It is a schematic diagram which shows a path | route. 図3(a)は、伝搬媒質3を備えていない比較例における反射波の強度の時間変化を示すグラフであり、図3(b)は、図3(a)に示す反射波の様々な反射経路を示す模式図である。FIG. 3A is a graph showing the time change of the intensity of the reflected wave in the comparative example not including the propagation medium 3, and FIG. 3B is a graph showing various reflections of the reflected wave shown in FIG. It is a schematic diagram which shows a path | route. 図4(a)は、音響媒質X1、伝搬媒質X2、測定対象物X3、及び支持板X4の素材選択に係る実施例を示し、図4(b)は、各素材の音響インピーダンスの測定例を示す。FIG. 4A shows an embodiment relating to material selection of the acoustic medium X1, the propagation medium X2, the measurement object X3, and the support plate X4, and FIG. 4B shows an example of measuring the acoustic impedance of each material. Show. 図5(a)及び図5(b)は、測定対象物2の第1表面及び第2表面、及び測定対象物の内部に存在する欠陥(気泡9)のZ軸座標(z1、z2、z3)の算出手順を説明する図である。FIG. 5A and FIG. 5B show the Z-axis coordinates (z1, z2, z3) of the first surface and the second surface of the measuring object 2 and the defect (bubble 9) existing inside the measuring object. It is a figure explaining the calculation procedure of (). 図6は、測定対象物の一例としてのリチウムイオン二次電池セル51の構成を示す斜視図であり、図6(b)は、図6(a)のA−A切断面に沿った断面図である。FIG. 6 is a perspective view showing a configuration of a lithium ion secondary battery cell 51 as an example of an object to be measured, and FIG. 6B is a cross-sectional view taken along the line AA in FIG. It is.

以下、実施形態を図面に基づいて説明する。同一部材には同一符号を付して再度の説明を省略する。   Hereinafter, embodiments will be described with reference to the drawings. The same members are denoted by the same reference numerals and the description thereof is omitted.

図1を参照して、実施形態に係わる超音波測定装置の構成を説明する。超音波測定装置は、液体の音響媒質6の中に浸けられた測定対象物2の内部構造を観察する装置である。液体の音響媒質6は容器7の中に収容されている。超音波測定装置は、音響媒質6の中に浸けられた伝搬媒質3を備える。伝搬媒質3は、測定対象物2の第1表面(図1における上側の表面)に接している。   With reference to FIG. 1, the structure of the ultrasonic measurement apparatus concerning embodiment is demonstrated. The ultrasonic measurement apparatus is an apparatus for observing the internal structure of the measurement object 2 immersed in the liquid acoustic medium 6. The liquid acoustic medium 6 is accommodated in a container 7. The ultrasonic measurement apparatus includes a propagation medium 3 immersed in an acoustic medium 6. The propagation medium 3 is in contact with the first surface (the upper surface in FIG. 1) of the measurement object 2.

超音波測定装置は、超音波発信素子10aと、超音波受信素子10bとを更に備える。超音波発信素子10a及び超音波受信素子10bは、音響媒質6の中に浸けられている。超音波発信素子10aは、音響媒質6及び伝搬媒質3を介して、測定対象物2の内部に到達する超音波24aを発信する。超音波受信素子10bは、測定対象物2の内部で反射された超音波24bを、音響媒質6及び伝搬媒質3を介して受信する。超音波測定装置は、超音波受信素子10bにより受信された超音波24bにもとづいて、測定対象物2の内部構造を観察する。実施形態では、音波発信素子10a及び超音波受信素子10bが超音波プローブユニット10として一体化された例を示す。   The ultrasonic measurement apparatus further includes an ultrasonic transmission element 10a and an ultrasonic reception element 10b. The ultrasonic transmission element 10 a and the ultrasonic reception element 10 b are immersed in the acoustic medium 6. The ultrasonic transmission element 10 a transmits an ultrasonic wave 24 a that reaches the inside of the measurement object 2 through the acoustic medium 6 and the propagation medium 3. The ultrasonic receiving element 10 b receives the ultrasonic wave 24 b reflected inside the measurement object 2 through the acoustic medium 6 and the propagation medium 3. The ultrasonic measurement device observes the internal structure of the measurement object 2 based on the ultrasonic wave 24b received by the ultrasonic receiving element 10b. In the embodiment, an example in which the acoustic wave transmitting element 10 a and the ultrasonic receiving element 10 b are integrated as the ultrasonic probe unit 10 is shown.

なお、超音波受信素子10bが受信する超音波24bには、測定対象物2の内部で反射された超音波のみならず、音響媒質6、伝搬媒質3及び測定対象物2の様々な界面において反射された超音波が含まれる。超音波受信素子10bが受信する超音波24bを「反射波」と呼ぶ。反射波24bについて、図2及び図3を参照して後述する。   Note that the ultrasonic wave 24b received by the ultrasonic wave receiving element 10b is reflected not only at the ultrasonic wave reflected inside the measurement object 2, but also at various interfaces of the acoustic medium 6, the propagation medium 3, and the measurement object 2. Ultrasound was included. The ultrasonic wave 24b received by the ultrasonic wave receiving element 10b is referred to as “reflected wave”. The reflected wave 24b will be described later with reference to FIGS.

伝搬媒質3の音響インピーダンス(Z)は、式(1)に示すように、音響媒質6の音響インピーダンス(Z)よりも大きく且つ測定対象物2の音響インピーダンス(Z)よりも小さい。 The acoustic impedance (Z 2 ) of the propagation medium 3 is larger than the acoustic impedance (Z 1 ) of the acoustic medium 6 and smaller than the acoustic impedance (Z 3 ) of the measurement object 2 as shown in the equation (1).

<Z<Z ・・・(1) Z 1 <Z 2 <Z 3 (1)

音響媒質6の例として、水が挙げられる。伝搬媒質3の例として、ポリエチレンが挙げられる。測定対象物2には、非水溶性及び防水性を有するあらゆる電機部品が適合する。たとえば、リチウムイオン二次電池等の非水電解質二次電池、これらの二次電池を含む電気二重層キャパシタ、パッケージングされた半導体素子、プリント基板:PCB(電子回路基板を含む。)が、測定対象物2の例として挙げられる。リチウムイオン二次電池の具体的な構造性は、図6を参照して後述する。   An example of the acoustic medium 6 is water. An example of the propagation medium 3 is polyethylene. Any electric parts having water-insoluble and waterproof properties are suitable for the measurement object 2. For example, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, electric double layer capacitors including these secondary batteries, packaged semiconductor elements, and printed circuit boards: PCB (including electronic circuit boards) are measured. An example of the object 2 is given. The specific structure of the lithium ion secondary battery will be described later with reference to FIG.

実施形態において、超音波測定装置は、音響媒質6の中に浸けられ、且つ測定対象物2の第1表面に対向する第2表面(図1における下側の表面)に接する支持板4を更に備える。伝搬媒質3及び支持板4は、拘束治具8により、測定対象物2を加圧した状態で保持されている。支持板4は支持台5の上に配置されている。よって、容器7の底面と支持板4との間に音響媒質6が介在している。   In the embodiment, the ultrasonic measurement apparatus further includes a support plate 4 that is immersed in the acoustic medium 6 and that contacts the second surface (the lower surface in FIG. 1) that faces the first surface of the measurement object 2. Prepare. The propagation medium 3 and the support plate 4 are held in a state where the measurement object 2 is pressurized by a restraining jig 8. The support plate 4 is disposed on the support base 5. Therefore, the acoustic medium 6 is interposed between the bottom surface of the container 7 and the support plate 4.

なお、支持板4は、伝搬媒質3と共に測定対象物2を挟み、加圧することが出来れば良い。さらに、支持板4の音響インピーダンス(Z)は、測定対象物2の音響インピーダンス(Z)よりも小さい。よって、支持板4の特性を、式(1)と纏めると、式(2)として表すことができる。たとえば、支持板4の例として、伝搬媒質3と同じ材質、ポリエチレンが挙げられる。なお、支持板4の音響インピーダンス(Z)はできるだけ小さいことが望ましい。これにより、支持板4と測定対象物2の界面における超音波の反射率を高めることが出来るので、反射波26を鮮明に検出することができる。 The support plate 4 only needs to sandwich and pressurize the measurement object 2 together with the propagation medium 3. Furthermore, the acoustic impedance (Z 4 ) of the support plate 4 is smaller than the acoustic impedance (Z 3 ) of the measurement object 2. Therefore, the characteristics of the support plate 4 can be expressed as Formula (2) when summarized with Formula (1). For example, as an example of the support plate 4, the same material as the propagation medium 3, polyethylene, can be cited. The acoustic impedance (Z 4 ) of the support plate 4 is desirably as small as possible. Thereby, since the reflectance of the ultrasonic wave in the interface of the support plate 4 and the measuring object 2 can be raised, the reflected wave 26 can be detected clearly.

<Z<Z>Z ・・・(2) Z 1 <Z 2 <Z 3 > Z 4 (2)

図1に示すように、超音波プローブユニット10は、測定対象物2の第1表面の側に配置され、Z軸移動機構11、XY軸移動機構12を介して、基台13に機械的に接続されている。キーボード及びマウスなどの入力装置15には、超音波24aの発信周波数、周波数可変範囲、発信開始、等のユーザからの指示情報の入力を受け付ける。入力装置15が受け付けた指示情報は、送信波周波数可変装置16に転送され、送信波周波数可変装置16は、超音波プローブユニット10内の超音波発信素子10aを駆動する。超音波発信素子10aから発信された超音波24aは、伝搬媒質3、測定対象物2、或いは支持板4により反射されて反射波24bとなり、超音波プローブユニット10内の超音波受信素子10bにより検出される。検出された反射波24bの強度信号は、超音波パルサレシーバ17により電圧信号に変換され、データ収集装置20に転送される。   As shown in FIG. 1, the ultrasonic probe unit 10 is disposed on the first surface side of the measurement object 2, and is mechanically attached to the base 13 via the Z-axis moving mechanism 11 and the XY-axis moving mechanism 12. It is connected. The input device 15 such as a keyboard and a mouse receives input of instruction information from the user such as a transmission frequency of the ultrasonic wave 24a, a variable frequency range, transmission start, and the like. The instruction information received by the input device 15 is transferred to the transmission wave frequency variable device 16, and the transmission wave frequency variable device 16 drives the ultrasonic transmission element 10 a in the ultrasonic probe unit 10. The ultrasonic wave 24 a transmitted from the ultrasonic transmission element 10 a is reflected by the propagation medium 3, the measurement object 2, or the support plate 4 to become a reflected wave 24 b and is detected by the ultrasonic reception element 10 b in the ultrasonic probe unit 10. Is done. The detected intensity signal of the reflected wave 24 b is converted into a voltage signal by the ultrasonic pulsar receiver 17 and transferred to the data collection device 20.

一方、センサートラバースコントローラ23は、超音波(24a、24b)の発信及び受信と同時に、XY軸移動機構12を制御する。これにより、超音波プローブユニット10は、測定対象物2の第1表面に沿って第1表面の上方を走査しながら、超音波の送受信を行うことができる。超音波プローブユニット10の位置情報は、XY軸移動機構12からデータ収集装置20へ転送される。データ収集装置20は、超音波パルサレシーバ17からの電圧信号と、超音波プローブユニット10の位置情報とを関連づけた上で記憶する。データ処理装置21は、超音波パルサレシーバ17からの電圧信号(すなわち超音波受信素子10bで検出された反射波24bの強度)と、超音波プローブユニット10の位置情報とを処理して、測定対象物2の内部に存在する気泡などの内部構造を検出し、検出した内部構造を示す情報を、モニター22に表示させる。モニター22への表示例は、図2(a)及び図3(a)に示す。なお、以下の記載においてはデータ処理装置21は、超音波受信素子10bで検出された反射波24bにもとづいて測定対象物2の内部に存在する気泡(空隙)を検出するものとして記載するが、例えば測定対象物2の内部に存在する特定の異物等、反射波24bに基づいて検出できる内部構造であれば、検出対象は適宜変更可能である。   On the other hand, the sensor traverse controller 23 controls the XY axis moving mechanism 12 simultaneously with transmission and reception of ultrasonic waves (24a, 24b). Thereby, the ultrasonic probe unit 10 can perform transmission / reception of ultrasonic waves while scanning above the first surface along the first surface of the measurement object 2. The position information of the ultrasonic probe unit 10 is transferred from the XY axis moving mechanism 12 to the data collection device 20. The data collection device 20 stores the voltage signal from the ultrasonic pulsar receiver 17 in association with the positional information of the ultrasonic probe unit 10. The data processing device 21 processes the voltage signal from the ultrasonic pulsar receiver 17 (that is, the intensity of the reflected wave 24b detected by the ultrasonic receiving element 10b) and the position information of the ultrasonic probe unit 10, and measures the measurement target. An internal structure such as bubbles existing inside the object 2 is detected, and information indicating the detected internal structure is displayed on the monitor 22. An example of display on the monitor 22 is shown in FIGS. 2 (a) and 3 (a). In the following description, the data processing device 21 is described as detecting bubbles (voids) existing inside the measurement object 2 based on the reflected wave 24b detected by the ultrasonic receiving element 10b. For example, if the internal structure can be detected based on the reflected wave 24b, such as a specific foreign substance existing inside the measurement target 2, the detection target can be appropriately changed.

図3(a)は、伝搬媒質3を備えていない比較例における反射波の強度の時間変化を示すグラフであり、図3(b)は、図3(a)に示す反射波の様々な反射経路を示す模式図である。   FIG. 3A is a graph showing the time change of the intensity of the reflected wave in the comparative example not including the propagation medium 3, and FIG. 3B is a graph showing various reflections of the reflected wave shown in FIG. It is a schematic diagram which shows a path | route.

超音波プローブユニット10から射出された超音波24aの一部は、音響媒質6と測定対象物2の界面(測定対象物2の第1表面)において反射して反射波25となり、超音波24aの残りは、測定対象物2の第1表面を透過する。   A part of the ultrasonic wave 24 a emitted from the ultrasonic probe unit 10 is reflected at the interface between the acoustic medium 6 and the measurement object 2 (the first surface of the measurement object 2) to become a reflected wave 25, and the ultrasonic wave 24 a The remainder passes through the first surface of the measurement object 2.

測定対象物2の第1表面を透過した超音波24aの一部は、測定対象物2の内部にある気泡9において反射して、反射波27となる。測定対象物2の第1表面を透過した超音波24aの他の一部は、測定対象物2の第2表面において反射して、反射波26となる。   A part of the ultrasonic wave 24 a that has passed through the first surface of the measurement object 2 is reflected by the bubbles 9 inside the measurement object 2 and becomes a reflected wave 27. Another part of the ultrasonic wave 24 a that has passed through the first surface of the measurement object 2 is reflected on the second surface of the measurement object 2 to become a reflected wave 26.

反射波25は、音響媒質6と測定対象物2との界面と、超音波プローブユニット10との間で、多重反射を起こす。図3(a)に示すように、多重反射による第1回目の反射波25aが超音波プローブユニット10に検出された後、反射波25は徐々に弱くなりながら、繰り返し、超音波プローブユニット10に検出される。   The reflected wave 25 causes multiple reflections between the interface between the acoustic medium 6 and the measurement object 2 and the ultrasonic probe unit 10. As shown in FIG. 3A, after the first reflected wave 25a due to multiple reflection is detected by the ultrasonic probe unit 10, the reflected wave 25 is gradually weakened while being repeatedly weakened to the ultrasonic probe unit 10. Detected.

第1回目の反射波25aから反射波25が検出されなくなるまでの残響時間内に、気泡9における反射波27が超音波プローブユニット10に到達してしまう。よって、反射波27は、多重反射する超音波25の残響と重畳してしまうため、超音波プローブユニット10は気泡9における反射波27を鮮明に検出することが難しい。   The reflected wave 27 in the bubble 9 reaches the ultrasonic probe unit 10 within the reverberation time until the reflected wave 25 is not detected from the first reflected wave 25a. Therefore, since the reflected wave 27 is superimposed on the reverberation of the multiple reflected ultrasonic wave 25, it is difficult for the ultrasonic probe unit 10 to clearly detect the reflected wave 27 in the bubble 9.

一方、図2(a)及び図2(b)は、図1に示した超音波プローブユニット10が検出する反射波24bの時間変化及び反射経路について説明する。超音波プローブユニット10から射出された超音波24aの一部は、音響媒質6と伝搬媒質3の界面において反射して反射波28となり、超音波24aの残りは、当該界面を透過する。反射波28は、音響媒質6と伝搬媒質3との界面と、超音波プローブユニット10との間で、多重反射を起こす。図2(a)に示すように、多重反射による第1回目の反射波28aが超音波プローブユニット10に検出されてから、反射波28は徐々に弱くなりながら、繰り返し検出される。第1回目の反射波28aから反射波28aが検出されなくなるまでの時間を残響時間(△t)と呼ぶ。 On the other hand, FIG. 2A and FIG. 2B explain the temporal change and reflection path of the reflected wave 24b detected by the ultrasonic probe unit 10 shown in FIG. A part of the ultrasonic wave 24a emitted from the ultrasonic probe unit 10 is reflected at the interface between the acoustic medium 6 and the propagation medium 3 to become a reflected wave 28, and the remainder of the ultrasonic wave 24a is transmitted through the interface. The reflected wave 28 causes multiple reflections between the interface between the acoustic medium 6 and the propagation medium 3 and the ultrasonic probe unit 10. As shown in FIG. 2A, after the first reflected wave 28a by multiple reflection is detected by the ultrasonic probe unit 10, the reflected wave 28 is repeatedly detected while gradually becoming weaker. The time from the first reflected wave 28a until the reflected wave 28a is no longer detected is called the reverberation time (Δt 2 ).

音響媒質6と伝搬媒質3の界面を透過した超音波24aの一部は、伝搬媒質3と測定対象物2との界面、即ち、測定対象物2の第1表面において反射して、反射波25となる。音響媒質6と伝搬媒質3の界面を透過した超音波24aの残りは、測定対象物2の第1表面を透過する。図2(a)に示すように、反射波25は、残響時間(△t)が経過した後に、超音波プローブユニット10に到達する。よって、測定対象物2の第1表面で反射する反射波25が、多重反射する超音波28の残響と重畳されることなく、両者は分離される。よって、超音波プローブユニット10は、測定対象物2の第1表面で反射する反射波25を鮮明に検出することができる。 A part of the ultrasonic wave 24 a transmitted through the interface between the acoustic medium 6 and the propagation medium 3 is reflected at the interface between the propagation medium 3 and the measurement object 2, that is, the first surface of the measurement object 2, and the reflected wave 25. It becomes. The remainder of the ultrasonic wave 24 a that has passed through the interface between the acoustic medium 6 and the propagation medium 3 passes through the first surface of the measurement object 2. As shown in FIG. 2A, the reflected wave 25 reaches the ultrasonic probe unit 10 after the reverberation time (Δt 2 ) has elapsed. Therefore, the reflected wave 25 reflected on the first surface of the measurement object 2 is separated from the reverberant wave of the ultrasonic wave 28 that is reflected multiple times without being superimposed. Therefore, the ultrasonic probe unit 10 can clearly detect the reflected wave 25 reflected from the first surface of the measurement object 2.

換言すれば、超音波の伝播方向における伝搬媒質3の厚みを、音響媒質6と伝搬媒質3の界面と超音波発信素子10aとの間で多重反射する超音波28の残響時間(△t)に、伝搬媒質3の内部での超音波の伝播速度を乗じた値よりも大きくする。これにより、多重反射波の残響時間(△t)が経過した後に、測定対象物2の第1表面からの反射波25が超音波受信素子10bに到達するので、多重反射波が、測定対象物2の第1表面からの反射波と重畳することを回避できる。 In other words, the reverberation time (Δt 2 ) of the ultrasonic wave 28 that multi-reflects the thickness of the propagation medium 3 in the propagation direction of the ultrasonic wave between the interface between the acoustic medium 6 and the propagation medium 3 and the ultrasonic wave transmitting element 10a. And a value multiplied by the propagation speed of the ultrasonic wave inside the propagation medium 3. Thereby, after the reverberation time (Δt 2 ) of the multiple reflected wave has elapsed, the reflected wave 25 from the first surface of the measurement object 2 reaches the ultrasonic receiving element 10b, and thus the multiple reflected wave is measured. It is possible to avoid overlapping with the reflected wave from the first surface of the object 2.

測定対象物2の第1表面を透過した超音波24aの一部は、測定対象物2の内部にある気泡9において反射して、反射波27となる。測定対象物2の第1表面を透過した超音波24aの他の一部は、測定対象物2の第2表面において反射して、反射波26となる。反射波27及び反射波26のいずれも、反射波25よりも後に超音波プローブユニット10に到達する。よって、反射波27及び反射波26は、多重反射する超音波28の残響に重畳されることなく、両者は分離される。よって、超音波プローブユニット10は、反射波27及び反射波26を鮮明に検出することができる。   A part of the ultrasonic wave 24 a that has passed through the first surface of the measurement object 2 is reflected by the bubbles 9 inside the measurement object 2 and becomes a reflected wave 27. Another part of the ultrasonic wave 24 a that has passed through the first surface of the measurement object 2 is reflected on the second surface of the measurement object 2 to become a reflected wave 26. Both the reflected wave 27 and the reflected wave 26 reach the ultrasonic probe unit 10 after the reflected wave 25. Therefore, the reflected wave 27 and the reflected wave 26 are separated from each other without being superimposed on the reverberation of the ultrasonic wave 28 that is multiply reflected. Therefore, the ultrasonic probe unit 10 can clearly detect the reflected wave 27 and the reflected wave 26.

図2(a)に示すように、測定対象物2の第1表面で反射する反射波25を検出してから、測定対象物2の第2表面で反射する反射波26を検出するまでの期間のほぼ全てが、測定可能期間(IA2)となる。超音波28の残響の影響を受けることなく、測定対象物の内部を広い範囲で精度良く観察することが出来る。   As shown in FIG. 2A, a period from when the reflected wave 25 reflected on the first surface of the measurement object 2 is detected until the reflected wave 26 reflected on the second surface of the measurement object 2 is detected. Almost all of this becomes the measurable period (IA2). Without being affected by the reverberation of the ultrasonic wave 28, it is possible to accurately observe the inside of the measurement object in a wide range.

一方、図3(a)に示すように、測定対象物2の第1表面で反射する反射波25を検出してから残響時間が経過するまでの間、多重反射の残響によって測定対象物2の内部を検出することは難しい。残響時間が経過してから測定対象物2の第2表面で反射する反射波26を検出するまでの期間が、比較例における測定可能期間(IA1)となる。つまり、測定対象物2の第1表面で反射する反射波25aを検出してから、測定対象物2の第2表面で反射する反射波26を検出するまでの期間のうち、残響時間の除いた期間が、測定可能期間(IA1)となる。   On the other hand, as shown in FIG. 3A, during the period from when the reflected wave 25 reflected on the first surface of the measurement object 2 is detected until the reverberation time elapses, the reflex of the measurement object 2 It is difficult to detect the inside. A period from when the reverberation time elapses until the reflected wave 26 reflected on the second surface of the measurement object 2 is detected is a measurable period (IA1) in the comparative example. That is, the reverberation time is excluded from the period from when the reflected wave 25a reflected on the first surface of the measurement object 2 is detected until the reflected wave 26 reflected on the second surface of the measurement object 2 is detected. The period becomes the measurable period (IA1).

ここで、伝搬媒質3の音響インピーダンスは、音響媒質6の音響インピーダンスよりも大きく且つ測定対象物2の音響インピーダンスよりも小さい。よって、図3(b)の音響媒質6と測定対象物2の界面の反射率は、図2(b)の伝搬媒質3と測定対象物2の界面の反射率、及び音響媒質6と伝搬媒質3の界面の反射率よりも大きくなる。すなわち、二つの物質の界面における音波の反射率は、二つの物質の音響インピーダンスの差が大きいほど大きくなる事から、伝搬媒質3と測定対象物2の界面の反射率、及び音響媒質6と伝搬媒質3の界面における反射率は、音響媒質6と測定対象物2との界面における反射率よりも小さい。このため、音響媒質6と測定対象物2の界面における反射波28の強度は高くなり、図3(a)の残響時間も長くなる。一方、図2(b)の伝搬媒質3と測定対象物2の界面の反射率、及び音響媒質6と伝搬媒質3の界面の反射率は比較的に低い。よって、音響媒質6と伝搬媒質3の界面における反射波28の強度、及び伝搬媒質3と測定対象物2の界面における反射波25の強度は何れも低く抑えられ、図2(a)の残響時間(△t)も短くなる。 Here, the acoustic impedance of the propagation medium 3 is larger than the acoustic impedance of the acoustic medium 6 and smaller than the acoustic impedance of the measurement object 2. Therefore, the reflectance at the interface between the acoustic medium 6 and the measurement object 2 in FIG. 3B is the reflectance at the interface between the propagation medium 3 and the measurement object 2 in FIG. 2B and the acoustic medium 6 and the propagation medium. It becomes larger than the reflectance of the interface of 3. That is, since the reflectance of the sound wave at the interface between the two substances increases as the difference in acoustic impedance between the two substances increases, the reflectance at the interface between the propagation medium 3 and the measurement object 2, and the propagation between the acoustic medium 6 and the object. The reflectance at the interface of the medium 3 is smaller than the reflectance at the interface between the acoustic medium 6 and the measurement object 2. For this reason, the intensity of the reflected wave 28 at the interface between the acoustic medium 6 and the measurement object 2 is increased, and the reverberation time in FIG. On the other hand, the reflectance at the interface between the propagation medium 3 and the measurement object 2 in FIG. 2B and the reflectance at the interface between the acoustic medium 6 and the propagation medium 3 are relatively low. Therefore, the intensity of the reflected wave 28 at the interface between the acoustic medium 6 and the propagation medium 3 and the intensity of the reflected wave 25 at the interface between the propagation medium 3 and the measurement object 2 are both kept low, and the reverberation time in FIG. (Δt 2 ) is also shortened.

本願の発明者は、伝搬媒質3を配置した実施形態、及び伝搬媒質3を配置していない比較例における、反射波の残響時間をそれぞれ次のように確認している。測定対象物2はラミネート型リチウムイオン二次電池であり、伝搬媒質3はポリエチレン板を用い、音響媒質6は水を用いた。ラミネート型リチウムイオン二次電池の音響インピーダンス(Z)は2950[kg/cm2s]とし、ポリエチレン板の音響インピーダンス(Z)は1750[kg/cm2s]とし、水の音響インピーダンス(Z)は1450[kg/cm2s]とした。超音波プローブユニット10から射出される超音波24aの周波数は、1[MHz]とした。この条件において、図3の比較例では、測定対象物2の第1表面で多重反射する反射波25の残響時間は4.7[μ秒]であった。一方、図2の実施形態では、測定対象物2の第1表面で多重反射する反射波25の残響時間は1.7[μ秒]であった。 The inventor of the present application confirms the reverberation time of the reflected wave in the embodiment in which the propagation medium 3 is disposed and the comparative example in which the propagation medium 3 is not disposed as follows. The measurement object 2 was a laminated lithium ion secondary battery, the propagation medium 3 was a polyethylene plate, and the acoustic medium 6 was water. The acoustic impedance (Z 3 ) of the laminated lithium ion secondary battery is 2950 [kg / cm 2 s], the acoustic impedance (Z 2 ) of the polyethylene plate is 1750 [kg / cm 2 s], and the acoustic impedance of water ( Z 1 ) was set to 1450 [kg / cm 2 s]. The frequency of the ultrasonic wave 24a emitted from the ultrasonic probe unit 10 was 1 [MHz]. Under this condition, in the comparative example of FIG. 3, the reverberation time of the reflected wave 25 multiple-reflected on the first surface of the measurement object 2 was 4.7 [μsec]. On the other hand, in the embodiment of FIG. 2, the reverberation time of the reflected wave 25 that is multiple-reflected on the first surface of the measurement object 2 is 1.7 [μsec].

図4(a)は、音響媒質X1、伝搬媒質X2、測定対象物X3、及び支持板X4の素材選択に係る実施例を示し、図4(b)は、各素材の音響インピーダンスの測定例を示す。音響媒質X1としてある素材(j)を選択した場合に、伝搬媒質X2には、音響媒質X1よりも音響インピーダンスが大きい素材(j+1〜k)が選択される。測定対象物X3は、伝搬媒質X2よりも音響インピーダンスが大きい素材(k+1〜N)となる。支持板X4は、音響媒質X1と同じ素材(j)が選択される。   FIG. 4A shows an embodiment relating to material selection of the acoustic medium X1, the propagation medium X2, the measurement object X3, and the support plate X4, and FIG. 4B shows an example of measuring the acoustic impedance of each material. Show. When a material (j) is selected as the acoustic medium X1, a material (j + 1 to k) having a larger acoustic impedance than the acoustic medium X1 is selected as the propagation medium X2. The measurement object X3 is a material (k + 1 to N) having a larger acoustic impedance than the propagation medium X2. The same material (j) as the acoustic medium X1 is selected for the support plate X4.

次に、図5(a)及び図5(b)を参照して、測定対象物2の第1表面及び第2表面、及び測定対象物の内部に存在する欠陥(気泡9)のZ軸座標(z1、z2、z3)の算出手順の一例を説明する。この算出手順は、図1のデータ処理装置21としてのマイクロコンピュータを用いて実現される。データ処理装置21は、算出手順を記述したコンピュータプログラムを実行し、コンピュータプログラムに記述された処理を実行する。これにより、Z軸座標(z1、z2、z3)の算出手順は、実現される。   Next, with reference to FIG. 5A and FIG. 5B, the Z-axis coordinates of the first surface and the second surface of the measuring object 2 and the defect (bubble 9) existing inside the measuring object. An example of the calculation procedure of (z1, z2, z3) will be described. This calculation procedure is realized by using a microcomputer as the data processing device 21 of FIG. The data processing device 21 executes a computer program describing the calculation procedure, and executes a process described in the computer program. Thereby, the calculation procedure of the Z-axis coordinates (z1, z2, z3) is realized.

先ず、ステップS01で、測定対象物2の内部における超音波の伝搬速度(v)を読み込む。ステップS03で、測定対象物2の第1表面における反射波25の判定しきい値(r1)を読み込む。ステップS05で、第1表面における反射波25の強度が判定しきい値(r1)を超える時刻(t1)を読み込む。なお、時刻(t1)とは、音響媒質6と伝搬媒質3との界面で反射した反射波を検出してからの経過時間を示す。ステップS07で、時刻(t1)から、第1表面のZ軸座標(z1)を算出する。ここでは、時刻(t1)をそのままZ軸座標(z1)として算出している。   First, in step S01, the propagation velocity (v) of the ultrasonic wave inside the measurement object 2 is read. In step S03, the determination threshold value (r1) of the reflected wave 25 on the first surface of the measuring object 2 is read. In step S05, the time (t1) at which the intensity of the reflected wave 25 on the first surface exceeds the determination threshold value (r1) is read. The time (t1) indicates the elapsed time since the reflected wave reflected at the interface between the acoustic medium 6 and the propagation medium 3 is detected. In step S07, the Z-axis coordinate (z1) of the first surface is calculated from time (t1). Here, the time (t1) is directly calculated as the Z-axis coordinate (z1).

ステップS09で、気泡9における反射波27の判定しきい値(r2)を読み込む。ステップS11で、気泡9における反射波27の強度が判定しきい値(r2)を超える時刻(t2)を読み込む。ステップS13で、時刻(t2)から気泡9のZ軸座標(z2)を算出する。たとえば、図5(a)のステップS13に示す式に従って算出すればよい。   In step S09, the determination threshold value (r2) of the reflected wave 27 in the bubble 9 is read. In step S11, the time (t2) at which the intensity of the reflected wave 27 in the bubble 9 exceeds the determination threshold value (r2) is read. In step S13, the Z-axis coordinate (z2) of the bubble 9 is calculated from the time (t2). For example, what is necessary is just to calculate according to the formula shown to step S13 of Fig.5 (a).

ステップS15で、第2表面における反射波26の判定しきい値(r3)を読み込む。ステップS17で、第2表面における反射波26の強度が判定しきい値(r3)を超える時刻(t3)を読み込む。ステップS19で、時刻(t3)から第2表面のZ軸座標(z3)を算出する。たとえば、図5(a)のステップS19に示す式に従って算出すればよい。   In step S15, the determination threshold value (r3) of the reflected wave 26 on the second surface is read. In step S17, the time (t3) at which the intensity of the reflected wave 26 on the second surface exceeds the determination threshold value (r3) is read. In step S19, the Z-axis coordinate (z3) of the second surface is calculated from time (t3). For example, what is necessary is just to calculate according to the formula shown to step S19 of Fig.5 (a).

図6を参照して、測定対象物の一例としてのリチウムイオン二次電池セル51の構成を説明する。リチウムイオン二次電池セル51は、実際に充放電反応が進行する略薄板状の電池要素52が、電池外装材であるラミネートフィルム53の内部に封止された構造を有する。詳しくは、高分子−金属複合ラミネートフィルム53を電池外装材として用いて、その周縁部を熱融着にて接合することにより、電池要素52を収納し密封している。ここで、高分子−金属複合ラミネートフィルムとしては、金属フィルムを高分子フィルム(樹脂フィルム)でサンドイッチした三層構造のものが一般的である。   With reference to FIG. 6, the structure of the lithium ion secondary battery cell 51 as an example of a measuring object is demonstrated. The lithium ion secondary battery cell 51 has a structure in which a substantially thin battery element 52 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 53 that is a battery exterior material. Specifically, the battery element 52 is housed and sealed by using the polymer-metal composite laminate film 53 as a battery outer packaging material and joining the peripheral portions thereof by heat fusion. Here, the polymer-metal composite laminate film generally has a three-layer structure in which a metal film is sandwiched between polymer films (resin films).

電池要素52は、薄板状(扁平状)の負極集電体54aの両面に同じく薄板状(扁平状)の負極活物質層54bを配置した負極54と、薄板状(扁平状)の電解質層55と、薄板状(扁平状)の正極集電体56aの両面に同じく薄板状(扁平状)の正極活物質層56bを配置した正極56とを積層した構成を有している。具体的には、1つの負極活物質層54bとこれに隣接する正極活物質層56bとが、電解質層としてのセパレータ55を介して対向するようにして、負極54、電解質層としてのセパレータ55、正極56をこの順に積層している。ここで、セパレータ55は微小な孔を多数有する膜状であるため、液体の電解質を含むこととなる。   The battery element 52 includes a negative electrode 54 in which a thin plate (flat) negative electrode active material layer 54b is disposed on both surfaces of a thin plate (flat) negative electrode current collector 54a, and a thin plate (flat) electrolyte layer 55. And a positive electrode 56 in which a thin plate (flat) positive electrode active material layer 56b is disposed on both surfaces of a thin plate (flat) positive electrode current collector 56a. Specifically, one negative electrode active material layer 54b and a positive electrode active material layer 56b adjacent thereto are opposed to each other with a separator 55 as an electrolyte layer interposed therebetween, so that the negative electrode 54, the separator 55 as an electrolyte layer, The positive electrode 56 is laminated in this order. Here, since the separator 55 has a film shape having a large number of minute holes, the separator 55 contains a liquid electrolyte.

これにより、隣接する負極54、電解質層としてのセパレータ55及び正極56は、一つの単電池層57(単電池)を構成する。従って、セル51は、単電池層57を積層することで、電気的に並列接続された構成を有する。負極集電体54a及び正極集電体56aには、各電極(正極及び負極)と導通する強電タブ58、59を取り付け、高分子−金属複合ラミネートフィルム3の端部に挟まれるように高分子−金属複合ラミネートフィルム3の外部に導出させている。   Thereby, the adjacent negative electrode 54, the separator 55 as an electrolyte layer, and the positive electrode 56 constitute one unit cell layer 57 (unit cell). Therefore, the cell 51 has a configuration in which the single battery layers 57 are stacked to be electrically connected in parallel. The negative electrode current collector 54 a and the positive electrode current collector 56 a are attached with high-voltage tabs 58 and 59 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and the polymer is sandwiched between the ends of the polymer-metal composite laminate film 3. -Derived outside the metal composite laminate film 3.

このように、測定対象物2が、音響インピーダンスが異なる複数の部材が積層された構造を有している場合、測定対象物2の音響インピーダンスは、次のようにして定める。超音波の入射する側の測定対象物2の表面に配置された部材の音響インピーダンスを、測定対象物2の音響インピーダンスとする。測定対象物2の表面に配置された部材が更に複数の層構造を有する場合は次のようにして定める。たとえば、高分子層と金属層が積層された高分子−金属複合ラミネートフィルム53が測定対象物2の表面に配置されている場合、高分子−金属複合ラミネートフィルム53の中で音響インピーダンスが比較的に高い層(たとえば、金属層)の音響インピーダンスを、測定対象物2の音響インピーダンスとして定める。   Thus, when the measuring object 2 has a structure in which a plurality of members having different acoustic impedances are stacked, the acoustic impedance of the measuring object 2 is determined as follows. The acoustic impedance of the member disposed on the surface of the measurement object 2 on the side on which the ultrasonic wave enters is defined as the acoustic impedance of the measurement object 2. When the member arranged on the surface of the measurement object 2 further has a plurality of layer structures, it is determined as follows. For example, when the polymer-metal composite laminate film 53 in which the polymer layer and the metal layer are laminated is disposed on the surface of the measurement object 2, the acoustic impedance is relatively high in the polymer-metal composite laminate film 53. The acoustic impedance of a higher layer (for example, a metal layer) is determined as the acoustic impedance of the measurement object 2.

以上説明したように、本発明の実施形態によれば、以下の作用効果が得られる。   As described above, according to the embodiment of the present invention, the following effects can be obtained.

測定対象物2の第1表面に接する伝搬媒質3を配置する。伝搬媒質3の音響インピーダンス(Z)は、音響媒質6の音響インピーダンス(Z)よりも大きく且つ測定対象物2の音響インピーダンス(Z)よりも小さい。これにより、伝搬媒質3と音響媒質6との界面で反射波28を発生させ、測定対象物2の第1表面における反射波25の強度を減少させる。これにより、測定対象物2の第1表面と超音波発信素子10aとの間で多重反射する超音波28の残響時間を短くすることができる。よって、多重反射する超音波28が、測定対象物2の内部からの反射波27と重畳することを回避して、測定対象物2の内部からの反射波27を精度良く測定することが出来る。 A propagation medium 3 in contact with the first surface of the measurement object 2 is disposed. The acoustic impedance (Z 2 ) of the propagation medium 3 is larger than the acoustic impedance (Z 1 ) of the acoustic medium 6 and smaller than the acoustic impedance (Z 3 ) of the measurement object 2. Thereby, the reflected wave 28 is generated at the interface between the propagation medium 3 and the acoustic medium 6, and the intensity of the reflected wave 25 on the first surface of the measurement object 2 is reduced. Thereby, the reverberation time of the ultrasonic wave 28 which is multiply reflected between the first surface of the measuring object 2 and the ultrasonic wave transmitting element 10a can be shortened. Therefore, it is possible to accurately measure the reflected wave 27 from the inside of the measuring object 2 by avoiding the superposed ultrasonic wave 28 from being superimposed on the reflected wave 27 from the inside of the measuring object 2.

超音波の伝播方向における伝搬媒質3の厚みは、音響媒質6と伝搬媒質3の界面と超音波発信素子10aとの間で多重反射する超音波28の残響時間(△t2)に、伝搬媒質3の内部での超音波の伝播速度を乗じた値よりも大きい。これにより、多重反射波の残響時間(△t2)が経過した後に、測定対象物2の内部からの反射波27が超音波受信素子10bに到達するので、多重反射波28が、測定対象物2の内部からの反射波27と重畳することを回避できる。   The thickness of the propagation medium 3 in the propagation direction of the ultrasonic wave is such that the propagation medium 3 is in the reverberation time (Δt2) of the ultrasonic wave 28 that is multiple-reflected between the interface between the acoustic medium 6 and the propagation medium 3 and the ultrasonic transmission element 10a. It is larger than the value multiplied by the propagation speed of the ultrasonic wave inside. Thus, after the reverberation time (Δt2) of the multiple reflected waves has elapsed, the reflected wave 27 from the inside of the measurement object 2 reaches the ultrasonic receiving element 10b, so that the multiple reflection wave 28 is converted into the measurement object 2. It is possible to avoid overlapping with the reflected wave 27 from inside.

超音波測定装置は、音響媒質6の中に浸けられ、且つ測定対象物2の第1表面に対向する第2表面に接する支持板4を更に備える。伝搬媒質3及び支持板4は、測定対象物2を加圧した状態で保持されている。これにより、測定対象物2の第1及び第2表面及び内部における凹凸を軽減して、超音波の斜め反射を軽減して、凹凸を内部欠陥として誤検出することを抑制する。   The ultrasonic measurement device further includes a support plate 4 that is immersed in the acoustic medium 6 and is in contact with a second surface that faces the first surface of the measurement object 2. The propagation medium 3 and the support plate 4 are held in a state where the measurement object 2 is pressurized. Thereby, the unevenness | corrugation in the 1st and 2nd surface and the inside of the measuring object 2 is reduced, the diagonal reflection of an ultrasonic wave is reduced, and it suppresses erroneously detecting an unevenness | corrugation as an internal defect.

支持板4の音響インピーダンス(Z)は、測定対象物2の音響インピーダンス(Z)よりも小さい。測定対象物2の第2表面での超音波の反射率を高めて、第2表面での反射波を鮮明に測定することができる。 The acoustic impedance (Z 4 ) of the support plate 4 is smaller than the acoustic impedance (Z 3 ) of the measurement object 2. The reflectance of the ultrasonic wave on the second surface of the measurement object 2 can be increased, and the reflected wave on the second surface can be measured clearly.

以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。   Although the contents of the present invention have been described with reference to the embodiments, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements can be made.

2 測定対象物
3 伝搬媒質
4 支持板
6 音響媒質
10a 超音波発信素子
10b 超音波受信素子
21 データ処理装置(内部構造検出部)
2 Measurement object 3 Propagation medium 4 Support plate 6 Acoustic medium 10a Ultrasonic transmission element 10b Ultrasonic reception element 21 Data processing device (internal structure detection unit)

Claims (5)

液体の音響媒質の中に浸けられた測定対象物の内部構造を観察する超音波測定装置であって、
前記音響媒質の中に浸けられ、且つ前記測定対象物の第1表面に接する伝搬媒質と、
前記音響媒質及び前記伝搬媒質を介して、前記測定対象物の内部に到達する超音波を発信する超音波発信素子と、
前記測定対象物の内部で反射された前記超音波を、前記音響媒質及び前記伝搬媒質を介して受信する超音波受信素子と、
前記超音波受信素子が受信した超音波に基づいて、前記測定対象物の内部構造を検出する内部構造検出部を備え、
前記伝搬媒質の音響インピーダンスは、前記音響媒質の音響インピーダンスよりも大きく且つ前記測定対象物の音響インピーダンスよりも小さい
ことを特徴とする超音波測定装置。
An ultrasonic measurement device for observing the internal structure of a measurement object immersed in a liquid acoustic medium,
A propagation medium immersed in the acoustic medium and in contact with the first surface of the measurement object;
An ultrasonic wave transmitting element that transmits ultrasonic waves that reach the inside of the measurement object via the acoustic medium and the propagation medium;
An ultrasonic receiving element for receiving the ultrasonic wave reflected inside the measurement object via the acoustic medium and the propagation medium;
An internal structure detector that detects an internal structure of the measurement object based on the ultrasonic wave received by the ultrasonic receiving element;
An ultrasonic measurement apparatus, wherein an acoustic impedance of the propagation medium is larger than an acoustic impedance of the acoustic medium and smaller than an acoustic impedance of the measurement object.
前記超音波の伝播方向における前記伝搬媒質の厚みは、前記音響媒質と前記伝搬媒質の界面と前記超音波発信素子との間で多重反射する前記超音波の残響時間に、前記伝搬媒質の内部での前記超音波の伝播速度を乗じた値よりも大きいことを特徴とする請求項1に記載の超音波測定装置。   The thickness of the propagation medium in the propagation direction of the ultrasonic wave is within the propagation medium during the reverberation time of the ultrasonic wave that is multiply reflected between the interface between the acoustic medium and the propagation medium and the ultrasonic transmission element. The ultrasonic measurement apparatus according to claim 1, wherein the ultrasonic measurement apparatus is larger than a value obtained by multiplying a propagation speed of the ultrasonic wave. 前記音響媒質の中に浸けられ、且つ前記測定対象物の第1表面に対向する第2表面に接する支持板を更に備え、
前記伝搬媒質及び前記支持板は、前記測定対象物を加圧した状態で保持されている
ことを特徴とする請求項1又は2に記載の超音波測定装置。
A support plate immersed in the acoustic medium and in contact with a second surface facing the first surface of the measurement object;
The ultrasonic measurement apparatus according to claim 1, wherein the propagation medium and the support plate are held in a state where the measurement object is pressurized.
前記支持板の音響インピーダンスは、前記測定対象物の音響インピーダンスよりも小さいことを特徴とする請求項3に記載の超音波測定装置。   The ultrasonic measurement apparatus according to claim 3, wherein an acoustic impedance of the support plate is smaller than an acoustic impedance of the measurement object. 液体の音響媒質の中に浸けられた測定対象物の内部構造を観察する超音波測定方法であって、
伝搬媒質を前記測定対象物の第1表面に接するように前記音響媒質の中に浸ける手順と、
前記音響媒質及び前記伝搬媒質を介して、前記測定対象物の内部に到達する超音波を発信する手順と、
前記測定対象物の内部で反射された前記超音波を、前記音響媒質及び前記伝搬媒質を介して受信する手順と、
前記超音波受信素子が受信した超音波に基づいて、前記測定対象物の内部構造を検出する手順とを備え、
前記伝搬媒質の音響インピーダンスは、前記音響媒質の音響インピーダンスよりも大きく且つ前記測定対象物の音響インピーダンスよりも小さい
ことを特徴とする超音波測定方法。
An ultrasonic measurement method for observing the internal structure of a measurement object immersed in a liquid acoustic medium,
Immersing the propagation medium in the acoustic medium so as to contact the first surface of the measurement object;
A procedure of transmitting ultrasonic waves that reach the inside of the measurement object via the acoustic medium and the propagation medium;
Receiving the ultrasonic wave reflected inside the measurement object via the acoustic medium and the propagation medium;
A procedure for detecting the internal structure of the measurement object based on the ultrasonic wave received by the ultrasonic receiving element;
An ultrasonic measurement method, wherein an acoustic impedance of the propagation medium is larger than an acoustic impedance of the acoustic medium and smaller than an acoustic impedance of the measurement object.
JP2015098827A 2015-05-14 2015-05-14 Ultrasonic measuring apparatus and ultrasonic measuring method Active JP6492950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098827A JP6492950B2 (en) 2015-05-14 2015-05-14 Ultrasonic measuring apparatus and ultrasonic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098827A JP6492950B2 (en) 2015-05-14 2015-05-14 Ultrasonic measuring apparatus and ultrasonic measuring method

Publications (2)

Publication Number Publication Date
JP2016217716A true JP2016217716A (en) 2016-12-22
JP6492950B2 JP6492950B2 (en) 2019-04-03

Family

ID=57578322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098827A Active JP6492950B2 (en) 2015-05-14 2015-05-14 Ultrasonic measuring apparatus and ultrasonic measuring method

Country Status (1)

Country Link
JP (1) JP6492950B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742753A (en) * 2017-09-08 2018-02-27 侬泰轲(昆山)检测科技有限公司 A kind of encapsulating structure of battery, method for packing and detection method
WO2022209974A1 (en) * 2021-03-29 2022-10-06 株式会社デンソー Electronic device and power module
CN107742753B (en) * 2017-09-08 2024-06-07 侬泰轲(昆山)检测科技有限公司 Battery packaging structure, battery packaging method and battery detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133664A (en) * 1995-11-07 1997-05-20 Toyota Motor Corp Ultrasonic flaw detection method
JPH09264884A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Ultrasonic probe
JPH10206403A (en) * 1997-01-22 1998-08-07 Hitachi Constr Mach Co Ltd Sample surface treating method and sample surface treating agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133664A (en) * 1995-11-07 1997-05-20 Toyota Motor Corp Ultrasonic flaw detection method
JPH09264884A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Ultrasonic probe
JPH10206403A (en) * 1997-01-22 1998-08-07 Hitachi Constr Mach Co Ltd Sample surface treating method and sample surface treating agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742753A (en) * 2017-09-08 2018-02-27 侬泰轲(昆山)检测科技有限公司 A kind of encapsulating structure of battery, method for packing and detection method
CN107742753B (en) * 2017-09-08 2024-06-07 侬泰轲(昆山)检测科技有限公司 Battery packaging structure, battery packaging method and battery detection method
WO2022209974A1 (en) * 2021-03-29 2022-10-06 株式会社デンソー Electronic device and power module
JP7452483B2 (en) 2021-03-29 2024-03-19 株式会社デンソー Electronic equipment and power modules

Also Published As

Publication number Publication date
JP6492950B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5293818B2 (en) Battery internal state detection device and method
JP2012069267A (en) Battery internal state detection device
JP5915182B2 (en) Aerial ultrasonic flaw detector
US20120103096A1 (en) Capacitive electromechanical transducer
JP2014042714A5 (en)
JP5366796B2 (en) Ultrasonic stress measurement method and apparatus
US20210194070A1 (en) Diagnosis of batteries
JP2017023554A (en) Ultrasonic device, ultrasonic module, electronic apparatus and ultrasonic measuring device
JP2020091286A (en) Distance-detection system for determining time-of-flight measurement and having reduced dead zone
US10722214B2 (en) Ultrasonic device, ultrasonic probe, and ultrasonic apparatus
JP2015021827A (en) Battery inspection method
JP6492950B2 (en) Ultrasonic measuring apparatus and ultrasonic measuring method
KR20130080084A (en) An polymer material based flexible phased array ultrasonic transducer for ultrasonic nondestructive testing of material with uneven surface
CN106914398A (en) Piezoelectric element, ultrasonic module and electronic equipment
JP5190979B2 (en) Two-dimensional hardness measuring device
JP2019117097A (en) Ultrasonic measurement apparatus and measurement method
TWM606450U (en) Ultrasonic fingerprint sensor
KR101877769B1 (en) Apparatus for hybrid multi-frequency ultrasound phased array imaging
EP2565642B1 (en) L-mode guided wave sensor
JP2009043469A (en) Manufacturing method of battery, and inspection method of battery
JP2010088591A (en) Ultrasonic probe and ultrasonograph using the same
JP2013126069A (en) Electromechanical conversion device, and manufacturing method therefor
JP2004347369A (en) Ultrasonic oscillator and ultrasonic flowmeter
TW200831902A (en) Probe card and inspection device of minute structure
JP5780347B2 (en) Biopsy device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6492950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250