JP4126679B2 - Filter and manufacturing method thereof - Google Patents

Filter and manufacturing method thereof Download PDF

Info

Publication number
JP4126679B2
JP4126679B2 JP2000165630A JP2000165630A JP4126679B2 JP 4126679 B2 JP4126679 B2 JP 4126679B2 JP 2000165630 A JP2000165630 A JP 2000165630A JP 2000165630 A JP2000165630 A JP 2000165630A JP 4126679 B2 JP4126679 B2 JP 4126679B2
Authority
JP
Japan
Prior art keywords
filter
nonwoven fabric
dust
web
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000165630A
Other languages
Japanese (ja)
Other versions
JP2001340716A (en
Inventor
田中  栄太郎
良介 小野寺
良平 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2000165630A priority Critical patent/JP4126679B2/en
Publication of JP2001340716A publication Critical patent/JP2001340716A/en
Application granted granted Critical
Publication of JP4126679B2 publication Critical patent/JP4126679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調整機等に送る空気や、人間等に吸引される空気から粉塵,塵埃,花粉,霧状の微粒子等(以下「粉塵等」という)を除去するフィルタ、特に、慣性,遮りの濾過作用と静電気とによって粉塵等を捕集するエレクトレットフィルタ及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、ポリプロピレン系合成樹脂等をメルトブロー紡糸したメルトブロー不織布からなるエレクトレットフィルタ(以下「メルトブロー不織布のエレクトレットフィルタ」という)は、繊維径が極細で、繊維間距離が狭い、即ち空隙率が小さくて、粉塵等を捕集する性能(以下「捕集効率」という)が高い上、繊維は成形,溶着等の後加工が容易な性質を有するため、プレフィルタ層,捕集フィルタ層及び保型フィルタ層を積層した状態で加熱成形して型抜きする使い捨ての防塵マスク等の捕集フィルタ層として主に使用されている。
【0003】
又、羊毛とポリエステル等の合成繊維とを混合した不織布に特殊な樹脂を付着させた上、機械的二次加工を施して繊維に帯電加工した不織布からなるエレクトレットフィルタ(以下「帯電加工不織布のエレクトレットフィルタ」という)〔特公平3−31483号公報及び特公平3−63406号公報参照〕は、厚みのあるフィルタ層全体で粉塵等を捕集するため、粉塵等の保持容量が大きい上、通気時の圧力損失(以下「通気抵抗」という)の上昇も緩やかなので、取替式マスク等の捕集フィルタとして主に使用されている。
【0004】
ところで、一般的に、エレクトレットフィルタは、粉塵等を含む空気を通し続ける試験を行うと、粉塵等が静電作用によりフィルタに吸着,捕集されて、粉塵等の保持量或いは堆積量が増加するが、接触した粉塵等によって帯電した繊維が放電してしまうため、静電気が次第に低下して、捕集効率が低下する傾向にあるものの、粉塵等が保持されたり、堆積して、エレクトレットフィルタが目詰りしてくると、目詰りによる濾過作用が起きて、捕集効率が逆に上昇し始める特性があり、この捕集効率が低下から上昇に転ずるときのボトム値がこの特性における最小捕集効率となる。
【0005】
又、エレクトレットフィルタは、空気の流れが早くなると、粉塵等の捕集効率が低下するので、フィルタの空隙率を低下させて、濾過作用を大きくする必要がある。
【0006】
そこで、繊維がウェッブ状態で、空隙率が高すぎて、フィルタとしてそのまま使用することができない帯電加工不織布のエレクトレットフィルタは、ニードルパンチング法で繊維を上下に絡ませてフェルト状に加工することにより、空隙率を低下させることが行われている。
【0007】
【発明が解決しようとする課題】
ところで、メルトブロー不織布のエレクトレットフィルタは、粉塵等をフィルタの表面で集中的に捕集するため、フィルタの表面が短時間に目詰まりして、フィルタ内部に粉塵等を保持できないという課題と、フィルタの目詰りにより通気が阻害されて、通気抵抗が急激に上昇するため、長時間の使用に耐えられないという課題があった。
【0008】
このエレクトレットフィルタの課題を解決するには、フィルタの面積を拡大すれば、ある程度改善できるが、例えば、人間の顔面に着ける使い捨ての防塵マスクであれば、その拡大できる面積にも自ずと限度があり、この課題の根本的な解決策とはならない。
【0009】
又、帯電加工不織布のエレクトレットフィルタは、捕集フィルタ層が厚く、繊維が樹脂加工されているため、成形,溶着等の後加工が困難で、用途が限定されるという課題がある。
【0010】
本発明は、このような課題を解決するためになされたもので、粉塵等の捕集効率が高く、フィルタ内部に粉塵等を捕集して保持できる量が多くて、粉塵等の堆積による通気抵抗の上昇が緩やかで、長時間の使用に耐えられるフィルタを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、合成樹脂をメルトブローして製造した繊維径7〜15μmの極細繊維からなるエレクトレット化されたメルトブロー不織布と、このエレクトレット化されたメルトブロー不織布と、少なくとも繊維径15μm以上の羊毛及び合成繊維を樹脂加工して機械的に二次加工を施した帯電加工繊維とを解繊して混合した混合ウェッブと、スパンボンド不織布からなるプレフィルタとを順次積層したフィルタである。なお、スパンボンド不織布の代わりに、エレクトレット化されたメルトブロー不織布と混合ウェッブとに積層した状態で切断及び熱溶着できる不織布を積層してもよい。
【0012】
請求項3に係る発明は、合成樹脂をメルトブローして製造した繊維径7〜15μmの極細繊維からなるエレクトレット化されたメルトブロー不織布に、このエレクトレット化されたメルトブロー不織布と、少なくとも繊維径15μm以上の羊毛及び合成繊維を樹脂加工して機械的に二次加工を施した帯電加工繊維とを解繊して混合した混合ウェッブをクロスレイヤー方式で折り畳みながら積層し、且つ、スパンボンド不織布からなるプレフィルタを更に積層するフィルタの製造方法である。なお、スパンボンド不織布の代わりに、エレクトレット化されたメルトブロー不織布と混合ウェッブとに積層した状態で切断及び熱溶着できる不織布を積層してもよい。
【0013】
本発明によれば、繊維径が極細のメルトブロー紡糸の繊維に、その繊維径より太い繊維径で、倦縮性及び繊維長を有する羊毛繊維を混合することにより、メルトブロー紡糸の繊維単体では困難であったウェッブ状への加工が容易となる上、層の厚みを保持する繊維の混合割合を調整して繊維間空隙率を変化させることにより、粉塵等の捕集効率が高く、フィルタ内部に粉塵等を捕集して保持できる量が多くて、通気抵抗の上昇が緩やかで、長時間使用することができるようになる。
【0014】
又、本発明によれば、羊毛と合成繊維とを混合して機械的二次加工を施すことにより帯電加工した不織布からマスク等を型抜きした後の原反を原料とすることもできる上、混合ウェッブを製造するカード機は繊維をウェッブ状に加工する一般的な機械で、エアーレイ等の加工機械より低価格であるため、製造原価を安くすることができる。
【0015】
【発明の実施の形態】
図1は、本発明のフィルタの一部を破断した部分斜視図で、このフィルタは、合成樹脂をメルトブローして製造した繊維径7〜15μmの極細繊維からなるメルトブロー不織布1と、このメルトブロー不織布1と、裁断布等の繊維と、少なくとも繊維径15μm以上の羊毛及びポリエステル,ポリアミド,ポリプロピレン等の合成繊維(以下「羊毛を基材とする繊維」という)を樹脂加工して機械的に二次加工を施した帯電加工繊維とを解繊して混合した上、クロスレイヤー方式で折り畳まれた混合ウェッブ2と、スパンボンド不織布3とを順次積層したものである。
【0016】
このように、極細の合成繊維からなるメルトブロー不織布をウェッブに多く混合した混合ウェッブ2を使用することにより、空隙率が低下して、空気の流れが早くても、捕集効率が高く且つ保持量が多くなると共に、溶着し易くなって、使い捨て式マスク等にも加工できるようなる。
【0017】
(製造方法)
次に、本発明のフィルタの原反の製造方法について説明する。
【0018】
フィルタ原反(図示しない)、すなわちメルトブロー紡糸繊維のエレクトレットフィルタと羊毛を基材とする繊維からなる帯電加工樹脂のエレクトレットフィルタとは、それぞれ、ベルトコンベア4によって矢印X方向に搬送されて、矢印Y方向に回転する解繊機5のスパイク,ストリッパーローラ,ビータ6等によって繊維が解かれ且つ除塵される〔以下「解繊」という(図2参照)〕。
【0019】
そして、解繊機5で解繊されたメルトブロー紡糸繊維のエレクトレットフィルタの繊維は、ブロワー7によってダクト8からサイクロン9に送られて、繊維長1〜20mmの短繊維に分級された上、この繊維を原料Aとしてホッパ10に送る(図2及び図3参照)。
【0020】
又、解繊機5で解繊された帯電加工繊維のエレクトレットフィルタの繊維は、ブロワー7によってダクト8からサイクロン11に送って、繊維長10〜50mmの長繊維を分級し、この繊維を原料Bとしてホッパ12に送る(図3参照)。
【0021】
そこで、定量の原料Aをホッパ10から連続して送り出して、矢印Z方向に走行するベルトコンベア13(図3参照)の上に原料Aを層状に堆積させると共に、定量の原料Bをホッパ12から連続して送り出して、ベルトコンベア13の上の層状の原料Aの上に更に層状に原料Bとの混合比率A:Bを調整する。
【0022】
即ち、エレクトレット化されたメルトブロー不織布1を解繊した原料Aと、樹脂加工及び機械加工によって帯電処理された羊毛を基材とする原料Bとの混合比率A:Bは、ホッパ10からの原料Aの供給量とホッパ12からの原料Bの供給量とを調整することによって設定できる。本発明において混合比率A:Bは重量比で90:10〜30:70の範囲で調整可能であるが、70:30程度が最適である。
【0023】
次に、ベルトコンベア13の上に層状に堆積させた2種類の原料A及び原料Bを図3のカード機14に送って、原料Aの極細のメルトブロー繊維と、原料Bの繊維径が太く、倦縮性及び繊維長を有する羊毛繊維とを混合し、且つ、原料Aの短繊維を原料Bの長繊維に機械的に絡ませると、メルトブロー不織布に比較して繊維の充填密度の低い混合ウェッブ2が形成されると共に、このとき原料A及び原料Bに加わる機械的外力によって、混合ウェッブ2の繊維の表面に静電気を生じる。
【0024】
このようにして形成された混合ウェッブ2は、クロスレイヤー積層機15(図3及び図4参照)に送られて、ベルトコンベア16の上に積載されて搬送されてくる通気抵抗の低いポリエステル系の繊維によってスパンボンド方式で製造した不織布3(以下「スパンボンド不織布3」という)の上に、クロスレイヤー方式で折り畳まれながら積層される。
【0025】
そして、スパンボンド不織布3の上にクロスレイヤー方式で折り畳み積層した混合ウェッブ2の上に更にメルトブロー不織布1を積層して、繊維の密度勾配を付けた原反17が巻取軸18に巻き取られていく(図4参照)。
【0026】
なお、メルトブロー不織布と混合ウェッブとに積層した状態で切断及び熱溶着できる不織布であれば、スパンボンド不織布3に限定されるものではない。
【0027】
(性能)
次に、本発明のフィルタの性能、特に捕集効率、通気抵抗及び堆積量について説明する。
【0028】
図5及び(表1)は、粒径2μm以下の石英の粉塵が濃度30mg/m3,線速6.7cm/secで流れるように通気しているときの、メルトブロー不織布1と混合ウェッブ2とスパンボンド不織布3とを積層した本発明の実施例のフィルタ(イ)と、メルトブロー不織布1とスパンボンド不織布3とを積層した従来例のフィルタ(ロ)と、混合ウェッブ2とスパンボンド不織布3とを積層した参考例のフィルタ(ハ)とにおける粉塵の堆積量と捕集効率或いは通気抵抗との関係を示したものである。
【0029】
なお、捕集効率の測定は、光散乱方式により、フィルタサンプルの前側と後側との粉塵等の濃度差から求め、通気抵抗はフィルタサンプルの上流側と下流側との圧力差から求めた。
【0030】
【表1】

Figure 0004126679
【0031】
図5及び(表1)に示すように、捕集効率は、石英の粉塵の堆積量が0mgから50mgまで増加する間に、本発明の実施例のフィルタ(イ)によると、初期値の99.95%から最小値の99.88%まで0.07%低下するだけで、捕集効率は一様に高く且つ捕集効率の低下もほとんど見られないのに対して、従来例のフィルタ(ロ)によると、静電気の低下に伴って初期値の99.16%から最小値の99.01%まで0.15%も低下し、参考例のフィルタ(ハ)によると、初期値の97.41%から最小値の92.57%まで4.84%も急激に低下してしまう。
【0032】
又、通気抵抗は、石英の粉塵の堆積量が0mgから50mgまで増加する間に、本発明の実施例のフィルタ(イ)によると、初期値の4.6mmH2Oから50mg堆積時の12.3mmH2Oまで7.7mmH2O上昇し、参考例のフィルタ(ハ)によると、初期値の1.4mmH2Oから50mg堆積時の7.3mmH2Oまで5.9mmH2O上昇するだけで、通気抵抗の上昇はほとんど見られない。しかし、参考例(ハ)は捕集効率が低くて粉塵等の透過量が多いために、通気抵抗の上昇が低いともいえるので、捕集用フィルタとして適さない。これに対して、従来例のフィルタ(ロ)によると、粉塵の堆積によるフィルタの目詰りに伴って初期値の3.5mmH2Oから50mg堆積時の28.3mmH2Oまで24.8mmH2Oも急激に上昇してしまう。
【0033】
この結果、本発明の実施例のフィルタ(イ)によれば、粉塵の捕集効率の向上と、フィルタ内部に粉塵等を捕集して保持できる量の増加とが容易に図れると共に、長時間の使用も可能になる。
【0034】
図6及び表1は、粒径2μm以下の石英の粉塵が濃度30mg/m3,線速6.7cm/secで流れるように通気しているときの、メルトブロー不織布1と混合ウェッブ2とスパンボンド不織布3とを積層した本発明の実施例のフィルタ(イ)と、1枚のメルトブロー不織布1とスパンボンド不織布3とを積層した従来例のフィルタ(ロ)と、2枚重ねのメルトブロー不織布1とスパンボンド不織布3とを積層した参考例のフィルタ(ニ)とにおける粉塵の堆積量と捕集効率或いは通気抵抗との関係をそれぞれ示したものである。
【0035】
図6及び(表1)に示すように、捕集効率は、石英の粉塵の堆積量が0mgから50mgまで増加する間に、本発明の実施例のフィルタ(イ)によると、初期値の99.95%から最小値の99.88%まで0.07%低下し、参考例のフィルタ(ニ)によると、初期値の99.89%から最小値の99.87%まで0.02%低下するだけで、本発明の実施例のフィルタ(イ)と参考例のフィルタ(ニ)とは共に捕集効率が一様に高く且つ捕集効率の低下もほとんど見られないのに対して、従来例のフィルタ(ロ)によると、初期値の99.16%から最小値の99.01%まで0.15%も低下してしまう。
【0036】
又、通気抵抗は、本発明の実施例のフィルタ(イ)によると、初期値の4.6mmH2Oから50mg堆積時の12.3mmH2Oまで7.7mmH2O上昇するだけで、通気抵抗の上昇はほとんど見られないのに対して、従来例のフィルタ(ロ)によると、粉塵の堆積によるフィルタの目詰りに伴って初期値の3.5mmH2Oから50mg堆積時の28.3mmH2Oまで24.8mmH2Oも急激に上昇し、参考例のフィルタ(ニ)によると、初期値の5.2mmH2Oから50mg堆積時の29.7mmH2Oまで24.5mmH2Oも急激に上昇してしまう。
【0037】
この結果、本発明の実施例のフィルタ(イ)によれば、粉塵の捕集効率の向上とフィルタ内部に粉塵等を捕集して保持できる量の増加とが容易に図れると共に、長時間の使用も可能になる。
【0038】
図7及び表2は、粒径2μm以下の石英の粉塵が濃度30mg/m3,線速6.7cm/secで流れるように通気しているときの、メルトブロー不織布の解繊体が70%、羊毛を基材とした不織布の解繊体が30%からなる原料をウェッブ状にした本発明の実施例の混合ウェッブ(ホ)と、羊毛を基材として帯電加工した不織布の解繊体が100%の原料をウェッブ状にした上、ニードルパンチング加工によってフェルト状に加工した参考例のウェッブ(ヘ)とにおける粉塵の堆積量と捕集効率或いは通気抵抗との関係をそれぞれ示したものである。
【0039】
【表2】
Figure 0004126679
【0040】
図7及び(表2)に示すように、捕集効率において、本発明の実施例の混合ウェッブ(ホ)の初期値が97.81%であるのに対して、参考例のウェッブ(ヘ)の初期値が99.52%で、参考例のウェッブ(ヘ)の初期値の方が高いのは、参考例のウェッブ(へ)が樹脂加工されたときの帯電作用(特公平3−31483号公報及び特公平3−63406号公報参照)によるものであり、又、本発明の実施例の混合ウェッブ(ホ)の最小値が94.17%であるのに対して、参考例のウェッブ(へ)の最小値が91.87%で、本発明の実施例の混合ウェッブ(ホ)の最小値の方が高いのは、本発明の実施例の混合ウェッブ(ホ)の空隙率が小さくて、濾過作用が強いためである。
【0041】
なお、本発明の実施例の混合ウェッブ(ホ)及び参考例のウェッブ(ヘ)の通気抵抗は一様に低く且つ通気抵抗の上昇も緩やかである。
【0042】
この特性は、空気の流れが早い空気調整機用のフィルタや、空気の流量を多くして防塵マスクのフィルタを試験する外国の規格等と比較するときに、有効である。
【0043】
(使用例)
図8は、本発明のフィルタを使い捨ての防塵マスクに使用した例を示すもので、スパンボンド不織布3,混合ウェッブ2及びメルトブロー不織布1を積層した原反17に、更に、フィルタを所定の形状、例えば半球状に保型する通気性の保型材19を積層したものを型抜きした上、型抜きした接顔クッション20との間に紐通し21を挟みこんだ状態で加熱成形することにより、図8に示すような略半球状のマスクを製造する。なお、紐通し21には、マスクを口の周囲に固定するために頭に掛ける紐22がその長さが調整できるようにして取り付けられている。
【0044】
図9は、図8に示した本発明のフィルタ、すなわちスパンボンド不織布3,混合ウェッブ2,メルトブロー不織布1,保型材19を積層して型抜きした上、型抜きした接顔クッション20との間に紐通し21を挟みこんで加熱成形したマスクの特性(ト)と、従来のメルトブロー不織布からなるフィルタ、すなわちスパンボンド不織布,メルトブロー不織布,保型材を積層して型抜きした上、型抜きした接顔クッションとの間に紐通しを挟みこんで加熱成形したマスクの特性(チ)とを示す図で、マスクの形状は同一である。
【0045】
なお、粒径2μm以下の石英の粉塵が濃度5mg/m3,流量40l/minで流れるように通気したときの捕集率及び通気抵抗で示したもので、一般に、通気抵抗が10mmH2Oを超えると、呼吸が苦しくなると言われている。
【0046】
そこで、5mg/m3の粉塵環境下で、通気抵抗が10mmH2Oに達するまでの時間を比較すると、従来のメルトブロー不織布からなるフィルタを使用したマスクは約8時間であるのに対して、本発明のフィルタを使用したマスクは約14時間となり、従来のものより長時間使用できる。
【0047】
なお、本発明のフィルタの使用例として使い捨ての防塵マスクで説明したが、これ以外のマスクのフィルタとしても使用できる上、空気調整機等のフィルタとしても使用できる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、粉塵等の捕集効率が高いメルトブロー不織布と、羊毛を基材とする繊維とを混合して機械的二次加工を施すことにより帯電加工した繊維を原料として使用した、通気抵抗が低く、フィルタの内部に粉塵等を捕集して保持できる量が多い混合ウェッブとを積層することにより、粉塵等の捕集効率が高く、通気抵抗の低減が緩やかで、フィルタの内部に粉塵等を捕集して保持できる量が多くて、長時間使用できるフィルタを提供できるという効果がある。
【0049】
又、混合ウェッブは、羊毛と合成繊維とを混合して機械的二次加工を施すことにより帯電加工した不織布からマスク等を型抜きした後の原反を原料とすることができる上、混合ウェッブを製造するカード機は繊維をウェッブ状に加工する一般的な機械で、エアーレイ等の加工機械より低価格であるため、製造原価を安くできるという効果がある。
【図面の簡単な説明】
【図1】本発明のフィルタの一部を破断した部分斜視図
【図2】本発明のフィルタを製造するために使用する解繊機の模式断面図
【図3】本発明のフィルタに使用する混合ウェッブの製造ラインの模式図
【図4】本発明のフィルタに使用する混合ウェッブの製造ラインにおけるクロスレイヤー積層機の模式図
【図5】本発明の実施例のフィルタと従来のフィルタと参考例のフィルタとにおける粉塵の堆積量と捕集効率或いは通気抵抗との関係を示す特性図
【図6】本発明の実施例のフィルタと従来のフィルタと参考例のフィルタとにおける粉塵の堆積量と捕集効率或いは通気抵抗との関係を示す特性図
【図7】本発明の実施例の混合ウェッブと参考例のウェッブとにおける粉塵の堆積量と捕集効率或いは通気抵抗との関係を示す特性図
【図8】本発明のフィルタを使用したマスクの一部を破断した斜視図
【図9】従来のフィルタを使用したマスクと本発明のフィルタを使用したマスクとの使用時間に対する捕集効率及び通気抵抗との関係を示す特性図
【符号の説明】
1 メルトブロー不織布
2 混合ウェッブ
3 スパンボンド不織布
5 解繊機
7 ブロワー
8 ダクト
9,11 サイクロン
10,12 ホッパ
14 カード機
15 クロスレイヤー積層機
19 保型材
20 接顔クッション
21 紐通し
22 紐[0001]
BACKGROUND OF THE INVENTION
The present invention is a filter that removes dust, dust, pollen, mist-like fine particles (hereinafter referred to as “dust”) from air sent to an air conditioner or the like, or air sucked by humans, etc. The present invention relates to an electret filter that collects dust and the like by a filtering action and static electricity, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, an electret filter made of a melt blown nonwoven fabric obtained by melt blow spinning a polypropylene synthetic resin or the like (hereinafter referred to as an “electret filter of a melt blown nonwoven fabric”) has an extremely fine fiber diameter and a short inter-fiber distance, that is, a small porosity, and a dust. In addition to high performance (hereinafter referred to as “collection efficiency”), the fiber has properties such as molding and welding that are easy to post-process, so a prefilter layer, a collection filter layer, and a retaining filter layer can be used. It is mainly used as a collection filter layer such as a disposable dust mask that is thermoformed and punched in a laminated state.
[0003]
In addition, an electret filter (hereinafter referred to as “electret of electrification processed non-woven fabric”) is made of a non-woven fabric in which a special resin is attached to a non-woven fabric mixed with wool and polyester and other synthetic fibers, and then subjected to mechanical secondary processing. "Filter" (see Japanese Patent Publication No. 3-31483 and Japanese Patent Publication No. 3-63406) collects dust and the like in the entire thick filter layer, and therefore has a large holding capacity for dust and the like when vented. The increase in pressure loss (hereinafter referred to as “ventilation resistance”) is also moderate, and is mainly used as a collection filter for replacement masks.
[0004]
By the way, in general, when an electret filter is subjected to a test in which air containing dust or the like is continuously passed, dust or the like is adsorbed and collected by the filter due to electrostatic action, and the retained amount or accumulation amount of the dust or the like increases. However, since the charged fibers are discharged by the contacted dust, etc., the static electricity gradually decreases and the collection efficiency tends to decrease. When clogging occurs, there is a characteristic that the filtration action due to clogging occurs, and the collection efficiency starts to increase in reverse, and the bottom value when this collection efficiency starts to increase from the decrease is the minimum collection efficiency in this characteristic It becomes.
[0005]
In addition, since the electret filter has a lower efficiency of collecting dust and the like when the air flow becomes faster, it is necessary to reduce the porosity of the filter and increase the filtering action.
[0006]
Therefore, electret filters of non-woven fabrics that cannot be used as a filter because the fibers are in a web state and the porosity is too high are obtained by tangling the fibers up and down by the needle punching method and processing them into a felt shape. It is done to reduce the rate.
[0007]
[Problems to be solved by the invention]
By the way, since the electret filter of melt blown nonwoven fabric collects dust etc. intensively on the surface of the filter, the surface of the filter is clogged in a short time, and the problem that the dust etc. cannot be held inside the filter, The clogging hinders ventilation, and the ventilation resistance increases sharply. Therefore, there is a problem that it cannot be used for a long time.
[0008]
To solve the problem of this electret filter, it can be improved to some extent by expanding the area of the filter, but for example, if it is a disposable dust mask that can be worn on the human face, there is a limit to the area that can be expanded, It is not the fundamental solution to this issue.
[0009]
Further, electret filters made of a charged non-woven fabric have a problem that since the collection filter layer is thick and the fibers are resin-processed, post-processing such as molding and welding is difficult and uses are limited.
[0010]
The present invention has been made to solve such a problem, and has a high collection efficiency of dust and the like, and has a large amount of dust that can be collected and held inside the filter. It is an object of the present invention to provide a filter that has a moderate increase in resistance and can withstand long-term use.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is an electret meltblown nonwoven fabric made of ultrafine fibers having a fiber diameter of 7 to 15 μm produced by meltblowing a synthetic resin, this electret meltblown nonwoven fabric, and wool having a fiber diameter of at least 15 μm And a mixed web obtained by defibrating and mixing a charged fiber that has been mechanically subjected to secondary processing by resin processing of a synthetic fiber, and a prefilter made of a spunbonded nonwoven fabric. In addition, you may laminate | stack the nonwoven fabric which can be cut | disconnected and heat-welded in the state laminated | stacked on the melt blown nonwoven fabric and mixed web instead of the spun bond nonwoven fabric.
[0012]
According to a third aspect of the present invention, there is provided an electret meltblown nonwoven fabric made of ultrafine fibers having a fiber diameter of 7 to 15 μm produced by meltblowing a synthetic resin, and the electret meltblown nonwoven fabric and wool having a fiber diameter of at least 15 μm or more. And a pre-filter made of spunbonded non-woven fabric, which is obtained by laminating mixed webs obtained by defibration and mixing of synthetic fibers with resin processed mechanically processed secondary processed fibers and folding them with a cross-layer method. Furthermore, it is a manufacturing method of the filter to laminate | stack. In addition, you may laminate | stack the nonwoven fabric which can be cut | disconnected and heat-welded in the state laminated | stacked on the melt blown nonwoven fabric and mixed web instead of the spun bond nonwoven fabric.
[0013]
According to the present invention, it is difficult to use a melt blown fiber alone by mixing a melt blown fiber having an extremely fine fiber diameter with a wool fiber having a fiber diameter larger than the fiber diameter and having a crimp property and a fiber length. In addition to making it easy to process into a web-like shape, by adjusting the mixing ratio of the fibers that maintain the thickness of the layer and changing the inter-fiber porosity, the collection efficiency of dust and the like is high, and the dust inside the filter The amount of gas that can be collected and retained is large, and the increase in ventilation resistance is slow, so that it can be used for a long time.
[0014]
In addition, according to the present invention, the raw material after die-cutting a mask or the like from a non-woven fabric that has been electrified by mixing wool and synthetic fibers and performing mechanical secondary processing can be used as a raw material. A card machine for manufacturing a mixed web is a general machine for processing fibers into a web shape, and is lower in price than a processing machine such as an air lay, so that the manufacturing cost can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a partial perspective view in which a part of the filter of the present invention is broken. This filter comprises a melt-blown nonwoven fabric 1 made of ultrafine fibers having a fiber diameter of 7 to 15 μm produced by melt-blowing a synthetic resin, and the melt-blown nonwoven fabric 1 And mechanically secondary processing by processing fibers such as cut cloth and wool with a fiber diameter of at least 15 μm and synthetic fibers such as polyester, polyamide, and polypropylene (hereinafter referred to as “fibers based on wool”) The charged processed fibers subjected to the above are defibrated and mixed, and then the mixed web 2 folded by the cross-layer method and the spunbond nonwoven fabric 3 are sequentially laminated.
[0016]
In this way, by using the mixed web 2 in which a large amount of meltblown nonwoven fabric made of ultrafine synthetic fibers is mixed in the web, even if the porosity decreases and the air flow is fast, the collection efficiency is high and the holding amount In addition to increasing the amount of welding, it becomes easy to weld and can be processed into a disposable mask or the like.
[0017]
(Production method)
Next, the manufacturing method of the raw material of the filter of this invention is demonstrated.
[0018]
The raw material of the filter (not shown), that is, the electret filter of melt blown fiber and the electret filter of electrification processing resin made of wool-based fiber are respectively conveyed by the belt conveyor 4 in the direction of the arrow X, and the arrow Y The fibers are unwound and removed by the spikes, stripper roller, beater 6 and the like of the defibrator 5 rotating in the direction [hereinafter referred to as “defibration” (see FIG. 2)].
[0019]
And the fiber of the electret filter of the melt blown spinning fiber defibrated by the defibrator 5 is sent from the duct 8 to the cyclone 9 by the blower 7 and classified into short fibers having a fiber length of 1 to 20 mm. The raw material A is sent to the hopper 10 (see FIGS. 2 and 3).
[0020]
The electret filter fibers of the charged processed fibers defibrated by the defibrating machine 5 are sent from the duct 8 to the cyclone 11 by the blower 7 to classify the long fibers having a fiber length of 10 to 50 mm. It sends to the hopper 12 (refer FIG. 3).
[0021]
Therefore, the fixed amount of raw material A is continuously fed out from the hopper 10, and the raw material A is deposited in layers on the belt conveyor 13 (see FIG. 3) traveling in the direction of arrow Z, and the fixed amount of raw material B is transferred from the hopper 12. It feeds out continuously and adjusts the mixing ratio A: B with the raw material B on the layered raw material A on the belt conveyor 13 further in layers.
[0022]
That is, the mixing ratio A: B of the raw material A obtained by opening the electret melt-blown nonwoven fabric 1 and the raw material B based on wool that has been charged by resin processing and mechanical processing is the raw material A from the hopper 10. And the supply amount of the raw material B from the hopper 12 can be adjusted. In the present invention, the mixing ratio A: B can be adjusted in the range of 90:10 to 30:70 by weight, but about 70:30 is optimum.
[0023]
Next, the two types of raw material A and raw material B deposited in layers on the belt conveyor 13 are sent to the card machine 14 of FIG. 3, and the fine melt-blown fiber of the raw material A and the fiber diameter of the raw material B are thick, When mixed with wool fibers having crimpability and fiber length, and the short fibers of raw material A are mechanically entangled with the long fibers of raw material B, a mixed web having a lower fiber packing density than melt blown nonwoven fabric 2 is formed, and static electricity is generated on the surface of the fiber of the mixed web 2 by the mechanical external force applied to the raw material A and the raw material B at this time.
[0024]
The mixed web 2 formed in this way is sent to the cross-layer laminating machine 15 (see FIGS. 3 and 4), and is loaded on the belt conveyor 16 and conveyed to a polyester-based polyester having low ventilation resistance. It is laminated on a nonwoven fabric 3 (hereinafter referred to as “spunbond nonwoven fabric 3”) manufactured by a spunbond method using fibers while being folded by a cross layer method.
[0025]
Then, the melt blown nonwoven fabric 1 is further laminated on the mixed web 2 that is folded and laminated on the spunbond nonwoven fabric 3 by the cross-layer method, and the raw fabric 17 with a fiber density gradient is wound around the winding shaft 18. (See FIG. 4).
[0026]
The spunbond nonwoven fabric 3 is not limited as long as it is a nonwoven fabric that can be cut and thermally welded in a state of being laminated on a melt blown nonwoven fabric and a mixed web.
[0027]
(Performance)
Next, the performance of the filter of the present invention, particularly the collection efficiency, the ventilation resistance and the deposition amount will be described.
[0028]
FIG. 5 and (Table 1) show the melt blown nonwoven fabric 1 and the mixed web 2 when the quartz dust having a particle diameter of 2 μm or less is ventilated so as to flow at a concentration of 30 mg / m 3 and a linear velocity of 6.7 cm / sec. The filter of the embodiment of the present invention in which the spunbond nonwoven fabric 3 is laminated (A), the filter of the conventional example in which the melt blown nonwoven fabric 1 and the spunbond nonwoven fabric 3 are laminated, the mixed web 2 and the spunbond nonwoven fabric 3 The relationship between the dust accumulation amount and the collection efficiency or the ventilation resistance in the filter (c) of the reference example in which is laminated is shown.
[0029]
The collection efficiency was measured from the concentration difference of dust and the like on the front side and the rear side of the filter sample by the light scattering method, and the ventilation resistance was obtained from the pressure difference between the upstream side and the downstream side of the filter sample.
[0030]
[Table 1]
Figure 0004126679
[0031]
As shown in FIG. 5 and (Table 1), the collection efficiency is 99% of the initial value according to the filter (A) of the embodiment of the present invention while the amount of accumulated quartz dust increases from 0 mg to 50 mg. Just by reducing 0.07% from 0.95% to the minimum value of 99.88%, the collection efficiency is uniformly high and almost no decrease in the collection efficiency is observed. According to (b), as the static electricity decreases, the initial value decreases from 99.16% to the minimum value of 99.01% by 0.15%. From 41% to the minimum value of 92.57%, the value drops sharply by 4.84%.
[0032]
Further, according to the filter (A) of the embodiment of the present invention, the airflow resistance is 12. When the deposition amount of quartz dust increases from 0 mg to 50 mg, the initial value of 4.6 mmH 2 O is 12. 3mmH 7.7mmH 2 O was increased to 2 O, according to the filter (c) of reference example, only 5.9mmH 2 O increases from 1.4mmH 2 O in the initial value to 7.3mmH 2 O at 50mg deposition There is almost no increase in ventilation resistance. However, since the reference example (c) has a low collection efficiency and a large amount of permeation of dust and the like, it can be said that the increase in ventilation resistance is low, and thus is not suitable as a collection filter. In contrast, according to the conventional example of the filter (b), 24.8mmH 2 O from 3.5mmH 2 O initial value in accordance with the clogging of the filter due to the deposition of dust up 28.3mmH 2 O at 50mg deposition Will rise rapidly.
[0033]
As a result, according to the filter (A) of the embodiment of the present invention, it is possible to easily improve the dust collection efficiency and increase the amount of dust that can be collected and held inside the filter, and for a long time. Can also be used.
[0034]
Fig. 6 and Table 1 show that melt blown nonwoven fabric 1, mixed web 2 and spunbond when quartz dust with a particle size of 2 µm or less is ventilated to flow at a concentration of 30 mg / m 3 and a linear velocity of 6.7 cm / sec. A filter (I) of an embodiment of the present invention in which a nonwoven fabric 3 is laminated, a conventional filter (b) in which a single melt blown nonwoven fabric 1 and a spunbond nonwoven fabric 3 are laminated, and a two-layer melt blown nonwoven fabric 1 The relationship between the accumulation amount of dust and collection efficiency or ventilation resistance in the filter (d) of the reference example in which the spunbond nonwoven fabric 3 is laminated is shown.
[0035]
As shown in FIG. 6 and (Table 1), according to the filter (A) of the embodiment of the present invention, the collection efficiency is 99% of the initial value while the accumulation amount of quartz dust increases from 0 mg to 50 mg. Decrease by 0.07% from 0.95% to the minimum value of 99.88%, and according to the filter (d) of the reference example, decrease by 0.02% from the initial value of 99.89% to the minimum value of 99.87% As a result, both the filter (a) of the embodiment of the present invention and the filter (d) of the reference example have a uniform high collection efficiency and almost no decrease in the collection efficiency. According to the filter (b) of the example, the initial value decreases from 99.16% to the minimum value of 99.01% by 0.15%.
[0036]
Further, the ventilation resistance is only according to the filter (b) of Example of the present invention is 7.7mmH 2 O increases from 4.6mmH 2 O in the initial value to 12.3mmH 2 O at 50mg deposition, airflow resistance However, according to the filter (b) of the conventional example, the initial value of 3.5 mmH 2 O to 28.3 mmH 2 at the time of 50 mg deposition is accompanied by clogging of the filter due to dust accumulation. O until 24.8MmH 2 O also rapidly increases, according to the filter (d) of reference example, 24.5MmH 2 O also sharply from 5.2MmH 2 O in the initial value to 29.7MmH 2 O at 50mg deposition It will rise.
[0037]
As a result, according to the filter (A) of the embodiment of the present invention, it is possible to easily improve the collection efficiency of dust and increase the amount of dust that can be collected and held inside the filter, and for a long time. It can also be used.
[0038]
7 and Table 2 show that 70% of the defibrated melt blown nonwoven fabric is ventilated so that quartz dust having a particle size of 2 μm or less flows at a concentration of 30 mg / m 3 and a linear velocity of 6.7 cm / sec. The mixed web (e) of the embodiment of the present invention in which the raw material consisting of 30% of the nonwoven fabric based on wool is made into a web-like material, and the nonwoven fabric defibrated material which is charged and processed using wool as a base material is 100. 1 shows the relationship between the amount of accumulated dust and the collection efficiency or ventilation resistance in the web (f) of a reference example that is made into a felt shape by needle punching processing after making the web of the raw material%.
[0039]
[Table 2]
Figure 0004126679
[0040]
As shown in FIG. 7 and (Table 2), in the collection efficiency, the initial value of the mixed web (e) of the example of the present invention is 97.81%, whereas the web (f) of the reference example is The initial value of the web of the reference example is 99.52%, and the initial value of the web (f) of the reference example is higher than that of the reference example when the web (f) of the reference example is processed with resin (Japanese Patent Publication No. 3-31483). In addition, the minimum value of the mixed web (e) of the embodiment of the present invention is 94.17%, while the web of the reference example (f) ) Has a minimum value of 91.87%, and the minimum value of the mixed web (e) of the embodiment of the present invention is higher because the porosity of the mixed web (e) of the embodiment of the present invention is small, This is because the filtering action is strong.
[0041]
Note that the airflow resistance of the mixed web (e) of the embodiment of the present invention and the web (f) of the reference example is uniformly low, and the increase of the airflow resistance is also gradual.
[0042]
This characteristic is effective when compared with a filter for an air conditioner having a fast air flow or a foreign standard for testing a dust mask filter with an increased air flow rate.
[0043]
(Example of use)
FIG. 8 shows an example in which the filter of the present invention is used in a disposable dust mask. The spunbond nonwoven fabric 3, the mixed web 2 and the melt blown nonwoven fabric 1 are laminated on a raw fabric 17, and the filter is further shaped into a predetermined shape. For example, by stacking a breathable shape retaining material 19 that retains a hemispherical shape, and then performing heat molding in a state in which a string 21 is sandwiched between the face cushion 20 that has been punched, A substantially hemispherical mask as shown in FIG. A string 22 is attached to the string 21 so that the length of the string 22 can be adjusted to fix the mask around the mouth.
[0044]
FIG. 9 shows the filter of the present invention shown in FIG. 8, that is, the spunbond nonwoven fabric 3, the mixed web 2, the melt blown nonwoven fabric 1, and the shape retaining material 19, laminated and die-cut, and between the die-cut face cushion 20 and The characteristics (g) of the mask formed by sandwiching the string 21 and the heat-formed mask and the conventional melt blown nonwoven filter, that is, the spunbond nonwoven fabric, the melt blown nonwoven fabric and the shape retaining material are laminated and die-cut and then the die-cut contact It is a figure which shows the characteristic (h) of the mask which carried out the string formation between the face cushions, and was thermoformed, and the shape of a mask is the same.
[0045]
In addition, it is shown by the collection rate and ventilation resistance when quartz dust with a particle size of 2 μm or less is ventilated to flow at a concentration of 5 mg / m 3 and a flow rate of 40 l / min. Generally, the ventilation resistance is 10 mmH 2 O. Beyond that, it is said that breathing becomes difficult.
[0046]
Therefore, comparing the time required for the ventilation resistance to reach 10 mmH 2 O in a dust environment of 5 mg / m 3 , the mask using a filter made of a conventional melt-blown nonwoven fabric is about 8 hours. The mask using the inventive filter takes about 14 hours and can be used for a longer time than the conventional one.
[0047]
Although the disposable dust mask has been described as an example of use of the filter of the present invention, it can be used as a filter for other masks, and can also be used as a filter for an air conditioner or the like.
[0048]
【The invention's effect】
As described above, according to the present invention, a fiber that has been electrified by mixing a melt-blown non-woven fabric having high collection efficiency such as dust and a fiber having wool as a base material and performing mechanical secondary processing. By laminating a mixed web used as a raw material with a low airflow resistance and a large amount of dust that can be collected and retained inside the filter, the dust collection efficiency is high and the airflow resistance is gradually reduced. Therefore, the amount of dust that can be collected and held in the filter is large, and there is an effect that it is possible to provide a filter that can be used for a long time.
[0049]
In addition, the mixed web can be made from the raw material after die-cutting a mask etc. from a charged nonwoven fabric by mixing wool and synthetic fibers and applying mechanical secondary processing. Is a general machine that processes fibers into a web-like shape, and is cheaper than a processing machine such as an air lay. Therefore, the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a partial perspective view in which a part of the filter of the present invention is broken. FIG. 2 is a schematic cross-sectional view of a defibrating machine used for manufacturing the filter of the present invention. Schematic diagram of the web production line. Fig. 4 Schematic diagram of the cross-layer laminating machine in the production web of the mixed web used in the filter of the present invention. Fig. 5 shows the filter of the embodiment of the present invention, the conventional filter and the reference example. FIG. 6 is a characteristic diagram showing the relationship between the amount of dust deposited on the filter and the collection efficiency or ventilation resistance. FIG. 6 shows the amount of dust deposited and collected on the filter of the embodiment of the present invention, the conventional filter, and the filter of the reference example. FIG. 7 is a characteristic diagram showing the relationship between the dust accumulation amount and the collection efficiency or the ventilation resistance in the mixed web of the embodiment of the present invention and the web of the reference example. 8 FIG. 9 is a perspective view in which a part of a mask using the filter of the present invention is broken. FIG. 9 shows the relationship between the collection efficiency and the ventilation resistance with respect to the use time of the mask using the conventional filter and the mask using the filter of the present invention. Characteristic diagram showing
DESCRIPTION OF SYMBOLS 1 Melt blow nonwoven fabric 2 Mixed web 3 Spunbond nonwoven fabric 5 Disentanglement machine 7 Blower 8 Duct 9, 11 Cyclone 10, 12 Hopper 14 Card machine 15 Cross layer laminating machine 19 Shape-holding material 20 Face-contact cushion 21 String thread 22 String

Claims (4)

合成樹脂をメルトブローして製造した繊維径7〜15μmの極細繊維からなるエレクトレット化されたメルトブロー不織布と、該エレクトレット化されたメルトブロー不織布と、少なくとも繊維径15μm以上の羊毛を基材とする繊維とを解繊して混合してなり、クロスレイヤー方式で折り畳まれた混合ウェッブと、スパンボンド不織布とを順次積層してなることを特徴とするフィルタ。An electret meltblown nonwoven fabric made of ultrafine fibers having a fiber diameter of 7 to 15 μm produced by meltblowing synthetic resin, the electret meltblown nonwoven fabric, and fibers based on wool having a fiber diameter of at least 15 μm A filter comprising a mixed web, which is defibrated and mixed, and folded in a cross-layer manner, and a spunbonded nonwoven fabric sequentially laminated. 前記スパンボンド不織布の代わりに、前記エレクトレット化されたメルトブロー不織布と前記混合ウェッブとに積層した状態で切断及び熱溶着できる不織布を積層してなることを特徴とする請求項1記載のフィルタ。 2. The filter according to claim 1, wherein a nonwoven fabric that can be cut and heat-welded in a state of being laminated on the electret melt blown nonwoven fabric and the mixed web is laminated instead of the spunbond nonwoven fabric . 合成樹脂をメルトブローして製造した繊維径7〜15μmの極細繊維からなるエレクトレット化されたメルトブロー不織布に、該エレクトレット化されたメルトブロー不織布と、少なくとも繊維径15μm以上の羊毛を基材とする繊維とを解繊して混合した混合ウェッブをクロスレイヤー方式で折り畳みながら積層した上、スパンボンド不織布を更に積層することを特徴とするフィルタの製造方法。An electret meltblown nonwoven fabric made of ultrafine fibers having a fiber diameter of 7 to 15 μm manufactured by meltblowing a synthetic resin, and the electret meltblown nonwoven fabric and fibers based on wool having a fiber diameter of at least 15 μm A method for producing a filter, comprising laminating mixed webs that have been defibrated and mixed together while folding them in a cross-layer manner, and further laminating a spunbonded nonwoven fabric . 前記スパンボンド不織布の代わりに、前記エレクトレット化されたメルトブロー不織布と前記混合ウェッブとに積層した状態で切断及び熱溶着できる不織布を積層することを特徴とする請求項3記載のフィルタの製造方法。4. The method for producing a filter according to claim 3, wherein a nonwoven fabric that can be cut and heat-welded in a state of being laminated on the electret melt blown nonwoven fabric and the mixed web is laminated instead of the spunbond nonwoven fabric.
JP2000165630A 2000-06-02 2000-06-02 Filter and manufacturing method thereof Expired - Fee Related JP4126679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165630A JP4126679B2 (en) 2000-06-02 2000-06-02 Filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165630A JP4126679B2 (en) 2000-06-02 2000-06-02 Filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001340716A JP2001340716A (en) 2001-12-11
JP4126679B2 true JP4126679B2 (en) 2008-07-30

Family

ID=18669075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165630A Expired - Fee Related JP4126679B2 (en) 2000-06-02 2000-06-02 Filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4126679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091965A (en) * 2018-08-31 2018-12-28 佛山市滤净洁净材料科技有限公司 A kind of smoke filtration material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944716B2 (en) * 2012-03-30 2016-07-05 日本バイリーン株式会社 mask
CN106390595B (en) * 2016-11-21 2018-11-20 天津工业大学 A kind of high-temp. resistant air filtering material production line
CN108221184A (en) * 2018-04-03 2018-06-29 江苏盛纺纳米材料科技股份有限公司 Nano-spun melts composite nonwoven material and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109091965A (en) * 2018-08-31 2018-12-28 佛山市滤净洁净材料科技有限公司 A kind of smoke filtration material and preparation method thereof

Also Published As

Publication number Publication date
JP2001340716A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
US7094270B2 (en) Composite filter and method of making the same
JP6659688B2 (en) Melt spun filtration media for respirators and face masks
US7981177B2 (en) Filtration media having a slit-film layer
US7452831B2 (en) Filter medium
CA2363740C (en) Process for manufacture of triboelectrically charged nonwovens
US20060137317A1 (en) Filtration media for filtering particulate material from gas streams
KR20070041364A (en) Filter, filter media, and methods for making same
JP6109334B2 (en) Non-woven electret fiber web and method for producing the same
WO2017018317A1 (en) Fiber laminate
JP5179939B2 (en) Composite fiber sheet composed of non-woven fabric
JP5080041B2 (en) Air filter medium, streamer filter using the same, and method for producing air filter medium
JP2003047811A (en) Electret filter medium and method for manufacturing the same
JP3516979B2 (en) Filter media for air filter
JPH08224412A (en) Nonwoven fabric, filter medium made from the same and these production
JP4882984B2 (en) Electret filter media and filter unit
WO2020137605A1 (en) Fiber structure and application thereof
JP2017113670A (en) Filter medium for air filter and air filter
TW202019544A (en) Air-filter media including a relofted spunbonded web, and methods of making and using
JP4126679B2 (en) Filter and manufacturing method thereof
JP4737039B2 (en) Filter nonwoven fabric for air intake
JP4882985B2 (en) Electret filter media and filter unit
JP4900675B2 (en) Composite nonwoven fabric for air filter
JP2002001027A (en) Multilayered dust collecting filter
JP2010082596A (en) Filter medium for air filter, manufacturing method therefor, and air filter using the same
JP2018202295A (en) Air filter and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4126679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees