EP3114316B1 - Underground detecting device and detection method - Google Patents

Underground detecting device and detection method Download PDF

Info

Publication number
EP3114316B1
EP3114316B1 EP15713632.6A EP15713632A EP3114316B1 EP 3114316 B1 EP3114316 B1 EP 3114316B1 EP 15713632 A EP15713632 A EP 15713632A EP 3114316 B1 EP3114316 B1 EP 3114316B1
Authority
EP
European Patent Office
Prior art keywords
probe
thermoplastic
tpe
thermoplastic elastomer
sealing lip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15713632.6A
Other languages
German (de)
French (fr)
Other versions
EP3114316A2 (en
Inventor
Wilhelmus Heijnen
Hahn-Jose THOMAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoson GmbH
Original Assignee
Inoson GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoson GmbH filed Critical Inoson GmbH
Publication of EP3114316A2 publication Critical patent/EP3114316A2/en
Application granted granted Critical
Publication of EP3114316B1 publication Critical patent/EP3114316B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • E21B47/095Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes by detecting an acoustic anomalies, e.g. using mud-pressure pulses

Definitions

  • the invention relates to the use of an underground detection device (or a visualization device) for cased and uncased bores into the ground (hereinafter referred to as "bore").
  • the prior art is the introduction of an optical camera to get an image of the underground situation.
  • the main disadvantage is that this only works in a clear translucent liquid.
  • each tool or device has a standardized device on the top, which allows a coupling. But if now this remaining tool or device is so damaged that a coupling is not possible, then a lead block is used in the prior art, which is discharged into the bore and hits the obstruction. The resulting impression in the lead block is then analyzed.
  • fluid types in the bore can not be determined and also the position of the obstruction in a non-cased hole can only be estimated by cable length or rod length.
  • mechanical arms are deployed that extend through the well into the oil well, and an angle analysis of the arms determines the diameter of the oil deposit. The range of such arms and the number of possible measuring points are limited, so that at best an approximate dimension determination is possible.
  • there is the risk of damaging the mechanical parts and there is also no information about the wall of the oil reservoir, for example, the rock type, as well as determined by the nature of the fluid present therein.
  • the EP 0 075 997 A2 describes an ultrasonic device for the inspection of casing pipes in boreholes and there in particular for measuring the diameter, of cross-sectional changes and wall thicknesses. Also the US 5,717,169 A is concerned with determining the thickness of metallic jacket pipes in wellbores. The US 4,646,565 A Its task is to determine the geometry of a borehole and to create a borehole parameter vector. From the US 2005/0283315 A1 It is known to use a probe to cyclically scan the surface of a wellbore to obtain information about the surface texture or roughness of the wellbore.
  • US20130333896 describes the use of an underground detection device for the detection of obstructions in the area of cased boreholes in the earth, wherein a probe is provided, which can be guided through the borehole, wherein the downhole liquid is not transparent and / or cloudy and wherein the probe has at least one ultrasonic transmitter and at least one ultrasonic receiver and an evaluation unit is provided.
  • the object of the invention is to make it possible to detect obstructions, corrosion damage, dimensions, pipe breakage and the type of rock in the area of the bore itself as well as the dimension of the oil or gas deposit and the wall and the fluid present there.
  • an underground detection device for the detection of obstructions in the area of cased and uncased bores into the ground, wherein a probe is provided, which can be guided through the bore, wherein the downhole liquid is not transparent and / or cloudy and wherein the probe has at least one ultrasonic transmitter and at least one ultrasonic receiver, which are designed for three-dimensional measurement, and an evaluation unit is provided and wherein means for determining the speed of sound and means for determining the position of the probe are provided.
  • the probe has means for determining the speed of sound in which a transit time is determined over a defined measuring path.
  • the means for evaluating the measured data can be arranged both in the probe and in an external evaluation unit.
  • the three-dimensional measurements can be made possible by separate ultrasound transmitters and receivers for each direction or else the diversion and separate evaluation of the ultrasound signal or the reflection signal. Another possibility is to use only one probe, but which is movable and thus can perform a three-dimensional detection.
  • the three-dimensional measurement makes it possible to determine spatial geometries. Accordingly, three-dimensional representations can be generated on the basis of the measured data.
  • the probe by means of a drill string, a cable, by coupling to an endless tube, by feeding gases or liquids or, for example, in the case of a horizontal or steeply inclined bore, by means of a pipe or cable mounted traction device through the hole can be guided through.
  • the probe can be controlled drained through the hole and pulled back up. It is both an active drive of the probe, for example via a traction device, possible as well as a passive drive, for example, by the probe is guided by the introduction of gases or liquids through the bore.
  • a development of the invention is that the probe has a drive.
  • a drive which can be designed, for example, as wheels, chains or rollers for moving the probe in the bore or at the bottom of an oil deposit or, in the case of a buoyant probe, at least one propeller or a jet propulsion
  • the probe can move within a room to make detections.
  • the drive can be arranged on the probe itself or a separate drive can be coupled to the probe.
  • the means for determining the position comprise an acceleration sensor or a gyroscope.
  • the measurement data or the result of the evaluation can be transmitted, for example via a cable or wireless transmission to the receiving unit. In the latter case, it is possible, for example, to provide relay units in the region of the cable which, if appropriate, amplify the received signals and transmit them further.
  • distances, areas or spatial geometries can be determined in the area of the well and also in the area of the oil deposit into which the bore opens, and the composition of materials and liquids can be determined.
  • a hole 1 is shown, which, as it often occurs in practice, does not run exactly in the vertical direction.
  • an obstruction object 2 in the form of a pipe section 2, which has remained in the bore.
  • a detection device which has a probe 3 which can be guided through the bore 1 and which has at least one ultrasound transmitter and at least one ultrasound receiver and an evaluation unit.
  • the probe 3 is passed over, e.g. Cable 4 through the hole 1 can be guided.
  • the probe 3 is connected to e.g. brought to the cable to the obstruction object and performed by the one or more ultrasonic transmitter and the or the ultrasonic receiver a one-, two- or three-dimensional measurement. Due to the transit time between the emission of the ultrasound signal and the detection of the corresponding reflection signal, both the position relative to the probe and the type of obstruction object 2 can be determined at a known sound velocity in the evaluation unit. In order to obtain a precise result in the transit time determination, the probe 3 has means for determining the speed of sound, in which a runtime is determined over a defined measuring path.
  • the probe 3 additionally has means for determining the position of the probe 3, for example an acceleration sensor or a gyroscope, the absolute position of the obstruction object 2 and its size can also be determined.
  • the measurement data or the result of the evaluation can be transmitted for example via a cable from the probe 3 to a receiving unit 5 and visualized there on a screen 6.
  • Fig. 2 shows schematically the detection method.
  • three ultrasonic transmitters 7 are arranged, which emit ultrasonic signals in three mutually perpendicular axes x, y, z.
  • the corresponding reflection signals are detected by three ultrasonic receivers 8 and fed to an evaluation unit 9.
  • the result of the evaluation is sent to the Receiver unit 5 transmitted, which is located on the earth's surface.
  • the movement of the probe 3 itself is determined by means 10 for determining the position of the probe 3 and, like the ultrasonic transmitter 7, controlled by a control unit 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

Die Erfindung betrifft die Verwendung einer Untertage-Detektionsvorrichtung (oder ein Visualisierungsgerät) für verrohrte und unverrohrte Bohrungen ins Erdreich (hiernach "Bohrung" genannt).The invention relates to the use of an underground detection device (or a visualization device) for cased and uncased bores into the ground (hereinafter referred to as "bore").

Stand der Technik ist das Einführen von einer optischen Kamera, um ein Bild der Untertagesituation zu bekommen. Wesentlicher Nachteil ist, daß dies nur in einer klaren lichtdurchlässigen Flüssigkeit funktioniert.The prior art is the introduction of an optical camera to get an image of the underground situation. The main disadvantage is that this only works in a clear translucent liquid.

Wenn ein Untertagewerkzeug oder Gerät ungewollt in einer Bohrung verbleibt, dann muß dieses aus der Bohrung entfernt werden. Die Standardprozedur besteht darin, ein Gerät in die Bohrung zu fahren, z.B. mittels eines Bohrgestänges oder Endlosrohres bzw. Stahlseiles, bis zum Werkzeug oder Gerät, welches sich an dieses verbliebene Werkzeug oder Gerät ankoppelt, damit es aus die Bohrung entfernt werden kann. Zu diesem Zweck hat jedes Werkzeug oder Gerät eine standardisierte Vorrichtung an der Oberseite, welche ein Ankoppeln ermöglicht. Wenn aber nun dieses verbliebene Werkzeug oder Gerät so beschädigt ist, dass eine Ankopplung nicht möglich ist, dann wird gemäß dem Stand der Technik ein Bleiblock verwendet, der in die Bohrung abgelassen wird und auf die Obstruktion trifft. Der hierdurch erreichte Eindruck in dem Bleiblock wird anschließend analysiert. Dies ist insofern von Nachteil, als nur eine oberflächliche Detektion/Abdruck - wenn überhaupt - möglich ist und Schwerkraft bzw. eine axiale Kraft zum Erzeugen des Eindrucks benötigt wird. Die Größe der Obstruktion und ihre räumliche Ausbildung kann kaum ermittelt werden. Eine weitere Methode besteht in der Anwendung optischer Kameras, wobei die damit erreichbaren Aufnahmen mehreren Zwecken, wie z. B. dem Aufspüren von Verengungen in einer Bohrung (z. B. verursacht durch Kollaps der Bohrung) oder Anwuchs von Mineralien und/oder Wachs, Rohrbruch oder Korrosionsschäden, dienen. Dies alles ist nur möglich, wenn die Flüssigkeit in der Bohrung optisch transparent ist. Eine korrekte 3D-Darstellung einer Obstruktion mit einer optischen Kamera ist interpretationsbedürftig und somit nicht immer genau.If an underground tool or device accidentally remains in a hole, then it must be removed from the hole. The standard procedure is to drive a tool into the bore, for example by means of a drill string or endless tube or steel cord, to the tool or device which attaches to this remaining tool or device so that it can be removed from the bore. For this purpose, each tool or device has a standardized device on the top, which allows a coupling. But if now this remaining tool or device is so damaged that a coupling is not possible, then a lead block is used in the prior art, which is discharged into the bore and hits the obstruction. The resulting impression in the lead block is then analyzed. This is disadvantageous in that only a superficial detection / impression is possible - if at all - and gravity or an axial force is required to produce the impression. The size of the obstruction and its spatial formation can hardly be determined. Another method is the use of optical cameras, the achievable recordings for multiple purposes, such. As the detection of constrictions in a hole (eg caused by collapse of the bore) or growth of minerals and / or wax, pipe break or corrosion damage serve. All this is only possible if the liquid in the bore is optically transparent. A correct 3D representation of an obstruction with an optical camera is in need of interpretation and therefore not always accurate.

Auch können Fluidarten in der Bohrung nicht ermittelt werden und auch die Position der Obstruktion in einer nicht verrohrten Bohrung kann nur anhand der Kabellänge oder Gestängelänge geschätzt werden.
Zur Bestimmung der Dimension beispielsweise eines unterirdischen Ölvorkommens werden mechanische Arme verwendet, die durch die Bohrung hindurch in das Ölvorkommen ausgefahren werden und wobei durch eine Winkelanalyse der Arme der Durchmesser des Ölvorkommens bestimmt wird. Die Reichweite solcher Arme und die Zahl der möglichen Messpunkte sind jedoch beschränkt, so dass allenfalls eine ungefähre Dimensionsbestimmung möglich ist. Weiterhin besteht die Gefahr der Beschädigung der mechanischen Teile und es werden auch keine Informationen über die Wandung des Ölvorkommens, beispielsweise die Gesteinsart, sowie über die Art des darin vorliegenden Fluides ermittelt.
Die EP 0 075 997 A2 beschreibt eine Ultraschallvorrichtung zur Inspektion von Mantelrohren in Bohrlöchern und dort insbesondere zum Messen des Durchmessers, von Querschnittsveränderungen und Wanddicken.
Auch die US 5,717,169 A befaßt sich mit dem Bestimmen der Dicke von metallischen Mantelrohren in Bohrlöchern.
Die US 4,646,565 A hat zur Aufgabe, die Geometrie eines Bohrlochs zu bestimmen und die Erstellung eines Bohrlochparametervektors.
Aus der US 2005/0283315 A1 ist es bekannt, eine Sonde zum zyklischen Scannen der Oberfläche eines Bohrloches zu verwenden, um Informationen über die Oberflächentextur oder -rauheit des Bohrloches zu erhalten.
Die WO 2012/163420 A1 befaßt sich mit der Lokalisierung von Zement zwischen dem Mantelrohr eines Bohrloches und dem Bohrloch selbst, US20130333896 beschreibt die Verwendung einer Untertage- Detektionsvorrichtung für die Detektion von Obstruktionen im Bereich verrohrter Bohrungen ins Erdreich wobei eine Sonde vorgesehen ist, die durch die Bohrung hindurch führbar ist, wobei die sich im Bohrloch befindende Flüssigkeit nicht lichtdurchlässig und/oder trüb ist und wobei die Sonde mindestens einen Ultraschallsender und mindestens einen Ultraschallempfänger aufweist und eine Auswerteeinheit vorgesehen ist. Die Aufgabe der Erfindung besteht darin, es zu ermöglichen, Obstruktionen, Korrosionsschäden, Abmessungen, Rohrbruch und die Gesteinsart im Bereich der Bohrung selbst als auch die Dimension des Öl- oder Gasvorkommens und die Wandung sowie das dort vorliegende Fluid zu detektieren.
Also, fluid types in the bore can not be determined and also the position of the obstruction in a non-cased hole can only be estimated by cable length or rod length.
For example, to determine the dimension of an underground oil deposit, mechanical arms are deployed that extend through the well into the oil well, and an angle analysis of the arms determines the diameter of the oil deposit. The range of such arms and the number of possible measuring points are limited, so that at best an approximate dimension determination is possible. Furthermore, there is the risk of damaging the mechanical parts and there is also no information about the wall of the oil reservoir, for example, the rock type, as well as determined by the nature of the fluid present therein.
The EP 0 075 997 A2 describes an ultrasonic device for the inspection of casing pipes in boreholes and there in particular for measuring the diameter, of cross-sectional changes and wall thicknesses.
Also the US 5,717,169 A is concerned with determining the thickness of metallic jacket pipes in wellbores.
The US 4,646,565 A Its task is to determine the geometry of a borehole and to create a borehole parameter vector.
From the US 2005/0283315 A1 It is known to use a probe to cyclically scan the surface of a wellbore to obtain information about the surface texture or roughness of the wellbore.
The WO 2012/163420 A1 deals with the localization of cement between the casing pipe of a borehole and the borehole itself, US20130333896 describes the use of an underground detection device for the detection of obstructions in the area of cased boreholes in the earth, wherein a probe is provided, which can be guided through the borehole, wherein the downhole liquid is not transparent and / or cloudy and wherein the probe has at least one ultrasonic transmitter and at least one ultrasonic receiver and an evaluation unit is provided. The object of the invention is to make it possible to detect obstructions, corrosion damage, dimensions, pipe breakage and the type of rock in the area of the bore itself as well as the dimension of the oil or gas deposit and the wall and the fluid present there.

Diese Aufgabe wird durch die Verwendung einer Untertage-Detektionsvorrichtung für die Detektion von Obstruktionen im Bereich verrohrter und unverrohrter Bohrungen ins Erdreich, wobei eine Sonde vorgesehen ist, die durch Bohrung hindurch führbar ist, wobei die sich im Bohrloch befindende Flüssigkeit nicht lichtdurchlässig und/oder trüb ist und wobei die Sonde mindestens einen Ultraschallsender und mindestens einen Ultraschallempfänger aufweist, die zur dreidimensionalen Messung ausgebildet sind, und eine Auswerteeinheit vorgesehen ist und wobei Mittel zum Bestimmen der Schallgeschwindigkeit sowie Mittel zur Positionsbestimmung der Sonde vorgesehen sind, gelöst.This object is achieved by the use of an underground detection device for the detection of obstructions in the area of cased and uncased bores into the ground, wherein a probe is provided, which can be guided through the bore, wherein the downhole liquid is not transparent and / or cloudy and wherein the probe has at least one ultrasonic transmitter and at least one ultrasonic receiver, which are designed for three-dimensional measurement, and an evaluation unit is provided and wherein means for determining the speed of sound and means for determining the position of the probe are provided.

Mit einer solchen Ultraschallsonde kann aufgrund der Aussendung von Signalen in drei Dimensionen, und der zeitlichen Vermessung von Reflexionssignalen, über die Signallaufzeiten, die sowohl vom Weg als auch der Reflexionsoberfläche abhängen, berührungsfrei und mit hoher Präzision eine Vermessung des jeweiligen Bereiches erfolgen und zudem können aus der Reflexion Rückschlüsse über Materialeigenschaften gewonnen werden.Due to the emission of signals in three dimensions, and the temporal measurement of reflection signals over the signal propagation times, which depend both on the path and the reflection surface, such an ultrasound probe can be used to measure the respective area without contact and with high precision the reflection conclusions about material properties are obtained.

Es besteht zwar die Möglichkeit, die Schallgeschwindigkeit zu schätzen, was bei approximativer Kenntnis der etwaigen Zusammensetzung des Fluids, insbesondere des Mineralgehaltes, und der Temperatur des Fluids zu einer guten Annäherung führen kann. Es ist allerdings diesem vorzuziehen, zumindest einen Parameter, wie die Temperatur des Fluids, zu messen und anhand dieses Parameters die Schallgeschwindigkeit annäherungsweise zu ermitteln. Optimalerweise weist die Sonde Mittel zum Bestimmen der Schallgeschwindigkeit auf, in der über eine definierte Meßstrecke eine Laufzeitermittlung erfolgt.Although it is possible to estimate the speed of sound, which with approximate knowledge of the possible composition of the fluid, in particular the mineral content, and the temperature of the fluid can lead to a good approximation. However, it is preferable to measure at least one parameter, such as the temperature of the fluid, and to approximate the sound velocity using this parameter. Optimally, the probe has means for determining the speed of sound in which a transit time is determined over a defined measuring path.

Es können so Objekte, Obstruktionen und Kavitäten sowie die räumliche Ausdehnung eines Ölvorkommens vermessen und über Vektoren 3D-Bilder erstellt werden und zudem Gesteinsarten und Fluidzusammensetzungen bestimmt werden. Die Mittel zum Auswerten der Messdaten können sowohl in der Sonde als auch in einer externen Auswerteeinheit angeordnet sein.It can thus measure objects, obstructions and cavities as well as the spatial extent of an oil deposit and create 3D images via vectors and also determine rock types and fluid compositions become. The means for evaluating the measured data can be arranged both in the probe and in an external evaluation unit.

Die dreidimensionalen Messungen können durch jeweils getrennte Ultraschallsender und - empfänger für jede Richtung oder aber die Umleitung und getrennte Auswertung des Ultraschallsignals bzw. des Reflexionssignals ermöglicht werden. Eine andere Möglichkeit besteht darin, nur eine Sonde zu verwenden, die aber beweglich ist und somit eine dreidimensionale Detektion vornehmen kann. Die dreidimensionale Messung ermöglicht ein Bestimmen von räumlichen Geometrien, Dementsprechend können anhand der Meßdaten dreidimensionale Darstellungen erzeugt werden.The three-dimensional measurements can be made possible by separate ultrasound transmitters and receivers for each direction or else the diversion and separate evaluation of the ultrasound signal or the reflection signal. Another possibility is to use only one probe, but which is movable and thus can perform a three-dimensional detection. The three-dimensional measurement makes it possible to determine spatial geometries. Accordingly, three-dimensional representations can be generated on the basis of the measured data.

Bei Vorliegen von Mitteln zur Positionsbestimmung ist es möglich, die Lage von bestimmten Objekten, Flächen oder Räumen relativ zu der aktuellen Position der Sonde zu detektieren.In the presence of means for position determination, it is possible to detect the position of certain objects, areas or spaces relative to the current position of the probe.

Es ist erfindungsgemäß vorgesehen, daß die Sonde mittels eines Bohrgestänges, eines Kabels, durch Kopplung an ein Endlosrohr, durch Einspeisen von Gasen oder Flüssigkeiten oder, beispielsweise im Falle einer horizontalen oder stark geneigten Bohrung, mittels eines am Rohr oder Kabel montierten Traktionsgerätes durch die Bohrung hindurch führbar ist.It is inventively provided that the probe by means of a drill string, a cable, by coupling to an endless tube, by feeding gases or liquids or, for example, in the case of a horizontal or steeply inclined bore, by means of a pipe or cable mounted traction device through the hole can be guided through.

Mit oben genannten technischen Vorrichtungen kann die Sonde kontrolliert durch die Bohrung abgelassen und wieder nach oben gezogen werden. Es ist sowohl ein aktiver Antrieb der Sonde, beispielsweise über ein Traktionsgerät, möglich als auch ein passiver Antrieb, beispielsweise, indem die Sonde durch das Einspeisen von Gasen oder Flüssigkeiten durch die Bohrung hindurch geführt wird.With the above-mentioned technical devices, the probe can be controlled drained through the hole and pulled back up. It is both an active drive of the probe, for example via a traction device, possible as well as a passive drive, for example, by the probe is guided by the introduction of gases or liquids through the bore.

Es kann vorgesehen sein, daß Mittel zum An- und Abkoppeln der Sonde an das Kabel vorgesehen sind.It can be provided that means are provided for coupling and uncoupling the probe to the cable.

Eine Weiterbildung der Erfindung besteht darin, daß die Sonde einen Antrieb aufweist.A development of the invention is that the probe has a drive.

Über einen Antrieb, der beispielsweise als Räder, Ketten oder Walzen zum Bewegen der Sonde in der Bohrung oder am Boden eines Ölvorkommens ausgebildet sein kann oder aber bei einer schwimmfähigen Sonde mindestens einen Propeller oder einen Strahlantrieb aufweist, kann die Sonde sich innerhalb eines Raumes fortbewegen, um dort Detektionen vorzunehmen. Der Antrieb kann an der Sonde selbst angeordnet sein oder ein separater Antrieb mit der Sonde gekoppelt werden.Via a drive which can be designed, for example, as wheels, chains or rollers for moving the probe in the bore or at the bottom of an oil deposit or, in the case of a buoyant probe, at least one propeller or a jet propulsion The probe can move within a room to make detections. The drive can be arranged on the probe itself or a separate drive can be coupled to the probe.

In diesem Zusammenhang ist es vorteilhaft, daß die Mittel zur Positionsbestimmung einen Beschleunigungssensor oder ein Gyroskop umfassen.In this context, it is advantageous that the means for determining the position comprise an acceleration sensor or a gyroscope.

Weiterhin ist es zweckmäßig, daß Mittel zum Übertragen der Meßdaten bzw. des Ergebnisses der Auswertung aus der Sonde an eine Empfangseinheit vorgesehen sind.Furthermore, it is expedient that means for transmitting the measurement data or the result of the evaluation from the probe to a receiving unit are provided.

Dies ermöglicht es, die Meßdaten bzw. das Ergebnis der Auswertung während der laufenden Messung zu bewerten, um beispielsweise zu entscheiden, ob die Messung fortgesetzt, unterbrochen oder beendet wird. Die Meßdaten bzw. das Ergebnis der Auswertung können beispielsweise über ein Kabel oder mittels kabelloser Übertragung an die Empfangseinheit übermittelt werden. Im letzteren Falle ist es beispielsweise möglich, im Bereich des Kabels Relaiseinheiten vorzusehen, die die empfangenen Signale gegebenenfalls verstärken und sie weiter übermitteln.This makes it possible to evaluate the measurement data or the result of the evaluation during the current measurement, for example to decide whether the measurement continues, is interrupted or terminated. The measurement data or the result of the evaluation can be transmitted, for example via a cable or wireless transmission to the receiving unit. In the latter case, it is possible, for example, to provide relay units in the region of the cable which, if appropriate, amplify the received signals and transmit them further.

Mit einer solchen Sonde können im Bereich der Bohrung und auch im Bereich des Ölvorkommens, in das die Bohrung mündet, Distanzen, Flächen oder räumliche Geometrien bestimmt werden und die Zusammensetzung von Materialien sowie Flüssigkeiten ermittelt werden.With such a probe, distances, areas or spatial geometries can be determined in the area of the well and also in the area of the oil deposit into which the bore opens, and the composition of materials and liquids can be determined.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand von Zeichnungen näher erläutert.An embodiment of the invention will be explained in more detail with reference to drawings.

Es zeigen

Fig. 1
eine schematische Darstellung des Einsatzes einer erfindungsgemäßen Detektionsvorrichtung in einer Bohrung,
Fig. 2
eine schematische Darstellung des Meß- und Auswertevorgangs in der erfindungsgemäßen Detektionsvorrichtung.
Show it
Fig. 1
a schematic representation of the use of a detection device according to the invention in a bore,
Fig. 2
a schematic representation of the measurement and evaluation process in the detection device according to the invention.

In Fig. 1 ist eine Bohrung 1 dargestellt, die wie es in der Praxis häufig vorkommt, nicht genau in vertikaler Richtung verläuft. In dieser Bohrung liegt ein Obstruktionsobjekt 2 in Form eines Rohrstücks 2, das in der Bohrung verblieben ist.In Fig. 1 a hole 1 is shown, which, as it often occurs in practice, does not run exactly in the vertical direction. In this hole is an obstruction object 2 in the form of a pipe section 2, which has remained in the bore.

Um zu detektieren, um welche Art von Obstruktionsobjekt 2 es sich handelt, wird eine erfindungsgemäße Detektionsvorrichtung verwendet, die eine Sonde 3 aufweist, welche durch die Bohrung 1 hindurch führbar ist und die mindestens einen Ultraschallsender und mindestens einen Ultraschallempfänger sowie eine Auswerteeinheit aufweist.In order to detect which type of obstruction object 2 is involved, a detection device according to the invention is used which has a probe 3 which can be guided through the bore 1 and which has at least one ultrasound transmitter and at least one ultrasound receiver and an evaluation unit.

Es ist zu erkennen, daß die Sonde 3 über ein z.B. Kabel 4 durch die Bohrung 1 hindurch führbar ist.It can be seen that the probe 3 is passed over, e.g. Cable 4 through the hole 1 can be guided.

Die Sonde 3 wird mit z.B. dem Kabel an das Obstruktionsobjekt herangeführt und durch den bzw. die Ultraschallsender und den bzw. die Ultraschallempfänger eine ein-, zwei- oder dreidimensionalen Messung durchgeführt. Aufgrund der Laufzeit zwischen dem Aussenden des Ultraschallsignals und der Detektion des entsprechenden Reflexionssignals kann bei bekannter Schallgeschwindigkeit in der Auswerteeinheit sowohl die Lage relativ zu der Sonde als auch die Art des Obstruktionsobjektes 2 ermittelt werden. Um ein präzises Ergebnis bei der Laufzeitermittlung zu erhalten, weist die Sonde 3 Mittel zum Bestimmen der Schallgeschwindigkeit auf, in der über eine definierte Meßstrecke eine Laufzeitermittlung erfolgt.The probe 3 is connected to e.g. brought to the cable to the obstruction object and performed by the one or more ultrasonic transmitter and the or the ultrasonic receiver a one-, two- or three-dimensional measurement. Due to the transit time between the emission of the ultrasound signal and the detection of the corresponding reflection signal, both the position relative to the probe and the type of obstruction object 2 can be determined at a known sound velocity in the evaluation unit. In order to obtain a precise result in the transit time determination, the probe 3 has means for determining the speed of sound, in which a runtime is determined over a defined measuring path.

Weist die Sonde 3 zusätzlich Mittel zur Positionsbestimmung der Sonde 3 auf, beispielsweise einen Beschleunigungssensor oder ein Gyroskop, kann auch die absolute Lage des Obstruktionsobjektes 2 und dessen Größe bestimmt werden.If the probe 3 additionally has means for determining the position of the probe 3, for example an acceleration sensor or a gyroscope, the absolute position of the obstruction object 2 and its size can also be determined.

Ebenso wäre es möglich, Gesteinsarten, die Bohrlochwandgeometrie (Risse, Klüften, etc.), Fluidzusammensetzungen, etc. im Bereich der Bohrung 2 oder im Bereich eines Öl- oder Gasvorkommens, in das die Bohrung 2 mündet, zu bestimmen. Die Meßdaten bzw. das Ergebnis der Auswertung können beispielsweise über ein Kabel von der Sonde 3 an eine Empfangseinheit 5 übermittelt und dort auf einem Bildschirm 6 visualisiert werden.It would also be possible to determine rock types, the borehole wall geometry (cracks, fractures, etc.), fluid compositions, etc. in the area of the bore 2 or in the region of an oil or gas deposit into which the bore 2 opens. The measurement data or the result of the evaluation can be transmitted for example via a cable from the probe 3 to a receiving unit 5 and visualized there on a screen 6.

Fig. 2 zeigt schematisch das Detektionsverfahren. In der Sonde 3 sind drei Ultraschallsender 7 angeordnet, die Ultraschallsignale in drei senkrecht aufeinander stehende Achsen x, y, z aussenden. Die entsprechenden Reflexionssignale werden von drei Ultraschallempfängern 8 detektiert und einer Auswerteeinheit 9 zugeführt. Das Ergebnis der Auswertung wird an die Empfängereinheit 5 übermittelt, die sich an der Erdoberfläche befindet. Die Bewegung der Sonde 3 selbst wird durch Mittel zur Positionsbestimmung 10 der Sonde 3 ermittelt und ebenso wie die Ultraschallsender 7 von einer Steuereinheit 11 kontrolliert. Fig. 2 shows schematically the detection method. In the probe 3, three ultrasonic transmitters 7 are arranged, which emit ultrasonic signals in three mutually perpendicular axes x, y, z. The corresponding reflection signals are detected by three ultrasonic receivers 8 and fed to an evaluation unit 9. The result of the evaluation is sent to the Receiver unit 5 transmitted, which is located on the earth's surface. The movement of the probe 3 itself is determined by means 10 for determining the position of the probe 3 and, like the ultrasonic transmitter 7, controlled by a control unit 11.

Claims (6)

  1. Method of producing a sealing lip for the door area of motor vehicles, with the following steps:
    • Vulcanisation of a rubber profile (1),
    • At the end of the vulcanisation step, application of a thermoplastic elastomer (3) on the rubber profile (1),
    • Application of a lubricant coating (4) on the thermoplastic elastomer and curing of the lubricant coating (4) at temperatures of up to 120°C, so that the sealing lip has the visual appearance and the surface feel of a sealing lip of laminated textile materiel.
  2. Production method according to claim 1, characterised in that the thermoplastic elastomer (3) is selected from the group consisting of thermoplastic olefinic elastomers (TPE-O), thermoplastic vulcanisates (TPE-V), thermoplastic polyurethane elastomers (TPE-U), thermoplastic copolyesters (TPE-E), styrenic block copolymers (TPE-S) and thermoplastic copolyamides (TPE-A).
  3. Production method according to claim 1, characterised in that the thermoplastic elastomer (3) is applied with a layer thickness of 0.5 to 3 mm on the rubber profile (1).
  4. Production method according to claim 1, characterised in that the coating (4) is applied with a coating thickness of 8 to 40 µm.
  5. Production method according to claim 4, characterised in that the coating (4) is cured at temperatures of up to 100°C and preferably at temperatures of up to 90°C.
  6. Sealing lip for the door area of motor vehicles, which has a rubber profile (1), wherein said rubber profile (1) has a film of thermoplastic elastomer (3) applied thereon and said thermoplastic elastomer (3) has a lubricant coating (4) applied thereon, said sealing lip being able to be produced according to a method as set forth in any one of the claims 1 to 5.
EP15713632.6A 2014-03-05 2015-03-05 Underground detecting device and detection method Active EP3114316B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014102906.2A DE102014102906A1 (en) 2014-03-05 2014-03-05 Underground detection device and detection method
PCT/DE2015/100089 WO2015131884A2 (en) 2014-03-05 2015-03-05 Underground detecting device and detection method

Publications (2)

Publication Number Publication Date
EP3114316A2 EP3114316A2 (en) 2017-01-11
EP3114316B1 true EP3114316B1 (en) 2018-06-20

Family

ID=52807474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15713632.6A Active EP3114316B1 (en) 2014-03-05 2015-03-05 Underground detecting device and detection method

Country Status (3)

Country Link
EP (1) EP3114316B1 (en)
DE (1) DE102014102906A1 (en)
WO (1) WO2015131884A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393645B (en) * 2021-05-08 2022-09-16 杭州戬威科技有限公司 Mountain landslide ultrasonic monitoring and early warning system
CN116044490B (en) * 2023-03-27 2023-06-13 中煤西安设计工程有限责任公司 Coal mine water permeability detection protection device for coal mine safety

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0075997A3 (en) * 1981-09-25 1985-05-22 Sigma Research, Inc. Well logging device
US4646565A (en) * 1985-07-05 1987-03-03 Atlantic Richfield Co. Ultrasonic surface texture measurement apparatus and method
US6188643B1 (en) * 1994-10-13 2001-02-13 Schlumberger Technology Corporation Method and apparatus for inspecting well bore casing
US7260477B2 (en) * 2004-06-18 2007-08-21 Pathfinder Energy Services, Inc. Estimation of borehole geometry parameters and lateral tool displacements
GB2505122B (en) * 2011-06-01 2018-07-11 Statoil Petroleum As Determining the location of a material located behind an obstruction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014102906A1 (en) 2015-09-10
WO2015131884A2 (en) 2015-09-11
EP3114316A2 (en) 2017-01-11
WO2015131884A3 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
DE602005004383T2 (en) CONTINUOUS REDUCTION FOR FORMAT PRESSURE TESTING
US10125605B2 (en) Using downhole strain measurements to determine hydraulic fracture system geometry
EP1749143B1 (en) Device for examining rotor drilled holes
DE69923907T2 (en) Pressure measurement of earth formations with a penetrable sample
DE102008049942A1 (en) Method and inspection device for inspecting ropes
CN205426083U (en) Ultrasonic wave crack depth detects unmanned aerial vehicle
US11255188B2 (en) Logging tool with 4D printed sensing system
DE102008037127A1 (en) Method and device for determining the rock tension
CN111946398A (en) Composite stratum shield tunneling efficiency field prediction calculation method
EP3114316B1 (en) Underground detecting device and detection method
US20180347355A1 (en) Logging Fracture Toughness Using Drill Cuttings
US20150098487A1 (en) Magnetostrictive Dual Temperature and Position Sensor
CA2929656C (en) Systems and methods for real-time evaluation of coiled tubing matrix acidizing
CA2991573A1 (en) Predicting wellbore operation parameters
DE102005038313B4 (en) Method for measuring the geological storage density and for detecting cavities in the area of a tunnel tunneling
DE102007048978A1 (en) Method for measuring function parameters of geothermal heat utilization arrangement, involves determining time and location dependent thermal coupling between geothermal heat utilization arrangement and surrounding
EP3730926B1 (en) Method and system for measuring or monitoring the viscosity of flowing materials
DE202005015571U1 (en) Rock mass`s e.g. saliniferous rock, ground pressure determination device for mining industry, has sensor to determine pressure based on reflections of ultrasonic waves in ultrasonic path formed between ultrasonic transmitter and receiver
CN104655191A (en) Multi-parameter and three-dimensional monitoring method and monitoring probe for reservoir bank of water-level-fluctuating zone
CN110438967A (en) A kind of weak soil soil response softening parameter long range method for continuous measuring
CN206458460U (en) Underground survey device and underground survey system
DE102005047659B4 (en) Device for determining the rock tension in a borehole
US11448582B2 (en) Method and system for non-intrusively determining properties of deposit in a fluidic channel
DE102016203865A1 (en) Temperature sensor module for groundwater flows
CN207036085U (en) A kind of coal mine roof plate rock deformation monitoring device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160905

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171123

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004749

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004749

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181022

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1010736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 10