JP2016215098A - Pleat filter element - Google Patents

Pleat filter element Download PDF

Info

Publication number
JP2016215098A
JP2016215098A JP2015100690A JP2015100690A JP2016215098A JP 2016215098 A JP2016215098 A JP 2016215098A JP 2015100690 A JP2015100690 A JP 2015100690A JP 2015100690 A JP2015100690 A JP 2015100690A JP 2016215098 A JP2016215098 A JP 2016215098A
Authority
JP
Japan
Prior art keywords
thickness
nonwoven fabric
pleating
filter medium
pleated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015100690A
Other languages
Japanese (ja)
Inventor
晃太朗 下川
Kotaro Shimokawa
晃太朗 下川
恵子 坂口
Keiko Sakaguchi
恵子 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2015100690A priority Critical patent/JP2016215098A/en
Publication of JP2016215098A publication Critical patent/JP2016215098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the pressure loss of a pleat filter element is increased when pleat processing is performed after the thickness of a filter medium made small by setting a heating compression step before the pleat processing for obtaining the filter medium by heating and compressing the filter medium having the small thickness suitable for the pleat processing and to obtain the pleat filter element having low pressure loss and high dust collection performance.SOLUTION: In a pleat filter element using a filter medium where a sheet made of a nonwoven fabric composed of fibers made of a thermoplastic resin is performed with pleat processing, the thickness of the sheet is reduced by 5-70% by heating and compressing the filter medium at the pleat processing.SELECTED DRAWING: None

Description

本発明は、プリーツ加工したろ材を使用した塵埃を除去する、自動車用キャビンフィルター、空気清浄機、エアコン等のフィルターとして好適に利用できるプリーツフィルターエレメントに関する。   The present invention relates to a pleated filter element that can be suitably used as a filter for an automobile cabin filter, an air cleaner, an air conditioner, or the like that removes dust using a pleated filter medium.

エアフィルターの形状は用途により多種多様であるが、ろ材を波状に折りたたんだプリーツ状フィルターは、小さい容積に広い面積のろ材を収納することが可能であり、圧力損失を下げ、集塵性能を向上させることができるため、最も一般的なフィルター形状のひとつである。   The shape of the air filter varies depending on the application, but the pleated filter with the filter medium folded into a wave shape can store a large area of the filter medium in a small volume, reducing pressure loss and improving dust collection performance. This is one of the most common filter shapes.

プリーツ加工したろ材を使用した、塵埃を除去するプリーツフィルターエレメントに関する技術は、特許文献1などに開示されている。   A technique related to a pleated filter element for removing dust using a pleated filter medium is disclosed in Patent Document 1 and the like.

プリーツ加工に適するろ材は、厚みが小さいろ材である。ろ材の厚みが大きいと、プリーツ加工時に折り癖が付きにくいため、加工自体が困難である。加えて、プリーツ加工しても、プリーツの谷部でろ材が重なった状態で密着し、密着部分には気流が通らないため、ろ材に気流が通過する線速度が上昇する結果となり、圧力損失が上昇し、集塵性能は低下する。   A filter medium suitable for pleating is a filter medium having a small thickness. If the thickness of the filter medium is large, it is difficult to crease at the time of pleating, so that the processing itself is difficult. In addition, even if the pleating process is performed, the filter media are in close contact with each other at the valley of the pleats, and the airflow does not pass through the contacted portion. The dust collection performance decreases.

そのため、プリーツ加工前にろ材を適切な厚みに調整するため、ろ材を加熱圧縮して厚みを調整する加工は、広く一般に実施されているが、圧縮された後のろ材をプリーツ加工するため、ろ材折り曲げに対する応力が大きく、プリーツの山が丸く仕上がる傾向にあり、プリーツフィルターエレメントの圧力損失が増大するという問題があった。   Therefore, in order to adjust the filter medium to an appropriate thickness before pleating, the process of adjusting the thickness by heating and compressing the filter medium is widely practiced, but in order to pleat the compressed filter medium, the filter medium There was a problem that the stress to bending was large, and the pleat piles tended to be rounded to increase the pressure loss of the pleated filter element.

特開2002−95920号公報JP 2002-95920 A

プリーツ加工に適する厚みが小さいろ材を得るために、プリーツ加工前に加熱圧縮工程を設けて、ろ材の厚みを小さくした後、プリーツ加工するとプリーツフィルターエレメントの圧力損失が増大すると言う問題を解決し、圧力損失が低く、集塵性能が高いプリーツフィルターエレメントを得ることを課題とした。   In order to obtain a filter medium with a small thickness suitable for pleating processing, a heat compression step is provided before pleating processing, and after reducing the thickness of the filtering medium, the problem that the pressure loss of the pleated filter element increases when pleating is solved, It was an object to obtain a pleated filter element with low pressure loss and high dust collection performance.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は以下の通りである。
1.熱可塑性樹脂からなる繊維から構成された不織布よりなるシートをプリーツ加工したろ材を使用したプリーツフィルターエレメントであって、プリーツ加工時にろ材を加熱圧縮することによってシートの厚みを5%〜70%低減したことを特徴とするプリーツフィルターエレメント。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. That is, the present invention is as follows.
1. A pleated filter element using a filter medium obtained by pleating a sheet made of nonwoven fabric composed of fibers made of a thermoplastic resin, and the thickness of the sheet is reduced by 5% to 70% by heating and compressing the filter medium during pleating. Pleated filter element characterized by that.

プリーツ加工時に、ろ材を加熱圧縮して厚みを調整することにより、ろ材の厚み調整工程を省略できる上、圧力損失が低く、集塵性能が高いプリーツフィルターエレメントを得ることができる。   By adjusting the thickness by heating and compressing the filter medium at the time of pleating, a pleated filter element having a low pressure loss and a high dust collection performance can be obtained while the thickness adjustment process of the filter medium can be omitted.

本発明のプリーツフィルターエレメントは、熱可塑性樹脂からなる繊維から構成された不織布よりなるシートをプリーツ加工したろ材を使用したものである。熱可塑性樹脂からなる繊維から構成された不織布よりなるシートを使用するのは、加熱圧縮による厚み低減効果が大きいからである。
なお、前記シートは、単層で構成されていても、複数の層が重なった状態で構成されていても良いが、シートを構成する層の少なくとも一層は熱可塑性樹脂からなる繊維から構成された不織布よりなるシートであることが必要である。
The pleated filter element of the present invention uses a filter medium obtained by pleating a sheet made of a nonwoven fabric composed of fibers made of a thermoplastic resin. The reason why a sheet made of a nonwoven fabric composed of fibers made of thermoplastic resin is used is that the effect of reducing thickness by heat compression is great.
The sheet may be composed of a single layer or a plurality of layers, but at least one layer constituting the sheet is composed of fibers made of a thermoplastic resin. The sheet needs to be made of a nonwoven fabric.

前記シートは、集塵性能を向上させる目的で、コロナ荷電、摩擦帯電などの方法により荷電されていても良い。   The sheet may be charged by a method such as corona charging or tribocharging for the purpose of improving dust collection performance.

本発明のプリーツフィルターエレメントに使用されるプリーツ加工したろ材は、プリーツ加工時に加熱圧縮されることにより、厚みを5%〜70%低減する。プリーツ加工時に、ろ材を加熱圧縮し、厚みを調整することにより、厚み調整工程を省略することが可能となる。さらにプリーツ加工前に厚みを圧縮したろ材をプリーツ加工すると、プリーツ加工時のろ材折り曲げに対する応力が大きく、プリーツの山が丸く仕上がる傾向にあり、圧力損失が増大することがあるが、本願発明のようにろ材の厚みが大きい状態でプリーツ加工し、プリーツ加工と同時に厚みを圧縮すると、プリーツの折れ筋が付きやすく、プリーツフィルターエレメントの圧力損失が低くなるという利点もある。   The pleated filter medium used in the pleated filter element of the present invention is reduced in thickness by 5% to 70% by being heated and compressed during pleating. At the time of pleating, the thickness adjustment step can be omitted by heating and compressing the filter medium and adjusting the thickness. Furthermore, when pleating a filter medium whose thickness has been compressed before pleating, there is a large stress on the bending of the filter medium during pleating, and the pleats tend to be rounded, resulting in increased pressure loss. When pleating is performed in a state where the thickness of the filter medium is large and the thickness is compressed simultaneously with the pleating, there is an advantage that the pleats are easily bent and the pressure loss of the pleated filter element is reduced.

厚みの低減率が5%未満の場合は、厚み低減による、プリーツ加工後の圧力損失低減、集塵性能向上の効果を十分に得られない。また、厚み低減率が70%を越えると、ろ材が過度に圧縮されることにより気流が通過する空隙が塞がれてしまい、フィルター機能を失うことがある。   When the thickness reduction rate is less than 5%, the effect of reducing the pressure loss after pleating and improving the dust collection performance due to the thickness reduction cannot be obtained sufficiently. On the other hand, if the thickness reduction rate exceeds 70%, the filter medium is excessively compressed, so that the gap through which the airflow passes is blocked, and the filter function may be lost.

プリーツ加工時の前に、予備的に加熱圧縮による厚み低減加工を実施しておくことも可能である。この場合は、予備的な厚み低減加工とプリーツ加工の双方の厚み圧縮率の合計が5%〜70%の範囲である。   Prior to the pleating process, it is also possible to perform a thickness reduction process by heat compression in advance. In this case, the total thickness compressibility of both preliminary thickness reduction processing and pleating processing is in the range of 5% to 70%.

プリーツ加工時に加熱圧縮の作用を加えてろ材の厚みを低減させるためには、プリーツ時にろ材を加熱する機構と圧縮する機構が必要である。   In order to reduce the thickness of the filter medium by applying the action of heat compression at the time of pleating, a mechanism for heating the filter medium and a mechanism for compressing at the time of pleating are necessary.

加熱する機構の例としては、プリーツ機のろ材と接触する部位を加熱してろ材に熱を伝える方法、ろ材に温風を吹き付ける方法などが挙げられる。   Examples of the heating mechanism include a method of heating a portion that comes into contact with the filter medium of the pleating machine to transmit heat to the filter medium, and a method of blowing warm air on the filter medium.

圧縮する機構の例としては、プリーツ加工後のろ材が押し出されるプリーツ機の出口部分において、ろ材が押し出されるのを妨げるような力を与える方法が挙げられる。ろ材が押し出されるのを妨げる方法としては、プリーツ加工後のろ材を上下方向から挟んでブレーキをかける方法、プリーツ機の出口にプリーツ加工後のろ材が進行するのを妨げるように錘を設置してプリーツ加工後のろ材で錘が押し出されるようにする方法、プリーツ機の出口部分でプリーツ加工後のろ材が押し出されてくる部分にゴムシートなど摩擦力が大きくなる材料を貼り付ける方法などが挙げられる。   As an example of the mechanism to compress, the method of giving the force which prevents that a filter medium is extruded in the exit part of the pleating machine from which the filter medium after a pleating process is extruded is mentioned. As a method to prevent the filter medium from being pushed out, a brake is applied by sandwiching the filter medium after pleating from above and below, and a weight is installed at the outlet of the pleating machine so as to prevent the filtered medium from proceeding. Examples include a method in which a weight is pushed out by a filter material after pleating, and a method in which a material such as a rubber sheet is attached to a portion where the filter material after pleating is pushed out at an exit portion of a pleating machine. .

(実施例1)
平均繊度6.6T、カット長64mmのPET/PE芯鞘繊維を開繊し、ニードルパンチ機にて繊維を交絡させた後、熱処理によって繊維同士を融着させて目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。厚みは、荷重7g/cmにて測定した(以下同じ)。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは1.9mmであった。このプリーツ不織布15山分を200mm幅にカットし、4辺に200mm×18mmの不織布を保持する枠を取り付けて200m×200m×18mmのフィルターユニットを作成した。
Example 1
After opening a PET / PE core-sheath fiber having an average fineness of 6.6 T and a cut length of 64 mm, the fibers are entangled with a needle punch machine, and then the fibers are fused together by heat treatment to have a basis weight of 100 g / m 2 and a thickness of 2 A 1 mm thermal bond nonwoven fabric was prepared. The thickness was measured at a load of 7 g / cm 2 (hereinafter the same). The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 1.9 mm. Fifteen pleated nonwoven fabrics were cut into a width of 200 mm, and a frame holding a nonwoven fabric of 200 mm × 18 mm was attached to four sides to create a 200 m × 200 m × 18 mm filter unit.

(実施例2)
実施例1と同様の方法にて、目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは1.8mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Example 2)
A thermal bond nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was prepared in the same manner as in Example 1. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 1.8 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(実施例3)
実施例1と同様の方法にて、目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは0.64mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
Example 3
A thermal bond nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was prepared in the same manner as in Example 1. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 0.64 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(実施例4)
平均繊度6.6T、カット長64mmのPP/PE芯鞘繊維(宇部日東化成株式会社製耐熱脱油繊維HR−LE)をカード機にかけてウェブとし、ウェブをクロスレイヤーで連続的に積層し、ニードルパンチ機にて繊維を交絡させた後、ステンレスメッシュを積層ウェブの上下から挟む形で搬送してエアスルーオーブンに通し、温度150℃、1分間加熱融着させて目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。この不織布を荷電装置に通して荷電し、エレクトレット不織布を得た。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは1.9mmであった。このプリーツ不織布15山分を200mm幅にカットし、4辺に200mm×18mmの不織布を保持する枠を取り付けて200m×200m×18mmのフィルターユニットを作成した。
Example 4
PP / PE core-sheath fiber (heat-resistant deoiled fiber HR-LE manufactured by Ube Nitto Kasei Co., Ltd.) with an average fineness of 6.6T and a cut length of 64mm is applied to a card machine to form a web. After the fibers are entangled with a punching machine, the stainless steel mesh is conveyed from above and below the laminated web, passed through an air-through oven, heated and fused at a temperature of 150 ° C. for 1 minute, and a basis weight of 100 g / m 2 and a thickness of 2. A 1 mm thermal bond nonwoven fabric was prepared. The nonwoven fabric was charged through a charging device to obtain an electret nonwoven fabric. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 1.9 mm. Fifteen pleated nonwoven fabrics were cut into a width of 200 mm, and a frame holding a nonwoven fabric of 200 mm × 18 mm was attached to four sides to create a 200 m × 200 m × 18 mm filter unit.

(実施例5)
実施例4と同様の方法にて、目付け100g/m、厚み2.1mmのエレクトレット不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは1.8mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Example 5)
An electret nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was produced in the same manner as in Example 4. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 1.8 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(実施例6)
実施例1と同様の方法にて、目付け100g/m、厚み2.1mmのエレクトレット不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは0.64mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Example 6)
An electret nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was produced in the same manner as in Example 1. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 0.64 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(比較例1)
実施例1と同様の方法にて、目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは2.0mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Comparative Example 1)
A thermal bond nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was prepared in the same manner as in Example 1. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 2.0 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(比較例2)
実施例1と同様の方法にて、目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは0.44mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Comparative Example 2)
A thermal bond nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was prepared in the same manner as in Example 1. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 0.44 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(比較例3)
実施例1と同様の方法にて、目付け100g/m、厚み2.1mmのサーマルボンド不織布を作成した。この不織布をカレンダーロールにて加熱圧縮し、厚みを1.8mmとし、山高さ18mmで加熱圧縮を実施せずにプリーツ加工した。プリーツ後の不織布の厚みは1.8mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Comparative Example 3)
A thermal bond nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was prepared in the same manner as in Example 1. This nonwoven fabric was heat-compressed with a calender roll to a thickness of 1.8 mm, and pleated without heating and compression at a peak height of 18 mm. The thickness of the nonwoven fabric after pleating was 1.8 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(比較例4)
実施例4と同様の方法にて、目付け100g/m、厚み2.1mmのエレクトレット不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは2.0mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Comparative Example 4)
An electret nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was produced in the same manner as in Example 4. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 2.0 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(比較例5)
実施例4と同様の方法にて、目付け100g/m、厚み2.1mmのエレクトレット不織布を作成した。この不織布を加熱圧縮しながら山高さ18mmでプリーツ加工した。プリーツ後の不織布の厚みは0.44mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Comparative Example 5)
An electret nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was produced in the same manner as in Example 4. The nonwoven fabric was pleated at a peak height of 18 mm while being heated and compressed. The thickness of the nonwoven fabric after pleating was 0.44 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(比較例6)
実施例4と同様の方法にて、目付け100g/m、厚み2.1mmのエレクトレット不織布を作成した。この不織布をカレンダーロールにて加熱圧縮し、厚みを1.8mmとし、山高さ18mmで加熱圧縮を実施せずにプリーツ加工した。プリーツ後の不織布の厚みは1.8mmであった。このプリーツ不織布を用いて、実施例1と同様の方法にて、200m×200m×18mmのフィルターユニットを作成した。
(Comparative Example 6)
An electret nonwoven fabric having a basis weight of 100 g / m 2 and a thickness of 2.1 mm was produced in the same manner as in Example 4. This nonwoven fabric was heat-compressed with a calender roll to a thickness of 1.8 mm, and pleated without heating and compression at a peak height of 18 mm. The thickness of the nonwoven fabric after pleating was 1.8 mm. Using this pleated nonwoven fabric, a 200 m × 200 m × 18 mm filter unit was prepared in the same manner as in Example 1.

(圧力損失の評価)
フィルターユニットをダクト内に設置し、通過風量が5m/分になるようにコントロールし、濾材上流、下流の静圧差を圧力計で読み取り求めた。
(Evaluation of pressure loss)
The filter unit was installed in the duct and controlled so that the passing air volume was 5 m 3 / min. The static pressure difference between the upstream and downstream of the filter medium was read with a pressure gauge.

(集塵性能の評価)
フィルターユニットをダクト内に設置し、通過風量が5m/分になるよう大気を通気させ、ISOファインダストを50mg/mになるように上流側から供給し、濾材上流、下流の0.3〜0.5μm粒子の個数濃度をパーティクルカウンターにて計測して、次式にて粒子捕集効率を算出した。
粒子捕集効率(%)=[1−(下流側濃度/上流側濃度)]×100
(Evaluation of dust collection performance)
A filter unit is installed in the duct, the atmosphere is ventilated so that the passing air volume is 5 m 3 / min, and ISO fine dust is supplied from the upstream side so as to be 50 mg / m 3. The number concentration of ˜0.5 μm particles was measured with a particle counter, and the particle collection efficiency was calculated according to the following formula.
Particle collection efficiency (%) = [1− (downstream concentration / upstream concentration)] × 100

評価結果を表1に示す。比較例1、4は、ろ材の厚み低減率が低いため、圧力損失が高く、集塵性脳が低い結果であった。比較例2、5は、厚み低減率が高すぎることにより、不織布の空隙が塞がれてしまい、気流が通過しないため、性能評価ができなかった。比較例3は、プリーツ加工前に厚み調整を実施し、プリーツ加工時には加熱圧縮を実施していない。この場合、プリーツの山が丸くなることで、圧力損失が増大するため、厚み低減率が同じである実施例2よりも圧力損失が高い結果となった。同じく、比較例6は実施例5よりも圧力損失が高い結果となった。   The evaluation results are shown in Table 1. In Comparative Examples 1 and 4, since the thickness reduction rate of the filter medium was low, the pressure loss was high and the dust collecting brain was low. In Comparative Examples 2 and 5, since the thickness reduction rate was too high, the voids of the nonwoven fabric were blocked, and the air current did not pass, so performance evaluation could not be performed. In Comparative Example 3, the thickness is adjusted before the pleating process, and the heat compression is not performed during the pleating process. In this case, the pressure loss increased due to rounding of the pleat crest, resulting in a higher pressure loss than in Example 2 where the thickness reduction rate was the same. Similarly, Comparative Example 6 resulted in higher pressure loss than Example 5.

本願発明のプリーツフィルターエレメントは、プリーツ加工時に、ろ材を加熱圧縮して厚みを調整することにより、ろ材の厚み調整工程を省略して、圧力損失が低く、集塵性能が高いプリーツフィルターエレメントを得ることができ、産業界への寄与大である。   The pleated filter element of the invention of the present application obtains a pleated filter element having a low pressure loss and a high dust collecting performance by omitting the thickness adjusting step of the filter medium by adjusting the thickness by heating and compressing the filter medium at the time of pleating. Can contribute greatly to the industry.

Claims (1)

熱可塑性樹脂からなる繊維から構成された不織布よりなるシートをプリーツ加工したろ材を使用したプリーツフィルターエレメントであって、プリーツ加工時にろ材を加熱圧縮することによってシートの厚みを5%〜70%低減したことを特徴とするプリーツフィルターエレメント。   A pleated filter element using a filter medium obtained by pleating a sheet made of nonwoven fabric composed of fibers made of a thermoplastic resin, and the thickness of the sheet is reduced by 5% to 70% by heating and compressing the filter medium during pleating. Pleated filter element characterized by that.
JP2015100690A 2015-05-18 2015-05-18 Pleat filter element Pending JP2016215098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015100690A JP2016215098A (en) 2015-05-18 2015-05-18 Pleat filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015100690A JP2016215098A (en) 2015-05-18 2015-05-18 Pleat filter element

Publications (1)

Publication Number Publication Date
JP2016215098A true JP2016215098A (en) 2016-12-22

Family

ID=57579964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100690A Pending JP2016215098A (en) 2015-05-18 2015-05-18 Pleat filter element

Country Status (1)

Country Link
JP (1) JP2016215098A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122615U (en) * 1991-04-10 1992-11-04 日本濾器株式会社 pleated filter cartridge
JPH08257335A (en) * 1995-03-24 1996-10-08 Nippondenso Co Ltd Manufacture of filter, and filter
JP2006212509A (en) * 2005-02-02 2006-08-17 Nichias Corp Sheet for air filter, its manufacturing method and air filter
JP2007021428A (en) * 2005-07-20 2007-02-01 Toray Ind Inc Filter and its manufacturing method
JP2010538813A (en) * 2007-09-07 2010-12-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved pleated nanoweb structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122615U (en) * 1991-04-10 1992-11-04 日本濾器株式会社 pleated filter cartridge
JPH08257335A (en) * 1995-03-24 1996-10-08 Nippondenso Co Ltd Manufacture of filter, and filter
JP2006212509A (en) * 2005-02-02 2006-08-17 Nichias Corp Sheet for air filter, its manufacturing method and air filter
JP2007021428A (en) * 2005-07-20 2007-02-01 Toray Ind Inc Filter and its manufacturing method
JP2010538813A (en) * 2007-09-07 2010-12-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved pleated nanoweb structure

Similar Documents

Publication Publication Date Title
JP4944540B2 (en) FILTER ELEMENT, MANUFACTURING METHOD THEREOF, AND USE METHOD
TWI568487B (en) Blended nonwovens, filter media and filter units
US20160067647A1 (en) Filter with high dust capacity
JP5839547B2 (en) Filter filter medium pleating method and pleating apparatus
TWI618572B (en) Manufacturing method for air filter medium, air filter medium, and air filter pack
JP2007038211A (en) Filter element, its manufacturing method and method of using filter element
JP2002018216A (en) Filter
JP2016215098A (en) Pleat filter element
JP2014226629A (en) Electret filter material
JP2002001020A (en) Filtering medium
JP2014064969A (en) Electret filter medium
JP2012239995A (en) Electret filter medium
JP2012170914A (en) Electret filter medium
JPS5888019A (en) High performance filter element and preparation thereof
JP2014208318A (en) Antibacterial electret filter medium
CN112709001A (en) One-step formed completely-degradable plane mask body and preparation method thereof
JP6276044B2 (en) Gas turbine intake air filter
JP3991576B2 (en) FILTER ELEMENT, MANUFACTURING METHOD THEREOF, AND FILTER
JP6017654B2 (en) Filter filter medium pleating method and pleating apparatus
JPH04161209A (en) Cabin filter
JP7422576B2 (en) Filter medium, filter element, and method for manufacturing filter medium
JP2007007630A (en) Electret, filter for air cleaning, and production method thereof
JP6368184B2 (en) Filter material, filter element using the same, and filter material manufacturing method
JP4126679B2 (en) Filter and manufacturing method thereof
WO2023095301A1 (en) Method for producing dry nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625