JP2016216778A - Coating and method of forming same coating - Google Patents

Coating and method of forming same coating Download PDF

Info

Publication number
JP2016216778A
JP2016216778A JP2015102166A JP2015102166A JP2016216778A JP 2016216778 A JP2016216778 A JP 2016216778A JP 2015102166 A JP2015102166 A JP 2015102166A JP 2015102166 A JP2015102166 A JP 2015102166A JP 2016216778 A JP2016216778 A JP 2016216778A
Authority
JP
Japan
Prior art keywords
oxide particles
inorganic oxide
film
resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015102166A
Other languages
Japanese (ja)
Other versions
JP6639806B2 (en
Inventor
寿扇 吉岡
Toshio Yoshioka
寿扇 吉岡
一登 鷹井
Kazuto Takai
一登 鷹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON COATING KOGYO KK
Original Assignee
NIPPON COATING KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON COATING KOGYO KK filed Critical NIPPON COATING KOGYO KK
Priority to JP2015102166A priority Critical patent/JP6639806B2/en
Publication of JP2016216778A publication Critical patent/JP2016216778A/en
Application granted granted Critical
Publication of JP6639806B2 publication Critical patent/JP6639806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coating that is small in number of cracks and pores and includes an inorganic oxide having a less risk of decreasing in corrosion resistivity and mechanical characteristics, and a method of forming same coating.SOLUTION: A method of forming a coating according to the present invention is designed to form a coating including inorganic oxide particles on a base material, the method comprising: a heating process of heating the inorganic oxide particles held in a non-fusion state; a spraying process of spraying the inorganic oxide particles, having been heated in the heating process, on a processed surface of the base material; and a coating forming process of forming a coating of the inorganic oxide particles on the base material by sintering the inorganic oxide particles, sprayed on the processed surface of the base material in the spraying process, on the base material. The heating process includes sintering resin using a resin composition having the inorganic oxide particles dispersed in the resin as a raw material for the inorganic oxide particles.SELECTED DRAWING: Figure 1

Description

本発明は、皮膜および該皮膜の形成方法に関し、より詳細には、無機酸化物粒子を含む皮膜および該皮膜の形成方法に関する。   The present invention relates to a film and a method for forming the film, and more particularly to a film containing inorganic oxide particles and a method for forming the film.

従来より、無機酸化物粒子を含む皮膜を基材上に形成し、該基材の特性を改質することが知られている。前記皮膜を形成する方法の中に溶射法がある。該溶射法としては、例えば、放電によって溶射炎を形成し、該溶射炎中に無機酸化物粒子を供給して該無機酸化物粒子を溶融状態(換言すれば液状)にし、溶融状態の無機酸化物粒子を基材の被処理面に衝突させ、基材上で該溶融状態の無機酸化物粒子を冷却・固化させることにより、該基材上に無機酸化物粒子を含む皮膜を形成するプラズマ溶射法が挙げられる。
溶射法には、(i)成膜速度が速く、(ii)乾式プロセスなので環境負荷が小さく、(iii)大面積の成膜にも適用できるという利点がある。一方で、(I)成膜前後で無機酸化物粒子の結晶相が相転移する場合があるので、基材上に成膜された皮膜が耐食性および機械特性に劣るようになることがある、(II)液状の無機酸化物粒子の急冷に起因して皮膜にクラックや気孔が生じる、すなわち、急冷によるクラックや気孔の発生、(III)無機酸化物粒子の凝集による流動性の悪化を防止するために無機酸化物粒子の粒子径をマイクロオーダーにする必要があるので、粒間の空隙が大きくなって、皮膜にクラックや気孔が生じる、すなわち、粒間の空隙に依存するクラックや気孔の発生という欠点もある。
Conventionally, it is known to form a film containing inorganic oxide particles on a base material and to modify the characteristics of the base material. Among the methods for forming the film, there is a thermal spraying method. As the thermal spraying method, for example, a thermal spray flame is formed by electric discharge, and inorganic oxide particles are supplied into the thermal spray flame so that the inorganic oxide particles are in a molten state (in other words, a liquid state). Plasma spraying that forms a film containing inorganic oxide particles on the substrate by impinging the object particles against the surface to be treated of the substrate and cooling and solidifying the molten inorganic oxide particles on the substrate Law.
The thermal spraying method has the advantages that (i) the film forming speed is high, (ii) it is a dry process, the environmental load is small, and (iii) it can be applied to film forming over a large area. On the other hand, since the crystal phase of the inorganic oxide particles may undergo phase transition before and after the film formation, the film formed on the substrate may be inferior in corrosion resistance and mechanical properties. II) In order to prevent cracks and pores in the film due to rapid cooling of the liquid inorganic oxide particles, that is, generation of cracks and pores due to rapid cooling, and (III) deterioration of fluidity due to aggregation of the inorganic oxide particles. In addition, since it is necessary to make the particle size of the inorganic oxide particles in the micro order, voids between the grains become large, and cracks and pores are generated in the film, that is, generation of cracks and pores depending on the gaps between the grains. There are also drawbacks.

また、前記基材上に前記皮膜を形成する方法として、サスペンションプラズマ溶射法(SPS法またはSPPS法)が提案されている。
SPS法は、アルコールなどの液状媒体に、溶射材料であるナノオーダーの無機酸化物粒子が懸濁された懸濁液と、該懸濁液中に懸濁された前記無機酸化物粒子を溶射するSPS装置と、を用いて行われる。
前記SPS装置は、中心軸が前記基材の被処理面に対して直交するように配されるノズルを備え、かつ前記ノズルの前端部から前記基材の被処理面に向けて放電により形成された溶射炎を前記中心軸方向に沿って放出するプラズマ発生部と、前記懸濁液を貯蔵するタンクと、前記ノズルの中心軸に直交する方向から、前記タンク内に貯蔵された前記懸濁液を前記溶射炎中に供給するように配される懸濁液供給部と、を備えるものである(特許文献1参照)。
SPS法では、前記溶射炎中に前記懸濁液が供給されると、前記液状媒体が燃焼されて、前記無機酸化物粒子が溶融状態にされる。そして、この溶融状態の前記無機酸化物粒子が、前記溶射炎によって加速されて前記基材の被処理面に衝突され、前記基材上で冷却・固化される。これにより、前記基材上に前記無機酸化物粒子を含む皮膜が形成される。
As a method for forming the film on the substrate, a suspension plasma spraying method (SPS method or SPPS method) has been proposed.
In the SPS method, a suspension in which nano-order inorganic oxide particles, which are thermal spray materials, are suspended in a liquid medium such as alcohol, and the inorganic oxide particles suspended in the suspension are sprayed. Using an SPS device.
The SPS apparatus includes a nozzle that is arranged so that a central axis is orthogonal to a surface to be processed of the base material, and is formed by discharge from a front end portion of the nozzle toward the surface to be processed of the base material. The plasma generator for discharging the spray flame along the direction of the central axis, the tank for storing the suspension, and the suspension stored in the tank from the direction perpendicular to the central axis of the nozzle And a suspension supply section arranged to supply the liquid into the thermal spray flame (see Patent Document 1).
In the SPS method, when the suspension is supplied into the spray flame, the liquid medium is combusted and the inorganic oxide particles are brought into a molten state. The inorganic oxide particles in the molten state are accelerated by the spray flame, collide with the surface to be treated of the base material, and are cooled and solidified on the base material. Thereby, the membrane | film | coat containing the said inorganic oxide particle is formed on the said base material.

特表2014−502670号公報Special table 2014-502670 gazette

上記のSPS法によれば、前記プラズマ発生部から放出される前記溶射炎中に、ナノオーダーの無機酸化物粒子を供給できるので、従来よりも小径の無機酸化物粒子を基材上に堆積させることができる。そのため、粒間の空隙に依存するクラックや気孔の発生は少なくなる。すなわち、上記のSPS法によれば、上記の(III)を解決できる。   According to the above SPS method, since nano-order inorganic oxide particles can be supplied into the spray flame emitted from the plasma generating portion, inorganic oxide particles having a smaller diameter than conventional ones are deposited on the substrate. be able to. Therefore, the generation of cracks and pores depending on the gaps between the grains is reduced. That is, according to said SPS method, said (III) can be solved.

しかしながら、上記のSPS法においても、前記無機酸化物粒子は溶融状態で前記基材の被処理面に衝突し、前記基材上で冷却・固化されるので、急冷に起因するクラックや気孔の発生という欠点(上記の(II))は依然として解決されていない。
また、この冷却・固化中に前記無機酸化物粒子の結晶相が相転移する場合がある(例えば、前記無機酸化物粒子がα相を有する酸化アルミニウムの場合、結晶相はα相からγ相に変化する)ので、基材上に成膜された皮膜が耐食性および機械特性に劣るようになることがあるという欠点(上記の(I))についても依然として解決されていない。
さらに、前記懸濁液中において前記無機酸化物粒子を分散させた状態を維持するためには、前記液状媒体中の前記無機酸化物粒子の割合、つまり、前記液状媒体における前記無機酸化物粒子の濃度を低くする必要がある。そのため、前記液状媒体における前記無機酸化物粒子の濃度は、通常、数質量%〜10質量%程度にされる。
上述の理由により、SPS法により前記基材上に前記皮膜を形成すると、前記プラズマ溶射法の場合と比べて成膜速度が低下するという問題が生じる、すなわち上記の(i)の利点が失われるという側面がある。
However, even in the above SPS method, the inorganic oxide particles collide with the surface to be treated of the base material in a molten state, and are cooled and solidified on the base material, so that generation of cracks and pores due to rapid cooling occurs. The drawback (above (II)) has not been solved.
In addition, the crystal phase of the inorganic oxide particles may undergo a phase transition during the cooling and solidification (for example, when the inorganic oxide particles are aluminum oxide having an α phase, the crystal phase is changed from an α phase to a γ phase. Therefore, the drawback (above (I)) that the film formed on the substrate may be inferior in corrosion resistance and mechanical properties has not been solved.
Furthermore, in order to maintain the state in which the inorganic oxide particles are dispersed in the suspension, the ratio of the inorganic oxide particles in the liquid medium, that is, the inorganic oxide particles in the liquid medium. The concentration needs to be lowered. Therefore, the concentration of the inorganic oxide particles in the liquid medium is usually about several mass% to 10 mass%.
For the above-described reason, when the coating is formed on the substrate by the SPS method, there arises a problem that the film forming speed is lowered as compared with the case of the plasma spraying method, that is, the advantage (i) described above is lost. There is an aspect.

上記問題点に鑑み、本発明は、クラックや気孔が少なく、かつ耐食性および機械特性が低下する虞が少ない無機酸化物粒子を含む皮膜およびその形成方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a film containing inorganic oxide particles with few cracks and pores, and less likely to deteriorate corrosion resistance and mechanical properties, and a method for forming the film.

本発明に係る皮膜の形成方法は、
基材上に無機酸化物粒子を含む皮膜を形成する皮膜の形成方法であって、
前記無機酸化物粒子を非溶融状態に維持しつつ加熱する加熱工程と、
前記加熱工程で加熱された前記無機酸化物粒子を非溶融状態で前記基材の被処理面に吹き付ける吹き付け工程と、
前記吹き付け工程で前記基材の被処理面に吹き付けられた前記無機酸化物粒子を前記基材上で焼結させて、前記基材上に前記無機酸化物粒子の皮膜を形成する皮膜形成工程と、を有し、
前記加熱工程では、前記無機酸化物粒子の原料として前記無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより前記無機酸化物粒子を加熱する。
The method for forming a film according to the present invention includes:
A method of forming a film that forms a film containing inorganic oxide particles on a substrate,
A heating step of heating the inorganic oxide particles while maintaining the non-molten state;
A spraying step of spraying the inorganic oxide particles heated in the heating step onto the surface to be treated of the substrate in a non-molten state;
A film forming step of sintering the inorganic oxide particles sprayed on the treated surface of the base material in the spraying step on the base material to form a film of the inorganic oxide particles on the base material; Have
In the heating step, a resin composition in which the inorganic oxide particles are dispersed in a resin is used as a raw material for the inorganic oxide particles, and the inorganic oxide particles are heated by burning the resin.

かかる構成によれば、非溶融状態の無機酸化物粒子を用いて基材上に皮膜を形成するので、液状の無機酸化物粒子の急冷に起因して生じるクラックや気孔の影響を少なくできる。
また、前記無機酸化物粒子を前記樹脂に分散させることにより前記無機酸化物粒子の凝集を抑制できるので、粒間の空隙に依存するクラックや気孔の影響を少なくできる。
また、非溶融状態の無機酸化物粒子を用いるので、成膜前後で前記無機酸化物粒子の結晶相が相転移する虞が少ない。そのため、上記形成方法で形成された皮膜は耐食性および機械特性が低下する虞が少ない。
According to such a configuration, since the film is formed on the base material using the inorganic oxide particles in a non-molten state, the influence of cracks and pores caused by the rapid cooling of the liquid inorganic oxide particles can be reduced.
Moreover, since the aggregation of the inorganic oxide particles can be suppressed by dispersing the inorganic oxide particles in the resin, the influence of cracks and pores depending on the voids between the grains can be reduced.
In addition, since non-molten inorganic oxide particles are used, there is little risk of phase transition of the crystalline phase of the inorganic oxide particles before and after film formation. For this reason, the film formed by the above forming method is less likely to deteriorate the corrosion resistance and mechanical properties.

また、前記皮膜の形成方法においては、
前記加熱工程では、前記無機酸化物粒子を炎と接触させて加熱し、前記無機酸化物粒子の表面の温度は、融点−150℃〜融点+150℃の範囲の温度であるものとすることができる。
In the method for forming the film,
In the heating step, the inorganic oxide particles are heated in contact with a flame, and the surface temperature of the inorganic oxide particles may be in the range of a melting point of −150 ° C. to a melting point of + 150 ° C. .

かかる構成によれば、無機酸化物粒子を非溶融状態で維持しつつ焼結可能な温度とすることができる。したがって、液状の無機酸化物粒子の急冷に起因して生じるクラックや気孔の影響を好適に低減できる。また、上記形成方法で形成された皮膜において、耐食性および機械特性の低下する虞を好適に抑制することができる。   According to this structure, it can be set as the temperature which can sinter, maintaining an inorganic oxide particle in a non-molten state. Therefore, the influence of cracks and pores resulting from the rapid cooling of the liquid inorganic oxide particles can be suitably reduced. Moreover, in the film formed by the above-described forming method, it is possible to suitably suppress the possibility that the corrosion resistance and the mechanical characteristics are lowered.

また、前記皮膜の形成方法においては、
加熱前の前記無機酸化物粒子の粒子径は、10〜1000nmであるものとすることができる。
In the method for forming the film,
The particle diameter of the inorganic oxide particles before heating can be 10 to 1000 nm.

粒子径が1000nm以下であれば、粒子径に依存して生じる粒間の空隙を小さくできる。そのため、粒間の空隙に起因して、皮膜に生じるクラックや気孔の影響を小さくできる。粒子径が10nm以上であれば、前記無機酸化物粒子の凝集を抑制することができる。   When the particle diameter is 1000 nm or less, the voids between the grains depending on the particle diameter can be reduced. Therefore, it is possible to reduce the influence of cracks and pores generated in the film due to the voids between the grains. When the particle diameter is 10 nm or more, aggregation of the inorganic oxide particles can be suppressed.

また、前記皮膜の形成方法においては、
前記樹脂組成物は、前記無機酸化物粒子を10〜60体積%含むものとすることができる。
In the method for forming the film,
The resin composition may contain 10 to 60% by volume of the inorganic oxide particles.

10体積%以上であれば、前記樹脂組成物中に高濃度で無機酸化物粒子を含有させることができるので、基材上での成膜速度を向上させることができる。
60体積%以下であれば、前記樹脂組成物中での前記無機酸化物粒子の分散性が低下する虞を抑制できる。
If it is 10 volume% or more, since the inorganic oxide particles can be contained at a high concentration in the resin composition, the film forming rate on the substrate can be improved.
If it is 60 volume% or less, the possibility that the dispersibility of the inorganic oxide particles in the resin composition may be suppressed can be suppressed.

また、前記皮膜の形成方法においては、
前記無機酸化物粒子は酸化アルミニウム粒子であるものとすることができる。
In the method for forming the film,
The inorganic oxide particles may be aluminum oxide particles.

かかる構成によれば、成膜前後で前記無機酸化物粒子の結晶相の相転移をより好適に抑制できる。そのため、上記方法で形成された皮膜において、耐食性および機械特性が低下する虞をより好適に抑制できる。   According to such a configuration, the phase transition of the crystal phase of the inorganic oxide particles can be more preferably suppressed before and after film formation. Therefore, in the film formed by the above method, it is possible to more suitably suppress the possibility that the corrosion resistance and the mechanical properties are lowered.

本発明に係る皮膜は、
無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより、非溶融状態を維持しつつ前記無機酸化物粒子を加熱し、前記無機酸化物粒子を非溶融状態で基材の被処理面に吹き付け、前記無機酸化物粒子を前記基材上に焼結させてなる。
The film according to the present invention is
Using the resin composition in which the inorganic oxide particles are dispersed in the resin, the inorganic oxide particles are heated while maintaining the non-molten state by burning the resin, and the inorganic oxide particles are in the non-molten state And spraying onto the surface to be treated of the base material, and sintering the inorganic oxide particles on the base material.

かかる構成によれば、非溶融状態の無機酸化物粒子を基材上に堆積させた皮膜とすることができるので、液状の無機酸化物粒子の急冷に起因して生じるクラックや気孔が少ないものとなる。
また、前記無機酸化物粒子を前記樹脂に分散させることにより前記無機酸化物粒子の凝集を抑制できるので、粒間の空隙に依存するクラックや気孔の影響を少ないものとなる。
また、非溶融状態の無機酸化物粒子を用いるので、成膜前後で前記無機酸化物粒子の結晶相が相転移する虞が少ない。そのため、上記皮膜は耐食性および機械特性が優れたものとなりうる。
According to such a configuration, since it is possible to form a film in which inorganic oxide particles in a non-molten state are deposited on a substrate, there are few cracks and pores generated due to rapid cooling of the liquid inorganic oxide particles. Become.
Moreover, since the aggregation of the inorganic oxide particles can be suppressed by dispersing the inorganic oxide particles in the resin, the influence of cracks and pores depending on the voids between the particles is reduced.
In addition, since non-molten inorganic oxide particles are used, there is little risk of phase transition of the crystalline phase of the inorganic oxide particles before and after film formation. Therefore, the film can be excellent in corrosion resistance and mechanical properties.

以上のように、本発明によれば、クラックや気孔が少なく、かつ耐食性および機械特性が低下する虞が少ない無機酸化物粒子を含む皮膜を形成する皮膜、およびその形成方法が提供される。   As described above, according to the present invention, there are provided a film for forming a film containing inorganic oxide particles with few cracks and pores and less risk of deterioration in corrosion resistance and mechanical properties, and a method for forming the film.

本発明の一実施形態に係る皮膜の形成方法のフロー図。The flowchart of the formation method of the membrane | film | coat which concerns on one Embodiment of this invention. 本実施形態の加熱工程および吹き付け工程に用いる吹き付け装置を示す断面図。Sectional drawing which shows the spraying apparatus used for the heating process and spraying process of this embodiment. 熱硬化性のアクリル樹脂に酸化アルミニウム粒子を40体積%となるように加えた樹脂組成物の、撹拌時間ごとのせん断速度とせん断応力との関係を示すグラフ。(a)は樹脂組成物を5分撹拌したときのグラフ。(b)は樹脂組成物を10分撹拌したときのグラフ。(c)は樹脂組成物を15分撹拌したときのグラフ。The graph which shows the relationship between the shear rate for every stirring time, and the shear stress of the resin composition which added the aluminum oxide particle so that it might become 40 volume% to the thermosetting acrylic resin. (A) is a graph when the resin composition is stirred for 5 minutes. (B) is a graph when the resin composition is stirred for 10 minutes. (C) is a graph when the resin composition is stirred for 15 minutes. 熱硬化性のアクリル樹脂に酸化アルミニウム粒子を20〜40体積%となるように加えた各樹脂組成物の、せん断速度とせん断応力との関係を示すグラフ。The graph which shows the relationship between the shear rate and the shear stress of each resin composition which added the aluminum oxide particle to the thermosetting acrylic resin so that it might become 20-40 volume%. 酸化アルミニウム粒子の表面の温度および酸化アルミニウム粒子の吹き付け速度の測定結果を示す図。The figure which shows the measurement result of the temperature of the surface of an aluminum oxide particle, and the spraying speed of an aluminum oxide particle. 水盤に捕集した酸化アルミニウム粒子の表面を撮像した図。The figure which imaged the surface of the aluminum oxide particle collected on the water board. 基材上に形成された皮膜を撮像した図。(a)は、本発明の方法により形成された皮膜を撮像した図。(b)はプラズマ溶射により形成された皮膜を撮像した図。The figure which imaged the membrane | film | coat formed on the base material. (A) is the figure which imaged the membrane | film | coat formed by the method of this invention. (B) is the figure which imaged the membrane | film | coat formed by plasma spraying. 基材上に形成された皮膜について粉末X線回折法による測定結果を示す図。(a)は本発明の皮膜の形成方法により形成された皮膜の測定結果を示す図。(b)はプラズマ溶射により形成された皮膜の測定結果を示す図。The figure which shows the measurement result by a powder X ray diffraction method about the membrane | film | coat formed on the base material. (A) is a figure which shows the measurement result of the membrane | film | coat formed by the formation method of the membrane | film | coat of this invention. (B) is a figure which shows the measurement result of the membrane | film | coat formed by plasma spraying.

まず、本発明の一実施形態に係る皮膜について説明する。本実施形態に係る皮膜は、無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより、非溶融状態を維持しつつ前記無機酸化物粒子を加熱し、前記無機酸化物粒子を非溶融状態で基材の被処理面に吹き付け、前記無機酸化物粒子を前記基材上に焼結させてなる。換言すれば、本実施形態に係る皮膜は、前記基材上に前記無機酸化物粒子を焼結させてなる層を有して形成される。本明細書で使用する「非溶融状態」とは、前記無機酸化物粒子が固体状態を維持していること、または粒子状態を保てる程度に前記無機酸化物粒子の表面部分のみが溶融している状態を意味する。本実施形態に係る皮膜は、非溶融状態の無機酸化物粒子を基材上に堆積させた皮膜であるので、液状の無機酸化物粒子の急冷に起因して生じるクラックや気孔の影響が少ないものである。また、前記無機酸化物粒子を前記樹脂に分散させることにより前記無機酸化物粒子の凝集を抑制できるので、粒間の空隙に依存するクラックや気孔の影響を少ないものである。さらに、成膜前後で前記無機酸化物粒子の結晶相が相転移する虞が少ないので、耐食性および機械特性が優れたものとなりうる。   First, the film | membrane which concerns on one Embodiment of this invention is demonstrated. The coating according to this embodiment uses a resin composition in which inorganic oxide particles are dispersed in a resin, and burns the resin to heat the inorganic oxide particles while maintaining a non-molten state. The inorganic oxide particles are sprayed onto the surface to be treated of the base material in a non-molten state, and the inorganic oxide particles are sintered on the base material. In other words, the film according to the present embodiment is formed having a layer formed by sintering the inorganic oxide particles on the base material. As used herein, “non-molten state” means that the inorganic oxide particles maintain a solid state, or only the surface portion of the inorganic oxide particles is melted to such an extent that the particle state can be maintained. Means state. Since the coating according to the present embodiment is a coating in which inorganic oxide particles in a non-molten state are deposited on a substrate, the effect of cracks and pores caused by rapid cooling of the liquid inorganic oxide particles is small It is. Moreover, since the aggregation of the inorganic oxide particles can be suppressed by dispersing the inorganic oxide particles in the resin, the influence of cracks and pores depending on the voids between the grains is small. Furthermore, since there is little possibility that the crystal phase of the inorganic oxide particles undergo phase transition before and after film formation, the corrosion resistance and mechanical properties can be excellent.

無機酸化物粒子には、例えば、酸化アルミニウム粒子(アルミナ、Al)、二酸化ジルコニウム粒子(ジルコニア、ZrO)、酸化チタン(チタニア、TiO)、アルミナとジルコニアとの混合材料であって、アルミナおよびジルコニア質原料を溶融・凝固してなるアルミナジルコニア粒子(Al/ZrO)、アルミナチタニア(Al/TiO)などが挙げられる。これらの中でも、酸化アルミニウム粒子を用いるのが好ましい。酸化アルミニウム粒子であれば、成膜前後で前記結晶相の相転移をより好適に抑制でき、前記皮膜において、耐食性および機械特性が優れたものとなりうる。酸化アルミニウム粒子としては、α相を有するのが好ましい。γ相よりも耐食性および機械特性に優れるからである。 Examples of the inorganic oxide particles include aluminum oxide particles (alumina, Al 2 O 3 ), zirconium dioxide particles (zirconia, ZrO 2 ), titanium oxide (titania, TiO 2 ), and a mixed material of alumina and zirconia. And alumina zirconia particles (Al 2 O 3 / ZrO 2 ) obtained by melting and solidifying alumina and zirconia raw materials, alumina titania (Al 2 O 3 / TiO 2 ), and the like. Among these, it is preferable to use aluminum oxide particles. If it is an aluminum oxide particle, the phase transition of the said crystal phase can be suppressed more appropriately before and after film formation, and the corrosion resistance and mechanical properties of the film can be excellent. The aluminum oxide particles preferably have an α phase. This is because it is superior in corrosion resistance and mechanical properties than the γ phase.

無機酸化物粒子の粒子径は、10〜1000nmの範囲にあるのが好ましい。1000nm以下であれば、粒間の空隙に起因して、皮膜に生じるクラックや気孔の影響を小さくでき、10nm以上であれば、前記無機酸化物粒子の凝集を抑制することができる。前記無機酸化物粒子の粒子径は、150〜190nmの範囲にあるとさらに好ましい。なお、前記無機酸化物粒子の粒子径は、加熱前に走査型電子顕微鏡(SEM)によって測定する。具体的には、走査型電子顕微鏡で撮像した画像を用いて、画像中の任意の100個の粒子の粒子径を測定し、その平均値を算出することにより測定する。   The particle diameter of the inorganic oxide particles is preferably in the range of 10 to 1000 nm. If it is 1000 nm or less, the influence of cracks and pores generated in the film due to the intergranular voids can be reduced, and if it is 10 nm or more, aggregation of the inorganic oxide particles can be suppressed. The particle diameter of the inorganic oxide particles is more preferably in the range of 150 to 190 nm. The particle diameter of the inorganic oxide particles is measured with a scanning electron microscope (SEM) before heating. Specifically, using an image taken with a scanning electron microscope, the particle diameter of 100 arbitrary particles in the image is measured, and the average value is calculated.

基材の材質は特に限定されない。SUS、セラミックス、プラスチックス等からなる従来公知の種々のものを採用することができる。   The material of the substrate is not particularly limited. Various conventionally known materials made of SUS, ceramics, plastics and the like can be used.

次に、本実施形態に係る皮膜の形成方法について、図1および図2を参照しながら説明する。   Next, a film forming method according to this embodiment will be described with reference to FIGS. 1 and 2.

本実施形態に係る皮膜の形成方法は、基材上に無機酸化物粒子を含む皮膜を形成する皮膜の形成方法であって、前記無機酸化物粒子を非溶融状態に維持しつつ加熱する加熱工程と、前記加熱工程で加熱された前記無機酸化物粒子を非溶融状態で前記基材の被処理面に吹き付ける吹き付け工程と、前記吹き付け工程で前記基材の被処理面に吹き付けられた前記無機酸化物粒子を前記基材上で焼結させて、前記基材上に前記無機酸化物粒子の皮膜を形成する皮膜形成工程と、を有し、前記加熱工程では、前記無機酸化物粒子の原料として前記無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより前記無機酸化物粒子を加熱する。   The film forming method according to the present embodiment is a film forming method for forming a film containing inorganic oxide particles on a substrate, and heating the inorganic oxide particles while maintaining the non-molten state. And the step of spraying the inorganic oxide particles heated in the heating step onto the surface to be treated of the base material in a non-molten state, and the inorganic oxidation sprayed on the surface to be treated of the base material in the spraying step And forming a film of the inorganic oxide particles on the base material by sintering product particles on the base material, and in the heating step, as a raw material of the inorganic oxide particles Using the resin composition in which the inorganic oxide particles are dispersed in a resin, the inorganic oxide particles are heated by burning the resin.

(加熱工程)
本工程において、前記無機酸化物粒子は、非溶融状態を維持できる温度で加熱される。前記無機酸化物粒子の加熱は、可燃性ガスと助燃性ガスとの混合ガス(例えば、酸素−アセチレンガス)を燃焼させたときに生じる燃焼炎中に前記無機酸化物粒子を接触させることによって実行する。好ましくは、前記無機酸化物粒子の加熱は、前記無機酸化物粒子の表面の温度が融点−150℃〜融点+150℃となる範囲の温度で実行する。前記無機酸化物粒子の加熱を上記の範囲の温度で実行すると、前記無機酸化物粒子を非溶融状態で維持しつつ焼結可能な温度とすることができる。これにより、液状の無機酸化物粒子の急冷に起因して生じるクラックや気孔の影響を好適に低減でき、かつ耐食性および機械特性の低下する虞を好適に抑制することができる。
前記無機酸化物粒子の表面の温度は、前記燃焼炎に接触したときに前記無機酸化物粒子から放出される赤外線強度を測定し、この測定された赤外線強度を温度に変換することにより求めることができる。
(Heating process)
In this step, the inorganic oxide particles are heated at a temperature at which a non-molten state can be maintained. The heating of the inorganic oxide particles is performed by bringing the inorganic oxide particles into contact with a combustion flame generated when a mixed gas (for example, oxygen-acetylene gas) of a combustible gas and an auxiliary combustion gas is burned. To do. Preferably, the heating of the inorganic oxide particles is performed at a temperature in a range where the temperature of the surface of the inorganic oxide particles becomes a melting point −150 ° C. to a melting point + 150 ° C. When the heating of the inorganic oxide particles is performed at a temperature in the above range, the inorganic oxide particles can be set to a temperature at which sintering is possible while maintaining the non-molten state. Thereby, the influence of the cracks and pores resulting from the rapid cooling of the liquid inorganic oxide particles can be suitably reduced, and the possibility that the corrosion resistance and mechanical properties are lowered can be suitably suppressed.
The temperature of the surface of the inorganic oxide particles can be obtained by measuring the infrared intensity emitted from the inorganic oxide particles when contacting the combustion flame and converting the measured infrared intensity into temperature. it can.

本工程では、前記無機酸化物粒子の原料として前記無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより前記無機酸化物粒子を加熱する。これにより、前記無機酸化物粒子の凝集を抑制できるので、粒間の空隙に依存するクラックや気孔の影響を少なくできる。
前記樹脂としては、前記無機酸化物粒子の分散状態を維持できる粘度を有するものであれば特に限定されない。前記樹脂組成物は、前記無機酸化物粒子を分散させた状態で硬化させてなる硬化体の形態であってもよい。この場合、前記樹脂は熱硬化性樹脂であるのが好ましい。例えば、熱硬化性のアクリル樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂などの各種の樹脂を用いるのが好ましい。前記樹脂組成物として流動性のない硬化体を用いることにより、SPS法の場合のように吹き付け前に原料が流れ落ちることを防止でき、成膜効率が向上する。
In this step, a resin composition in which the inorganic oxide particles are dispersed in a resin is used as a raw material for the inorganic oxide particles, and the inorganic oxide particles are heated by burning the resin. Thereby, since aggregation of the said inorganic oxide particle can be suppressed, the influence of the crack depending on the space | gap between grains and a pore can be decreased.
The resin is not particularly limited as long as it has a viscosity capable of maintaining the dispersed state of the inorganic oxide particles. The resin composition may be in the form of a cured product obtained by curing the inorganic oxide particles in a dispersed state. In this case, the resin is preferably a thermosetting resin. For example, it is preferable to use various resins such as a thermosetting acrylic resin, an epoxy resin, a phenol resin, a urea resin, and a melamine resin. By using a cured material having no fluidity as the resin composition, it is possible to prevent the raw material from flowing down before spraying as in the case of the SPS method, and the film formation efficiency is improved.

前記樹脂組成物が前記硬化体にされるときの加熱条件(加熱温度および加熱時間)は、前記樹脂の種類を参照し、硬化中の前記樹脂組成物に大きな収縮や割れが生じない条件を選んで適宜設定することができる。前記硬化体は、モールド加工されて、ロッド状などに成形されてもよい。なお、前記硬化体中においては、前記無機酸化物粒子は分散された状態を維持している。   As for the heating conditions (heating temperature and heating time) when the resin composition is made into the cured body, refer to the type of the resin and select a condition that does not cause large shrinkage or cracking in the resin composition during curing. Can be set as appropriate. The hardened body may be molded into a rod shape or the like. In addition, in the said hardening body, the said inorganic oxide particle is maintaining the dispersed state.

前記樹脂組成物は、前記無機酸化物粒子を10〜60体積%含むと好ましい。10体積%以上であれば、前記樹脂組成物中に高濃度で前記無機酸化物粒子を含有させることができるので、基材上での成膜速度を向上させることができる。60体積%以下であれば、前記樹脂組成物中での前記無機酸化物粒子の分散性が低下する虞を抑制できる。前記樹脂組成物は、前記無機酸化物粒子を20〜40体積%含むとさらに好ましい。前記無機酸化物粒子は、事前に決定された割合で前記樹脂組成物中に配合される。前記無機酸化物粒子の体積は、前記樹脂組成物中に配合される前記無機酸化物粒子の質量を測定し、測定された前記無機酸化物粒子の質量を前記無機酸化物粒子の密度で除して求める。   The resin composition preferably contains 10 to 60% by volume of the inorganic oxide particles. If it is 10 volume% or more, since the said inorganic oxide particle can be contained in the said resin composition by high concentration, the film-forming speed | rate on a base material can be improved. If it is 60 volume% or less, the possibility that the dispersibility of the inorganic oxide particles in the resin composition may be suppressed can be suppressed. More preferably, the resin composition contains 20 to 40% by volume of the inorganic oxide particles. The inorganic oxide particles are blended in the resin composition at a predetermined ratio. The volume of the inorganic oxide particles is obtained by measuring the mass of the inorganic oxide particles blended in the resin composition and dividing the measured mass of the inorganic oxide particles by the density of the inorganic oxide particles. Ask.

前記樹脂組成物は、例えば、自転公転撹拌装置を用いて調製する。自転公転撹拌装置は、前記無機酸化物粒子と前記樹脂とを収容する容器と、該容器を装着可能であって、装着された該容器を自転・公転運動させる撹拌部とを備える。自転公転撹拌装置は、前記容器を公転運動(遊星運動)させることによって生じる遠心力により、前記樹脂中の空気を脱泡し、前記容器を自転運動させることにより、前記容器中において前記無機酸化物粒子および前記樹脂を混合する。つまり、自転公転撹拌装置は、自転運動と公転運動との両者を行うことにより、前記樹脂中の空気の脱泡と前記無機酸化物粒子および前記樹脂の混合とを同時に行うことができる。自転公転撹拌装置の自転速度、公転速度、および運転時間などの運転条件は、前記無機酸化物粒子および前記樹脂の種類、前記樹脂組成物中の前記無機酸化物粒子の濃度などに応じて、適宜設定することができる。   The resin composition is prepared, for example, using a rotation / revolution stirrer. The rotation and revolution stirrer includes a container that accommodates the inorganic oxide particles and the resin, and a stirring unit that can be fitted with the container and rotates and revolves the loaded container. The rotation / revolution stirrer is configured to defoam air in the resin by centrifugal force generated by revolving motion (planetary motion) of the container, and rotate the container to rotate the inorganic oxide in the container. Mix the particles and the resin. That is, the rotation and revolution stirring device can perform both the defoaming of the air in the resin and the mixing of the inorganic oxide particles and the resin at the same time by performing both the rotation motion and the revolution motion. The operating conditions such as rotation speed, rotation speed, and operation time of the rotation / revolution stirrer are appropriately determined according to the kind of the inorganic oxide particles and the resin, the concentration of the inorganic oxide particles in the resin composition, and the like. Can be set.

(吹き付け工程)
本工程では、例えば、前記燃焼炎が噴き出すときに生じる圧によって前記無機酸化物粒子を基材の被処理面に向けて加速し、該基材の被処理面に吹き付ける。つまり、前記無機酸化物粒子を前記燃焼炎で加熱し非溶融状態を維持させながら、前記燃焼炎が噴き出すときに生じる圧によって、前記基材の被処理面に吹き付ける。
(Blowing process)
In this step, for example, the inorganic oxide particles are accelerated toward the surface to be processed of the substrate by the pressure generated when the combustion flame is ejected, and sprayed on the surface to be processed of the substrate. That is, while the inorganic oxide particles are heated by the combustion flame and maintained in a non-molten state, the inorganic oxide particles are sprayed onto the surface to be treated of the substrate by the pressure generated when the combustion flame is ejected.

前記加熱工程および前記吹き付け工程は、図2に示すような吹き付け装置10を用いて実行することができる。以下では、基材20に近づく方向を前方とし、基材20から遠ざかる方向を後方として吹き付け装置10の構成を説明する。なお、本実施形態では、吹き付け装置10に用いる吹き付け原料として、モールド加工により形成された樹脂ロッド30中に分散された無機酸化物粒子を用いる例について説明する。   The said heating process and the said spraying process can be performed using the spraying apparatus 10 as shown in FIG. Below, the direction which approaches the base material 20 is made into the front, and the direction which leaves | separates from the base material 20 is made into back, and the structure of the spraying apparatus 10 is demonstrated. In the present embodiment, an example in which inorganic oxide particles dispersed in a resin rod 30 formed by molding is used as a spraying raw material used in the spraying apparatus 10 will be described.

吹き付け装置10は、図2に示すように、内部に樹脂ロッド30を収容する収容部11と収容部11から樹脂ロッド30が内部に供給され、かつ供給された樹脂ロッド30を燃焼炎によって加熱し、無機酸化物粒子を前記燃焼炎と接触させ、無機酸化物粒子を噴出する加熱・噴出部12とを備える。収容部11の内部と加熱・噴出部12の内部とは直線状に配され、互いに連通している。詳しくは、収容部11は、樹脂ロッド30を内部に収容し、かつ樹脂ロッド30を加熱・噴出部12に向けて順次送出するように構成されている。加熱・噴出部12は、収容部11から順次送出された樹脂ロッド30の樹脂を燃焼させながら無機酸化物粒子を加熱し、加熱された無機酸化物粒子を噴出するように構成されている。収容部11および加熱・噴出部12は、中空円筒状に形成され、各中心軸が一致するよう配される。収容部11の前端側は加熱・噴出部12の後端側と接続されている。加熱・噴出部12の前端には原料である無機酸化物粒子を噴出するための開口部12’が形成されている。吹き付け装置10は、開口部12’が基材20の被処理面に対向し、かつ開口部12’が基材20の被処理面と所定の間隔を空けるように配される。   As shown in FIG. 2, the spraying device 10 includes a housing portion 11 that houses the resin rod 30 therein, and the resin rod 30 is supplied from the housing portion 11 to the inside, and the supplied resin rod 30 is heated by a combustion flame. And a heating / spouting part 12 for bringing the inorganic oxide particles into contact with the combustion flame and ejecting the inorganic oxide particles. The inside of the accommodating part 11 and the inside of the heating / spouting part 12 are arranged linearly and communicate with each other. In detail, the accommodating part 11 is comprised so that the resin rod 30 may be accommodated in the inside, and the resin rod 30 may be sequentially sent out toward the heating / spouting part 12. The heating / spouting unit 12 is configured to heat the inorganic oxide particles while burning the resin of the resin rod 30 sequentially delivered from the housing unit 11 and to eject the heated inorganic oxide particles. The accommodating part 11 and the heating / spouting part 12 are formed in a hollow cylindrical shape, and are arranged so that the respective central axes coincide with each other. The front end side of the accommodating portion 11 is connected to the rear end side of the heating / spouting portion 12. An opening 12 ′ for ejecting inorganic oxide particles as a raw material is formed at the front end of the heating / ejection section 12. The spraying device 10 is arranged such that the opening 12 ′ faces the surface to be processed of the base material 20 and the opening 12 ′ is spaced from the surface to be processed of the base material 20 by a predetermined distance.

収容部11は、その内部に収容された樹脂ロッド30を加熱・噴出部12に向けて順次送出するためのロッド送出部11aを備えている。加熱・噴出部12は、樹脂ロッド30の樹脂を燃焼させることにより無機酸化物粒子を加熱し、かつ加熱された無機酸化物粒子を噴出するための燃焼炎を生じる混合ガス(助燃性ガスと可燃性ガスとの混合物。例えば、酸素−アセチレンガス)を供給する混合ガス供給部12aと、前記燃焼炎によって加熱された無機酸化物粒子を加速し、かつ加熱・噴出部12を冷却するための圧縮空気を供給する圧縮空気供給部12bとを備えて構成される。   The accommodating portion 11 includes a rod delivery portion 11 a for sequentially delivering the resin rods 30 accommodated therein toward the heating / spouting portion 12. The heating / spouting unit 12 heats the inorganic oxide particles by burning the resin of the resin rod 30 and generates a mixed gas (combustible gas and combustible gas) that generates a combustion flame for ejecting the heated inorganic oxide particles. Mixing gas with gas (for example, oxygen-acetylene gas) 12A for supplying gas, and compression for accelerating the inorganic oxide particles heated by the combustion flame and cooling the heating / jetting part 12 And a compressed air supply unit 12b for supplying air.

ロッド送出部11aは、中心軸に対して対称となる位置に、所定の間隔を空けて配される一対のローラ部11aa、11abを備える。ローラ部11aaとローラ部11abとの間には、樹脂ロッド30がローラ11aa、11abとの両方に当接するように装填され、ローラ部11aa、11abを回転させることによって、加熱・噴出部12に樹脂ロッド30を順次送出するようになっている。樹脂ロッド30の送出速度は、目的とする成膜速度等に応じて適宜設定されうる。   The rod delivery part 11a includes a pair of roller parts 11aa and 11ab arranged at a predetermined interval at a position symmetrical with respect to the central axis. Between the roller portion 11aa and the roller portion 11ab, a resin rod 30 is loaded so as to come into contact with both the rollers 11aa and 11ab, and by rotating the roller portions 11aa and 11ab, the resin is applied to the heating / spouting portion 12. The rods 30 are sent out sequentially. The feeding speed of the resin rod 30 can be appropriately set according to the target film forming speed and the like.

混合ガス供給部12aは、前端側に向かって混合ガスを供給するように配されている。例えば、円筒状に形成されていて、加熱・噴出部12の中心部において中心軸方向に沿って配されている。前端側まで供給された前記混合ガスは、燃焼されて燃焼炎を生ずる。混合ガス供給部12aの中心部には、樹脂ロッド30を受け入れて、混合ガス供給部12aの前端側まで樹脂ロッド30を送出する経路が形成されている。この経路は、収容部11の内部と一直線状に連通される。
圧縮空気供給部12bは、混合ガス供給部12aの外側に備えられていて、前端側に向かって圧縮空気を供給する。圧縮空気の供給速度は、目的とする成膜速度等に応じて適宜設定されうる。
The mixed gas supply unit 12a is arranged to supply a mixed gas toward the front end side. For example, it is formed in a cylindrical shape and is arranged along the central axis direction at the center of the heating / spouting portion 12. The mixed gas supplied to the front end side is burned to generate a combustion flame. At the center of the mixed gas supply unit 12a, a path for receiving the resin rod 30 and sending the resin rod 30 to the front end side of the mixed gas supply unit 12a is formed. This path communicates with the inside of the accommodating portion 11 in a straight line.
The compressed air supply unit 12b is provided outside the mixed gas supply unit 12a, and supplies compressed air toward the front end side. The supply speed of the compressed air can be appropriately set according to the target film formation speed or the like.

吹き付け装置10において、収容室11内に装填された樹脂ロッド30は、ロッド送出部11aによって加熱・噴出部12に向かって順次送出され、加熱・噴出部12の前端側まで順次送出される。加熱・噴出部12の前端側まで送出された樹脂ロッド30は、混合ガス供給部12aの前端縁から吹き出される燃焼炎と接触する。これにより、樹脂が焼失され、無機酸化物粒子は燃焼炎と接触されて加熱される。無機酸化物粒子は、燃焼炎および圧縮空気によって加速されて、開口部13’を通って基材20の被処理面に向けて吹き付けられる。   In the spraying device 10, the resin rods 30 loaded in the storage chamber 11 are sequentially sent out toward the heating / spouting unit 12 by the rod feed-out unit 11 a and are sequentially fed out to the front end side of the heating / spouting unit 12. The resin rod 30 delivered to the front end side of the heating / spouting unit 12 comes into contact with the combustion flame blown out from the front end edge of the mixed gas supply unit 12a. As a result, the resin is burned out, and the inorganic oxide particles are heated in contact with the combustion flame. The inorganic oxide particles are accelerated by the combustion flame and compressed air, and sprayed toward the surface to be treated of the substrate 20 through the opening 13 ′.

(皮膜形成工程)
皮膜形成工程では、前記無機酸化物粒子を基材20の被処理面に衝突させ、基材20上で焼結させる。これにより、基材20上に前記無機酸化物粒子の皮膜を形成する。
なお、吹き付け装置10においては、燃焼炎によって加熱された加熱・噴出部12は、圧縮空気によって冷却される。
(Film formation process)
In the film forming step, the inorganic oxide particles are made to collide with the surface to be treated of the substrate 20 and sintered on the substrate 20. As a result, a film of the inorganic oxide particles is formed on the substrate 20.
In addition, in the spraying apparatus 10, the heating / spouting part 12 heated by the combustion flame is cooled by the compressed air.

上述のように、本実施形態に係る皮膜の形成方法によれば、非溶融状態の無機酸化物粒子を用いて基材上に皮膜を形成するので、液状の無機酸化物粒子の急冷に起因して生じるクラックや気孔の影響を少なくできる。また、前記無機酸化物粒子を前記樹脂に分散させることにより前記無機酸化物粒子の凝集を抑性できるので、粒間の空隙に依存するクラックや気孔の影響を少なくできる。また、非溶融状態の無機酸化物粒子を用いるので、成膜前後で前記無機酸化物粒子の結晶相が相転移する虞が少ない。そのため、該皮膜の形成方法で形成された皮膜は耐食性および機械特性が低下する虞が少ない。   As described above, according to the method for forming a film according to the present embodiment, the film is formed on the base material using the inorganic oxide particles in a non-molten state, which is caused by the rapid cooling of the liquid inorganic oxide particles. Can reduce the effects of cracks and pores. Moreover, since the inorganic oxide particles can be prevented from aggregating by dispersing the inorganic oxide particles in the resin, the influence of cracks and pores depending on the intergranular voids can be reduced. In addition, since non-molten inorganic oxide particles are used, there is little risk of phase transition of the crystalline phase of the inorganic oxide particles before and after film formation. Therefore, the film formed by the film forming method is less likely to be deteriorated in corrosion resistance and mechanical properties.

以下に実施例を挙げて本発明を更に詳しく説明する。以下の実施例は本発明をさらに詳細に説明するためのものであり、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The following examples are intended to illustrate the invention in more detail and are not intended to limit the scope of the invention.

(樹脂組成物の流体特性の評価)
熱硬化性のアクリル樹脂(JSR社製、製品名:KC1278)に、α相を有する平均粒子径170nmの酸化アルミニウム粒子(大明化学工業社製、製品名:TM−DAR)を40体積%となるように加えた。自転公転撹拌装置(写真化学社製、製品名:SK−350T)を用いて、前記酸化アルミニウム粒子と前記熱硬化性のアクリル樹脂とを含む樹脂組成物を脱泡しながら撹拌して、撹拌時間ごと(5分、10分、15分)に、該樹脂組成物の流体特性を評価した。流体特性の評価は、粘度−粘弾性測定器(BROOKFIELD社製、製品名:MRVT115)を用いて、せん断速度の値を変化させたときのせん断応力の値の変化を調べることにより行った。具体的には、前記樹脂組成物について、せん断速度の値を連続的に増加させた後、連続的に減少させたときのせん断応力の値の変化を調べた。
なお、前記自転公転撹拌装置の運転条件は、自転速度が700rpm、公転速度が300rpm、撹拌時間が15分となるように設定した。
また、前記酸化アルミニウム粒子の平均粒子径は、走査型電子顕微鏡(SEM)によって測定した。具体的には、走査型電子顕微鏡で撮像した画像を用いて、画像中の任意の100個の粒子の粒子径を測定し、その平均値を算出することにより測定した。前記酸化アルミニウム粒子は、事前に決定された割合で前記樹脂組成物中に配合された。前記酸化アルミニウム粒子の体積は、前記樹脂組成物中に配合される前記酸化アルミニウム粒子の質量を測定し、測定された前記酸化アルミニウム粒子の質量を前記酸化アルミニウム粒子の密度(3.9g/cm)で除して求めた。撹拌時間ごとに、前記樹脂組成物の流体特性を評価した結果を図3に示した。
(Evaluation of fluid properties of resin composition)
Thermosetting acrylic resin (manufactured by JSR, product name: KC1278) and aluminum oxide particles having an α-phase average particle diameter of 170 nm (manufactured by Daimei Chemical Co., Ltd., product name: TM-DAR) are 40% by volume. Added as follows. Using a rotation and revolution stirring device (product name: SK-350T, manufactured by Photochemical Co., Ltd.), the resin composition containing the aluminum oxide particles and the thermosetting acrylic resin is stirred while defoaming, and stirring time is obtained. Every time (5 minutes, 10 minutes, 15 minutes), the fluid properties of the resin composition were evaluated. The evaluation of fluid characteristics was performed by examining changes in the value of the shear stress when the value of the shear rate was changed using a viscosity-viscoelasticity measuring device (manufactured by BROOKFIELD, product name: MRVT115). Specifically, after increasing the value of the shear rate continuously for the resin composition, the change in the value of the shear stress when the value was continuously decreased was examined.
The operating conditions of the rotation / revolution stirring apparatus were set so that the rotation speed was 700 rpm, the rotation speed was 300 rpm, and the stirring time was 15 minutes.
The average particle diameter of the aluminum oxide particles was measured with a scanning electron microscope (SEM). Specifically, using an image taken with a scanning electron microscope, the particle diameter of 100 arbitrary particles in the image was measured, and the average value was calculated. The aluminum oxide particles were blended in the resin composition at a predetermined ratio. The volume of the aluminum oxide particles is determined by measuring the mass of the aluminum oxide particles blended in the resin composition, and the measured mass of the aluminum oxide particles is the density of the aluminum oxide particles (3.9 g / cm 3). ) The results of evaluating the fluid properties of the resin composition for each stirring time are shown in FIG.

撹拌時間が5分のときは、図3(a)に示すように、ニュートン流体に近い直線状の曲線が描かれることが分かった。このような曲線が描かれるときは、前記熱硬化性のアクリル樹脂中に、前記酸化アルミニウム粒子はほとんど分散されていない。撹拌時間が10分になると、図3(b)に示すように、描かれる曲線はヒステリシスループを示すようになることが分かった。このような曲線が描かれるときは、前記熱硬化性のアクリル樹脂中において、前記酸化アルミニウム粒子はやや分散された状態になっている。撹拌時間が15分になると、図3(c)に示すように、せん断速度の値を連続的に増加させた場合、あるせん断速度の値(図3(c)中のA)を境にせん断応力の値が減少し、せん断速度の値を連続的に減少させた場合、あるせん断速度の値(図3(c)中のB)において、せん断速度を連続的に増加させた場合のせん断応力の値と、せん断速度を連続的に減少させた場合のせん断応力の値とがほぼ同じになることが分かった。これは、15分撹拌後の前記樹脂組成物がマヨネーズなどのような軟塑性体になっていて、せん断速度の値を連続的に増加させた場合は、該樹脂組成物の存在状態は固体状から固体と液体とが混在する状態、さらには液体状へと変化するので、該樹脂組成物の存在状態が液体状になったときにせん断応力の値が減少するようになり、せん断速度の値を連続的に減少させた場合は、上記とは逆の挙動になるので、あるせん断速度の値(図3(c)中のB)のときに該樹脂組成物の存在状態が固体状になったためだと考えられる。図3(c)に示すような曲線は、良好なチキソ性を示す軟塑性体の場合に描かれる曲線であり、該軟塑性体においては、液状の媒体中に固体の媒体が高分散されている。
上記の結果から、前記酸化アルミニウム粒子と前記熱硬化性のアクリル樹脂とを含む前記樹脂組成物においては、前記自転公転撹拌装置の撹拌時間を15分に設定すれば、前記熱硬化性のアクリル樹脂中に前記酸化アルミニウム粒子が高分散されることが分かった。
When the stirring time was 5 minutes, it was found that a linear curve close to the Newtonian fluid was drawn as shown in FIG. When such a curve is drawn, the aluminum oxide particles are hardly dispersed in the thermosetting acrylic resin. When the stirring time was 10 minutes, it was found that the drawn curve showed a hysteresis loop as shown in FIG. When such a curve is drawn, the aluminum oxide particles are in a slightly dispersed state in the thermosetting acrylic resin. When the stirring time is 15 minutes, as shown in FIG. 3 (c), when the shear rate value is continuously increased, the shearing is performed at a certain shear rate value (A in FIG. 3 (c)). When the stress value is decreased and the shear rate value is continuously decreased, the shear stress when the shear rate is continuously increased at a certain shear rate value (B in FIG. 3C). It was found that the value of and the value of the shear stress when the shear rate was continuously decreased were almost the same. This is because when the resin composition after stirring for 15 minutes is a soft plastic material such as mayonnaise and the value of the shear rate is continuously increased, the presence state of the resin composition is solid. Since the solid and liquid are mixed into a liquid state, and the liquid state is changed to a liquid state, the shear stress value decreases when the resin composition is in a liquid state, and the shear rate value is reduced. When the value is continuously decreased, the behavior is opposite to that described above, and therefore the resin composition is in a solid state at a certain shear rate (B in FIG. 3C). It is thought that it was because of it. The curve as shown in FIG. 3C is a curve drawn in the case of a soft plastic body exhibiting good thixotropy. In the soft plastic body, a solid medium is highly dispersed in a liquid medium. Yes.
From the above results, in the resin composition containing the aluminum oxide particles and the thermosetting acrylic resin, if the stirring time of the rotation and revolution stirring device is set to 15 minutes, the thermosetting acrylic resin It was found that the aluminum oxide particles were highly dispersed therein.

次に、前記酸化アルミニウム粒子の含有率(濃度)を変えた複数の樹脂組成物について、流体特性を調べた。前記複数の樹脂組成物は、熱硬化性のアクリル樹脂(JSR社製、製品名:KC−1278)に、α相を有する平均粒子径170nmの酸化アルミニウム粒子(大明化学工業社製、製品名:TM−DAR)を、それぞれ20および30体積%となるように加えて、上記の自転公転撹拌装置を用いて作製した。前記自転公転撹拌装置の運転条件は、上記と同様にし、撹拌時間15分後の各樹脂組成物について流体特性をそれぞれ評価した。流体特性は、上記の粘度−粘弾性測定器を用いて、せん断速度の値を変化させたときのせん断応力の値の変化を調べることにより行った。前記酸化アルミニウム粒子は、事前に決定された割合で前記樹脂組成物中に配合された。前記酸化アルミニウム粒子の体積は、前記樹脂組成物中に配合される前記酸化アルミニウム粒子の質量を測定し、測定された前記酸化アルミニウム粒子の質量を前記酸化アルミニウム粒子の密度(3.9g/cm)で除して求めた。前記各樹脂組成物の流体特性を評価した結果を図4に示した。 Next, the fluid characteristic was investigated about the several resin composition which changed the content rate (concentration) of the said aluminum oxide particle. The plurality of resin compositions are thermosetting acrylic resin (manufactured by JSR, product name: KC-1278), aluminum oxide particles having an α phase and an average particle diameter of 170 nm (manufactured by Daimei Chemical Co., Ltd., product name: TM-DAR) was added so as to be 20 and 30% by volume, respectively, and was prepared using the above-described rotation and revolution stirring apparatus. The operating conditions of the rotation and revolution stirrer were the same as described above, and the fluid characteristics were evaluated for each resin composition after 15 minutes of stirring time. The fluid property was determined by examining the change in the value of the shear stress when the value of the shear rate was changed using the above-described viscosity-viscoelasticity measuring device. The aluminum oxide particles were blended in the resin composition at a predetermined ratio. The volume of the aluminum oxide particles is determined by measuring the mass of the aluminum oxide particles blended in the resin composition, and the measured mass of the aluminum oxide particles is the density of the aluminum oxide particles (3.9 g / cm 3). ) The results of evaluating the fluid characteristics of each resin composition are shown in FIG.

図4に示すように、いずれの樹脂組成物についても、前記熱硬化性のアクリル樹脂に前記酸化アルミニウム粒子を40体積%加えてなる前記樹脂組成物の場合に描かれた曲線と同様な傾向を示す曲線が描かれることが分かった。したがって、前記熱硬化性のアクリル樹脂に前記酸化アルミニウム粒子を20および30体積%加えてなる樹脂組成物についても、前記熱硬化性のアクリル樹脂中に前記酸化アルミニウム粒子が高分散されることが分かった。   As shown in FIG. 4, any resin composition has the same tendency as the curve drawn in the case of the resin composition obtained by adding 40% by volume of the aluminum oxide particles to the thermosetting acrylic resin. It turns out that the curve which shows is drawn. Therefore, it is found that the aluminum oxide particles are highly dispersed in the thermosetting acrylic resin even in a resin composition obtained by adding 20 and 30% by volume of the aluminum oxide particles to the thermosetting acrylic resin. It was.

(皮膜の形成)
前述したように、前記熱硬化性のアクリル樹脂に前記酸化アルミニウム粒子を40体積%加えてなる樹脂組成物を作製し、内径4mm、高さ200mmの真鍮モールド(セイワマシン社製、製品名:モールド)内に該樹脂組成物を充填し、該真鍮モールドを電気炉(山田電機社製、製品名:NF型マッフル電気炉MF−215−P)を用いて120℃で60分間加熱して該樹脂組成物を硬化させて、樹脂ロッドを作製した。そして、図2に示す吹き付け装置(東興精工社製、製品名:ロッドガン)の収容部内に中心軸方向に沿って該樹脂ロッドを装填し、前記収容部から加熱・噴出部の前端側まで前記樹脂ロッドを順次送出し、前記加熱・噴出部の前端側において酸素−アセチレンガスが燃焼されて生じる燃焼炎に前記樹脂ロッドを接触させて前記熱硬化性のアクリル樹脂を燃焼させ、前記酸化アルミニウム粒子を加熱した。そして、燃焼炎および圧縮空気によって、前記吹き付け装置の開口部から50×50×1mmのSUS304ステンレス鋼基材(以下、SUS304基材と呼ぶ)の被処理面に向けて、前記酸化アルミニウム粒子を吹き付けて、SUS304基材の被処理面に前記酸化アルミニウム粒子の皮膜を形成した。前記SUS304基材は、その被処理面と前記開口部との間隔が100mmとなる位置に配置された。前記吹き付け装置の運転条件は、以下のように設定した。

運転条件
・ロッド送り速度:2.5〜6.0mm/s
・圧縮空気圧:3.0〜6.0kg/cm
・酸素圧力:6.0〜8.0kg/cm
・アセチレン圧力:1.0〜2.6kg/cm

また、前記酸素−アセチレンガスが燃焼されて生じる燃焼炎に接触したときの前記酸化アルミニウム粒子の表面の温度および前記SUS304基材に向けて吹き付けられる前記酸化アルミニウム粒子の吹き付け速度についても、溶射監視装置(スルザーメテコ社製、製品名:アキュラスプレイ−G3C)を用いて測定した。前記酸化アルミニウム粒子の表面の温度は、前記燃焼炎に接触したときに前記酸化アルミニウム粒子から放出される赤外線強度を測定し、この測定された赤外線強度を温度に変換することにより求めた。
さらに、前記開口部から吹き付けられた前記酸化アルミニウム粒子の存在状態を調査するために、直径500mm×深さ400mmの円筒状に形成され、深さ200mmまで水を収容した水盤に、図2に示す吹き付け装置から噴射した酸化アルミニウム粒子を捕集した。具体的には、前記吹き付け装置の前記開口部から550mm離間した位置に水面が位置するように水盤を配し、前記吹き付け装置の前記開口部から前記水盤に向けて前記酸化アルミニウム粒子を吹き付けて、前記水盤中に前記酸化アルミニウム粒子を捕集した。前記吹き付け装置の運転条件は、上記と同条件に設定した。
(Formation of film)
As described above, a resin composition is produced by adding 40% by volume of the aluminum oxide particles to the thermosetting acrylic resin, and a brass mold (product name: mold, manufactured by Seiwa Machine Co., Ltd.) having an inner diameter of 4 mm and a height of 200 mm. ) Is filled with the resin composition, and the brass mold is heated at 120 ° C. for 60 minutes using an electric furnace (manufactured by Yamada Denki, product name: NF type muffle electric furnace MF-215-P). The composition was cured to produce a resin rod. Then, the resin rod is loaded along the central axis direction in the accommodating portion of the spraying apparatus (product name: rod gun manufactured by Toko Seiko Co., Ltd.) shown in FIG. 2, and the resin extends from the accommodating portion to the front end side of the heating / spouting portion. The rods are sequentially sent out, and the thermosetting acrylic resin is burned by bringing the resin rod into contact with a combustion flame generated by burning oxygen-acetylene gas at the front end side of the heating / spouting portion, and the aluminum oxide particles are burned. Heated. Then, the aluminum oxide particles are sprayed from the opening of the spraying device toward the surface to be treated of a 50 × 50 × 1 mm SUS304 stainless steel substrate (hereinafter referred to as SUS304 substrate) by a combustion flame and compressed air. Thus, a film of the aluminum oxide particles was formed on the surface to be treated of the SUS304 base material. The SUS304 base material was disposed at a position where the distance between the surface to be processed and the opening was 100 mm. The operating conditions of the spraying device were set as follows.

Operating conditions / Rod feed speed: 2.5 to 6.0 mm / s
・ Compressed air pressure: 3.0 to 6.0 kg / cm 2
・ Oxygen pressure: 6.0-8.0 kg / cm 2
Acetylene pressure: 1.0 to 2.6 kg / cm 2

Further, a thermal spray monitoring device is also used for the temperature of the surface of the aluminum oxide particles and the spraying speed of the aluminum oxide particles sprayed toward the SUS304 base material when the oxygen-acetylene gas comes into contact with the combustion flame generated by combustion. (Measured by Sulzer Metco, product name: Aculus spray-G3C). The surface temperature of the aluminum oxide particles was determined by measuring the intensity of infrared rays emitted from the aluminum oxide particles when contacted with the combustion flame and converting the measured infrared intensity into temperature.
Furthermore, in order to investigate the existence state of the aluminum oxide particles sprayed from the opening, a water plate formed in a cylindrical shape having a diameter of 500 mm × depth of 400 mm and containing water up to a depth of 200 mm is shown in FIG. Aluminum oxide particles sprayed from the spraying device were collected. Specifically, the water plate is arranged so that the water surface is located at a position spaced 550 mm from the opening of the spraying device, and the aluminum oxide particles are sprayed from the opening of the spraying device toward the water plate, The aluminum oxide particles were collected in the basin. The operating conditions of the spraying device were set to the same conditions as described above.

前記溶射監視装置を用いて、前記酸素−アセチレンガスが燃焼されて生じる燃焼炎に接触したときの前記酸化アルミニウム粒子の表面の温度および前記酸化アルミニウムの吹き付け速度を測定した結果を図5に示した。図5において、図中の水平方向に延在する白抜き部分が前記酸素−アセチレンガスが燃焼されて生じる燃焼炎を示していて、図中の下部に表示された4個のメーターの内、図中の左から2番目のメーターが前記酸化アルミニウム粒子の吹き付け速度を測定した結果を示し、図中の左から3番目のメーターが前記燃焼炎に接触したときの前記酸化アルミニウム粒子の表面の温度を測定した結果を示している。前記溶射監視装置は、図中の丸で囲んだ位置において、上記の各種パラメータを測定している。図5より、前記酸化アルミニウム粒子は、吹き付け速度375m/sでSUS304基材に向けて吹き付けられていて、前記酸化アルミニウム粒子の表面の温度は2080℃であることが分かった。ここで、前記酸化アルミニウム粒子の融点は2055℃なので、前記酸化アルミニウム粒子の表面の温度は、前記酸化アルミニウム粒子の融点とほぼ同じ値であることが分かった。この結果から、前記燃焼炎によって前記樹脂ロッドを燃焼した場合、前記酸化アルミニウム粒子は非溶融状態を保っていることが分かった。   FIG. 5 shows the result of measuring the temperature of the surface of the aluminum oxide particles and the spraying speed of the aluminum oxide when the thermal spray monitoring device is in contact with the combustion flame generated by burning the oxygen-acetylene gas. . In FIG. 5, a white portion extending in the horizontal direction in the drawing indicates a combustion flame generated by burning the oxy-acetylene gas, and among the four meters displayed at the bottom of the drawing, FIG. The second meter from the left inside shows the result of measuring the spraying speed of the aluminum oxide particles, and the third meter from the left in the figure shows the surface temperature of the aluminum oxide particles when contacting the combustion flame. The measurement results are shown. The thermal spray monitoring device measures the various parameters described above at the positions circled in the figure. From FIG. 5, it was found that the aluminum oxide particles were sprayed toward the SUS304 substrate at a spraying speed of 375 m / s, and the surface temperature of the aluminum oxide particles was 2080 ° C. Here, since the melting point of the aluminum oxide particles was 2055 ° C., it was found that the surface temperature of the aluminum oxide particles was almost the same as the melting point of the aluminum oxide particles. From this result, it was found that when the resin rod was burned by the combustion flame, the aluminum oxide particles were kept in a non-molten state.

前記燃焼炎によって前記樹脂ロッドを燃焼した後の前記酸化アルミニウム粒子を撮像した結果を図6に示した。該酸化アルミニウム粒子は、走査型電子顕微鏡(日本電子社製、製品名6010LA)を用いて撮像した。撮像条件は以下の通りであった。

撮像条件
・加速電圧:20kV
・撮影倍率:2万倍

図6の拡大図において、結晶表面を区画する線が結晶粒界を示していて、粒状部(白丸で囲んだ部分)が一次粒子を示している。図6に示すように、捕集された前記酸化アルミニウム粒子の表面にはマイクロバルク状に結晶粒界が観察でき、かつ前記酸化アルミニウム粒子の表面に一次粒子が残存していることが観察された。この結果から、前記燃焼炎による前記樹脂ロッドの燃焼後において、前記酸化アルミニウム粒子は溶融されずに焼結によりマイクロバルク状に結合されていることが分かった。つまり、図6により、前記燃焼炎による前記樹脂ロッドの燃焼後においても、前記酸化アルミニウム粒子は非溶融状態を維持していることが裏付けられた。また、前記酸化アルミニウム粒子は、焼結状態で前記基材の被処理面に衝突することも分かった。
FIG. 6 shows the result of imaging the aluminum oxide particles after burning the resin rod by the combustion flame. The aluminum oxide particles were imaged using a scanning electron microscope (manufactured by JEOL Ltd., product name 6010LA). Imaging conditions were as follows.

Imaging conditions / Acceleration voltage: 20 kV
・ Shooting magnification: 20,000 times

In the enlarged view of FIG. 6, lines defining the crystal surface indicate crystal grain boundaries, and granular portions (portions surrounded by white circles) indicate primary particles. As shown in FIG. 6, it was observed that crystal grain boundaries could be observed in the form of microbulks on the surface of the collected aluminum oxide particles, and primary particles remained on the surface of the aluminum oxide particles. . From this result, it was found that after burning the resin rod by the combustion flame, the aluminum oxide particles were bonded in a microbulk shape by sintering without being melted. That is, FIG. 6 confirmed that the aluminum oxide particles maintained in the non-molten state even after the resin rod was burned by the combustion flame. It was also found that the aluminum oxide particles collide with the treated surface of the base material in a sintered state.

図7(a)に、本発明の方法により前記SUS304基材の被処理面に形成された前記酸化アルミニウム粒子の皮膜を撮像した結果を示し、比較のために、図7(b)に、プラズマ溶射により前記SUS304基材の被処理面に形成された前記酸化アルミニウム粒子の皮膜を撮像した結果を示した。図7(a)、(b)に示した各酸化アルミニウム粒子の皮膜は、デジタルマイクロスコープ(キーエンス社製、製品名:VHX−1000)を用いて撮像した。撮像条件は以下の通りであった。

撮像条件
・倍率:400倍
・画像モード:鮮鋭モード
・シャッタースピード:オート

図7(b)の前記酸化アルミニウム粒子の皮膜の形成には、α相を有する平均粒子径21.3μmの酸化アルミニウム粒子(コーワ研磨材工業社製、製品名:KCP−WA)を用いた。該酸化アルミニウム粒子の平均粒子径は、電気抵抗法により測定した。
また、プラズマ溶射は溶射装置(スルザーメテコ社製、製品名:9MB)を用いて、以下の条件で行った。

プラズマ溶射の条件
・1次ガス:アルゴン、圧力100psi、流量80scfh
・2次ガス:水素、圧力80psi、流量15scfh
・電流:500A
・電圧:70V
・溶射距離:120mm

図7(a)、(b)において、図中の下側に白色で示された部分が前記SUS304基材であり、白色で示された部分の図中上方側に積層された部分が前記酸化アルミニウム粒子の皮膜を示している。また、前記酸化アルミニウム粒子の皮膜中の黒色で示された部分が気孔やクラックを示している。図7(a)から、本発明の方法により前記SUS304基材の被処理面に形成された前記酸化アルミニウム粒子の皮膜には、気孔やクラックが殆ど確認されず、緻密に形成されていることが分かった。一方で、図7(b)から、プラズマ溶射により前記SUS304基材の被処理面に形成された前記酸化アルミニウム粒子の皮膜には、気孔やクラックが明確に確認されることが分かった。
FIG. 7A shows a result of imaging the film of the aluminum oxide particles formed on the surface of the SUS304 substrate by the method of the present invention. For comparison, FIG. 7B shows the plasma. The result of having imaged the film of the said aluminum oxide particle formed in the to-be-processed surface of the said SUS304 base material by thermal spraying was shown. Each aluminum oxide particle film shown in FIGS. 7A and 7B was imaged using a digital microscope (manufactured by Keyence Corporation, product name: VHX-1000). Imaging conditions were as follows.

Imaging conditions / magnification: 400 times / image mode: sharp mode / shutter speed: auto

For forming the film of the aluminum oxide particles in FIG. 7B, aluminum oxide particles having an α phase and an average particle diameter of 21.3 μm (manufactured by Kowa Abrasives Co., Ltd., product name: KCP-WA) were used. The average particle diameter of the aluminum oxide particles was measured by an electric resistance method.
Moreover, plasma spraying was performed under the following conditions using a thermal spraying apparatus (manufactured by Sulzer Metco, product name: 9 MB).

Conditions for plasma spraying ・ Primary gas: Argon, pressure 100 psi, flow rate 80 scfh
Secondary gas: hydrogen, pressure 80 psi, flow rate 15 scfh
・ Current: 500A
・ Voltage: 70V
・ Spraying distance: 120mm

7A and 7B, the portion shown in white on the lower side in the drawing is the SUS304 base material, and the portion laminated on the upper side in the drawing in the portion shown in white is the oxidation. The film of aluminum particles is shown. Moreover, the black portions in the aluminum oxide particle film indicate pores and cracks. From FIG. 7 (a), the film of the aluminum oxide particles formed on the treated surface of the SUS304 base material by the method of the present invention has almost no pores or cracks, and is formed densely. I understood. On the other hand, from FIG. 7B, it was found that pores and cracks were clearly confirmed in the film of the aluminum oxide particles formed on the treated surface of the SUS304 base material by plasma spraying.

図8(a)に、本発明の皮膜の形成方法により前記SUS304基材の被処理面に形成された皮膜を粉末X線回折法で評価した結果を示した。
粉末X線回折法は、粉末X線回折装置(リガク社製、製品名:Ultima IV)を用いて、以下の条件で行った。

粉末X線回折法の測定条件
・エックス線:40kV/40mA
・発散スリット:2/3°
・発散縦制限スリット:10mm
・散乱スリット:2/3°
・受光スリット:0.3mm

図8(b)には、α相を有する酸化アルミニウム粒子を用いてプラズマ溶射により形成された皮膜を、粉末X線回折法により測定した一般的な測定結果を示した。
図8(a)に示すように、本発明の皮膜の形成方法で形成された皮膜にはα相に由来するピークが顕著に見られ、図8(b)に示すように、プラズマ溶射により形成された皮膜にはγ相に由来するピークが顕著に見られることが分かった。この結果から、プラズマ溶射により形成された皮膜は、成膜前後で結晶相がα相からγ相に相転移するが、本発明の皮膜の形成方法で形成された皮膜は、成膜前後でα相を維持していることが分かった。
FIG. 8 (a) shows the result of evaluating the film formed on the surface of the SUS304 base material by the method for forming a film of the present invention by the powder X-ray diffraction method.
The powder X-ray diffraction method was performed under the following conditions using a powder X-ray diffractometer (manufactured by Rigaku Corporation, product name: Ultimate IV).

Measurement conditions of powder X-ray diffraction method / X-ray: 40 kV / 40 mA
・ Divergent slit: 2/3 °
・ Divergent length restriction slit: 10mm
・ Scatter slit: 2/3 °
・ Reception slit: 0.3mm

FIG. 8B shows a general measurement result obtained by measuring a film formed by plasma spraying using aluminum oxide particles having an α phase by a powder X-ray diffraction method.
As shown in FIG. 8 (a), a peak derived from the α phase is prominently observed in the film formed by the film forming method of the present invention. As shown in FIG. 8 (b), the film is formed by plasma spraying. It was found that a peak derived from the γ phase was noticeable in the coated film. From this result, the film formed by plasma spraying undergoes a phase transition from the α phase to the γ phase before and after the film formation, but the film formed by the film forming method of the present invention has the α phase before and after the film formation. It was found that the phase was maintained.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされたものである。また、上述の実施形態および実施例は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態および実施例ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。   The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments and examples are for explaining the present invention and do not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments and the examples but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.

Claims (6)

基材上に無機酸化物粒子を含む皮膜を形成する皮膜の形成方法であって、
前記無機酸化物粒子を非溶融状態に維持しつつ加熱する加熱工程と、
前記加熱工程で加熱された前記無機酸化物粒子を非溶融状態で前記基材の被処理面に吹き付ける吹き付け工程と、
前記吹き付け工程で前記基材の被処理面に吹き付けられた前記無機酸化物粒子を前記基材上で焼結させて、前記基材上に前記無機酸化物粒子の皮膜を形成する皮膜形成工程と、を有し、
前記加熱工程では、前記無機酸化物粒子の原料として前記無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより前記無機酸化物粒子を加熱する、
皮膜の形成方法。
A method of forming a film that forms a film containing inorganic oxide particles on a substrate,
A heating step of heating the inorganic oxide particles while maintaining the non-molten state;
A spraying step of spraying the inorganic oxide particles heated in the heating step onto the surface to be treated of the substrate in a non-molten state;
A film forming step of sintering the inorganic oxide particles sprayed on the treated surface of the base material in the spraying step on the base material to form a film of the inorganic oxide particles on the base material; Have
In the heating step, using the resin composition in which the inorganic oxide particles are dispersed in a resin as a raw material for the inorganic oxide particles, the inorganic oxide particles are heated by burning the resin.
Method for forming a film.
前記加熱工程では、前記無機酸化物粒子を炎と接触させて加熱し、前記無機酸化物粒子の表面の温度は、融点−150℃〜融点+150℃の範囲の温度である、
請求項1に記載の皮膜の形成方法。
In the heating step, the inorganic oxide particles are heated in contact with a flame, and the temperature of the surface of the inorganic oxide particles is a temperature ranging from a melting point of −150 ° C. to a melting point of + 150 ° C.,
The method for forming a film according to claim 1.
加熱前の前記無機酸化物粒子の粒子径は、10〜1000nmである、
請求項1または2に記載の皮膜の形成方法。
The particle diameter of the inorganic oxide particles before heating is 10 to 1000 nm.
The method for forming a film according to claim 1 or 2.
前記樹脂組成物は、前記無機酸化物粒子を10〜60体積%含む、
請求項1乃至3のいずれか1項に記載の皮膜の形成方法。
The resin composition contains 10 to 60% by volume of the inorganic oxide particles.
The method for forming a film according to any one of claims 1 to 3.
前記無機酸化物粒子は酸化アルミニウム粒子である、
請求項1乃至4のいずれか1項に記載の皮膜の形成方法。
The inorganic oxide particles are aluminum oxide particles.
The method for forming a film according to any one of claims 1 to 4.
無機酸化物粒子が樹脂中に分散された樹脂組成物を用い、前記樹脂を燃焼させることにより、非溶融状態を維持しつつ前記無機酸化物粒子を加熱し、前記無機酸化物粒子を非溶融状態で基材の被処理面に吹き付け、前記無機酸化物粒子を前記基材上に焼結させてなる皮膜。   Using the resin composition in which the inorganic oxide particles are dispersed in the resin, the inorganic oxide particles are heated while maintaining the non-molten state by burning the resin, and the inorganic oxide particles are in the non-molten state A film formed by spraying the surface to be treated of the substrate and sintering the inorganic oxide particles on the substrate.
JP2015102166A 2015-05-19 2015-05-19 Coating and method for forming the coating Active JP6639806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102166A JP6639806B2 (en) 2015-05-19 2015-05-19 Coating and method for forming the coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102166A JP6639806B2 (en) 2015-05-19 2015-05-19 Coating and method for forming the coating

Publications (2)

Publication Number Publication Date
JP2016216778A true JP2016216778A (en) 2016-12-22
JP6639806B2 JP6639806B2 (en) 2020-02-05

Family

ID=57580473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102166A Active JP6639806B2 (en) 2015-05-19 2015-05-19 Coating and method for forming the coating

Country Status (1)

Country Link
JP (1) JP6639806B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216449A (en) * 1975-07-30 1977-02-07 Metco Inc Flexible wire capable of spraying by flame and method of producing same
JPS62284061A (en) * 1986-05-31 1987-12-09 Tatsuta Electric Wire & Cable Co Ltd Ceramic wire for thermal spraying
JPH067671A (en) * 1992-06-29 1994-01-18 Sansha Electric Mfg Co Ltd Method for extracting transformed material by induction plasma spraying
JP2005002446A (en) * 2003-06-13 2005-01-06 Whitco Japan:Kk Method and apparatus for supplying slurry-like fine powder
JP2006108178A (en) * 2004-09-30 2006-04-20 Toshiba Corp Component for semiconductor manufacturing device and semiconductor manufacturing device
WO2011148515A1 (en) * 2010-05-24 2011-12-01 日鉄ハード株式会社 Object produced by thermal spraying and method of thermal spraying therefor
JP2011256465A (en) * 2011-08-30 2011-12-22 Riverstone Kogyo Kk Method for impact-sintering and coating fine powder ceramic
JP2014502670A (en) * 2010-12-15 2014-02-03 スルザー メテコ(ユーエス)インコーポレイテッド Pressure liquid supply system for suspension plasma spraying
US20140170410A1 (en) * 2011-07-25 2014-06-19 Eckart Gmbh Method for Applying a Coating to a Substrate, Coating, and Use of Particles
WO2014142017A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Slurry for thermal spraying, thermal spraying film, and formation method for thermal spraying film
JP2014181348A (en) * 2013-03-18 2014-09-29 Tocalo Co Ltd Composite powder material for forming spray coating film and method for producing the same and composite spray coating film
JP2014240511A (en) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド Method of producing sprayed coating and material for flame spray
JP2015045068A (en) * 2013-08-29 2015-03-12 日立造船株式会社 Thermal spray material and method for manufacturing the same, thermal spraying method, and thermal spray product
JP2016156058A (en) * 2015-02-24 2016-09-01 姫路メタリコン株式会社 Plasma spray apparatus and plasma spray method
JP2016160446A (en) * 2015-02-27 2016-09-05 日立造船株式会社 Thermal spraying material and manufacturing method therefor, thermal spraying method and thermal spraying product

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216449A (en) * 1975-07-30 1977-02-07 Metco Inc Flexible wire capable of spraying by flame and method of producing same
JPS62284061A (en) * 1986-05-31 1987-12-09 Tatsuta Electric Wire & Cable Co Ltd Ceramic wire for thermal spraying
JPH067671A (en) * 1992-06-29 1994-01-18 Sansha Electric Mfg Co Ltd Method for extracting transformed material by induction plasma spraying
JP2005002446A (en) * 2003-06-13 2005-01-06 Whitco Japan:Kk Method and apparatus for supplying slurry-like fine powder
JP2006108178A (en) * 2004-09-30 2006-04-20 Toshiba Corp Component for semiconductor manufacturing device and semiconductor manufacturing device
WO2011148515A1 (en) * 2010-05-24 2011-12-01 日鉄ハード株式会社 Object produced by thermal spraying and method of thermal spraying therefor
JP2014502670A (en) * 2010-12-15 2014-02-03 スルザー メテコ(ユーエス)インコーポレイテッド Pressure liquid supply system for suspension plasma spraying
US20140170410A1 (en) * 2011-07-25 2014-06-19 Eckart Gmbh Method for Applying a Coating to a Substrate, Coating, and Use of Particles
JP2014521835A (en) * 2011-07-25 2014-08-28 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Method, coating, and use of particles for applying a coating to a substrate
JP2011256465A (en) * 2011-08-30 2011-12-22 Riverstone Kogyo Kk Method for impact-sintering and coating fine powder ceramic
WO2014142017A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Slurry for thermal spraying, thermal spraying film, and formation method for thermal spraying film
JP2014181348A (en) * 2013-03-18 2014-09-29 Tocalo Co Ltd Composite powder material for forming spray coating film and method for producing the same and composite spray coating film
JP2014240511A (en) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド Method of producing sprayed coating and material for flame spray
JP2015045068A (en) * 2013-08-29 2015-03-12 日立造船株式会社 Thermal spray material and method for manufacturing the same, thermal spraying method, and thermal spray product
JP2016156058A (en) * 2015-02-24 2016-09-01 姫路メタリコン株式会社 Plasma spray apparatus and plasma spray method
JP2016160446A (en) * 2015-02-27 2016-09-05 日立造船株式会社 Thermal spraying material and manufacturing method therefor, thermal spraying method and thermal spraying product

Also Published As

Publication number Publication date
JP6639806B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6811188B2 (en) Thermal spraying powder, thermal spraying method and thermal spray coating
JP6367426B2 (en) Thermal spray slurry and method of forming thermal spray coating
US10655206B2 (en) Surface treatment method of ceramic powder using microwave plasma for enhancing flowability
CN106605008B (en) The forming method of spraying plating slurry, spraying plating epithelium and spraying plating epithelium
US20150104346A1 (en) Laser sintering powder, method for producing structure, apparatus for producing structure
TWI615507B (en) Thermal spray slurry, thermal spray coating, and method for forming thermal spray coating
JPWO2014142019A1 (en) Thermal spray powder, thermal spray coating, and method of forming thermal spray coating
JP7043774B2 (en) Aerosol film forming equipment and aerosol film forming method
JP2004298863A (en) Nozzle for use in cold spray technique and cold spray system
JP2016175212A (en) Composition liquid for three-dimensional molding and three-dimensional molding material set, and method and apparatus for manufacturing three-dimensional molding
RU2499078C1 (en) Production method of erosion-resistant heat-protective coatings
JP6571308B2 (en) Thermal spray material, production method thereof, and thermal spray method
WO2011065512A1 (en) Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating
CN106891004B (en) A kind of 3D printing head solid powder continuous conveying device
JP2018066049A (en) Powder material for three-dimensional molding, three-dimensional molding material set, apparatus for manufacturing three-dimensional molding and method for manufacturing three-dimensional molding
JP2006200013A (en) Film deposition method and film deposition system
JP2016216778A (en) Coating and method of forming same coating
JP2017007208A (en) Three-dimensional molding device, three-dimensional molding method, three-dimensional molding program and information processor
JP6411878B2 (en) Raw material powder for film formation and ceramic film
JP6893121B2 (en) Method of manufacturing thermal spraying material, thermal spraying material and thermal spraying method
JP4784989B2 (en) Powder film forming equipment
JP2018199855A (en) Manufacturing method of thermal spray material, thermal spray material, thermal spray method and thermal spray product
JP2007254826A (en) Apparatus and method for depositing coating film
JP2019167587A (en) Aerosol quantitative feeder and aerosol deposition apparatus
Caio Study of the Influence of Substrate Shape and Roughness on Coating Microstructure in Suspension Plasma Spray

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20150619

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150619

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180618

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6639806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250