JP2016211960A - Inner space displacement measurement method - Google Patents

Inner space displacement measurement method Download PDF

Info

Publication number
JP2016211960A
JP2016211960A JP2015095809A JP2015095809A JP2016211960A JP 2016211960 A JP2016211960 A JP 2016211960A JP 2015095809 A JP2015095809 A JP 2015095809A JP 2015095809 A JP2015095809 A JP 2015095809A JP 2016211960 A JP2016211960 A JP 2016211960A
Authority
JP
Japan
Prior art keywords
measurement
measurement point
water tank
displacement
vertical displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015095809A
Other languages
Japanese (ja)
Other versions
JP6507023B2 (en
Inventor
中間 祥二
Shoji Nakama
祥二 中間
秀雄 木梨
Hideo Kinashi
秀雄 木梨
有亮 木野村
Yusuke Kinomura
有亮 木野村
幸治 辻村
Koji Tsujimura
幸治 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK LABO CO Ltd
Obayashi Corp
Original Assignee
SK LABO CO Ltd
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK LABO CO Ltd, Obayashi Corp filed Critical SK LABO CO Ltd
Priority to JP2015095809A priority Critical patent/JP6507023B2/en
Publication of JP2016211960A publication Critical patent/JP2016211960A/en
Application granted granted Critical
Publication of JP6507023B2 publication Critical patent/JP6507023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner space displacement measurement method for measuring the vertical deformation state of a tunnel cross section as a relative displacement between tunnel wall surfaces.SOLUTION: In a measurement cross section 55 of a tunnel 50, a vertical displacement of a measurement point G1 set at the top end from a measurement point G2 set on a side wall part is measured, by a light-wave distance measuring instrument 4, as an upper vertical displacement amount in an upper part in the view from the measurement point G2. A vertical displacement of a measurement point G3 set on an invert part 54 from the measurement point G2 set on the side wall part is measured, by a settlement gage 10, as a lower vertical displacement amount in a lower part in the view from the measurement point G2. Thus, the vertical deformation state of the measurement cross section 55 is measured as a relative displacement between tunnel wall surfaces.SELECTED DRAWING: Figure 1

Description

本発明は、山岳トンネル内の任意に選定した測定断面における鉛直方向の内空変位を計測する内空変位計測方法に関する。   The present invention relates to an internal displacement measuring method for measuring an internal displacement in a vertical direction in an arbitrarily selected measurement section in a mountain tunnel.

山岳トンネルを施工するにあたり、不良地山に対してはインバート部を施工して断面を閉合し、トンネルを構造的に安定させて変状を抑制している。しかし、膨張性地山等を含む地域では、トンネル供用開始後にインバート部を隆起させるほどの盤ぶくれを生じることがあり、この場合には、本設の路盤部を掘削してインバート部の補修や打替え作業を行うなどしていた。このような作業をトンネルの供用中に実施することは、施工が煩雑となりやすいだけでなく工費も膨大となる。   When constructing a mountain tunnel, an inverted part is constructed on a faulty mountain to close the cross section, structurally stabilizing the tunnel and suppressing deformation. However, in areas including expansive grounds, the inverted part may be raised after the start of tunnel operation. In this case, the main roadbed part is excavated to repair the inverted part. I was doing work and changeover. Performing such work while the tunnel is in use not only makes the construction complicated, but also increases the construction cost.

そこで近年では、新設のトンネルを施工するにあたって本設施工を行う前に、閉合後における支保工の変形のみでなくインバート部の変形を経時観測し、必要に応じて対策工を施工して変形の収束を確認している。トンネルの経時観測としては、日常の施工管理のために実施される計測項目(計測A)である、内空変位・天端沈下の測定に加えて、地山条件等に応じて追加する計測項目(計測B)である、盤ぶくれ測定を実施している。   Therefore, in recent years, before constructing a new tunnel, before performing the main construction, not only the deformation of the support after the closure but also the deformation of the inverted part is observed over time, and if necessary, the countermeasure work is performed to prevent the deformation. Convergence is confirmed. In addition to the measurement of internal displacement and ceiling subsidence, which is a measurement item (measurement A) that is carried out for daily construction management, measurement items that are added according to natural conditions etc. The board bulge measurement which is (Measurement B) is carried out.

この場合、内空変位・天端沈下の測定は、トータルステーションによる測定が一般的である。また、盤ぶくれ測定は、例えばインバート部に沈下棒を立て、レベル測量等によりその高さを計測する、もしくは、特許文献1で示すように、インバート部から隆起や変状を生じる地盤を貫通してその下方に位置する変形しない堅牢な地盤に至るまで地盤を掘削し、この掘削孔に地中変位計測装置を設置することで、地中変位を計測するなどしていた。   In this case, the internal station is generally measured by a total station. In addition, for the bulge measurement, for example, a sunk bar is set up in the invert part and the height is measured by leveling or the like, or as shown in Patent Document 1, the ground which causes the invert part to rise and deform is penetrated. Then, the ground was excavated to a solid ground that does not deform and located below, and the underground displacement was measured by installing an underground displacement measuring device in this excavation hole.

特開2008−185498号公報JP 2008-185498 A

しかし、天端沈下の測定および盤ぶくれ測定より得られる鉛直方向の変位は、いずれも基準点と測定点との差から得られる絶対変位であって、トンネル壁面間の相対変位を表すものではない。また、内空変位の測定は、トンネル断面の水平方向および斜め方向の変形状態をトンネル壁面間の相対変位で表すものの、鉛直方向の変形状態を表すことができない。   However, the vertical displacement obtained from the measurement of the crest of the top and the bulge measurement is an absolute displacement obtained from the difference between the reference point and the measurement point, and does not represent the relative displacement between the tunnel wall surfaces. Absent. In addition, the measurement of the displacement of the inner space represents the deformation state in the horizontal direction and the oblique direction of the tunnel cross section by the relative displacement between the tunnel wall surfaces, but cannot indicate the deformation state in the vertical direction.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、トンネル断面の鉛直方向の変形状態を、トンネル壁面間の内空変位として計測するための内空変位計測方法を提供することである。   The present invention has been made in view of such problems, and its main object is to provide an internal displacement measuring method for measuring the deformation state in the vertical direction of the tunnel cross section as the internal displacement between the tunnel wall surfaces. It is to be.

かかる目的を達成するため本発明の内空変位計測方法は、トンネル内の任意に選定した測定断面において、互いに対抗する一対の側壁部のうちの一方と天端にそれぞれ測定点を設定するとともに、該天端に設定された測定点の鉛直下方に位置するインバート部上にも測定点を設定した後、前記側壁部に設定した測定点に対する天端に設定した測定点の鉛直方向変位を光波測距儀にて計測し、前記測定断面の上部鉛直方向変位量を算定するとともに、前記側壁部に設定した測定点に対するインバート部上に設定した測定点の鉛直方向変位を沈下計にて計測し、前記測定断面の下部鉛直方向変位量を算定して、前記上部鉛直方向変位量及び前記下部鉛直方向変位量から、前記測定断面における鉛直方向の内空変位を計測することを特徴とする。   In order to achieve such an object, the internal displacement measurement method of the present invention, in the arbitrarily selected measurement cross-section in the tunnel, while setting the measurement point respectively on one of the pair of side walls facing each other and the top end, After setting the measurement point also on the invert part located vertically below the measurement point set at the top end, the vertical displacement of the measurement point set at the top end with respect to the measurement point set at the side wall part is measured by the optical wave. Measured with a distance meter, and calculated the vertical displacement amount of the upper portion of the measurement cross section, and measured the vertical displacement of the measurement point set on the invert part with respect to the measurement point set on the side wall part, A lower vertical displacement amount of the measurement cross section is calculated, and a vertical internal displacement in the measurement cross section is measured from the upper vertical displacement amount and the lower vertical displacement amount.

上記の内空変位計測方法によれば、前記上部鉛直方向変位量及び前記下部鉛直方向変位量をともに、前記側壁部に設定した測定点からみた相対変位として計測ことから、前記測定断面における鉛直方向の変形状態を、トンネル壁面間の相対変位、つまり内空変位として表すことができるため、日常の施工管理のために実施される計測項目(計測A)における内空変位の測定と同様の指標として取り扱うことが可能となる。   According to the above internal displacement measurement method, both the upper vertical displacement amount and the lower vertical displacement amount are measured as relative displacements as viewed from the measurement point set on the side wall, so that the vertical direction in the measurement cross section Can be expressed as relative displacement between tunnel walls, that is, internal displacement, as an index similar to the measurement of internal displacement in measurement items (measurement A) that are carried out for daily construction management. It becomes possible to handle.

本発明の内空変位計測方法は、前記沈下計が、密閉した単一水槽よりなる基準水槽と、水圧検知部にて区画された空気室と水が充填される液室とを備える沈下計本体と、一端が前記基準水槽の底部に、他端が前記沈下計本体の液室に連結されて、該液室と前記基準水槽とを連通するとともに、水が充填される連通水管と、一端が前記基準水槽の頂部に、他端が前記沈下計本体の空気室に連結されて、該空気室と前記基準水槽とを連通させる大気圧調整管とを備え、前記大気圧調整管に、開閉バルブが設置されることを特徴とする。   The internal displacement measuring method of the present invention is a subsidence meter body in which the subsidence meter includes a reference water tank composed of a sealed single water tank, an air chamber partitioned by a water pressure detection unit, and a liquid chamber filled with water. One end is connected to the bottom of the reference water tank, the other end is connected to the liquid chamber of the subsidence meter body, and the liquid chamber communicates with the reference water tank, and a communication water pipe filled with water and one end The other end of the reference water tank is connected to the air chamber of the subsidence meter main body, and includes an atmospheric pressure adjusting pipe that communicates the air chamber with the reference water tank. Is installed.

上記の内空変位計測方法によれば、沈下計が、開閉バルブを閉めることで注入されている水を液室側に封じ込めることができることから、姿勢に配慮することなく沈下計を自在に取り扱うことができるため、沈下計の設置作業を容易に行うことが可能となる。   According to the above internal displacement measurement method, the subsidence meter can contain the water injected by closing the open / close valve to the liquid chamber side, so the subsidometer can be handled freely without considering the posture. Therefore, the installation work of the settlement meter can be easily performed.

本発明によれば、トンネル内の任意に選定した測定断面を光波測距儀と沈下計の両者を併用して測定することにより、測定断面における鉛直方向の変形状態を、トンネル壁面間の内空変位で表すことが可能となる。   According to the present invention, an arbitrarily selected measurement section in a tunnel is measured by using both a light wave range finder and a settlement meter, so that the vertical deformation state in the measurement section It can be expressed by displacement.

本実施の形態におけるトンネルに光波測距儀と沈下計を設置した状態を示す図である。It is a figure which shows the state which installed the optical wave rangefinder and the subsidence meter in the tunnel in this Embodiment. 本実施の形態における沈下計を示す図である。It is a figure which shows the settlement meter in this Embodiment. 本実施の形態における沈下計を一本の棒状体に成形した状態を示す図である。It is a figure which shows the state which shape | molded the settlement meter in this Embodiment in one rod-shaped body. 本実施の形態における測定断面の変形状態を示す図である。It is a figure which shows the deformation | transformation state of the measurement cross section in this Embodiment. 本実施の形態における沈下計の設置方法を示す図である。It is a figure which shows the installation method of the subsidence meter in this Embodiment. 本実施の形態における沈下計の設置方法の他の事例を示す図である。It is a figure which shows the other example of the installation method of the subsidence meter in this Embodiment.

以下に、本発明のトンネル内における任意に選定した測定断面について、鉛直方向の内空変位を計測するための内空変位計測方法を、図1〜図7を用いて説明する。   Below, the internal space displacement measuring method for measuring the internal space displacement of the perpendicular direction is demonstrated using FIGS. 1-7 about the measurement cross section arbitrarily selected in the tunnel of this invention.

本発明は、トンネル内の測定断面において、側壁部に設置した測定点に対する天端の鉛直方向変位を光波測距儀にて、また側壁部に設置した測定点に対するインバート部の鉛直方向変位を沈下計にてそれぞれ計測し、これらの鉛直変位量を利用して鉛直方向の内空変位を計測する方法である。   In the measurement cross section in the tunnel, the vertical displacement of the top of the measurement point installed on the side wall is subtracted by the optical rangefinder, and the vertical displacement of the invert part with respect to the measurement point installed on the side wall is subtracted. It is a method of measuring the internal air displacement in the vertical direction by measuring each with a meter and using these vertical displacement amounts.

本実施の形態では、膨張性地山に山岳トンネルの施工するにあたり、吹付コンクリートおよび鋼製支保工にて支保構造を構築するとともに吹付コンクリートによるインバート部を構築し、断面を仮閉合した状態において、測定断面における鉛直方向の内空変位を計測する場合を例にとり、以下に説明する。   In the present embodiment, when constructing a mountain tunnel in the expansive natural ground, the support structure is constructed with shotcrete and steel support and an invert portion is constructed with shotcrete, and the section is temporarily closed, An example of measuring the vertical displacement in the measurement cross section will be described below.

まず、内空変位の測定対象であるトンネル50の概略と、内空変位計測方法に用いる装置およびその配置について説明する。   First, an outline of the tunnel 50 that is a measurement target of the inner space displacement, an apparatus used for the inner space displacement measuring method, and an arrangement thereof will be described.

図1で示すように、トンネル50は、切羽52の後方に、図示しない吹付コンクリート工と鋼製支保工53とによる支保構造が構築されているとともに、吹付コンクリートによりインバート部54が構築されている。そして、切羽52の近傍に、鉛直方向の内空変位を測定しようとする測定断面55が設定されている。   As shown in FIG. 1, in the tunnel 50, a support structure by a not-shown shotcrete and a steel support 53 is constructed behind the face 52, and an invert portion 54 is constructed by the shotcrete. . In the vicinity of the face 52, a measurement cross section 55 for measuring the vertical displacement in the vertical direction is set.

測定断面55には、天端および対をなす側壁部の一方に測定点G1、G2が設定されており、測定点G1、G2にはそれぞれ光波測距儀4にて視準可能な反射ターゲット1、2が設置されている。また、測定断面55から見て坑口51側に位置する鋼製支保工53には光波測距儀4が設置されているとともに、坑口51には基準点G0が設定されて、反射ターゲット3が設置されている。   In the measurement cross section 55, measurement points G 1 and G 2 are set on one of the top end and the pair of side walls, and the reflection target 1 that can be collimated by the light wave rangefinder 4 at each of the measurement points G 1 and G 2. 2 is installed. In addition, a light rangefinder 4 is installed in the steel support 53 located on the wellhead 51 side when viewed from the measurement section 55, and a reference point G0 is set in the wellhead 51, and the reflective target 3 is installed. Has been.

光波測距儀4としては、距離と角度を同時に測定し、その結果を記憶及び出力することが可能で、かつパソコン等の端末装置5に出力結果を通信可能な通信機能を備えたトータルステーションを採用している。   The optical distance measuring instrument 4 employs a total station that can measure distance and angle at the same time, store and output the results, and can communicate the output results to the terminal device 5 such as a personal computer. doing.

また、測定断面55には、インバート部54の上面であって、天端に設けられた測定点G1の鉛直下方に測定点G3が設定されており、測定点G2およびG3の間には沈下計10が設置されている。沈下計10は、側壁部に設定した測定点G2に対するインバート部54に設定した測定点G3の鉛直方向の相対変位を計測できるものであれば、いずれを用いてもよいが、本実施の形態では、水盛りの原理を利用した沈下計を採用している。   Further, in the measurement cross section 55, a measurement point G3 is set on the upper surface of the invert portion 54 and vertically below the measurement point G1 provided at the top, and a settlement meter is provided between the measurement points G2 and G3. 10 is installed. Any subsidence meter 10 may be used as long as it can measure the relative displacement in the vertical direction of the measurement point G3 set in the invert part 54 with respect to the measurement point G2 set in the side wall part. The subsidometer using the principle of water filling is adopted.

以下に、本実施の形態で採用している水圧を利用した沈下計10の詳細を説明する。   Below, the detail of the subsidence meter 10 using the water pressure employ | adopted by this Embodiment is demonstrated.

図2で示すように、沈下計10は、基準水槽11と、沈下計本体12と、これらを連通する連通水管13とを備えている。基準水槽11は、密閉容器よりなる単一水槽であり、側部には内部の水面位置が目視確認可能に形成されている。一方、沈下計本体12は、筒状の密閉容器よりなり、その内方が水圧検知部123を介して液室121と空気室122に区画されている。   As shown in FIG. 2, the settlement meter 10 includes a reference water tank 11, a settlement meter main body 12, and a communication water pipe 13 that communicates these. The reference water tank 11 is a single water tank made of a hermetically sealed container, and the water surface position inside is formed on the side portion so that it can be visually confirmed. On the other hand, the settlement meter main body 12 is formed of a cylindrical sealed container, and the inside thereof is partitioned into a liquid chamber 121 and an air chamber 122 via a water pressure detection unit 123.

そして、沈下計本体12の液室121は、基準水槽11の底部と連通水管13を介して連通されており、基準水槽11内に水面が形成されるよう、液室121と連通水管13に水が充填されている。この基準水槽11内の水面が、沈下計10の基準水面となる。   The liquid chamber 121 of the settlement meter main body 12 communicates with the bottom of the reference water tank 11 through the communication water pipe 13, and water is formed in the liquid chamber 121 and the communication water pipe 13 so that a water surface is formed in the reference water tank 11. Is filled. The water surface in the reference water tank 11 becomes the reference water surface of the settlement meter 10.

また、沈下計本体12の空気室122は、基準水槽11の頂部と大気圧調整管14を介して連通されており、基準水槽11に必要に応じて通気口を設けることで、空気室122内と基準水槽11内の両者の気圧が、常に大気圧に維持されている。   Further, the air chamber 122 of the subsidence meter main body 12 communicates with the top of the reference water tank 11 via the atmospheric pressure adjusting pipe 14, and the reference water tank 11 is provided with a vent as necessary, so that the inside of the air chamber 122 And the pressure in the reference water tank 11 are always maintained at atmospheric pressure.

さらに、沈下計本体12の水圧検知部123は、図示しないが、水位計等に広く用いられているベローズ管および差動トランスを備えている。そして、水圧検知部123は、測定ケーブル15及びデータロガー16に外部接続されている。   Furthermore, although not shown, the water pressure detection unit 123 of the settlement meter main body 12 includes a bellows pipe and a differential transformer that are widely used for a water level gauge and the like. The water pressure detection unit 123 is externally connected to the measurement cable 15 and the data logger 16.

このような構成の沈下計10は、沈下量を把握したい任意の測定点に沈下計本体12を設置するとともに、測定点より高所に基準水槽11を設置し、基準水槽11の水面を基準水面として、基準水面に対する測定点の沈下量を計測するものである。   The subsidence meter 10 having such a configuration is provided with a subsidence meter body 12 at an arbitrary measurement point for which the amount of subsidence is to be grasped, a reference water tank 11 is installed at a height above the measurement point, and the water surface of the reference water tank 11 is set to the reference water surface. The amount of settlement at the measurement point with respect to the reference water surface is measured.

つまり、沈下計本体12を設置した測定点が隆起して鉛直変位が生じると、沈下計本体12の高さが基準水槽11内に設定された基準水面高さに対して変位する。これに伴い、液室121内の水圧が変化することから、この水圧の変化を水圧検知部123に備えたベローズ管および差動トランスにて電気信号に変換し、測定ケーブル15を介してデータロガー16に送信する。   That is, when the measurement point where the subsidence meter main body 12 is installed rises and vertical displacement occurs, the height of the subsidence meter main body 12 is displaced with respect to the reference water surface height set in the reference water tank 11. Along with this, the water pressure in the liquid chamber 121 changes. Therefore, the change in the water pressure is converted into an electric signal by a bellows pipe and a differential transformer provided in the water pressure detection unit 123, and the data logger is connected via the measurement cable 15. 16 to send.

すると、データロガー16にて、この電気信号を鉛直変位に換算し、鉛直変位量として記録する。このようにして、沈下計1は、基準水槽11にて設定された基準水面に対する沈下計本体12が設置された測定点の相対的な鉛直変位を計測することができるものである。   Then, the data logger 16 converts this electrical signal into a vertical displacement and records it as a vertical displacement amount. Thus, the settlement meter 1 can measure the relative vertical displacement of the measurement point where the settlement meter main body 12 is installed with respect to the reference water surface set in the reference water tank 11.

なお、データロガー16も、光波測距儀4に通信接続されている端末装置5と通信接続されており、データロガー16に記録されるデータは、端末装置5にも格納・出力される。   The data logger 16 is also communicatively connected to the terminal device 5 that is communicatively connected to the light wave rangefinder 4, and data recorded in the data logger 16 is also stored and output in the terminal device 5.

また、大気圧調整管14には開閉バルブ141が設けられており、開閉バルブ141を閉めておけば、沈下計10内に注入されている水が、大気圧調整管14から沈下計本体12の空気室122に入り込むことがない。これにより、沈下計10を搬送・もしくは設置などで移動させる際に、沈下計10の姿勢を配慮する必要がなくなるため、自在な荷姿に変形させることができ、取扱いが容易となる   Further, the atmospheric pressure adjusting pipe 14 is provided with an opening / closing valve 141, and when the opening / closing valve 141 is closed, water injected into the settlement gauge 10 is transferred from the atmospheric pressure regulation pipe 14 to the settlement gauge main body 12. It does not enter the air chamber 122. This eliminates the need to consider the attitude of the subsidence meter 10 when it is transported, installed, or the like, so it can be deformed into a flexible package and is easy to handle.

さらに、基準水槽11には、図2で示すように、頂部に給排水口111が設けられており、沈下計10内の水面高さを自在に変更することができる構成となっている。   Further, as shown in FIG. 2, the reference water tank 11 is provided with a water supply / drain port 111 at the top, so that the water surface height in the settlement meter 10 can be freely changed.

ところで、本実施の形態では、沈下計10の連通水管13、大気圧調整管14及び測定ケーブル15を束ね、これらを図3で示すような基準水槽11の底部近傍から沈下計本体12の近傍に至る長さの収納管17で覆っている。また、沈下計本体12を沈下計本体収納ケース171に、基準水槽11を、基準水槽収納ケース172にそれぞれ収納し、沈下計本体収納ケース171及び基準水槽収納ケース172を収納管17の両端部各々に連結している。   By the way, in the present embodiment, the communication water pipe 13, the atmospheric pressure adjustment pipe 14 and the measurement cable 15 of the subsidence meter 10 are bundled, and these are moved from the vicinity of the bottom of the reference water tank 11 as shown in FIG. It is covered with a storage tube 17 of a long length. Further, the settlement meter main body 12 is stored in the settlement meter main body storage case 171, the reference water tank 11 is stored in the reference water tank storage case 172, and the settlement meter main body storage case 171 and the reference water tank storage case 172 are respectively provided at both ends of the storage pipe 17. It is linked to.

こうすることで、図2に示すような環状の沈下計10を、図3で示すような1本の棒状材として扱うことができるため、測定断面55への設置作業を容易に行うことができるものである。   By doing so, the annular settlement meter 10 as shown in FIG. 2 can be handled as a single bar-like material as shown in FIG. 3, so that the installation work on the measurement section 55 can be easily performed. Is.

上記の沈下計10を用いた、トンネル50内に選定した測定断面55における内空変位計測方法を、以下に説明する。   A method for measuring the internal displacement of the measurement cross section 55 selected in the tunnel 50 using the above-described settlement meter 10 will be described below.

まず、図1で示すように、トンネル50内の任意に選定した測定断面55において、天端に測定点G1を設定するとともに反射ターゲット1を設置し、また、一方の側壁部に測定点G2を設定するとともに反射ターゲット2を設置し、さらに、測定断面55から見て坑口51側に位置する鋼製支保工53に光波測距儀4を据え付ける。   First, as shown in FIG. 1, in a measurement cross section 55 arbitrarily selected in the tunnel 50, the measurement point G1 is set at the top and the reflection target 1 is installed, and the measurement point G2 is set on one side wall. In addition to setting, the reflective target 2 is installed, and the light wave range finder 4 is installed on a steel support 53 located on the wellhead 51 side when viewed from the measurement section 55.

本実施の形態では、図4(a)で示すように、天端の測定点G1をトンネル50のセンターライン上に設置するとともに、側壁部の測定点G2をトンネル50のスプリングライン上に設置している。このように側壁部の測定点G2をスプリングライン上とすることで、トンネル断面上半の鉛直方向変位を光波測距儀1にて、トンネル断面下半の鉛直方向変位を沈下計10にてそれぞれ計測するように設定している。   In the present embodiment, as shown in FIG. 4A, the measurement point G1 at the top is set on the center line of the tunnel 50, and the measurement point G2 at the side wall is set on the spring line of the tunnel 50. ing. Thus, by setting the measurement point G2 of the side wall portion on the spring line, the vertical displacement of the upper half of the tunnel cross section is measured by the optical rangefinder 1, and the vertical displacement of the lower half of the tunnel cross section is measured by the subsidence meter 10, respectively. It is set to measure.

また、本実施の形態では、トンネル50内の作業領域と交錯することのないよう、光波測距儀4の設置位置を鋼製支保工53としているが、これに限定されるものではなく、いずれの位置に設置してもよい。   Moreover, in this Embodiment, although the installation position of the light wave rangefinder 4 is made into the steel support work 53 so that it may not intersect with the work area in the tunnel 50, it is not limited to this, You may install in the position.

次に、図1で示すように、インバート部54の上面に測定点G3を設定するとともに沈下計本体12を設置し、側壁部に設定された測定点G2に基準水槽11を設置し、沈下計10を据え付ける。   Next, as shown in FIG. 1, the measurement point G3 is set on the upper surface of the invert part 54, the sinkage meter body 12 is set, the reference water tank 11 is set at the measurement point G2 set on the side wall part, and the sinkage gauge is set. 10 is installed.

沈下計10の据え付け方法としては、図5(a)で示すように、インバート部54の上面に設定された測定点G3と側壁部の測定点G2近傍を連結するように、沈下計10を保護するための埋設保護管58を配置する。そして、図5(b)で示すように、埋設保護管58を埋戻しトンネル50内に作業床56を確保する。この後、沈下計10を沈下計本体12から埋設保護管58内に挿入して、図5(c)で示すように沈下計本体12をインバート部54の上の測定点G3に設置する。   As shown in FIG. 5 (a), the squat gauge 10 is protected by connecting the measurement point G3 set on the upper surface of the invert part 54 and the vicinity of the measurement point G2 on the side wall part. An embedded protective tube 58 is arranged for this purpose. Then, as shown in FIG. 5B, the work floor 56 is secured in the backfill tunnel 50 with the buried protection pipe 58. Thereafter, the squat meter 10 is inserted into the buried protective tube 58 from the squat meter main body 12, and the squat meter main body 12 is installed at the measurement point G3 on the invert portion 54 as shown in FIG.

一方、埋設保護管58より露出させた基準水槽11は、側壁部に設けられた測定点G2に設置するが、本実施の形態では、基準水槽11の高さ範囲内に測定点G2が位置するように基準水槽11を設置する。そして、基準水槽4の頂部に設けた給排水口11を利用して給排水を行い、水面高さが測定点G2と合致するように調整する。こうして、基準水槽4内に基準水面が設定される。   On the other hand, the reference water tank 11 exposed from the buried protective pipe 58 is installed at the measurement point G2 provided on the side wall, but in this embodiment, the measurement point G2 is located within the height range of the reference water tank 11. In this way, the reference water tank 11 is installed. And the water supply / drainage is performed using the water supply / drainage port 11 provided in the top part of the reference | standard water tank 4, and it adjusts so that a water surface height may correspond with the measurement point G2. Thus, the reference water surface is set in the reference water tank 4.

このように沈下計10を配置すると、施工中の現場であっても、トンネル50内に作業エリアを確保しつつ沈下計10を設置し、測定点G2に対する測定点G3の鉛直変位を容易に計測することができるものである。   When the squat gauge 10 is arranged in this way, even if it is a construction site, the squat gauge 10 is installed while securing a work area in the tunnel 50, and the vertical displacement of the measuring point G3 with respect to the measuring point G2 is easily measured. Is something that can be done.

なお、基準水槽11と反射ターゲット2は別体として測定点G2に設置してもよいが、本実施の形態では、図3で示すように、水面高さが測定点G2と合致するように調整した基準水槽4に反射ターゲット2を取り付け、反射ターゲット2と基準水槽11とを一体にして測定点G2に設置している。   The reference water tank 11 and the reflection target 2 may be installed separately at the measurement point G2, but in the present embodiment, as shown in FIG. 3, the water surface height is adjusted so as to match the measurement point G2. The reflection target 2 is attached to the reference water tank 4 and the reflection target 2 and the reference water tank 11 are integrally installed at the measurement point G2.

この後、光波測距儀4にて、反射ターゲット1、2各々の初期座標を検出した後、測定断面55における内空変位の計測を開始する。   Thereafter, after the initial coordinates of each of the reflection targets 1 and 2 are detected by the light wave range finder 4, measurement of the inner space displacement in the measurement section 55 is started.

反射ターゲット1、2各々の初期座標を検出するにあたり、図1で示すように、あらかじめ坑口51近傍の位置座標が既知である不動位置を基準点G0として設定し反射ターゲット3を設置しておく。そして、光波測距儀4にて反射ターゲット3を視準することにより、光波測距儀4の位置座標を割り出し、その後、光波測距儀4にて反射ターゲット1、2各々の初期座標を測定する。   In detecting the initial coordinates of each of the reflection targets 1 and 2, as shown in FIG. 1, an immovable position in which the position coordinates in the vicinity of the wellhead 51 are known is set in advance as the reference point G 0 and the reflection target 3 is installed. Then, by collimating the reflection target 3 with the light wave range finder 4, the position coordinates of the light wave range finder 4 are determined, and then the initial coordinates of the reflection targets 1 and 2 are measured with the light wave range finder 4. To do.

計測を開始してから所定日数の経過後に、光波測距儀4にて反射ターゲット1.2各々の位置座標を検出し、側壁部に設定した測定点G2’に対する天端に設定した測定点G1’の鉛直方向変位を測定する。   After the elapse of a predetermined number of days from the start of the measurement, the position coordinates of each of the reflection targets 1.2 are detected by the light wave rangefinder 4, and the measurement point G1 set at the top with respect to the measurement point G2 ′ set at the side wall portion. Measure the vertical displacement of '.

具体的には、図4(a)で示すように、反射ターゲット1の初期座標と反射ターゲット2の初期座標から、測定点G2に対する測定点G1の鉛直高さLを測定する。次に、所定日数の経過後に測定した反射ターゲット1の位置座標と反射ターゲット2の位置座標から、図4(b)で示すように、測定点G2’に対する測定点G1’の鉛直高さL’を測定する。   Specifically, as shown in FIG. 4A, the vertical height L of the measurement point G1 with respect to the measurement point G2 is measured from the initial coordinates of the reflection target 1 and the initial coordinates of the reflection target 2. Next, as shown in FIG. 4B, the vertical height L ′ of the measurement point G1 ′ with respect to the measurement point G2 ′ is calculated from the position coordinates of the reflection target 1 and the position coordinates of the reflection target 2 measured after a predetermined number of days. Measure.

そして、初期状態の測定点G2に対する測定点G1の鉛直高さLから、所定日数の経過後の測定点G2’に対する測定点G1’の鉛直高さL’を差し引くことで、側壁部に設置した測定点G2に対する天端に設置した測定点G1の鉛直方向変位を上部鉛直方向変位量として算出する。   And it installed in the side wall part by subtracting vertical height L 'of measurement point G1' with respect to measurement point G2 'after progress of predetermined days from vertical height L of measurement point G1 with respect to measurement point G2 of an initial state. The vertical displacement of the measurement point G1 installed at the top of the measurement point G2 is calculated as the upper vertical displacement amount.

一方で、光波測距儀1にて反射ターゲット1.2各々の位置座標を検出するのと同じタイミングで、沈下計10を用いて、側壁部に設置した測定点G2に対するインバート部54に設けた測定点G3の鉛直方向変位を測定する。   On the other hand, at the same timing that the position coordinates of each of the reflection targets 1.2 are detected by the optical wave rangefinder 1, the subsidometer 10 is used to provide the invert portion 54 for the measurement point G2 installed on the side wall portion. The vertical displacement of the measurement point G3 is measured.

先にも述べたように、沈下計10の基準水槽11内で設定された基準水面は、側壁部に設定された測定点G2と高さ位置が合致している。また、沈下計本体12は、インバート部54に設けた測定点G3に設置されている。   As described above, the reference water surface set in the reference water tank 11 of the subsidence meter 10 matches the height of the measurement point G2 set on the side wall. Further, the settlement meter main body 12 is installed at a measurement point G3 provided in the invert unit 54.

したがって、測定点G3が隆起して鉛直変位が生じた場合には、沈下計本体12の液室121内における水圧の変化を水圧検知部123が検知し、データロガー16にて基準水面に対する沈下計本体11の鉛直方向変位が記録される。この鉛直方向変位が、側壁部に設置した測定点G2に対するインバート部54に設けた測定点G3の下部鉛直方向変位量となる。   Therefore, when the measurement point G3 rises and a vertical displacement occurs, the water pressure detection unit 123 detects a change in the water pressure in the liquid chamber 121 of the subsidence meter body 12, and the data logger 16 sets the subsidence meter with respect to the reference water surface. The vertical displacement of the main body 11 is recorded. This vertical displacement is the lower vertical displacement of the measurement point G3 provided in the invert portion 54 with respect to the measurement point G2 installed on the side wall.

このようにして算定された、測定点G2に対する測定点G1の上部鉛直方向変位量と測定点G2に対する測定点G3の下部鉛直方向変位量は、足し合わせることにより測定断面55における測定点G1および測定点G3間の鉛直方向の相対変位、つまりトンネル壁面間の内空変位となる。こうして、測定断面55における鉛直方向の変位形状を、日常の施工管理のために実施される計測項目(計測A)における内空変位の測定と同様の指標で表すことができることとなる。   The upper vertical displacement amount of the measurement point G1 with respect to the measurement point G2 and the lower vertical displacement amount of the measurement point G3 with respect to the measurement point G2 calculated in this way are added together to measure the measurement point G1 and the measurement in the measurement cross section 55. This is the vertical relative displacement between the points G3, that is, the internal displacement between the tunnel wall surfaces. Thus, the vertical displacement shape in the measurement section 55 can be represented by the same index as the measurement of the internal displacement in the measurement item (measurement A) performed for daily construction management.

以降、測定断面55における上部鉛直方向変位量および下部鉛直方向変位量が収束するまで、光波測距儀4および沈下計10による計測を所定日数ごとに繰り返すことにより、トンネル50内の測定断面55における鉛直方向の内空変位を経時的に計測することが可能となる。   Thereafter, until the upper vertical displacement amount and the lower vertical displacement amount in the measurement cross section 55 converge, the measurement by the light wave range finder 4 and the subsidometer 10 is repeated every predetermined number of days in the measurement cross section 55 in the tunnel 50. It becomes possible to measure the internal air displacement in the vertical direction over time.

先にも述べたように、光波測距儀4および沈下計10は、端末装置5に接続されている。よって、測定点G2に対する測定点G1の上部鉛直方向変位量、測定点G2に対す測定点G3の下部鉛直方向変位量、及び上部鉛直方向変位量と下部鉛直方向変位量から得られる測定断面55における鉛直方向の内空変位は、端末装置5に格納される。   As described above, the light wave range finder 4 and the squat meter 10 are connected to the terminal device 5. Accordingly, in the measurement section 55 obtained from the upper vertical displacement of the measurement point G1 relative to the measurement point G2, the lower vertical displacement of the measurement point G3 relative to the measurement point G2, and the upper vertical displacement and the lower vertical displacement. The inner space displacement in the vertical direction is stored in the terminal device 5.

上記のとおり本発明によれば、トンネル50内の任意に選定した測定断面55における鉛直方向の変形状態を、光波測距儀4と沈下計10の両者を併用して測定することにより、トンネル50の壁面間の相対変位、つまり内空変位として表すことが可能となる。   As described above, according to the present invention, the vertical deformation state of the arbitrarily selected measurement section 55 in the tunnel 50 is measured by using both the light wave rangefinder 4 and the settlement meter 10 in combination. It can be expressed as a relative displacement between the wall surfaces, that is, an internal displacement.

本発明の鉛直変位計測装置1は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The vertical displacement measuring device 1 of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、本実施の形態では、鉛直方向の内空変位を単独で算出したが、これに限定されるものではなく、日常の施工管理のために実施される計測項目(計測A)の内空変位測定と同時に測定することが可能である。この場合には、天端に設定した測定点G1および側壁部に設定した測定点G2を、計測Aの内空変位測定を行う際に設定する測定点と共有させればよい。   For example, in the present embodiment, the vertical displacement in the vertical direction is calculated independently, but is not limited to this, and the displacement in the measurement item (measurement A) performed for daily construction management is not limited to this. It is possible to measure simultaneously with the measurement. In this case, the measurement point G1 set on the top end and the measurement point G2 set on the side wall may be shared with the measurement point set when measuring the internal displacement of measurement A.

また、本実施の形態では、トンネル50の断面を仮閉合した状態において測定断面55における鉛直方向の内空変位を測定する方法を説明したが、必ずしもこれに限定するものではない。例えば、インバート部54上に路盤57が構築されたトンネル50について、鉛直方向の内空変位を測定することも可能である。   Further, in the present embodiment, the method of measuring the internal displacement in the vertical direction in the measurement cross section 55 in a state where the cross section of the tunnel 50 is temporarily closed has been described, but the present invention is not necessarily limited thereto. For example, it is possible to measure the vertical displacement of the tunnel 50 in which the roadbed 57 is constructed on the invert part 54.

この場合には、図6(a)で示すように、インバート部54上に敷設されている路盤57を、インバート部54上に設定した測定点G3から側壁部に至る長さだけ溝状に掘削し、沈下計10を保護するための埋設保護管58を配置する。そして、図5(b)で示すように、埋設保護管58の埋戻しを行う。この後、図5(c)で示すように沈下計10を沈下計本体12側から埋設保護管58内に挿入して、沈下計本体12をインバート部54の上の測定点G3に設置するとともに、基準水槽11を側壁部の測定点G2に設置すればよい。   In this case, as shown in FIG. 6A, the roadbed 57 laid on the invert part 54 is excavated in a groove shape by a length from the measurement point G3 set on the invert part 54 to the side wall part. Then, a buried protective pipe 58 for protecting the settlement meter 10 is disposed. Then, as shown in FIG. 5B, the buried protective tube 58 is backfilled. Thereafter, as shown in FIG. 5C, the squat meter 10 is inserted into the buried protective tube 58 from the squat meter body 12 side, and the squat gauge body 12 is installed at the measurement point G3 on the invert part 54. What is necessary is just to install the reference | standard tank 11 in the measurement point G2 of a side wall part.

このようにして、既設トンネルの定期点検時に測定断面55における鉛直方向の内空変位計測方法を採用すると、既設トンネルの変状対策工の選定に係る状況把握に算定結果を利用することも可能となる。   In this way, when the vertical internal displacement measurement method in the measurement cross section 55 is adopted during the periodic inspection of the existing tunnel, the calculation result can be used to grasp the situation related to the selection of the deformation countermeasure work for the existing tunnel. Become.

1 光波測距儀
2 反射ターゲット
3 反射ターゲット
4 反射ターゲット
5 端末装置
10 沈下計
11 基準水槽
111 給排水口
12 沈下計本体
121 液室
122 空気室
123 水圧検知部
13 連通水管
14 大気圧調整管
141 開閉バルブ
15 測定ケーブル
16 データロガー
17 収納管
171 沈下計本体収納ケース
172 基準水槽収納ケース
50 トンネル
51 坑口
52 切羽
53 鋼製支保工
54 インバート部
55 測定断面
56 作業床
57 路盤
58 埋設保護管
DESCRIPTION OF SYMBOLS 1 Light wave rangefinder 2 Reflective target 3 Reflective target 4 Reflective target 5 Terminal device 10 Settlement meter 11 Reference water tank 111 Water supply / drain port 12 Settlement meter main body 121 Liquid chamber 122 Air chamber 123 Water pressure detection part 13 Communication water pipe 14 Atmospheric pressure adjustment pipe 141 Valve 15 Measurement cable 16 Data logger 17 Storage pipe 171 Settlement gauge main body storage case 172 Reference water tank storage case 50 Tunnel 51 Wellhead 52 Face 53 Steel support 54 Invert part 55 Measurement section 56 Work floor 57 Roadbed 58 Buried protective pipe

Claims (2)

トンネル内の任意に選定した測定断面において、互いに対抗する一対の側壁部のうちの一方と天端にそれぞれ測定点を設定するとともに、該天端に設定された測定点の鉛直下方に位置するインバート部上にも測定点を設定した後、
前記側壁部に設定した測定点に対する天端に設定した測定点の鉛直方向変位を光波測距儀にて計測し、前記測定断面の上部鉛直方向変位量を算定するとともに、
前記側壁部に設定した測定点に対する、前記インバート部上に設定した測定点の鉛直方向変位を沈下計にて計測し、前記測定断面の下部鉛直方向変位量を算定して、
前記上部鉛直方向変位量及び前記下部鉛直方向変位量から、前記測定断面における鉛直方向の内空変位を計測することを特徴とする内空変位計測方法。
An invert located vertically below the measurement point set at one of the pair of side walls that oppose each other and the top end in a measurement cross section arbitrarily selected in the tunnel. After setting the measurement point on the department,
While measuring the vertical displacement of the measurement point set at the top of the measurement point set on the side wall portion with a light wave range finder, calculating the upper vertical displacement of the measurement cross section,
Measure the vertical displacement of the measurement point set on the invert portion with respect to the measurement point set on the side wall portion with a subsidometer, calculate the lower vertical displacement amount of the measurement cross section,
An internal air displacement measuring method, comprising: measuring an internal air displacement in a vertical direction in the measurement cross section from the upper vertical displacement amount and the lower vertical displacement amount.
請求項1に記載の内空変位計測方法において、
前記沈下計が、密閉した単一水槽よりなる基準水槽と、
水圧検知部にて区画された空気室と水が充填される液室とを備える沈下計本体と、
一端が前記基準水槽の底部に、他端が前記沈下計本体の液室に連結されて、該液室と前記基準水槽とを連通するとともに、水が充填される連通水管と、
一端が前記基準水槽の頂部に、他端が前記沈下計本体の空気室に連結されて、該空気室と前記基準水槽とを連通させる大気圧調整管とを備え、
前記大気圧調整管に、開閉バルブが設置されることを特徴とする内空変位計測方法。
The internal displacement measurement method according to claim 1,
A reference water tank comprising a sealed single water tank,
A subsidence meter main body comprising an air chamber partitioned by a water pressure detection unit and a liquid chamber filled with water;
One end is connected to the bottom of the reference water tank, the other end is connected to the liquid chamber of the settlement meter main body, and the communication water pipe is connected to the liquid chamber and the reference water tank and filled with water,
One end is connected to the top of the reference water tank, and the other end is connected to the air chamber of the subsidence meter main body, and includes an atmospheric pressure adjustment pipe that communicates the air chamber and the reference water tank.
An open / close valve is installed in the atmospheric pressure adjusting pipe.
JP2015095809A 2015-05-08 2015-05-08 Internal displacement measurement method Active JP6507023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095809A JP6507023B2 (en) 2015-05-08 2015-05-08 Internal displacement measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095809A JP6507023B2 (en) 2015-05-08 2015-05-08 Internal displacement measurement method

Publications (2)

Publication Number Publication Date
JP2016211960A true JP2016211960A (en) 2016-12-15
JP6507023B2 JP6507023B2 (en) 2019-04-24

Family

ID=57549761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095809A Active JP6507023B2 (en) 2015-05-08 2015-05-08 Internal displacement measurement method

Country Status (1)

Country Link
JP (1) JP6507023B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840119A (en) * 2017-02-17 2017-06-13 中铁四局集团有限公司 A kind of tunnel safety monitoring system
CN109458984A (en) * 2018-12-12 2019-03-12 中交第二航务工程局有限公司 Tunnel deformation real-time monitoring device and method
CN110345906A (en) * 2018-04-07 2019-10-18 张亚标 The real-time level measurement method and measuring device of tunnel arch top settlement
CN110566279A (en) * 2019-08-30 2019-12-13 中国电建集团贵阳勘测设计研究院有限公司 Excavation stability monitoring system of high dam unloading system tunnel
JP2021080725A (en) * 2019-11-19 2021-05-27 岐阜工業株式会社 Gradient detection device for tunnel lining form

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599670A (en) * 1991-10-04 1993-04-23 Kajima Corp Internal space displacement measuring method for tunnel and measuring reflecting plate
JPH0953933A (en) * 1995-08-10 1997-02-25 Oyo Keisoku Kogyo Kk Communication tube type subsidence meter
JP2002090187A (en) * 2000-09-19 2002-03-27 Kajima Corp Settlement measuring system and settlement measuring method
JP2006038681A (en) * 2004-07-28 2006-02-09 Taisei Corp Displacement measuring device
JP2008185498A (en) * 2007-01-31 2008-08-14 Tobishima Corp Underground displacement measurement device
CN103983246A (en) * 2014-05-29 2014-08-13 中铁二十局集团第二工程有限公司 Method and device for measuring full-section deformation of tunnel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599670A (en) * 1991-10-04 1993-04-23 Kajima Corp Internal space displacement measuring method for tunnel and measuring reflecting plate
JPH0953933A (en) * 1995-08-10 1997-02-25 Oyo Keisoku Kogyo Kk Communication tube type subsidence meter
JP2002090187A (en) * 2000-09-19 2002-03-27 Kajima Corp Settlement measuring system and settlement measuring method
JP2006038681A (en) * 2004-07-28 2006-02-09 Taisei Corp Displacement measuring device
JP2008185498A (en) * 2007-01-31 2008-08-14 Tobishima Corp Underground displacement measurement device
CN103983246A (en) * 2014-05-29 2014-08-13 中铁二十局集团第二工程有限公司 Method and device for measuring full-section deformation of tunnel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840119A (en) * 2017-02-17 2017-06-13 中铁四局集团有限公司 A kind of tunnel safety monitoring system
CN110345906A (en) * 2018-04-07 2019-10-18 张亚标 The real-time level measurement method and measuring device of tunnel arch top settlement
CN109458984A (en) * 2018-12-12 2019-03-12 中交第二航务工程局有限公司 Tunnel deformation real-time monitoring device and method
CN109458984B (en) * 2018-12-12 2023-09-12 中交第二航务工程局有限公司 Tunnel deformation real-time monitoring device and method
CN110566279A (en) * 2019-08-30 2019-12-13 中国电建集团贵阳勘测设计研究院有限公司 Excavation stability monitoring system of high dam unloading system tunnel
CN110566279B (en) * 2019-08-30 2024-05-10 中国电建集团贵阳勘测设计研究院有限公司 Excavation stability monitoring system of high dam emptying system tunnel
JP2021080725A (en) * 2019-11-19 2021-05-27 岐阜工業株式会社 Gradient detection device for tunnel lining form

Also Published As

Publication number Publication date
JP6507023B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6507023B2 (en) Internal displacement measurement method
KR101209286B1 (en) Measurement system for the gps in the surface of the earth by the datum point
US8061050B2 (en) Hydrostatic sensor device and method for measuring below-ground elevation changes in grade
IL205092A0 (en) Method and apparatus for forming a calibration chart for underground fuel tanks
CN106092046B (en) A kind of simply connected confining pressure formula settlement measurement system and its measurement method
CN104674855A (en) Foundation pit displacement monitoring method based on difference technology
KR100931061B1 (en) Soft ground settlement measuring device and settlement method according to it
US20220235532A1 (en) Methods and apparatus for foundation monitoring
US8230609B1 (en) Survey pole positioning system
CN104462748B (en) Liquefaction Ground bridge pile foundation load-displacement relation that argillic horizon is covered in seismic process estimates new method
JP2000130068A (en) Natural ground settlement measuring device and method therefor
JP2011185017A (en) Noncontact-type earth-retaining wall displacement measuring method
JP6596230B2 (en) Vertical displacement measuring device
KR100798473B1 (en) Gps system
CN107289905A (en) A kind of surface subsidence observation device
KR20160141574A (en) A route detection equipment for underground utilities and server for providing location information
US20220316873A1 (en) A settlement monitoring system and method
CN103512550A (en) Deepwater embankment foundation settlement viewer
JP2020003287A (en) Measuring device and measuring method
CN106436780B (en) A method of utilizing gravity non-great-leap-forward Underground space
RU2484200C1 (en) Device for detection of deformations of soil massif and method of its operation
US4716758A (en) Method of predicting and monitoring the imperviousness of an underground cavern
RU2467287C2 (en) Method of monitoring hazardous geodynamic processes
JPH04264228A (en) Underground subsidence measuring apparatus
CN204313816U (en) Basic point implanted reservoir dam displacement monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6507023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250