JP2016216984A - Management method and management device for penetration of lining element into natural ground - Google Patents

Management method and management device for penetration of lining element into natural ground Download PDF

Info

Publication number
JP2016216984A
JP2016216984A JP2015101974A JP2015101974A JP2016216984A JP 2016216984 A JP2016216984 A JP 2016216984A JP 2015101974 A JP2015101974 A JP 2015101974A JP 2015101974 A JP2015101974 A JP 2015101974A JP 2016216984 A JP2016216984 A JP 2016216984A
Authority
JP
Japan
Prior art keywords
penetration
lining element
relational expression
actual
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015101974A
Other languages
Japanese (ja)
Other versions
JP6474313B2 (en
Inventor
智明 森山
Tomoaki Moriyama
智明 森山
満 清水
Mitsuru Shimizu
満 清水
桑原 清
Kiyoshi Kuwabara
清 桑原
石橋 忠良
Tadayoshi Ishibashi
忠良 石橋
八代 浩二
Koji Yashiro
浩二 八代
長尾 達児
Tatsuji Nagao
達児 長尾
基彰 栗栖
Motoaki Kurisu
基彰 栗栖
隆 岩瀬
Takashi Iwase
隆 岩瀬
齋藤 雅春
Masaharu Saito
雅春 齋藤
敬介 千葉
Keisuke Chiba
敬介 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEC Corp
JR East Consultants Co
East Japan Railway Co
Tekken Corp
Original Assignee
JTEC Corp
JR East Consultants Co
East Japan Railway Co
Tekken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEC Corp, JR East Consultants Co, East Japan Railway Co, Tekken Corp filed Critical JTEC Corp
Priority to JP2015101974A priority Critical patent/JP6474313B2/en
Publication of JP2016216984A publication Critical patent/JP2016216984A/en
Application granted granted Critical
Publication of JP6474313B2 publication Critical patent/JP6474313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a management method and a management device for penetration of a lining element into a natural ground that avoid an influence of an obstacle and others for certain and enable construction work to be performed safely and efficiently.SOLUTION: A lining element 1, having a cutting edge 2 for excavation connected at a tip, is penetrated into a natural ground 12 in each of penetration sections S, S, ..., S, ...Sformed by dividing a penetration route into a plurality of sections from a start side 10 toward an arrival side 11. The method includes the following steps for: setting a prediction-related equation for penetration force relative to a penetration distance from the start side 10, before penetrating the lining element 1 at each of the penetration sections; measuring the penetration distance of the lining element 1 and calculating actual penetration force at the penetration distance position, at a plurality of positions, during the penetration work at each of the penetration sections; calculating predicted penetration force by substituting the measured penetration distance into the prediction-related equation, during the penetration work at each of the penetration sections; and comparing the actual penetration force with the predicted penetration force. Penetration speed of the lining element 1 is varied to suit deviation of the actual penetration force from the predicted penetration force.SELECTED DRAWING: Figure 1

Description

この発明は、覆工エレメントの地山への貫入管理方法及び管理装置に関する。   The present invention relates to an intrusion management method and a management apparatus for a lining element.

鉄道線路や道路など車両走行路の下方の地盤に立体交差する地下構造物を構築するアンダーパス工法の1つとして、長尺の多数の鋼製覆工エレメントを地山に貫入して覆工を行うHEP&JES(High Speed Element Pull & Jointed Element Structure) 工法が知られている。    As one of the underpass construction methods for constructing underground structures that three-dimensionally intersect the ground below the vehicle driving path such as railway tracks and roads, many long steel lining elements are penetrated into the ground to cover the ground. HEP & JES (High Speed Element Pull & Jointed Element Structure) method to perform is known.

この工法は、例えば車両走行路下の地盤に構造物の断面を区画するように、長手方向に沿って特殊継手が設けられた長尺の鋼製覆工エレメントを継手どうしを嵌合させながら、けん引により並列させて地山に順次挿入し、覆工エレメント内部にコンクリートを打設して箱形ラーメン形式又は円形等の覆工壁を構築した後、その内方の地山を掘削して覆工壁を構造物躯体とする工法である(例えば、特許文献1,2参照)。   This method is, for example, to fit a long steel lining element provided with a special joint along the longitudinal direction so as to divide the cross section of the structure on the ground under the vehicle traveling path, After parallel insertion by towing and inserting into the ground, concrete is placed inside the lining element to construct a box-type ramen type or circular lining wall, and then the inner ground is excavated and covered. This is a construction method using a construction wall as a structural body (see, for example, Patent Documents 1 and 2).

覆工エレメントは先端に掘削のための刃口が連結され、機械掘削方式の場合は刃口に装備された掘削機により、刃口前方の地山を掘削しながら覆工エレメントが地山に貫入される。また人力掘削方式の場合には刃口での人力による掘削と覆工エレメント貫入とを交互に繰り返して、覆工エレメントが地山に貫入される。   The lining element has a cutting edge connected to the tip, and in the case of a mechanical excavation method, the lining element penetrates into the natural ground while excavating the natural ground in front of the cutting edge using the excavator installed at the cutting edge. Is done. In the case of a manual excavation method, excavation by manpower at the blade edge and penetration of the lining element are alternately repeated, and the lining element is penetrated into the ground.

覆工エレメントのけん引力は、けん引時の刃口前方の地山からの抵抗、刃口及び覆工エレメントの周面に生じる地山からの摩擦抵抗、既設覆工エレメントの継手と嵌合している継手どうしの摩擦抵抗(嵌合抵抗)の総和としての抵抗力である。したがって、けん引力は刃口前方の抵抗を初期値として、その後はけん引施工が進行するにつれて覆工エレメントの地山への貫入長さが長くなることから、貫入距離(けん引距離)と比例関係にあることが知られている。   The traction force of the lining element is determined by the resistance from the ground in front of the blade edge during towing, the friction resistance from the ground in the peripheral edge of the blade edge and the lining element, and the fitting of the existing lining element. It is the resistance as the sum of the frictional resistance (fitting resistance) between the joints. Therefore, the traction force is proportional to the penetration distance (towing distance), since the initial length is the resistance in front of the blade edge, and then the length of penetration of the lining element into the ground becomes longer as the traction construction progresses. It is known that there is.

一方、覆工エレメントのけん引施工において、覆工エレメントの貫入方向前方に支障物等が存在することがあり、これが刃口や覆工エレメントに干渉した場合には、支障物を地山に押し込むこととなるため、けん引力が急激に上昇する。   On the other hand, when towing the lining element, there may be obstacles in front of the lining element in the penetration direction. If this interferes with the blade edge or the lining element, the obstacle should be pushed into the ground. Therefore, the traction force increases rapidly.

以上のような背景のもと、覆工エレメントのけん引施工に際しては、従来、けん引ジャッキの油圧からけん引力を算出するとともに、また発進側に設けた距離計により発進側からの貫入距離及びけん引速度をそれぞれ計測し、これらを施工データとして中央管理室にてオペレータが確認しながら、施工を行っている。   Based on the background described above, when towing the lining element, conventionally, the traction force is calculated from the hydraulic pressure of the traction jack, and the penetration distance and the traction speed from the starting side by a distance meter provided on the starting side. Each is measured, and construction is performed while the operator confirms these as construction data in the central control room.

具体的には、貫入距離とけん引力を見比べながら、急激なけん引力の上昇時にはけん引をストップして、切羽において支障物の有無を確認し、支障物があった場合にはこれを除去した後、再けん引することとしている。しかしながら、従来の手法はオペレーターの感覚に頼ることとなり、けん引力上昇の傾向を見落とした場合には、支障物を無理矢理地山に押し込むこととなり、地表面に悪影響を及ぼすこととなる。   Specifically, while comparing the penetration distance and the traction force, stop the traction when the traction force suddenly increases, check for obstacles on the face, and remove any obstacles I'm going to tow you again. However, the conventional method relies on the operator's senses, and if the tendency to increase the traction force is overlooked, the obstacle will be forced into the ground and will adversely affect the ground surface.

特開2000−120372号公報JP 2000-120372 A 特開2000−179282号公報JP 2000-179282 A

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、支障物等の影響を確実に回避することができ、施工を安全に効率良く行うことができる覆工エレメントの地山への貫入管理方法及び管理装置を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
An object of the present invention is to provide an intrusion management method and a management device for a lining element to a natural ground that can reliably avoid the influence of obstacles and the like and can be safely and efficiently constructed. .

この発明は上記課題を達成するために、次のような手段を採用している。
すなわち、この発明は、先端に掘削のための刃口が連結された覆工エレメントを、発進側から到達側に向けて前記発進側と前記到達側との間を複数に分割した貫入区間ごとに地山に貫入する方法において、
各貫入区間での前記覆工エレメントの貫入前に、前記覆工エレメントの前記発進側からの貫入距離に対する貫入力の予測関係式を設定する工程と、
各貫入区間での前記覆工エレメントの貫入施工中、前記覆工エレメントの前記発進側からの貫入距離を計測するとともに、その貫入距離位置での実貫入力を多数位置において算出する工程と、
各貫入区間での前記覆工エレメントの貫入施工中、計測した前記貫入距離を前記予測関係式に代入して予測貫入力を算出する工程と、
前記実貫入力と前記予測貫入力とを比較する工程とを備え、
前記実貫入力の前記予測貫入力からの乖離に応じて、前記覆工エレメントの貫入速度を変化させることを特徴とする覆工エレメントの地山への貫入管理方法にある。
The present invention employs the following means in order to achieve the above object.
That is, according to the present invention, the lining element having a cutting edge connected to the tip is divided into a plurality of penetration sections divided from the starting side to the reaching side into a plurality of sections from the starting side to the reaching side. In the method of penetrating the natural ground,
Before the penetration of the lining element in each penetration section, setting a predictive relational expression of penetration input to the penetration distance from the start side of the lining element;
During the penetration construction of the lining element in each penetration section, measuring the penetration distance from the start side of the lining element, and calculating the actual penetration input at the penetration distance position at a number of positions,
Calculating the predicted penetration input by substituting the measured penetration distance into the predicted relational expression during the penetration construction of the lining element in each penetration section;
Comparing the actual penetration input and the predicted penetration input;
According to the penetration management method of a lining element into a natural ground, the penetration speed of the lining element is changed in accordance with a deviation of the actual penetration input from the predicted penetration input.

機械掘削方式の場合、前記刃口には掘削機が装備され、前記貫入速度の変化に同調させるように、前記掘削機による地山の掘削速度を変化させることを特徴とする。   In the case of the mechanical excavation method, the cutting edge is equipped with an excavator, and the excavation speed of the natural ground by the excavator is changed so as to synchronize with the change of the penetration speed.

上記管理方法は、さらに、前記覆工エレメントの貫入距離が各貫入区間の終点に到達した後、多数位置で計測した前記貫入距離及びそれらの貫入距離位置での前記実貫入力から両者の実関係式を算出する工程と、
1つの貫入区間のために設定した前記予測関係式と当該貫入区間での前記覆工エレメントの貫入の結果得られた前記実関係式とを比較する工程とを備え、
前記実関係式の前記予測関係式からの乖離が所定範囲内にあるとき、次の貫入区間の予測関係式として当該貫入区間の予測関係式を適用し、前記乖離が所定範囲内にないとき、次の貫入区間の予測関係式として前記実関係式を適用することを特徴とする。
The management method further includes an actual relationship between the penetration distance measured at multiple positions after the penetration distance of the lining element reaches the end point of each penetration section and the actual penetration input at those penetration distance positions. Calculating an equation;
Comparing the prediction relation set for one penetration section with the actual relation obtained as a result of penetration of the lining element in the penetration section,
When the deviation of the actual relational expression from the prediction relational expression is within a predetermined range, the prediction relational expression of the penetration section is applied as a prediction relational expression of the next penetration section, and when the deviation is not within the predetermined range, The real relational expression is applied as a prediction relational expression for the next intrusion section.

けん引方式の場合、前記到達側に設置されたけん引ジャッキにより前記覆工エレメントに前記貫入力を付与することを特徴とする。   In the case of the towing method, the through force is given to the lining element by a towing jack installed on the reaching side.

また、この発明は、先端に掘削のための刃口が接続された覆工エレメントを、発進側から到達側に向けて前記発進側と前記到達側との間を複数に分割した貫入区間ごとに地山に貫入するための貫入管理装置であって、
前記覆工エレメントに地山への貫入力を付与する油圧ジャッキと、
前記油圧ジャッキに作動油を送給するとともに、油圧データを出力する油圧ユニットと、
前記覆工エレメントの前記発進側からの貫入距離を計測して、貫入距離データを出力する貫入距離計測部材と、
演算制御装置とを備え、
前記演算制御装置は、各貫入区間での前記覆工エレメントの貫入前に、前記覆工エレメントの前記発進側からの貫入距離に対する貫入力の予測関係式を設定する予測関係式設定部と、
各貫入区間での前記覆工エレメントの貫入施工中、前記貫入距離データを前記予測関係式に代入して予測貫入力を算出する予測貫入力算出部と、
各貫入区間での前記覆工エレメントの貫入施工中、前記油圧データから実貫入力を算出する実貫入力算出部と、
前記予測貫入力と前記実貫入力とを比較する貫入力比較部とを備え、
前記実貫入力の前記予測貫入力からの乖離に応じて前記覆工エレメントの貫入速度を変化させるように、前記油圧ユニットに貫入速度調整指令を出力することを特徴とする覆工エレメントの地山への貫入管理装置にある。
Further, according to the present invention, a lining element having a tip for excavation connected to the tip is divided into a plurality of penetration sections divided into a plurality of portions between the starting side and the reaching side from the starting side toward the reaching side. An intrusion management device for penetrating natural ground,
A hydraulic jack that gives the lining element a penetration input to the natural ground;
A hydraulic unit that supplies hydraulic oil to the hydraulic jack and outputs hydraulic data;
A penetration distance measuring member that measures a penetration distance from the start side of the lining element and outputs penetration distance data;
An arithmetic and control unit,
The arithmetic and control unit is a predictive relational expression setting unit that sets a predictive relational expression of a penetration input with respect to a penetration distance from the start side of the lining element before penetration of the lining element in each penetration section;
A prediction penetration calculation unit that calculates a prediction penetration by substituting the penetration distance data into the prediction relational expression during penetration construction of the lining element in each penetration section,
During penetration construction of the lining element in each penetration section, an actual penetration input calculation unit that calculates actual penetration input from the hydraulic pressure data,
A through input comparison unit that compares the predicted through input and the actual through input;
The ground element of the lining element is characterized by outputting a penetration speed adjustment command to the hydraulic unit so as to change a penetration speed of the lining element in accordance with a deviation of the actual penetration input from the predicted penetration input. In the intrusion management device.

機械掘削方式の場合、前記刃口には前記油圧ユニットから送給される作動油によって作動する掘削機が装備され、
前記演算制御装置は、前記貫入速度に同調させるように、前記油圧ユニットに掘削速度調整指令を出力することを特徴とする。
In the case of a mechanical excavation method, the cutting edge is equipped with an excavator that is operated by hydraulic oil fed from the hydraulic unit,
The arithmetic and control unit outputs an excavation speed adjustment command to the hydraulic unit so as to synchronize with the penetration speed.

前記演算制御装置は、前記覆工エレメントの貫入距離が各貫入区間の終点に到達した後、前記貫入距離データ及び前記実貫入力データのデータ群から両者の実関係式を算出する実関係式算出部と、
1つの貫入区間のために設定した前記予測関係式と当該貫入区間での前記覆工エレメントの貫入の結果得られた前記実関係式とを比較する関係式比較部とを備え、
前記予測関係式設定部は、前記実関係式の前記予測関係式からの乖離が所定範囲内にあるとき、次の貫入区間の予測関係式として当該貫入区間の予測関係式を適用し、前記乖離が所定範囲内にないとき、次の貫入区間の予測関係式として前記実関係式を適用することを特徴とする。
After the penetration distance of the lining element reaches the end point of each penetration section, the arithmetic and control unit calculates an actual relational expression of both from the penetration distance data and the data group of the actual penetration input data. And
A relational expression comparison unit that compares the prediction relational expression set for one penetration section and the actual relational expression obtained as a result of penetration of the lining element in the penetration section;
When the deviation from the prediction relational expression of the actual relational expression is within a predetermined range, the prediction relational expression setting unit applies the prediction relational expression of the penetration section as a prediction relational expression of the next penetration section, and the divergence Is not within the predetermined range, the real relational expression is applied as a prediction relational expression for the next intrusion section.

けん引方式の場合、前記油圧ジャッキは、前記到達側に設置されたけん引ジャッキであることを特徴とする。   In the case of the towing method, the hydraulic jack is a towing jack installed on the reaching side.

覆工エレメントの地山への貫入方式には、到達側からけん引ジャッキで覆工エレメントをけん引する方式と、発進側から推進ジャッキで覆工エレメントを推進(押し込む)させる方式とがあり、上記貫入力とはこれらの方式の力すなわちけん引力と推進力との双方を含む概念である。   There are two methods of penetrating the lining element into the ground: a method in which the lining element is towed from the arrival side with a towing jack, and a method in which the lining element is propelled (pushed) with a propulsion jack from the starting side. Input is a concept that includes both of these types of forces, ie, traction and propulsion.

この発明によれば、覆工エレメントの発進側からの貫入距離に対する貫入力を予測し、予測貫入力と実貫入力との乖離に応じて貫入速度を変化させるので、支障物等の影響を確実に回避することができ、施工を安全に効率良く行うことができる。   According to this invention, the penetration input with respect to the penetration distance from the start side of the lining element is predicted, and the penetration speed is changed according to the difference between the predicted penetration input and the actual penetration input, so that the influence of obstacles and the like can be reliably confirmed. Therefore, construction can be performed safely and efficiently.

この発明の実施形態を示し、覆工エレメントの地山への貫入施工状態を示す断面図である。It is sectional drawing which shows embodiment of this invention and shows the penetration construction state to the natural ground of a lining element. 演算制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a calculation control apparatus. 管理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the management method. 図3に引き続く手順を示すフローチャートである。4 is a flowchart showing a procedure subsequent to FIG. 3. 貫入区間Sjにおける予測関係式と、次の貫入区間Sj+1における予測関係式を設定するための判定領域を示すグラフである。A prediction equation of penetration section S j, is a graph showing a determination area for setting the prediction equation in the next penetration section S j + 1. 貫入区間Sj+1における予測関係式を示すグラフである。It is a graph which shows the prediction relational expression in penetration section Sj + 1 .

この発明の実施形態を図面を参照しながら以下に説明する。以下に示す実施形態は、覆工エレメントを到達側からのけん引によって地山に貫入させる例である(けん引方式)。図1は、覆工エレメントの地山への貫入施工状態を示す断面図である。覆工エレメント1は、断面四角形又はこれに順次並列して継手を介して接続しながら地山に貫入される断面コ字形の鋼製部材である(詳細は特許文献1,2参照)。覆工エレメント1は長手方向に沿って複数に分割され、各分割エレメント1aは地山への貫入に伴い発進側(発進立坑)10において最後尾のものに接続される。   Embodiments of the present invention will be described below with reference to the drawings. The embodiment shown below is an example in which a lining element is penetrated into a natural ground by towing from the reaching side (towing method). FIG. 1 is a cross-sectional view showing a state in which a lining element penetrates into a natural ground. The lining element 1 is a square-shaped steel member or a U-shaped steel member that penetrates into a natural ground while being sequentially connected in parallel to this through a joint (see Patent Documents 1 and 2 for details). The lining element 1 is divided into a plurality along the longitudinal direction, and each divided element 1a is connected to the last one on the starting side (starting shaft) 10 as it penetrates into the natural ground.

覆工エレメント1の先端には刃口2が連結されている。機械掘削方式の場合は、刃口2に油圧モータ4によって作動するオーガー掘削機などの掘削機3が装備されている。到達側(到達立坑)11の土留め壁5には油圧によるけん引ジャッキ6が設けられている。刃口2には引張り材(PC鋼撚り線)7の一端が接続され、引張り材7は地山12の内部を通ってその他端がけん引ジャッキ6に把持されている。このけん引ジャッキ6の作動により、覆工エレメント1が地山12に貫入される。けん引ジャッキ6及び油圧モータ4の作動油は、油圧ポンプや油タンク等を備えた油圧ユニット13から送給される。   A blade edge 2 is connected to the tip of the lining element 1. In the case of the mechanical excavation method, the cutting edge 2 is equipped with an excavator 3 such as an auger excavator operated by a hydraulic motor 4. The earth retaining wall 5 on the arrival side (reach shaft) 11 is provided with a hydraulic towing jack 6. One end of a tensile material (PC steel stranded wire) 7 is connected to the blade 2, and the other end of the tensile material 7 is held by the traction jack 6 through the inside of the ground 12. The lining element 1 is inserted into the natural ground 12 by the operation of the towing jack 6. The hydraulic oil for the traction jack 6 and the hydraulic motor 4 is supplied from a hydraulic unit 13 including a hydraulic pump, an oil tank, and the like.

覆工エレメント1の地山12への貫入は、発進側10と到達側11との間を複数に分割した貫入区間S1,S2,・・・,Sj,・・・Send ごとに行われる。各貫入区間の長さは分割エレメント1aの長さ(例えば6m)を複数に分割した長さである(例えば2m)。また、機械掘削方式の場合は、掘削機3により刃口2の前方の地山を掘削しながら覆工エレメント1が地山に貫入される。他方、刃口2の内部に作業者が入って掘削する人力掘削式の場合は、人力による数10cmの掘削及び覆工エレメント1の地山への貫入を交互に繰り返して覆工エレメントが地山に貫入される。 The penetration of the lining element 1 into the natural ground 12 is performed every intrusion section S 1 , S 2 ,..., S j ,. Done. The length of each penetration section is a length (for example, 2 m) obtained by dividing the length (for example, 6 m) of the dividing element 1a into a plurality of sections. In the case of the mechanical excavation method, the lining element 1 is inserted into the natural ground while excavating the natural ground in front of the blade edge 2 by the excavator 3. On the other hand, in the case of a human-powered excavation method in which an operator enters the blade mouth 2 and excavates, the lining element is a natural ground by alternately repeating several tens of centimeters of excavation and penetration of the lining element 1 into the natural ground. Intruded.

以上のような、覆工エレメント1の貫入を管理するための装置は、前述のけん引ジャッキ6及び油圧ユニット13のほか、貫入距離計測部材14と演算制御装置15とを備えている。油圧ユニット13は、けん引ジャッキ6や油圧モータ4に作動油を送給する油圧ポンプの油圧データを出力し、この油圧データは演算制御装置15に入力される。   The apparatus for managing the penetration of the lining element 1 as described above includes the penetration distance measuring member 14 and the arithmetic control device 15 in addition to the above-described towing jack 6 and hydraulic unit 13. The hydraulic unit 13 outputs hydraulic data of a hydraulic pump that supplies hydraulic oil to the towing jack 6 and the hydraulic motor 4, and this hydraulic data is input to the arithmetic and control unit 15.

貫入距離計測部材14としては、例えば発進側10の土留壁5に取り付けられるロータリーエンコーダが用いられる。このロータリーエンコーダ14は覆工エレメント1の周面に接してその貫入に伴って回転し、発進側10からの貫入距離データ(けん引距離データ)を出力する。この貫入距離データは演算制御装置15に入力される。   As the penetration distance measuring member 14, for example, a rotary encoder attached to the earth retaining wall 5 on the starting side 10 is used. The rotary encoder 14 comes into contact with the circumferential surface of the lining element 1 and rotates as it penetrates, and outputs penetration distance data (traction distance data) from the start side 10. This penetration distance data is input to the arithmetic and control unit 15.

演算制御装置15としては、入出力部、演算制御部(CPU)、記憶部を有する例えばパーソナルコンピュータが用いられる。図2は演算制御装置15の機能ブロック図を示している。演算制御装置15は、けん引速度設定部16、予測関係式設定部17、予測けん引力算出部18、実けん引力算出部19、けん引力比較部20、実関係式算出部21及び関係式比較部22を備えて構成されている。   For example, a personal computer having an input / output unit, a calculation control unit (CPU), and a storage unit is used as the calculation control device 15. FIG. 2 shows a functional block diagram of the arithmetic and control unit 15. The arithmetic and control unit 15 includes a traction speed setting unit 16, a predicted relational expression setting unit 17, a predicted traction force calculation unit 18, an actual traction force calculation unit 19, a traction force comparison unit 20, an actual relational expression calculation unit 21, and a relational expression comparison unit. 22 is provided.

けん引速度設定部16は、各貫入区間Sjでの貫入開始前に、その前の貫入区間Sj-1の終了直前のけん引速度を当該貫入区間Sjのけん引速度として予め設定する。予測関係式設定部17は、各貫入区間Sjでの貫入開始前に、当該貫入区間Sjで予測される関係式すなわち発進側からの貫入距離Lに対するけん引力Pの関係式P=aj・L+bjを設定する。 Traction speed setting unit 16, before the start penetration at each penetration section S j, presetting the previous pulling speed immediately before the end of the penetration section S j-1 as traction speed of the penetration section S j. Predictive equation setting unit 17, before the start penetration at each penetration section S j, equation P = a j traction P against penetration distance L from equation predicted in the penetration section S j ie starting side Set L + b j

予測けん引力算出部18は、各貫入区間Sjでの貫入施工中、入力された貫入距離データLkを予測関係式P=aj・L+bjに代入して予測けん引力Pculkを算出する。実けん引力算出部19は、各貫入区間Sjでの貫入施工中、入力されたけん引ジャッキ6の油圧データから実けん引力Pkを算出する。 The predicted traction force calculating unit 18 calculates the predicted traction force P culk by substituting the input penetration distance data L k into the prediction relational expression P = a j · L + b j during the penetration work in each penetration section S j. . The actual traction force calculation unit 19 calculates the actual traction force P k from the input hydraulic data of the traction jack 6 during the penetration work in each penetration section S j .

けん引力比較部20は、それぞれ算出した予測けん引力Pculkと実けん引力Pkとを比較し、その乖離度dk=Pk/Pculkを算出する。この乖離度dkに応じて、演算制御装置15はけん引速度を変化させるように、油圧ユニット13にけん引速度調整指令を出力する。すなわち、けん引ジャッキ6のための油圧ポンプから送給される作動油の流量を変化させる。 The traction force comparison unit 20 compares the calculated predicted traction force P culk and the actual traction force P k , respectively, and calculates the degree of divergence d k = P k / P culk . In accordance with the deviation degree d k , the arithmetic control device 15 outputs a traction speed adjustment command to the hydraulic unit 13 so as to change the traction speed. That is, the flow rate of the hydraulic oil fed from the hydraulic pump for the towing jack 6 is changed.

また、機械掘削方式の場合は、演算制御装置15はけん引速度に同調して掘削機3の掘削速度を変化させるように、油圧ユニット13に掘削速度調整指令を出力する。すなわち、掘削機3の油圧モータ4のための油圧ポンプから送給される作動油の流量を変化させる。   In the case of the mechanical excavation method, the arithmetic and control unit 15 outputs an excavation speed adjustment command to the hydraulic unit 13 so as to change the excavation speed of the excavator 3 in synchronization with the towing speed. That is, the flow rate of the hydraulic oil fed from the hydraulic pump for the hydraulic motor 4 of the excavator 3 is changed.

実関係式算出部21は、覆工エレメント1が各貫入区間Sjの終点に到達した後、当該貫入区間Sjで得られた貫入距離データLk及び実けん引力データPkのデータ群から、最小自乗法により貫入距離Lに対するけん引力Pの実関係式P=ao・L+boを算出する。関係式比較部22は、当該貫入区間Sjに対して設定された予測関係式P=aj・L+bjと算出した実関係式P=ao・L+boとを比較し、予測関係式設定部17はそれらの乖離に応じて次の貫入区間Sj+1の予測関係式を設定する。 After the lining element 1 reaches the end point of each penetration section S j , the actual relational expression calculation unit 21 calculates from the data group of the penetration distance data L k and the actual traction force data P k obtained in the penetration section S j. Then, the real relational expression P = a o · L + b o of the traction force P with respect to the penetration distance L is calculated by the method of least squares. The relational expression comparison unit 22 compares the predicted relational expression P = a j · L + b j set for the intrusion section S j and the calculated actual relational expression P = a o · L + b o to set the prediction relational expression. The part 17 sets the prediction relational expression of the next penetration section S j + 1 according to those divergences.

すなわち、予測関係式設定部17は、実関係式P=ao・L+boの予測関係式P=aj・L+bjからの乖離が所定範囲内にあるときは、次の貫入区間Sj+1の予測関係式P=aj+1・L+bj+1として当該貫入区間Sjの予測関係式P=aj・L+bjを適用する(aj+1=aj、bj+1=bj)。また、乖離が所定範囲内にないときは、次の貫入区間Sj+1の予測関係式P=aj+1・L+bj+1として実関係式P=ao・L+boを適用する(aj+1=ao、bj+1=bo)。 That is, when the deviation of the actual relational expression P = a o · L + b o from the prediction relational expression P = a j · L + b j is within a predetermined range, the prediction relational expression setting unit 17 determines the next penetration section S j +. as predicted relationship P = a j + 1 · L + b j + 1 of 1 applying the predictive equation P = a j · L + b j of the penetration section S j (a j + 1 = a j, b j + 1 = b j). When the deviation is not within the predetermined range, the actual relational expression P = ao * L + bo is applied as the prediction relational expression P = aj + 1.L + bj + 1 of the next penetration section Sj + 1 ( a j + 1 = a o , b j + 1 = b o ).

次に、図3,図4に示すフローチャート及び図5,図6に示すグラフを参照して、管理方法を具体的に説明する。貫入区間Sjの貫入に際しては、まず、けん引速度設定部16がけん引速度を、予測関係式設定部17が当該貫入区間Sjのための予測関係式P=aj・L+bjを設定する(ステップS1)。設定するけん引速度は、前の貫入区間Sj-1における貫入終了直前のけん引速度である。設定する予測関係式P=aj・L+bjは、後述するように、前の貫入区間Sj-1の貫入終了後に決定される。なお、初期貫入区間S1に関しては、土質等を加味した従来の施工実績に基づく、けん引速度及び予測関係式P=a1・L+b1が適用される。 Next, the management method will be specifically described with reference to the flowcharts shown in FIGS. 3 and 4 and the graphs shown in FIGS. 5 and 6. In penetrating the penetration section S j , first, the traction speed setting unit 16 sets the traction speed, and the prediction relational expression setting unit 17 sets the prediction relational expression P = a j · L + b j for the penetration section S j ( Step S1). The towing speed to be set is the towing speed immediately before the end of penetration in the previous penetration section S j-1 . The prediction relational expression P = a j · L + b j to be set is determined after the penetration of the previous penetration section S j−1 , as will be described later. For the initial intrusion section S 1 , the traction speed and the predictive relational expression P = a 1 · L + b 1 based on the conventional construction results taking the soil quality and the like into consideration are applied.

貫入を開始したら(ステップS2)、貫入距離計測部材14は発進側からの貫入距離Lkを計測し、また実けん引力算出部19は入力された油圧データからその貫入距離での実けん引力Pkを算出する(ステップS2)。これらの貫入距離データLk及び実けん引力データPkは、貫入区間Sjにおいて発進側からの多数の距離位置で取得する(図5参照)。 After starting the penetration (step S2), the penetration distance measurement member 14 measures the penetration distance L k from starting side and the actual traction force P at the penetration distance from the hydraulic data real traction calculation unit 19 that is input k is calculated (step S2). The penetration distance data L k and the actual traction force data P k are acquired at a number of distance positions from the start side in the penetration section S j (see FIG. 5).

そして、貫入距離データLkを取得するごとに、予測けん引力算出部18がその貫入距離データLkを予測関係式P=aj・L+bjに代入して予測けん引力Pculkを算出し(ステップS4)、さらに、けん引力比較部20がその貫入距離Lkでの実けん引力Pkと予測けん引力Pculkとを比較して乖離度dk=Pk/Pculkを算出する(ステップS5)。 Then, each time the penetration distance data L k is acquired, the predicted traction force calculation unit 18 calculates the predicted traction force P culk by substituting the penetration distance data L k into the prediction relational expression P = a j · L + b j ( step S4), and further traction comparison unit 20 calculates the penetration distance L k in the actual traction P k and predicted traction P Culk by comparing the degree of deviation d k = P k / P culk ( step S5).

乖離度dkの算出の結果、演算制御装置15は乖離度dkに応じて、油圧ユニット13にけん引速度調整指令を出力し、また、機械掘削方式の場合は、けん引速度に同調した掘削速度とするべく油圧ユニット13に掘削速度調整指令を出力する。すなわち、レベル1:dk<0.8のとき、けん引速度を20%上昇させる(ステップS6-1)。さらに機械掘削方式の場合は、けん引速度に同調するように掘削速度を上昇させる(ステップS7-1)。また、レベル2:0.8≦dk<1.0のとき、けん引速度は変化させずに設定速度のままけん引を続行する(ステップS6-2)。このときは、掘削速度も変化させない。 As a result of calculating the divergence degree d k , the arithmetic and control unit 15 outputs a traction speed adjustment command to the hydraulic unit 13 according to the divergence degree d k , and in the case of the mechanical excavation method, the excavation speed synchronized with the traction speed Therefore, an excavation speed adjustment command is output to the hydraulic unit 13. That is, when level 1: d k <0.8, the traction speed is increased by 20% (step S6-1). Further, in the case of the mechanical excavation method, the excavation speed is increased so as to synchronize with the towing speed (step S7-1). Further, when level 2: 0.8 ≦ d k <1.0, the traction is continued at the set speed without changing the traction speed (step S6-2). At this time, the excavation speed is not changed.

レベル3:1.0≦dk<1.2のとき、けん引速度を50%低減させる(ステップS6-3)。機械掘削方式の場合は、さらに、けん引速度に同調させるように掘削速度を低下させる(ステップS7-3)。レベル4:1.2≦dkのときは、演算制御装置15は緊急停止措置のための警告を発する。そして、切羽及びけん引機器等の異常の有無を確認した後、停止措置を解除してけん引を再開する(ステップS7-4)。 Level 3: When 1.0 ≦ d k <1.2, the traction speed is reduced by 50% (step S6-3). In the case of the mechanical excavation method, the excavation speed is further lowered so as to synchronize with the towing speed (step S7-3). Level 4: When 1.2 ≦ d k , the arithmetic and control unit 15 issues a warning for emergency stop measures. Then, after confirming the presence or absence of abnormalities in the face and the towing equipment, the suspension is canceled and the towing is resumed (step S7-4).

以上のようなステップを繰り返し、貫入距離Lkが貫入区間Sjの終点に到達したら(ステップS8)、貫入を終了し(ステップS9)、さらに次の貫入区間Sj+1のための予測関係式P=aj+1・L+bj+1を設定する。 When the above steps are repeated and the penetration distance L k reaches the end point of the penetration section S j (step S8), the penetration is finished (step S9), and the prediction relationship for the next penetration section S j + 1 The equation P = a j + 1 · L + b j + 1 is set.

そのために、まず、実関係式算出部21が貫入区間Sjでの貫入の結果得られた貫入距離データLk及び実けん引データPkのデータ群から最小自乗法により両者の実関係式P=ao・L+boを算出する(ステップS10)。そして、関係式比較部22は算出した実関係式P=ao・L+boと貫入区間Sjで設定された予測関係式P=aj・L+bjとを比較し、実関係式が所定範囲内にあるかどうかを判定する。 Therefore, firstly, the actual relationship from the data set of both the least squares method resulting penetration distance data L k and actual traction data P k of penetration of the real relationship calculating section 21 penetrating segment S j P = a o · L + b o is calculated (step S10). The relational expression comparison unit 22 compares the calculated actual relational expression P = a o · L + b o with the predicted relational expression P = a j · L + b j set in the penetration section S j , and the actual relational expression is within a predetermined range. It is determined whether it is in.

ここで、所定範囲はこの実施形態では図5に示すように、予測関係式P=aj・L+bjの傾きaj及び切片bjにそれぞれ±1/2arng及び±1/2brngの幅を持たせた上限式P=(aj+1/2arng)・L+(bj+1/2brng)と下限式P=(aj−1/2arng)・L+(bj−1/2brng)との間の範囲としてある。 Here, the predetermined range as shown in FIG. 5 in this embodiment, the prediction equation P = a j · L + b j of gradient a j and the intercept b j respectively ± 1 / 2a in rng and ± 1 / 2b width rng The upper limit expression P = (a j + 1 / 2arng ) · L + (b j + 1 / 2brng ) and the lower limit expression P = (a j −1 / 2arng ) · L + (b j −1 / 2brng) ) As a range between.

すなわち、関係式比較部22は、傾きaoの傾きajからの乖離が所定範囲内(|ao−aj|<arng)にあるかどうか(ステップS11)、また切片boの切片bjからの乖離が所定範囲内(|bo−bj|<brng)にあるかどうか(ステップS12)を判断する。 That is, the relationship comparator 22, the deviation is a predetermined range from the gradient a j tilt a o whether a (| | a o -a j < a rng) ( step S11), and also sections of intercept b o It is determined whether or not the deviation from b j is within a predetermined range (| b o −b j | <b rng ) (step S12).

その結果、傾きao及び切片boのいずれもが所定範囲内にあるときは、予測関係式設定部17は次の貫入区間Sj+1の予測関係式として当該貫入区間Sjの予測関係式をそのまま適用する。すなわち、次の貫入区間Sj+1の関係式P=aj+1・L+bj+1において、aj+1=aj、bj+1=bjとする(ステップS13-1)。 Consequently, when none of the slope a o and the intercept b o is within a predetermined range, the prediction equation setting unit 17 prediction relationship of the penetration section S j as the prediction relationship of the following penetration section S j + 1 Apply the expression as is. That is, in the relational expression P = a j + 1 · L + b j + 1 of the next penetration section S j + 1 , a j + 1 = a j and b j + 1 = b j are set (step S13-1).

他方、傾きao及び切片boのいずれかが所定範囲内にないときは、次の貫入区間Sj+1の予測関係式として実関係式を適用する。すなわち、次の貫入区間Sj+1の関係式P=aj+1・L+bj+1において、aj+1=ao、bj+1=boとする(ステップS13-2)。図6は、次の貫入区間Sj+1の予測関係式として実関係式を適用した場合を示している。 On the other hand, one of the tilt a o and the intercept b o is when not within the predetermined range, applying the actual relationship as predicted relationship of the following penetration section S j + 1. That is, in the relational expression P = a j + 1 · L + b j + 1 of the next penetration section S j + 1 , a j + 1 = a o and b j + 1 = b o are set (step S13-2). FIG. 6 shows a case where an actual relational expression is applied as a prediction relational expression for the next penetration section S j + 1 .

上記実施形態によれば、発進側からの貫入距離に対するけん引力を予測し、予測けん引力と実けん引力との乖離に応じてけん引速度を変化させるので、支障物等の影響を確実に回避することができ、施工を安全に効率良く行うことができる。また、貫入距離データ及び実けん引力データのデータ群から算出した実関係式と、その貫入区間で設定された予測関係式とを比較し、その乖離に応じて次の貫入区間の予測関係式を設定するので、土質条件の変化等施工条件の変化に応じた合理的な予測関係式を設定することができる。   According to the above embodiment, the traction force with respect to the penetration distance from the start side is predicted, and the traction speed is changed according to the difference between the predicted traction force and the actual traction force, so that the influence of obstacles and the like is reliably avoided. It is possible to carry out construction safely and efficiently. Moreover, the actual relational expression calculated from the data group of the penetration distance data and the actual traction force data is compared with the prediction relational expression set in the penetration section, and the prediction relational expression of the next penetration section is determined according to the deviation. Since it is set, it is possible to set a rational prediction relational expression according to changes in construction conditions such as changes in soil conditions.

上記実施形態は例示にすぎず、この発明は種々の態様を採ることができる。例えば、予測けん引力と実けん引力との乖離に応じて変化させるけん引速度の変化率は、例示であり施工条件によって異なるものである。同様に、次の貫入区間の予測関係式を決定するために用いられる上下限式も一例を示したにすぎない。   The above embodiment is merely an example, and the present invention can take various aspects. For example, the rate of change of the traction speed that is changed according to the difference between the predicted traction force and the actual traction force is an example and varies depending on the construction conditions. Similarly, the upper and lower limit formulas used to determine the prediction relational expression of the next intrusion section are only an example.

また、上記したように、この発明は、覆工エレメントを到達側からのけん引により地山に貫入させるけん引方式に限らず、覆工エレメントを発進側から推進させる推進方式にも適用できる。   Further, as described above, the present invention is not limited to a traction method in which the lining element is penetrated into the ground by towing from the arrival side, but can also be applied to a propulsion method in which the lining element is propelled from the start side.

1:覆工エレメント
2:刃口
3:掘削機
4:油圧モータ
6:油圧ジャッキ
7:引張り材
10:発進側
11:到達側
12:地山
13:油圧ユニット
14:貫入距離計測部材
15:演算制御装置
1: Covering element 2: Cutting edge 3: Excavator 4: Hydraulic motor 6: Hydraulic jack 7: Tensile material 10: Starting side 11: Arrival side 12: Ground mountain 13: Hydraulic unit 14: Penetration distance measuring member 15: Calculation Control device

Claims (8)

先端に掘削のための刃口が連結された覆工エレメントを、発進側から到達側に向けて前記発進側と前記到達側との間を複数に分割した貫入区間ごとに地山に貫入する方法において、
各貫入区間での前記覆工エレメントの貫入前に、前記覆工エレメントの前記発進側からの貫入距離に対する貫入力の予測関係式を設定する工程と、
各貫入区間での前記覆工エレメントの貫入施工中、前記覆工エレメントの前記発進側からの貫入距離を計測するとともに、その貫入距離位置での実貫入力を多数位置において算出する工程と、
各貫入区間での前記覆工エレメントの貫入施工中、計測した前記貫入距離を前記予測関係式に代入して予測貫入力を算出する工程と、
前記実貫入力と前記予測貫入力とを比較する工程とを備え、
前記実貫入力の前記予測貫入力からの乖離に応じて、前記覆工エレメントの貫入速度を変化させることを特徴とする覆工エレメントの地山への貫入管理方法。
A method of penetrating a lining element having a cutting edge connected to the tip thereof into a natural ground for each penetration section divided into a plurality of sections between the start side and the reach side from the start side toward the reach side In
Before the penetration of the lining element in each penetration section, setting a predictive relational expression of penetration input to the penetration distance from the start side of the lining element;
During the penetration construction of the lining element in each penetration section, measuring the penetration distance from the start side of the lining element, and calculating the actual penetration input at the penetration distance position at a number of positions,
Calculating the predicted penetration input by substituting the measured penetration distance into the predicted relational expression during the penetration construction of the lining element in each penetration section;
Comparing the actual penetration input and the predicted penetration input;
A penetration management method of a lining element into a natural ground, wherein a penetration speed of the lining element is changed according to a deviation of the actual penetration input from the predicted penetration input.
前記刃口には掘削機が装備され、前記貫入速度の変化に同調させるように、前記掘削機による地山の掘削速度を変化させることを特徴とする請求項1記載の覆工エレメントの地山への貫入管理方法。   The ground of the lining element according to claim 1, wherein the cutting edge is equipped with an excavator, and the excavation speed of the natural ground by the excavator is changed so as to synchronize with the change of the penetration speed. Intrusion management method. 前記覆工エレメントの貫入距離が各貫入区間の終点に到達した後、多数位置で計測した前記貫入距離及びそれらの貫入距離位置での前記実貫入力から両者の実関係式を算出する工程と、
1つの貫入区間のために設定した前記予測関係式と当該貫入区間での前記覆工エレメントの貫入の結果得られた前記実関係式とを比較する工程とを備え、
前記実関係式の前記予測関係式からの乖離が所定範囲内にあるとき、次の貫入区間の予測関係式として当該貫入区間の予測関係式を適用し、前記乖離が所定範囲内にないとき、次の貫入区間の予測関係式として前記実関係式を適用することを特徴とする請求項1又は2記載の覆工エレメントの地山への貫入管理方法。
After the penetration distance of the lining element reaches the end point of each penetration section, calculating the actual relational expression of both from the penetration distance measured at multiple positions and the actual penetration input at those penetration distance positions;
Comparing the prediction relation set for one penetration section with the actual relation obtained as a result of penetration of the lining element in the penetration section,
When the deviation of the actual relational expression from the prediction relational expression is within a predetermined range, the prediction relational expression of the penetration section is applied as a prediction relational expression of the next penetration section, and when the deviation is not within the predetermined range, The method for managing penetration of a lining element into a natural ground according to claim 1 or 2, wherein the actual relational expression is applied as a prediction relational expression of a next penetration section.
前記到達側に設置されたけん引ジャッキにより前記覆工エレメントに前記貫入力を付与することを特徴とする請求項1,2又は3記載の覆工エレメントの地山への貫入管理方法。   The penetration management method to the natural ground of the lining element of Claim 1, 2, or 3 which provides the said penetration input to the said lining element with the tow jack installed in the said reach | attainment side. 先端に掘削のための刃口が接続された覆工エレメントを、発進側から到達側に向けて前記発進側と前記到達側との間を複数に分割した貫入区間ごとに地山に貫入するための貫入管理装置であって、
前記覆工エレメントに地山への貫入力を付与する油圧ジャッキと、
前記油圧ジャッキに作動油を送給するとともに、油圧データを出力する油圧ユニットと、
前記覆工エレメントの前記発進側からの貫入距離を計測して、貫入距離データを出力する貫入距離計測部材と、
演算制御装置とを備え、
前記演算制御装置は、各貫入区間での前記覆工エレメントの貫入前に、前記覆工エレメントの前記発進側からの貫入距離に対する貫入力の予測関係式を設定する予測関係式設定部と、
各貫入区間での前記覆工エレメントの貫入施工中、前記貫入距離データを前記予測関係式に代入して予測貫入力を算出する予測貫入力算出部と、
各貫入区間での前記覆工エレメントの貫入施工中、前記油圧データから実貫入力を算出する実貫入力算出部と、
前記予測貫入力と前記実貫入力とを比較する貫入力比較部とを備え、
前記実貫入力の前記予測貫入力からの乖離に応じて前記覆工エレメントの貫入速度を変化させるように、前記油圧ユニットに貫入速度調整指令を出力することを特徴とする覆工エレメントの地山への貫入管理装置。
In order to penetrate the lining element, which has a cutting edge connected to the tip thereof, into the ground for each penetration section divided into a plurality of sections between the starting side and the reaching side from the starting side to the reaching side Intrusion management device,
A hydraulic jack that gives the lining element a penetration input to the natural ground;
A hydraulic unit that supplies hydraulic oil to the hydraulic jack and outputs hydraulic data;
A penetration distance measuring member that measures a penetration distance from the start side of the lining element and outputs penetration distance data;
An arithmetic and control unit,
The arithmetic and control unit is a predictive relational expression setting unit that sets a predictive relational expression of a penetration input with respect to a penetration distance from the start side of the lining element before penetration of the lining element in each penetration section;
A prediction penetration calculation unit that calculates a prediction penetration by substituting the penetration distance data into the prediction relational expression during penetration construction of the lining element in each penetration section,
During penetration construction of the lining element in each penetration section, an actual penetration input calculation unit that calculates actual penetration input from the hydraulic pressure data,
A through input comparison unit that compares the predicted through input and the actual through input;
The ground element of the lining element is characterized by outputting a penetration speed adjustment command to the hydraulic unit so as to change a penetration speed of the lining element in accordance with a deviation of the actual penetration input from the predicted penetration input. Intrusion management device.
前記刃口には前記油圧ユニットから送給される作動油によって作動する掘削機が装備され、
前記演算制御装置は、前記貫入速度に同調させるように、前記油圧ユニットに掘削速度調整指令を出力することを特徴とする請求項5記載の覆工エレメントの地山への貫入管理装置。
The blade is equipped with an excavator that is operated by hydraulic oil fed from the hydraulic unit,
The intrusion management device for lining elements according to claim 5, wherein the arithmetic control device outputs an excavation speed adjustment command to the hydraulic unit so as to synchronize with the penetration speed.
前記演算制御装置は、前記覆工エレメントの貫入距離が各貫入区間の終点に到達した後、前記貫入距離データ及び前記実貫入力データのデータ群から両者の実関係式を算出する実関係式算出部と、
1つの貫入区間のために設定した前記予測関係式と当該貫入区間での前記覆工エレメントの貫入の結果得られた前記実関係式とを比較する関係式比較部とを備え、
前記予測関係式設定部は、前記実関係式の前記予測関係式からの乖離が所定範囲内にあるとき、次の貫入区間の予測関係式として当該貫入区間の予測関係式を適用し、前記乖離が所定範囲内にないとき、次の貫入区間の予測関係式として前記実関係式を適用することを特徴とする請求項5又は6記載の覆工エレメントの地山への貫入管理装置。
After the penetration distance of the lining element reaches the end point of each penetration section, the arithmetic and control unit calculates an actual relational expression of both from the penetration distance data and the data group of the actual penetration input data. And
A relational expression comparison unit that compares the prediction relational expression set for one penetration section and the actual relational expression obtained as a result of penetration of the lining element in the penetration section;
When the deviation from the prediction relational expression of the actual relational expression is within a predetermined range, the prediction relational expression setting unit applies the prediction relational expression of the penetration section as a prediction relational expression of the next penetration section, and the divergence 7. The penetration management device for a lining element to a natural ground according to claim 5 or 6, wherein the actual relational expression is applied as a prediction relational expression of the next penetration section when the is not within a predetermined range.
前記油圧ジャッキは、前記到達側に設置されたけん引ジャッキであることを特徴とする請求項5,6又は7記載の覆工エレメントの地山への貫入管理装置。   The intrusion management device for lining elements according to claim 5, 6 or 7, wherein the hydraulic jack is a towing jack installed on the reaching side.
JP2015101974A 2015-05-19 2015-05-19 Penetration element penetration management method and management device for lining element Active JP6474313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101974A JP6474313B2 (en) 2015-05-19 2015-05-19 Penetration element penetration management method and management device for lining element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101974A JP6474313B2 (en) 2015-05-19 2015-05-19 Penetration element penetration management method and management device for lining element

Publications (2)

Publication Number Publication Date
JP2016216984A true JP2016216984A (en) 2016-12-22
JP6474313B2 JP6474313B2 (en) 2019-02-27

Family

ID=57580629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101974A Active JP6474313B2 (en) 2015-05-19 2015-05-19 Penetration element penetration management method and management device for lining element

Country Status (1)

Country Link
JP (1) JP6474313B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125096U (en) * 1989-03-28 1990-10-15
JPH05141185A (en) * 1991-11-22 1993-06-08 Komatsu Ltd Automatic propulsion unit for small diameter pipe pusher and control method therefor
JPH07197777A (en) * 1993-12-28 1995-08-01 Komatsu Ltd Advancing method for leading tube propelling device
JP2004137894A (en) * 2003-12-26 2004-05-13 Kyowa Exeo Corp Propelling pipe driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125096U (en) * 1989-03-28 1990-10-15
JPH05141185A (en) * 1991-11-22 1993-06-08 Komatsu Ltd Automatic propulsion unit for small diameter pipe pusher and control method therefor
JPH07197777A (en) * 1993-12-28 1995-08-01 Komatsu Ltd Advancing method for leading tube propelling device
JP2004137894A (en) * 2003-12-26 2004-05-13 Kyowa Exeo Corp Propelling pipe driving method

Also Published As

Publication number Publication date
JP6474313B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
Farrokh et al. Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project
CN105507908B (en) A kind of large cross-section tunnel branch-cut bridge Duan Sanlian encircles construction technology
WO2022001310A1 (en) Method for passing through river channel and laying cable by using horizontal directional drilling technology
CN103195435B (en) Method for preventing shield penetration of building compact district from inducing ground subsidence
CA2556370C (en) Advance of pipe elements in the ground
CN103711492B (en) A kind of jacking-type cable sleeve channel construction method
US20230051333A1 (en) Directional Drilling-Exploring-Monitoring Integrated Method for Guaranteeing Safety of Underwater Shield Tunnel
EP2115338A1 (en) Method and device for laying pipes in the ground
JP6382000B2 (en) Shield tunnel construction management device
CN107191675A (en) Rail yard electrified sectionses pipeline laying construction engineering method
JP6474313B2 (en) Penetration element penetration management method and management device for lining element
JP2016000933A (en) Tunnel face stability prediction/determination method
JP2008255765A (en) N-value detection method, n-value detector, and pile hole drilling unit
CN203239355U (en) Jacking type cable sleeve channel structure
CN114061650A (en) Intelligent monitoring system and method for pipe jacking construction
Gao et al. Monitoring of three-dimensional additional stress and strain in shield segments of former tunnels in the construction of closely-spaced twin tunnels
JP2007303142A (en) Construction management method, construction management device and construction management program for shield tunnel
CN210738467U (en) Elevation control device for horizontal directional drilling construction
Kanik Evaluation of the limitations of RMR89 system for preliminary support selection in weak rock class
Grasmick et al. Evaluation of slurry TBM design support pressures using east side access Queens bored tunnels data
CN114645715A (en) Interval shield launching and receiving construction method
EP3114316B1 (en) Underground detecting device and detection method
KR20140109009A (en) Open shield method
Le et al. The reinforcing effects of Forepoling Umbrella System in soft soil tunnelling
JP2022144160A (en) Evaluation method of influence on ground upon tunnel construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6474313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250