JP2016211976A - Dielectric spectroscopy sensor - Google Patents

Dielectric spectroscopy sensor Download PDF

Info

Publication number
JP2016211976A
JP2016211976A JP2015096237A JP2015096237A JP2016211976A JP 2016211976 A JP2016211976 A JP 2016211976A JP 2015096237 A JP2015096237 A JP 2015096237A JP 2015096237 A JP2015096237 A JP 2015096237A JP 2016211976 A JP2016211976 A JP 2016211976A
Authority
JP
Japan
Prior art keywords
dielectric
prism
substrate
sample
spectroscopic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096237A
Other languages
Japanese (ja)
Other versions
JP6367753B2 (en
Inventor
昌人 中村
Masato Nakamura
昌人 中村
卓郎 田島
Takuro Tajima
卓郎 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015096237A priority Critical patent/JP6367753B2/en
Publication of JP2016211976A publication Critical patent/JP2016211976A/en
Application granted granted Critical
Publication of JP6367753B2 publication Critical patent/JP6367753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform broadband dielectric spectroscopic measurement without changing a sample installation site.SOLUTION: A dielectric spectroscopy sensor comprises a substrate 11 designed to operate as an ATR prism on which an MSL structure is provided, and a part of strip wires 12 of the MSL structure are formed in a grid shape set with intervals so as to operate as a wire grid polarizer. This reduces the reflection of a terahertz wave at a strip wire 12 interface, thereby performing spectroscopic measurement at a microwave-millimeter-wave band using the MSL in addition to allowing spectroscopic measurement using the prism at a terahertz wave band. Thus, broadband dielectric spectroscopic measurement can be performed without changing the installation site of a sample.SELECTED DRAWING: Figure 1

Description

本発明は、人間や動物などの血液成分の濃度を非侵襲で測定する技術に関し、特に誘電分光センサに関する。   The present invention relates to a technique for noninvasively measuring the concentration of blood components such as humans and animals, and more particularly to a dielectric spectroscopic sensor.

高齢化が進み、成人病に対する対応が大きな課題になっている。血糖値などの検査は血液の採取が必要なために患者にとって大きな負担である。そのため、血液を採取しない非侵襲な成分濃度測定装置が注目されている。   As aging progresses, the response to adult diseases has become a major issue. Tests such as blood glucose levels are a heavy burden on patients because they need to collect blood. Therefore, a non-invasive component concentration measuring apparatus that does not collect blood has attracted attention.

非侵襲な成分濃度測定装置として、誘電分光法を用いた装置が提案されている。誘電分光法は、皮膚内に電磁波を照射し、測定対象の血液成分、例えば、グルコース分子と水の相互作用に従い、電磁波を吸収させ、電磁波の周波数に対する振幅及び位相を観測する。観測される電磁波の周波数に対する振幅及び位相から、誘電緩和スペクトルを算定する。一般的には、Cole−Cole式に基づき緩和カーブの線形結合として表現し、複素誘電率を算定する。生体成分の計測では、例えば血液中に含まれるグルコースやコレステロール等の血液成分の量に複素誘電率は相関があり、その変化に対応した電気信号として測定される。複素誘電率変化と成分濃度との相関を予め測定することによって検量モデルを構築し、計測した誘電緩和スペクトルの変化から成分濃度の検量を行う。   An apparatus using dielectric spectroscopy has been proposed as a noninvasive component concentration measuring apparatus. Dielectric spectroscopy irradiates the skin with electromagnetic waves, absorbs the electromagnetic waves according to the interaction of blood components to be measured, for example, glucose molecules and water, and observes the amplitude and phase with respect to the frequency of the electromagnetic waves. The dielectric relaxation spectrum is calculated from the amplitude and phase with respect to the frequency of the observed electromagnetic wave. In general, the complex dielectric constant is calculated by expressing as a linear combination of relaxation curves based on the Cole-Cole equation. In the measurement of biological components, for example, the complex dielectric constant has a correlation with the amount of blood components such as glucose and cholesterol contained in blood, and is measured as an electrical signal corresponding to the change. A calibration model is constructed by measuring the correlation between the complex dielectric constant change and the component concentration in advance, and the component concentration is calibrated from the measured change in the dielectric relaxation spectrum.

従来の測定法としては、マイクロ波からミリ波の周波数帯では、マイクロストリップ線路(Micro Strip Line:MSL)を用いた誘電分光装置がある(特許文献1参照)。非特許文献1に記載されるように、ストリップ導体上に測定試料を載せたMSLにインピーダンスアナライザ(Impedance Analyzer:IA)あるいはベクトルネットワークアナライザ(Vector Network Analyzer:VNA)を接続し、背景成分及び対象成分が混合されている測定試料における対象成分の濃度を測定する。IAと接続される場合にはインピーダンスから、VNAと接続される場合にはSパラメータから複素誘電率が計算される。MSLの代わりにコプレーナ導波路(Coplanar Waveguide:CPW)も用いられる。   As a conventional measurement method, there is a dielectric spectroscopic device using a micro strip line (MSL) in a microwave to millimeter wave frequency band (see Patent Document 1). As described in Non-Patent Document 1, an impedance analyzer (Impedance Analyzer: IA) or a vector network analyzer (Vector Network Analyzer: VNA) is connected to an MSL on which a measurement sample is placed on a strip conductor, and a background component and a target component The concentration of the target component in the measurement sample mixed with is measured. The complex permittivity is calculated from the impedance when connected to IA, and from the S parameter when connected to VNA. A coplanar waveguide (CPW) is also used in place of the MSL.

ミリ波より周波数が高いテラヘルツ波の周波数帯では、光電気変換(フォトミキシング)を利用した誘電分光装置がある。この誘電分光装置は、周波数の異なる2つの連続光波が合成された光信号を光電変換してテラヘルツ波を発生し、発生したテラヘルツ波を被測定対象物に照射し、被測定対象物を透過又は反射したテラヘルツ波を受信するとともに、2つの連続光波のうちの一方の位相を変調して合成した参照光を入力してホモダインミキシングする構成である。   In the frequency band of terahertz waves having a frequency higher than that of millimeter waves, there is a dielectric spectroscopic device using photoelectric conversion (photomixing). This dielectric spectroscopic device photoelectrically converts an optical signal obtained by combining two continuous light waves having different frequencies to generate a terahertz wave, irradiates the object to be measured with the generated terahertz wave, and transmits or transmits the object to be measured. In this configuration, the reflected terahertz wave is received and the reference light synthesized by modulating the phase of one of the two continuous light waves is input to perform homodyne mixing.

テラヘルツ波帯では、プリズムを用いた全反射減衰法(Attenuated total reflection:ATR)が液体試料の測定に適している。試料をプリズム上に配置し、臨界角以上の角度で電磁波を試料に入射することにより、電磁波は試料−プリズム界面で全反射する。電磁波が試料−プリズム界面で全反射する際、試料−プリズム界面ではプリズムから試料方向にエバネッセント波が生じ、試料との相互作用が生じる。臨界角θ及びエバネッセント波の試料方向への浸み込み深さdpは以下の式で計算できる。 In the terahertz wave band, an attenuated total reflection (ATR) method using a prism is suitable for measuring a liquid sample. When the sample is placed on the prism and electromagnetic waves are incident on the sample at an angle greater than the critical angle, the electromagnetic waves are totally reflected at the sample-prism interface. When electromagnetic waves are totally reflected at the sample-prism interface, an evanescent wave is generated from the prism toward the sample at the sample-prism interface, causing interaction with the sample. The critical angle θ c and the penetration depth dp of the evanescent wave in the sample direction can be calculated by the following equations.

Figure 2016211976
ここで、n,nはそれぞれプリズムと試料の屈折率、λは入射する電磁波の波長を表す。非特許文献2に示されるように、リファレンス信号と測定信号のスペクトルの強度及び位相差から複素誘電率が計算される。
Figure 2016211976
Here, n 1 and n 2 represent the refractive indexes of the prism and the sample, respectively, and λ represents the wavelength of the incident electromagnetic wave. As shown in Non-Patent Document 2, the complex dielectric constant is calculated from the spectrum intensity and phase difference between the reference signal and the measurement signal.

特開平05−333096号公報JP 05-333096 A

G. R. Facer, D. A. Notterman, and L. L. Sohn,“Dielectric spectroscopy for bio analysis: From 40Hz to 26.5GHz”, Applied Physics Letters, Vol. 78, No. 7, 996 Feb. 2001G. R. Facer, D. A. Notterman, and L. L. Sohn, “Dielectric spectroscopy for bio analysis: From 40Hz to 26.5GHz”, Applied Physics Letters, Vol. 78, No. 7, 996 Feb. 2001 Hideki Hirori, Masaya Nagai, and Koichiro Tanaka,“Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection”, Optics Express, Vol. 13, No. 26, 10801, Dec. 2005Hideki Hirori, Masaya Nagai, and Koichiro Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection”, Optics Express, Vol. 13, No. 26, 10801, Dec. 2005

しかしながら、マイクロ波からミリ波の周波数帯に加えてテラヘルツ波帯を測定する場合、従来のMSLを用いた誘電分光装置では、誘電体基板内での損失により測定周波数が制限されるため、テラヘルツ波帯までの高周波帯の測定を行うことは困難である。一方、プリズムを用いたテラヘルツ波誘電分光システムをマイクロ波帯で使用する際には、測定対象の誘電率の上昇により、試料−プリズム界面での全反射条件を満たすことが困難である。   However, when measuring the terahertz wave band in addition to the frequency band from microwave to millimeter wave, the measurement frequency is limited by the loss in the dielectric substrate in the conventional dielectric spectroscopic device using the MSL. It is difficult to measure the high frequency band up to the band. On the other hand, when a terahertz dielectric spectroscopy system using a prism is used in the microwave band, it is difficult to satisfy the total reflection condition at the sample-prism interface due to an increase in the dielectric constant of the measurement target.

したがって、広帯域なスペクトルデータの取得には、試料を各帯域の測定装置にそれぞれ設置して複数回の測定が必要であった。測定装置ごとに試料の設置場所を変えるので、試料温度の変化や乾燥により測定再現性や測定精度が得られないという問題があった。   Therefore, in order to acquire broadband spectrum data, it is necessary to perform measurement a plurality of times by placing samples on measuring devices in each band. Since the installation location of the sample is changed for each measurement device, there is a problem that measurement reproducibility and measurement accuracy cannot be obtained due to changes in the sample temperature or drying.

本発明は、上記に鑑みてなされたものであり、試料の設置場所を変えることなく広帯域の誘電分光測定を行うことを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to perform broadband dielectric spectroscopy measurement without changing the installation location of the sample.

本発明に係る誘電分光センサは、プリズムと、前記プリズム上に配置されたマイクロストリップ線路又はコプレーナ導波路の金属配線と、を備え、前記金属配線の少なくとも一部をワイヤグリッド偏光子として動作するように間隔が設定された格子状としたことを特徴とする。   A dielectric spectroscopic sensor according to the present invention includes a prism and a metal wiring of a microstrip line or a coplanar waveguide disposed on the prism, and at least a part of the metal wiring operates as a wire grid polarizer. It is characterized by having a lattice shape in which intervals are set.

上記誘電分光センサにおいて、前記プリズムは、前記金属配線を配置する面の材料は他の部分よりも高い誘電率であることを特徴とする。   In the dielectric spectroscopic sensor, the prism is characterized in that the material on the surface on which the metal wiring is arranged has a higher dielectric constant than other parts.

上記誘電分光センサにおいて、前記金属配線の格子状の部分にベゼルまたは流路を備えることを特徴とする。   In the dielectric spectroscopic sensor, a bezel or a flow path is provided in a lattice portion of the metal wiring.

本発明によれば、試料の設置場所を変えることなく広帯域の誘電分光測定を行うことができる。   According to the present invention, it is possible to perform broadband dielectric spectroscopy measurement without changing the installation location of the sample.

図1(a)は本実施の形態における誘電分光センサの上面図であり、図1(b)は断面図であり、図1(c)は側面図である。FIG. 1A is a top view of the dielectric spectroscopic sensor in the present embodiment, FIG. 1B is a cross-sectional view, and FIG. 1C is a side view. 誘電分光センサにテラヘルツ波を入射する様子を説明する図である。It is a figure explaining a mode that a terahertz wave enters into a dielectric spectroscopic sensor. 誘電分光センサの基板の形状のバリエーションを示す断面図である。It is sectional drawing which shows the variation of the shape of the board | substrate of a dielectric spectroscopy sensor. 図3に示す誘電分光センサについて、試料との界面に誘電率の異なる材料を用いた例を示す断面図である。FIG. 4 is a cross-sectional view showing an example in which materials having different dielectric constants are used at the interface with the sample in the dielectric spectroscopic sensor shown in FIG. 図5(a)は誘電分光センサの変形例の上面図であり、図5(b)は断面図である。FIG. 5A is a top view of a modification of the dielectric spectroscopic sensor, and FIG. 5B is a cross-sectional view. 図6(a)は誘電分光センサの別の変形例の上面図であり、図6(b)は断面図である。FIG. 6A is a top view of another modification of the dielectric spectroscopic sensor, and FIG. 6B is a cross-sectional view. 図7(a)は誘電分光センサをテラヘルツ帯誘電分光光学系に導入した例を示す図であり、図7(b)は同じ誘電分光センサをVNAに接続した例を示す図である。FIG. 7A is a diagram showing an example in which a dielectric spectroscopic sensor is introduced into a terahertz band dielectric spectroscopic optical system, and FIG. 7B is a diagram showing an example in which the same dielectric spectroscopic sensor is connected to a VNA. マイクロ波−ミリ波帯における伝送特性の電磁界シミュレーション結果を示すグラフである。It is a graph which shows the electromagnetic field simulation result of the transmission characteristic in a microwave-millimeter wave band.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)は、本実施の形態における誘電分光センサの上面図であり、図1(b)は、誘電分光センサの断面図であり、図1(c)は、誘電分光センサの側面図である。   1A is a top view of the dielectric spectroscopic sensor in the present embodiment, FIG. 1B is a cross-sectional view of the dielectric spectroscopic sensor, and FIG. 1C is a side view of the dielectric spectroscopic sensor. It is.

同図に示す誘電分光センサは、ATRプリズムとして動作する基板11と、基板11のそれぞれの面に形成されたストリップ配線12とグランド配線13と、基板11の両端においてストリップ配線12とグランド配線13に接続されたコネクタ15を有する。ストリップ配線12の一部が格子状であり、格子の上に測定試料を配置する。   The dielectric spectroscopic sensor shown in the figure includes a substrate 11 operating as an ATR prism, strip wiring 12 and ground wiring 13 formed on each surface of the substrate 11, and strip wiring 12 and ground wiring 13 at both ends of the substrate 11. It has a connected connector 15. A part of the strip wiring 12 has a lattice shape, and a measurement sample is arranged on the lattice.

基板11の材料として、ATRプリズムで用いられる材料、例えば、Si、ZnSe、MgO、Ge、プラスチックを用いる。基板11の大きさは、数センチ×数センチ角、数百μm−数センチ厚であり、測定試料に応じて屈折率の高い材料を選択する。基板11の形状は、基板11の側面からテラヘルツ波を入射した際にATRプリズムとして動作するように設計し、誘電分光装置の測定系に応じて選択する。本誘電分光センサは、基板11がプリズムの機能を兼ね備える構造であるため、プリズムのサイズは基板11のサイズと同様に数センチ×数センチ角、数百μm−数センチ厚である。   As a material of the substrate 11, a material used in the ATR prism, for example, Si, ZnSe, MgO, Ge, or plastic is used. The size of the substrate 11 is several centimeters × several centimeters and several hundred μm−several centimeters thick, and a material having a high refractive index is selected according to the measurement sample. The shape of the substrate 11 is designed to operate as an ATR prism when a terahertz wave is incident from the side surface of the substrate 11 and is selected according to the measurement system of the dielectric spectroscopic apparatus. In the present dielectric spectroscopic sensor, since the substrate 11 has a structure having a prism function, the size of the prism is several centimeters × several centimeters and several hundreds μm−several centimeters thick like the size of the substrate 11.

電磁波を入射する基板11の側面は、電磁波の入射方法に合わせて設計する。図2(a)に示すように、電磁波を基板11の斜面に対し垂直に入射させる場合には以下の式(3)の条件を満たすように設計する。   The side surface of the substrate 11 on which the electromagnetic wave is incident is designed according to the electromagnetic wave incident method. As shown in FIG. 2A, when the electromagnetic wave is incident perpendicularly to the inclined surface of the substrate 11, it is designed so as to satisfy the condition of the following formula (3).

Figure 2016211976
Figure 2016211976

また、図2(b)に示すように、電磁波を水平方向から入射させる場合には以下の式(4)の条件を満たすように設計する。   In addition, as shown in FIG. 2B, when electromagnetic waves are incident from the horizontal direction, the design is performed so as to satisfy the following expression (4).

Figure 2016211976
Figure 2016211976

基板11の上面及び底面を用いてMSL構造の金属配線を形成する。ストリップ配線12は基板11の上面に形成され、コネクタ15の信号端子と接続される。ストリップ配線12の配線幅は数百μm−数ミリであり、配線材料はAu、Cu、Al等を用いる。ストリップ配線12の一部が格子状であり、格子の大きさは、基板11の側面から入射される電磁波の周波数帯(例えばテラヘルツ波帯)においてワイヤグリッド偏光子として動作するように設計する。例えば導体幅を数μm−数十μm、間隔を数十μmとする。グランド配線13は基板11の底面に形成され、コネクタ15のグランド端子と接続される。なお、MSL構造の代わりにCPW構造の金属配線を形成してもよい。   An MSL structure metal wiring is formed using the top and bottom surfaces of the substrate 11. The strip wiring 12 is formed on the upper surface of the substrate 11 and is connected to the signal terminal of the connector 15. The wiring width of the strip wiring 12 is several hundred μm−several millimeters, and the wiring material is Au, Cu, Al or the like. A part of the strip wiring 12 has a lattice shape, and the size of the lattice is designed to operate as a wire grid polarizer in the frequency band (for example, terahertz wave band) of electromagnetic waves incident from the side surface of the substrate 11. For example, the conductor width is set to several μm to several tens of μm and the interval is set to several tens of μm. The ground wiring 13 is formed on the bottom surface of the substrate 11 and connected to the ground terminal of the connector 15. Note that a metal wiring having a CPW structure may be formed instead of the MSL structure.

コネクタ15には、周波数帯に応じて同軸のサイズが調整されたコネクタを用いる。例えば、SMAコネクタ、Kコネクタ、Vコネクタ等である。MSL構造あるいはCPW構造のコネクタとの接続箇所は特性インピーダンス50Ωに設計する。   A connector whose coaxial size is adjusted according to the frequency band is used as the connector 15. For example, SMA connector, K connector, V connector and the like. The connection point with the MSL structure or CPW structure connector is designed to have a characteristic impedance of 50Ω.

次に、基板11の形状のバリエーションについて説明する。   Next, variations in the shape of the substrate 11 will be described.

図3は、基板11の形状のバリエーションを示す断面図である。   FIG. 3 is a cross-sectional view showing variations in the shape of the substrate 11.

図3(a)は、図1に示した誘電分光センサであり、基板11の対向する側面を斜面にした誘電分光センサの断面図である。   FIG. 3A is a cross-sectional view of the dielectric spectroscopic sensor shown in FIG. 1, in which the opposing side surfaces of the substrate 11 are inclined.

図3(b)は、基板11の対向する側面を曲面にした誘電分光センサの断面図である。図3(b)の誘電分光センサの場合は、テラヘルツ波の入射位置がずれた場合でも同一箇所にテラヘルツ波を集光することが可能である。   FIG. 3B is a cross-sectional view of the dielectric spectroscopic sensor in which the opposite side surfaces of the substrate 11 are curved. In the case of the dielectric spectroscopic sensor of FIG. 3B, it is possible to collect the terahertz wave at the same location even when the incident position of the terahertz wave is shifted.

図3(c)は、基板11の底面に、基板11の側面から水平方向に入射したテラヘルツ波をストリップ配線12の方向へ反射する斜面を形成した誘電分光センサの断面図である。図3(c)の誘電分光センサは、図3(a)の形状と比較し、テラヘルツ波を水平方向から入射する場合の光学収差を低減することが可能である。   FIG. 3C is a cross-sectional view of the dielectric spectroscopic sensor in which the bottom surface of the substrate 11 is formed with a slope that reflects the terahertz wave incident in the horizontal direction from the side surface of the substrate 11 in the direction of the strip wiring 12. Compared with the shape of FIG. 3A, the dielectric spectroscopic sensor of FIG. 3C can reduce optical aberration when a terahertz wave is incident from the horizontal direction.

プリズムである基板11の形状が異なる場合も、試料−プリズム界面での反射角がθよりも大きくなるようにする。テラヘルツ波は赤外線と比較して回折効果が大きいため、単純な光線追跡ではプリズム設計が困難であるので、電磁界シミュレーションを用いることが望ましい。 Even when the shape of the substrate 11 is a prism are different, the sample - the reflection angle at the prism interface is set to be larger than theta c. Since terahertz waves have a larger diffraction effect than infrared rays, it is difficult to design prisms by simple ray tracing, so it is desirable to use electromagnetic field simulation.

しかし、ATRプリズムに用いられる材料の屈折率は比較的高く、プリズム内での波長短縮が生じるため、電磁界シミュレーションを実行する際のメッシュ数が増えるという課題がある。そこで、図4に示すように、低誘電率の材料(例えばプラスチック等のポリマー)で作製した基板11上に高誘電率の材料(例えばSi)の基板14を積層することで、設計時の計算時間の短縮が期待できる。異なる誘電率の基板11,14を積層する場合、プラスチック等を材料として射出成型等の安価な作製方法で基板11を作製し、平らな基板14上に通常の工程で配線を形成し、基板11,14を貼り合わせることで、基板11上への配線形成が必要なく、誘電分光センサの作製を簡素化できる。   However, since the refractive index of the material used for the ATR prism is relatively high and the wavelength in the prism is shortened, there is a problem that the number of meshes when performing electromagnetic field simulation increases. Therefore, as shown in FIG. 4, calculation at the time of design is performed by laminating a substrate 14 of a high dielectric constant material (eg, Si) on a substrate 11 made of a low dielectric constant material (eg, a polymer such as plastic). Time can be expected to be shortened. When the substrates 11 and 14 having different dielectric constants are laminated, the substrate 11 is manufactured by an inexpensive manufacturing method such as injection molding using plastic or the like as a material, and wiring is formed on the flat substrate 14 by a normal process. , 14 is not required to form a wiring on the substrate 11, and the production of the dielectric spectroscopic sensor can be simplified.

次に、誘電分光センサの変形例について説明する。   Next, a modified example of the dielectric spectroscopic sensor will be described.

図5、図6は、誘電分光センサの変形例を示す図である。図5(a)、図6(a)は、誘電分光センサの変形例の上面図であり、図5(b)、図6(b)は、誘電分光センサの変形例の断面図である。   5 and 6 are diagrams showing modifications of the dielectric spectroscopic sensor. FIGS. 5A and 6A are top views of modified examples of the dielectric spectroscopic sensor, and FIGS. 5B and 6B are cross-sectional views of modified examples of the dielectric spectroscopic sensor.

図5の変形例では、ストリップ配線12の格子部分のうち、テラヘルツ波の入射位置にベゼル16を配置し、図6の変形例では、流路17を配置した。ベゼル16や流路17を配置することで、粉末試料や液体試料を測定することが可能である。ベゼル16または流路17のサイズは入射するテラヘルツ波のビーム径程度であり、例えば数百μm−数mm程度である。ベゼル16や流路17の材料は、例えばガラスやPDMS等を用いる。   In the modification of FIG. 5, the bezel 16 is disposed at the incident position of the terahertz wave in the lattice portion of the strip wiring 12, and the flow path 17 is disposed in the modification of FIG. 6. By arranging the bezel 16 and the flow path 17, it is possible to measure a powder sample or a liquid sample. The size of the bezel 16 or the flow path 17 is about the beam diameter of the incident terahertz wave, for example, about several hundred μm to several mm. For example, glass or PDMS is used as the material of the bezel 16 and the flow path 17.

次に、本実施の形態の誘電分光センサを用いた測定系について説明する。   Next, a measurement system using the dielectric spectroscopic sensor of the present embodiment will be described.

図7(a)は、誘電分光センサをテラヘルツ帯誘電分光光学系に導入した例を示す図であり、図7(b)は、同じ誘電分光センサをVNAに接続した例を示す図である。図示していないが、試料は誘電分光センサのストリップ配線12の格子部分に配置される。   FIG. 7A is a diagram showing an example in which a dielectric spectroscopic sensor is introduced into a terahertz-band dielectric spectroscopic optical system, and FIG. 7B is a diagram showing an example in which the same dielectric spectroscopic sensor is connected to a VNA. Although not shown, the sample is disposed on the lattice portion of the strip wiring 12 of the dielectric spectroscopic sensor.

図7(a)において、THz波発振器21から出射したテラヘルツ波は、レンズ25Aにより集束またはコリメートし、誘電分光センサの基板11側面から入射する。THz波発振器21のアンテナ方向を調整し、テラヘルツ波の電界成分がストリップ配線12の格子部分に対して垂直となるような偏光方向でテラヘルツ波を入射することで、テラヘルツ波が格子部分を透過するため、ATR測定が可能となる。試料−プリズム界面で反射したテラヘルツ波は、誘電分光センサから出射してレンズ25Bを通過し、THz波受信器22で受信され、低雑音増幅器23、ロックインアンプ24へと信号が伝達される。   In FIG. 7A, the terahertz wave emitted from the THz wave oscillator 21 is focused or collimated by the lens 25A and is incident from the side surface of the substrate 11 of the dielectric spectroscopic sensor. By adjusting the antenna direction of the THz wave oscillator 21 and entering the terahertz wave in a polarization direction in which the electric field component of the terahertz wave is perpendicular to the lattice portion of the strip wiring 12, the terahertz wave is transmitted through the lattice portion. Therefore, ATR measurement is possible. The terahertz wave reflected from the sample-prism interface is emitted from the dielectric spectroscopic sensor, passes through the lens 25B, is received by the THz wave receiver 22, and a signal is transmitted to the low noise amplifier 23 and the lock-in amplifier 24.

図7(b)において、ストリップ配線12とグランド配線13は、コネクタ15を介してVNA31あるいはIAと接続され、ストリップ配線12上に配置された試料が測定される。   In FIG. 7B, the strip wiring 12 and the ground wiring 13 are connected to the VNA 31 or IA via the connector 15, and the sample placed on the strip wiring 12 is measured.

ストリップ配線12の格子部分に試料を配置し、マイクロ波−ミリ波帯ではVNA31による測定、ミリ波−テラヘルツ波帯ではATR測定を行うことにより、広帯域な同時刻、同一領域の誘電分光を行うことができる。また、ストリップ配線12の格子部分に試料を配置するので同一箇所に電磁波が照射されるため、マイクロ波による励振下でのテラヘルツ分光あるいはテラヘルツ波による励振下でのマイクロ波分光も可能である。   A sample is placed on the lattice portion of the strip wiring 12, and measurement using the VNA 31 is performed in the microwave-millimeter wave band, and ATR measurement is performed in the millimeter-wave-terahertz wave band, so that dielectric spectroscopy of the same region over a wide band is performed at the same time. Can do. In addition, since the sample is arranged on the lattice portion of the strip wiring 12, the same portion is irradiated with electromagnetic waves, so that terahertz spectroscopy under microwave excitation or microwave spectroscopy under terahertz wave excitation is possible.

図8は、マイクロ波−ミリ波帯における伝送特性の電磁界シミュレーション結果を示すグラフである。Si基板に線路の一部に格子を有するMSLを設け、格子と接する箇所の材料を空気(資料なし)または液体試料とした際のS21特性の変化を示す。MSLの材料にはAu、液体試料には27℃における水の誘電率を用いた。 FIG. 8 is a graph showing electromagnetic field simulation results of transmission characteristics in the microwave-millimeter wave band. A change in S 21 characteristics when an MSL having a lattice on a part of a line is provided on an Si substrate and the material in contact with the lattice is air (no data) or a liquid sample is shown. Au was used as the material for MSL, and the dielectric constant of water at 27 ° C. was used as the liquid sample.

以上説明したように、本実施の形態によれば、ATRプリズムとして動作するように設計した基板11にMSL構造を備え、MSL構造のストリップ配線12の一部を、ワイヤグリッド偏光子として動作するように間隔が設定された格子状とすることにより、テラヘルツ波のストリップ配線12界面での反射を低減することができるので、プリズムを用いたテラヘルツ波帯での分光測定を可能としたうえで、MSLを用いたマイクロ波−ミリ帯での分光測定を行うことができ、試料の設置場所を変えることなく広帯域の誘電分光測定を行うことが可能となる。   As described above, according to the present embodiment, the substrate 11 designed to operate as an ATR prism is provided with an MSL structure, and a part of the strip wiring 12 of the MSL structure operates as a wire grid polarizer. Since the reflection of the terahertz wave at the interface of the strip wiring 12 can be reduced by using the lattice shape with the interval set at the interval, the spectral measurement in the terahertz wave band using the prism is enabled, and the MSL Therefore, it is possible to perform broadband dielectric spectroscopic measurement without changing the installation location of the sample.

11…基板
12…ストリップ配線
13…グランド配線
14…基板
15…コネクタ
16…ベゼル
17…流路
21…THz波発振器
22…THz波受信器
23…低雑音増幅器
24…ロックインアンプ
25A,25B…レンズ
31…VNA
DESCRIPTION OF SYMBOLS 11 ... Board | substrate 12 ... Strip wiring 13 ... Ground wiring 14 ... Board | substrate 15 ... Connector 16 ... Bezel 17 ... Flow path 21 ... THz wave oscillator 22 ... THz wave receiver 23 ... Low noise amplifier 24 ... Lock-in amplifier 25A, 25B ... Lens 31 ... VNA

Claims (3)

プリズムと、
前記プリズム上に配置されたマイクロストリップ線路又はコプレーナ導波路の金属配線と、を備え、
前記金属配線の少なくとも一部をワイヤグリッド偏光子として動作するように間隔が設定された格子状としたことを特徴とする誘電分光センサ。
Prism,
A metal strip of a microstrip line or a coplanar waveguide disposed on the prism,
A dielectric spectroscopic sensor characterized in that at least a part of the metal wiring is formed in a lattice shape in which intervals are set so as to operate as a wire grid polarizer.
前記プリズムは、前記金属配線を配置する面の材料は他の部分よりも高い誘電率であることを特徴とする請求項1記載の誘電分光センサ。   2. The dielectric spectroscopic sensor according to claim 1, wherein a material of a surface of the prism on which the metal wiring is disposed has a higher dielectric constant than other portions. 前記金属配線の格子状の部分にベゼルまたは流路を備えることを特徴とする請求項1又は2記載の誘電分光センサ。   The dielectric spectroscopic sensor according to claim 1, wherein a bezel or a flow path is provided in a lattice portion of the metal wiring.
JP2015096237A 2015-05-11 2015-05-11 Dielectric spectroscopy sensor Active JP6367753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096237A JP6367753B2 (en) 2015-05-11 2015-05-11 Dielectric spectroscopy sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096237A JP6367753B2 (en) 2015-05-11 2015-05-11 Dielectric spectroscopy sensor

Publications (2)

Publication Number Publication Date
JP2016211976A true JP2016211976A (en) 2016-12-15
JP6367753B2 JP6367753B2 (en) 2018-08-01

Family

ID=57549765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096237A Active JP6367753B2 (en) 2015-05-11 2015-05-11 Dielectric spectroscopy sensor

Country Status (1)

Country Link
JP (1) JP6367753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110141248A (en) * 2019-05-21 2019-08-20 上海理工大学 Device and method based on decaying total reflection Terahertz dielectric spectra calibration blood sugar concentration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002653A (en) * 1998-05-27 2000-01-07 Voith Sulzer Papiertechnik Patent Gmbh Method and device for quantitatively measuring substance contained in mixture of stock/undiluted solution
US6573737B1 (en) * 2000-03-10 2003-06-03 The Trustees Of Princeton University Method and apparatus for non-contact measurement of electrical properties of materials
JP2006064691A (en) * 2004-07-30 2006-03-09 Canon Inc Sensing apparatus
JP2006125888A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Measuring apparatus and measurement method of complex dielectric constant in sample by measuring reflection of light
WO2007145143A1 (en) * 2006-06-12 2007-12-21 Mitsubishi Electric Corporation System and method for measuring component concentration
JP2008224451A (en) * 2007-03-13 2008-09-25 Hamamatsu Photonics Kk Device for measuring terahertz wave
JP2009229323A (en) * 2008-03-24 2009-10-08 Canon Inc Specimen information obtaining apparatus and method
JP2014077672A (en) * 2012-10-09 2014-05-01 Univ Of Tokyo Terahertz wave measurement device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002653A (en) * 1998-05-27 2000-01-07 Voith Sulzer Papiertechnik Patent Gmbh Method and device for quantitatively measuring substance contained in mixture of stock/undiluted solution
US6573737B1 (en) * 2000-03-10 2003-06-03 The Trustees Of Princeton University Method and apparatus for non-contact measurement of electrical properties of materials
JP2006064691A (en) * 2004-07-30 2006-03-09 Canon Inc Sensing apparatus
JP2006125888A (en) * 2004-10-26 2006-05-18 National Institute Of Advanced Industrial & Technology Measuring apparatus and measurement method of complex dielectric constant in sample by measuring reflection of light
WO2007145143A1 (en) * 2006-06-12 2007-12-21 Mitsubishi Electric Corporation System and method for measuring component concentration
JP2008224451A (en) * 2007-03-13 2008-09-25 Hamamatsu Photonics Kk Device for measuring terahertz wave
JP2009229323A (en) * 2008-03-24 2009-10-08 Canon Inc Specimen information obtaining apparatus and method
JP2014077672A (en) * 2012-10-09 2014-05-01 Univ Of Tokyo Terahertz wave measurement device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRUGER M , ET AL.: "Combined THz and Microwave Dielectric Spectroscopy of Intermolecular Interactions in Homologous Prot", IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, vol. 1, no. 1, JPN6018024427, September 2011 (2011-09-01), pages 313 - 320, XP011382535, ISSN: 0003826884, DOI: 10.1109/TTHZ.2011.2159540 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110141248A (en) * 2019-05-21 2019-08-20 上海理工大学 Device and method based on decaying total reflection Terahertz dielectric spectra calibration blood sugar concentration

Also Published As

Publication number Publication date
JP6367753B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP4546326B2 (en) Sensing device
US7759946B2 (en) Waveguide, and device and detection method using the same
JP6075822B2 (en) Sensor device
US20090134329A1 (en) Detection apparatus for detecting electromagnetic wave passed through object
JP6389135B2 (en) Component concentration analyzer and component concentration analysis method
JP6169546B2 (en) Dielectric spectroscopic sensor, measurement system using dielectric spectroscopic sensor, and measurement method using dielectric spectroscopic sensor
JP2016109687A (en) Measurement device, and measurement method using the same
Arif et al. A novel Cesaro fractal EBG-based sensing platform for dielectric characterization of liquids
JP6804061B2 (en) Dielectric spectroscope
JP2012185116A (en) Optical characteristics evaluation device and optical characteristics evaluation method
JP6367753B2 (en) Dielectric spectroscopy sensor
Lameirinhas et al. The impact of nanoantennas on ring resonators’ performance
US20160377958A1 (en) Terahertz wave generating apparatus and information obtaining apparatus
JP6196191B2 (en) measuring device
Hasar et al. Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements
Khan et al. Broadband dielectric characterization of tumorous and nontumorous breast tissues
JP2017194361A (en) Dielectric spectroscopic device
Seddon et al. An on-chip continuous wave terahertz spectrometer
Yamamoto et al. Millimeter-wave ellipsometry using low-coherence light source
JP6219867B2 (en) Component concentration measuring device
US20230077185A1 (en) Measuring Apparatus, On-Chip Instrumentation Device and Measuring Method
JP2007074043A (en) Electromagnetic wave waveguide
WO2021124393A1 (en) Dielectric spectrometry device
Wessel et al. Contactless Investigations of Yeast Cell Cultivation in the 7 GHz and 240 GHz Ranges
Silveira et al. A terahertz photonic crystal structure for sensing applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6367753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150