JP2016211772A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016211772A
JP2016211772A JP2015094687A JP2015094687A JP2016211772A JP 2016211772 A JP2016211772 A JP 2016211772A JP 2015094687 A JP2015094687 A JP 2015094687A JP 2015094687 A JP2015094687 A JP 2015094687A JP 2016211772 A JP2016211772 A JP 2016211772A
Authority
JP
Japan
Prior art keywords
compressor
pressure
refrigerant
suction
suction pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015094687A
Other languages
Japanese (ja)
Other versions
JP6584127B2 (en
Inventor
祐樹 内野
Yuki Uchino
祐樹 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015094687A priority Critical patent/JP6584127B2/en
Publication of JP2016211772A publication Critical patent/JP2016211772A/en
Application granted granted Critical
Publication of JP6584127B2 publication Critical patent/JP6584127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of continuously operating for cooling at high outside-air temperature by controlling suction pressure of a compressor.SOLUTION: An air conditioner 1 comprises: an outdoor unit 10 having a compressor 11 which discharges a refrigerant, a low-pressure sensor 26 which is provided on a suction side of the compressor 11 and detects suction pressure of the refrigerant, and a pressure reduction device 28 which is provided on the suction side of the compressor 11 and reduces pressure of the refrigerant; an indoor unit 30 connected to the outdoor unit 10 through refrigerant piping; and a control part 2 which controls a freezing cycle formed by the outdoor unit 10 and indoor unit 30. For the compressor 11, an upper-limit value associated with suction pressure is set. The control part 2 allows the pressure reduction device 28 when the suction pressure detected by the low-pressure sensor 26 exceeds the upper-limit value so as to reduce the suction pressure.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

従来から、空気調和機において、室外機の圧縮機には、故障を回避しながら運転するために使用可能な圧力範囲(冷媒の圧力範囲。以下同様)が設定されている。そして、空気調和機は、圧縮機の吸入圧力と吐出圧力が上述の圧力範囲から逸脱しないように運転制御を行っている。   2. Description of the Related Art Conventionally, in an air conditioner, a pressure range (a refrigerant pressure range; the same applies hereinafter) that can be used for operation while avoiding a failure is set for a compressor of an outdoor unit. The air conditioner performs operation control so that the suction pressure and discharge pressure of the compressor do not deviate from the pressure range described above.

例えば、外気温度が高温(例えば35℃以上)の冷房運転では、圧縮機の吐出圧力が高くなりやすく、設定した圧力範囲を超えそうな場合は、圧縮機の運転周波数を減少させたり、吐出ガス冷媒をバイパス用配管によりバイパスさせたりすることで、吐出圧力が圧力範囲から超えないように保護制御を実施している。   For example, in cooling operation where the outside air temperature is high (for example, 35 ° C. or higher), the discharge pressure of the compressor tends to be high, and if it is likely to exceed the set pressure range, the operation frequency of the compressor may be reduced or the discharge gas Protection control is performed so that the discharge pressure does not exceed the pressure range by bypassing the refrigerant with a bypass pipe.

しかし、圧縮機の吐出圧力の上昇を抑制する保護制御では、吸入圧力が上昇することになる。さらに、外気温度が非常に高い場合(例えば44℃以上)は、吸入圧力の上昇が大きくなり、結果として吸入圧力が圧力範囲を超えてしまい、機器の保護のために運転を一旦停止させなければならない。このような場合、空気調和機の連続運転が不可能になる。   However, in the protection control that suppresses the increase in the discharge pressure of the compressor, the suction pressure increases. Furthermore, when the outside air temperature is very high (for example, 44 ° C. or higher), the suction pressure increases greatly, and as a result, the suction pressure exceeds the pressure range, and the operation must be temporarily stopped to protect the equipment. Don't be. In such a case, continuous operation of the air conditioner becomes impossible.

また、高外気温度において連続運転を可能にするために、室外熱交換器の表面積を大きくして伝熱性能を向上させたり、風量を大きくしたりすることによって、凝縮能力を高めて、吐出圧力を下げる方法がある。これにより、保護制御による圧縮機の運転周波数の低下幅が小さくなり、吸入圧力の上昇も抑制され、吐出圧力・吸入圧力とも圧力範囲の中に収めることが可能である。しかし、この方法では、材料費や製品サイズが大幅に上がってしまう。   In addition, in order to enable continuous operation at high outside air temperature, the condensation capacity is increased by increasing the surface area of the outdoor heat exchanger to improve heat transfer performance or increasing the air volume, thereby increasing the discharge pressure. There is a way to lower. As a result, the range of decrease in the operating frequency of the compressor due to the protection control is reduced, the increase in the suction pressure is suppressed, and both the discharge pressure and the suction pressure can be within the pressure range. However, this method significantly increases material costs and product size.

また、室内ユニットの風量を落としたり強制サーモオフしたりすることで蒸発能力を落とす方法によれば、吸入圧力の上昇を抑えることが可能である。しかし、この方法では、空気調和機の連続運転ができないため室温を適切に下げることができず、室内の快適性を落としてしまう。   Further, according to the method of reducing the evaporation capacity by reducing the air volume of the indoor unit or forcibly thermo-off, it is possible to suppress the increase of the suction pressure. However, in this method, since the air conditioner cannot be operated continuously, the room temperature cannot be lowered appropriately, and indoor comfort is lowered.

そこで、本発明は、空気調和機について、圧縮機の吸入圧力を制御することで、高外気温度下の冷房運転時の連続運転を可能にすることを課題とする。   Therefore, an object of the present invention is to enable a continuous operation during a cooling operation under a high outside air temperature by controlling the suction pressure of the compressor of the air conditioner.

上記課題を解決すべく、本発明の空気調和機は、冷媒を吐出する圧縮機、前記圧縮機の吸入側に設けられ前記冷媒の吸入圧力を検知する圧力センサ、および、前記圧縮機の吸入側に設けられ前記冷媒を減圧させる減圧装置、を有する室外ユニットと、冷媒配管を介して前記室外ユニットに接続される室内ユニットと、前記室外ユニットおよび前記室内ユニットにより形成される冷凍サイクルを制御する制御部と、を備え、前記圧縮機には、前記吸入圧力に関する上限値が設定され、前記制御部は、冷房運転時に、前記圧力センサにより検知された前記吸入圧力が前記上限値を超えた場合、前記減圧装置を作動させ、前記吸入圧力を減少させることを特徴とする。   In order to solve the above-described problems, an air conditioner of the present invention includes a compressor that discharges refrigerant, a pressure sensor that is provided on the suction side of the compressor and detects the suction pressure of the refrigerant, and a suction side of the compressor An outdoor unit having a pressure reducing device for reducing the pressure of the refrigerant, an indoor unit connected to the outdoor unit via a refrigerant pipe, and a control for controlling a refrigeration cycle formed by the outdoor unit and the indoor unit An upper limit value for the suction pressure is set in the compressor, and the control unit, when the cooling pressure is detected, the suction pressure detected by the pressure sensor exceeds the upper limit value, The decompression device is operated to reduce the suction pressure.

本発明によれば、空気調和機について、圧縮機の吸入圧力を適切に制御することで、高外気温度下の冷房運転時の連続運転を可能にする。   ADVANTAGE OF THE INVENTION According to this invention, the continuous operation | movement at the time of the air_conditionaing | cooling operation under high external air temperature is enabled by controlling appropriately the suction pressure of a compressor about an air conditioner.

本発明の実施形態に係るヒートポンプ式の空気調和機の冷凍サイクル系統図である。It is a refrigerating cycle system diagram of a heat pump type air conditioner concerning an embodiment of the present invention. 冷房運転時における圧縮機の吐出圧力および吸入圧力に基づく、空気調和機の運転制御処理のフローチャートである。It is a flowchart of the operation control processing of an air conditioner based on the discharge pressure and suction pressure of the compressor during the cooling operation.

以下、本発明の実施形態について、図面に基づいて説明する。図1に示すように、空気調和機1は、制御部2と、室外ユニット10と、室内ユニット30と、リモートコントローラ40とを備えている。室外ユニット10と室内ユニット30とは、室外ガス配管3a、室内ガス配管3b、および、室外液配管4a、室内液配管4bにより互いに接続される。なお、本実施形態では、室外ユニット10と室内ユニット30とを1対1で接続しているが、室外ユニット10の容量制限以内であれば、室内ユニット30の台数に制限はない。また、室外ユニット10が複数であっても良い。また、アルファベットの添え字(a、b)に関しては、基本的には個々の構成であるという意味で用いているが、各構成を代表的に取り扱う場合においては、省略することがある(例えば、「3a」、「3b」を総称(代表)して「3」と記載する)。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the air conditioner 1 includes a control unit 2, an outdoor unit 10, an indoor unit 30, and a remote controller 40. The outdoor unit 10 and the indoor unit 30 are connected to each other by an outdoor gas pipe 3a, an indoor gas pipe 3b, an outdoor liquid pipe 4a, and an indoor liquid pipe 4b. In the present embodiment, the outdoor units 10 and the indoor units 30 are connected on a one-to-one basis, but the number of indoor units 30 is not limited as long as it is within the capacity limit of the outdoor units 10. Moreover, the outdoor unit 10 may be plural. In addition, the alphabetic subscripts (a, b) are basically used to mean individual configurations, but may be omitted when representatively handling each configuration (for example, “3a” and “3b” are generically (represented) and described as “3”)

室外ユニット10は、圧縮機11と、オイルセパレータ12と、逆止弁13と、四方弁14と、室外熱交換器15と、室外ファン16と、室外膨張弁17と、サブクールパイプ18と、アキュムレータ19と、第1ストレーナ20と、第1キャピラリ21と、第2ストレーナ22と、電磁弁23と、第2キャピラリ24とを有し、室外ファン16以外のそれぞれが冷媒配管により接続されている。   The outdoor unit 10 includes a compressor 11, an oil separator 12, a check valve 13, a four-way valve 14, an outdoor heat exchanger 15, an outdoor fan 16, an outdoor expansion valve 17, a subcool pipe 18, and an accumulator. 19, a first strainer 20, a first capillary 21, a second strainer 22, an electromagnetic valve 23, and a second capillary 24, and each other than the outdoor fan 16 is connected by a refrigerant pipe.

圧縮機11は、低温低圧ガスの冷媒を、高温高圧ガスに圧縮し、吐出する。オイルセパレータ12は、高圧ガス状の冷媒に含まれる余剰冷凍機油を回収する。逆止弁13は、冷媒流の逆流を防止する。四方弁14を切り替えることで、冷媒の流れが変化し、冷房運転と暖房運転が切り替わる。室外熱交換器15は、屋外の空気と冷媒との間で熱交換を行う。室外ファン16は、室外熱交換器15へ屋外の空気を送る。室外膨張弁17は、冷媒を減圧して低温にする。サブクールパイプ18は、冷媒を冷却する。アキュムレータ19は、液冷媒とガス冷媒を分離させる。第1ストレーナ20、第2ストレーナ22は、流体(冷媒、油)を濾過し不純物を取り除く。第1キャピラリ21、第2キャピラリ24は、冷媒を減圧する。電磁弁23は、冷媒の流れを制御する。   The compressor 11 compresses the low-temperature low-pressure gas refrigerant into a high-temperature high-pressure gas and discharges it. The oil separator 12 collects surplus refrigeration oil contained in the high-pressure gaseous refrigerant. The check valve 13 prevents a reverse flow of the refrigerant flow. By switching the four-way valve 14, the flow of the refrigerant changes, and the cooling operation and the heating operation are switched. The outdoor heat exchanger 15 performs heat exchange between outdoor air and the refrigerant. The outdoor fan 16 sends outdoor air to the outdoor heat exchanger 15. The outdoor expansion valve 17 depressurizes the refrigerant to a low temperature. The subcool pipe 18 cools the refrigerant. The accumulator 19 separates the liquid refrigerant and the gas refrigerant. The first strainer 20 and the second strainer 22 filter fluid (refrigerant, oil) to remove impurities. The first capillary 21 and the second capillary 24 depressurize the refrigerant. The electromagnetic valve 23 controls the flow of the refrigerant.

室外ユニット10は、さらに、高圧センサ25と、低圧センサ26と、外気サーミスタ27と、減圧装置28とを備える。   The outdoor unit 10 further includes a high pressure sensor 25, a low pressure sensor 26, an outside air thermistor 27, and a pressure reducing device 28.

高圧センサ25は、圧縮機11の吐出側に設けられ、冷媒の吐出圧力を検知する。低圧センサ26は、圧縮機11の吸入側に設けられ、冷媒の吸入圧力を検知する。外気サーミスタ27は、外気温度を検知する。   The high pressure sensor 25 is provided on the discharge side of the compressor 11 and detects the discharge pressure of the refrigerant. The low pressure sensor 26 is provided on the suction side of the compressor 11 and detects the suction pressure of the refrigerant. The outside air thermistor 27 detects the outside air temperature.

減圧装置28は、圧縮機11の吸入側に設けられ、冷媒を減圧するための減圧弁であり、室外ユニット10の筐体内部に備えられている。   The decompression device 28 is provided on the suction side of the compressor 11 and is a decompression valve for decompressing the refrigerant, and is provided inside the casing of the outdoor unit 10.

室内ユニット30は、建物内の部屋50に設置されている。室内ユニット30は、室内熱交換器31と、室内ファン32と、室内膨張弁33と、内気サーミスタ34とを備える。   The indoor unit 30 is installed in a room 50 in the building. The indoor unit 30 includes an indoor heat exchanger 31, an indoor fan 32, an indoor expansion valve 33, and an indoor air thermistor 34.

室内熱交換器31は、冷媒と部屋50の内気との間で熱交換を行う。室内ファン32は、室内熱交換器31へ室内の空気(内気)を送り、熱交換後の空気を室内に送る。室内膨張弁33は、冷媒を減圧する。内気サーミスタ34は、室内ユニット30に吸い込まれる空気の温度を、室温として検知する。   The indoor heat exchanger 31 performs heat exchange between the refrigerant and the room air. The indoor fan 32 sends indoor air (inside air) to the indoor heat exchanger 31, and sends the air after heat exchange into the room. The indoor expansion valve 33 depressurizes the refrigerant. The inside air thermistor 34 detects the temperature of the air sucked into the indoor unit 30 as room temperature.

リモートコントローラ40は、室内ユニット30に接続され、ユーザによる操作に基づいて、室内ユニット30に対し冷房・暖房運転の切換えや温度、風量設定などの運転指令を与える。   The remote controller 40 is connected to the indoor unit 30 and gives an operation command such as switching between cooling / heating operation, temperature, and air volume setting to the indoor unit 30 based on an operation by a user.

制御部2は、リモートコントローラ40における設定と、各センサ等により検知された値とに基づき、空気調和機1の運転制御を行う(詳細は後記)。なお、制御部2は、室外ユニット10および室内ユニット30のいずれか一方に設置しても良いし、両者に設置しても良い。   The control unit 2 controls the operation of the air conditioner 1 based on the settings in the remote controller 40 and the values detected by each sensor or the like (details will be described later). In addition, the control part 2 may be installed in any one of the outdoor unit 10 and the indoor unit 30, and may be installed in both.

次に、空気調和機1の冷凍サイクルの動作について説明する。
空気調和機1における冷房運転について説明する。図1における矢印は、空気調和機1の冷房運転における冷媒の流れを示している。冷房運転において、四方弁14は、実線で示すように、圧縮機11の吐出側と室外熱交換器15とを連通させ、圧縮機11の吸入側と室外ガス配管3aとを連通させる。
Next, the operation of the refrigeration cycle of the air conditioner 1 will be described.
The cooling operation in the air conditioner 1 will be described. The arrows in FIG. 1 indicate the flow of the refrigerant in the cooling operation of the air conditioner 1. In the cooling operation, as shown by the solid line, the four-way valve 14 communicates the discharge side of the compressor 11 and the outdoor heat exchanger 15 and communicates the suction side of the compressor 11 and the outdoor gas pipe 3a.

圧縮機11から吐出される高温高圧のガス冷媒は、オイルセパレータ12に流入し、オイルセパレータ12および四方弁14を通過し、室外熱交換器15側に流れる。室外熱交換器15に流入したガス冷媒は、室外ファン16により供給される外気と熱交換して凝縮され、液冷媒となる。この液冷媒は、全開状態の室外膨張弁17、および、室外液配管4a、室内液配管4bを通過して、室内ユニット30に流入する。室内ユニット30に流入した液冷媒は、室内膨張弁33により減圧されて、低温低圧のガス液混合冷媒となる。この低温低圧の冷媒は、室内熱交換器31に流入して、室内ファン32により供給される室内空気と熱交換されて蒸発し、ガス冷媒となる。この際、室内空気は、冷媒の蒸発潜熱により冷却され、冷風が部屋50内に送られる。その後、ガス冷媒は、室内ガス配管3b、室外ガス配管3aを通って、室外ユニット10に戻される。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the oil separator 12, passes through the oil separator 12 and the four-way valve 14, and flows to the outdoor heat exchanger 15 side. The gas refrigerant flowing into the outdoor heat exchanger 15 is condensed by exchanging heat with the outside air supplied by the outdoor fan 16 and becomes a liquid refrigerant. The liquid refrigerant passes through the fully-expanded outdoor expansion valve 17, the outdoor liquid pipe 4 a, and the indoor liquid pipe 4 b and flows into the indoor unit 30. The liquid refrigerant flowing into the indoor unit 30 is decompressed by the indoor expansion valve 33 and becomes a low-temperature and low-pressure gas-liquid mixed refrigerant. This low-temperature and low-pressure refrigerant flows into the indoor heat exchanger 31, exchanges heat with the indoor air supplied by the indoor fan 32, evaporates, and becomes a gas refrigerant. At this time, the room air is cooled by the latent heat of vaporization of the refrigerant, and the cool air is sent into the room 50. Thereafter, the gas refrigerant is returned to the outdoor unit 10 through the indoor gas pipe 3b and the outdoor gas pipe 3a.

室外ユニット10に戻ったガス冷媒は、四方弁14を通過し、アキュムレータ19において液体成分が取り除かれた後、圧縮機11に吸入され、再び圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。   The gas refrigerant that has returned to the outdoor unit 10 passes through the four-way valve 14, and after the liquid component has been removed by the accumulator 19, the gas refrigerant is sucked into the compressor 11 and compressed again by the compressor 11. Is formed.

一方、オイルセパレータ12により分離された冷凍機油は、オイルセパレータ12から第1ストレーナ20および第1キャピラリ21を通過して、アキュムレータ19に流入する。   On the other hand, the refrigerating machine oil separated by the oil separator 12 passes through the first strainer 20 and the first capillary 21 from the oil separator 12 and flows into the accumulator 19.

また、空調運転中における圧縮機11を保護するために、その吐出圧力および吸入圧力に対し、それぞれ適切な運転圧力範囲が制御部2に設定されている。すなわち、圧縮機11の吐出圧力に対し適切な運転圧力範囲として、吐出上限値(Td。例えば3.3MPa)と吐出下限値とが設定され、吸入圧力に対し、適切な運転圧力範囲として、吸入上限値(Ts。例えば1.3MPa)と吸入下限値とが設定されている。そして、圧縮機11の吐出圧力および吸入圧力が、これらの運転圧力範囲を逸脱しないように(本実施形態ではそれぞれの上限値を超えないように)、制御部2は、室外ユニット10と、減圧装置28とを制御する。   Further, in order to protect the compressor 11 during the air-conditioning operation, appropriate operating pressure ranges are set in the control unit 2 for the discharge pressure and the suction pressure, respectively. That is, a discharge upper limit value (Td, for example, 3.3 MPa) and a discharge lower limit value are set as an appropriate operating pressure range with respect to the discharge pressure of the compressor 11, and suction is set as an appropriate operating pressure range with respect to the suction pressure. An upper limit (Ts; for example, 1.3 MPa) and a lower limit of suction are set. The control unit 2 is connected to the outdoor unit 10 and the decompression unit so that the discharge pressure and the suction pressure of the compressor 11 do not deviate from these operating pressure ranges (in this embodiment, do not exceed the respective upper limit values). The device 28 is controlled.

次に、図1、図2を参照して、高外気温度下の冷房運転時に連続運転を行うための空気調和機1の制御方法について説明する。   Next, with reference to FIG. 1 and FIG. 2, the control method of the air conditioner 1 for performing a continuous operation at the time of the cooling operation under a high outside air temperature will be described.

図2は、冷房運転時における圧縮機11の吐出圧力および吸入圧力に基づく、空気調和機1の運転制御処理のフローチャートである。この運転制御処理は、制御部2により実行され、空気調和機1が冷房運転を行っている間、常時実行される。   FIG. 2 is a flowchart of the operation control process of the air conditioner 1 based on the discharge pressure and the suction pressure of the compressor 11 during the cooling operation. This operation control process is executed by the control unit 2 and is always executed while the air conditioner 1 is performing the cooling operation.

まず、制御部2は、冷房運転を実施する(S1)。
冷房運転の実施中、制御部2は、高圧センサ25により圧縮機11の吐出圧力Pdを検知し(S2)、検知した吐出圧力Pdの値が、圧縮機11の吐出圧力に対し設定された吐出上限値(Td)以下であるか否かを判断する(S3)。吐出圧力Pdが吐出上限値(Td)以下でない場合(S3:No)、制御部2は、吐出圧力Pdの値に応じて、圧縮機11の運転周波数の上昇を禁止する処理、または、圧縮機11の運転周波数を強制的に下降させる処理を実行して吐出圧力Pdを減少させ(S4)、S2に戻る。これにより、圧縮機11を駆動するモータの回転速度が制御される。
First, the control unit 2 performs a cooling operation (S1).
During the cooling operation, the control unit 2 detects the discharge pressure Pd of the compressor 11 by the high pressure sensor 25 (S2), and the detected discharge pressure Pd value is set to the discharge pressure of the compressor 11. It is determined whether or not it is equal to or lower than the upper limit value (Td) (S3). When the discharge pressure Pd is not equal to or lower than the discharge upper limit value (Td) (S3: No), the control unit 2 performs processing for prohibiting an increase in the operating frequency of the compressor 11 according to the value of the discharge pressure Pd, 11 is executed to forcibly lower the operation frequency to decrease the discharge pressure Pd (S4), and the process returns to S2. Thereby, the rotational speed of the motor that drives the compressor 11 is controlled.

一方、吐出圧力Pdが吐出上限値(Td)以下であった場合(S3:Yes)、制御部2は、低圧センサ26により圧縮機11の吸入圧力Psを検知する(S5)。次に、制御部2は、検知した吸入圧力Psの値が、圧縮機11の吸入圧力Psに対し設定された吸入上限値(Ts)以下であるか否かを判断する(S6)。吸入圧力Psが吸入上限値(Ts)以下でない場合(S6:No)、制御部2は、減圧装置28を作動させる処理を実行して吸入圧力Psを減少させ(S7)、S5に戻る。   On the other hand, when the discharge pressure Pd is equal to or lower than the discharge upper limit (Td) (S3: Yes), the control unit 2 detects the suction pressure Ps of the compressor 11 by the low pressure sensor 26 (S5). Next, the control unit 2 determines whether or not the detected value of the suction pressure Ps is equal to or less than the suction upper limit value (Ts) set for the suction pressure Ps of the compressor 11 (S6). When the suction pressure Ps is not equal to or lower than the suction upper limit value (Ts) (S6: No), the control unit 2 executes a process for operating the pressure reducing device 28 to decrease the suction pressure Ps (S7), and returns to S5.

吸入圧力Psが吸入上限値(Ts)以下であった場合(S6:Yes)、制御部2は、S1に戻る。   When the suction pressure Ps is equal to or lower than the suction upper limit (Ts) (S6: Yes), the control unit 2 returns to S1.

このように、制御部2は、冷房運転において、圧縮機11の吸入圧力Psが吸入上限値(Ts)を超えた場合(S6:No)、減圧装置28を作動させる(S7)。これにより、吸入圧力Psを減少させることができ、吸入圧力Psを吸入上限値(Ts)以下にすることができる。よって、空気調和機1について、材料費や製品サイズを大幅に上げることなく、圧縮機11の吸入圧力を制御することで、高外気温度下の冷房運転時の連続運転を可能にし、快適性を落とすことがない。   As described above, in the cooling operation, when the suction pressure Ps of the compressor 11 exceeds the suction upper limit value (Ts) (S6: No), the control unit 2 operates the pressure reducing device 28 (S7). As a result, the suction pressure Ps can be reduced, and the suction pressure Ps can be made equal to or lower than the suction upper limit (Ts). Therefore, by controlling the suction pressure of the compressor 11 for the air conditioner 1 without significantly increasing the material cost and the product size, the air conditioner 1 can be continuously operated during a cooling operation under a high outside air temperature, thereby improving the comfort. There is no drop.

また、圧縮機11の吐出圧力Pdと吸入圧力Psを設定した圧力範囲内に収めることができるので、圧縮機11の故障を回避することができる。   Further, since the discharge pressure Pd and the suction pressure Ps of the compressor 11 can be set within the set pressure range, failure of the compressor 11 can be avoided.

以上で実施形態の説明を終えるが、本発明の態様はこれらに限定されるものではない。例えば、室外ユニットに対して複数台の室内ユニットを設置し、図2の処理を実行するようにしても良い。室内ユニットが複数台だと、圧縮機の吐出圧力、吸入圧力が上がりやすいので、図2の処理による効果がさらに大きい。   This is the end of the description of the embodiments, but the aspects of the present invention are not limited to these. For example, a plurality of indoor units may be installed for the outdoor unit, and the process of FIG. 2 may be executed. When there are a plurality of indoor units, the discharge pressure and suction pressure of the compressor are likely to increase, so the effect of the process of FIG. 2 is even greater.

また、減圧装置を、圧縮機の吸入側であって、室外ユニットのガス配管と室内ユニットのガス配管の間(図1の室外ガス配管3a、室内ガス配管3bの間)に設けるようにしても良い。そうすれば、減圧装置の設置の作業がさらに簡易になる。
その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
Further, the decompression device may be provided on the suction side of the compressor and between the gas pipe of the outdoor unit and the gas pipe of the indoor unit (between the outdoor gas pipe 3a and the indoor gas pipe 3b in FIG. 1). good. If it does so, the operation | work of installation of a decompression device will become still easier.
In addition, about a concrete structure, it can change suitably in the range which does not deviate from the main point of this invention.

1:空気調和機
2:制御部
3a:室外ガス配管
3b:室内ガス配管
4a:室外液配管
4b:室内液配管
10:室外ユニット
11:圧縮機
12:オイルセパレータ
13:逆止弁
14:四方弁
15:室外熱交換器
16:室外ファン
17:室外膨張弁
18:サブクールパイプ
19:アキュムレータ
20:第1ストレーナ
21:第1キャピラリ
22:第2ストレーナ
23:電磁弁
24:第2キャピラリ
25:高圧センサ
26:低圧センサ(圧力センサ)
27:外気サーミスタ
28:減圧装置
30:室内ユニット
31:室内熱交換器
32:室内ファン
33:室内膨張弁
34:内気サーミスタ
40:リモートコントローラ
50:部屋
1: Air conditioner 2: Control unit 3a: Outdoor gas pipe 3b: Indoor gas pipe 4a: Outdoor liquid pipe 4b: Indoor liquid pipe 10: Outdoor unit 11: Compressor 12: Oil separator 13: Check valve 14: Four-way valve 15: outdoor heat exchanger 16: outdoor fan 17: outdoor expansion valve 18: subcool pipe 19: accumulator 20: first strainer 21: first capillary 22: second strainer 23: electromagnetic valve 24: second capillary 25: high pressure sensor 26: Low pressure sensor (pressure sensor)
27: Outside air thermistor 28: Pressure reducing device 30: Indoor unit 31: Indoor heat exchanger 32: Indoor fan 33: Indoor expansion valve 34: Inside air thermistor 40: Remote controller 50: Room

Claims (3)

冷媒を吐出する圧縮機、前記圧縮機の吸入側に設けられ前記冷媒の吸入圧力を検知する圧力センサ、および、前記圧縮機の吸入側に設けられ前記冷媒を減圧させる減圧装置、を有する室外ユニットと、
冷媒配管を介して前記室外ユニットに接続される室内ユニットと、
前記室外ユニットおよび前記室内ユニットにより形成される冷凍サイクルを制御する制御部と、を備え、
前記圧縮機には、前記吸入圧力に関する上限値が設定され、
前記制御部は、冷房運転時に、前記圧力センサにより検知された前記吸入圧力が前記上限値を超えた場合、前記減圧装置を作動させ、前記吸入圧力を減少させる
ことを特徴とする空気調和機。
An outdoor unit having a compressor that discharges refrigerant, a pressure sensor that is provided on the suction side of the compressor and detects a suction pressure of the refrigerant, and a decompression device that is provided on the suction side of the compressor and depressurizes the refrigerant. When,
An indoor unit connected to the outdoor unit via a refrigerant pipe;
A control unit for controlling a refrigeration cycle formed by the outdoor unit and the indoor unit,
In the compressor, an upper limit value related to the suction pressure is set,
The air conditioner characterized in that, when the suction pressure detected by the pressure sensor exceeds the upper limit during cooling operation, the control unit operates the pressure reducing device to reduce the suction pressure.
冷媒を吐出する圧縮機、前記圧縮機の吸入側に設けられ前記冷媒の吸入圧力を検知する圧力センサ、および、前記圧縮機の吸入側に設けられ前記冷媒を減圧させる減圧装置、を有する室外ユニットと、
冷媒配管を介して前記室外ユニットに接続される複数台の室内ユニットと、
前記室外ユニットおよび前記複数台の室内ユニットにより形成される冷凍サイクルを制御する制御部と、を備え、
前記圧縮機には、前記吸入圧力に関する上限値が設定され、
前記制御部は、冷房運転時に、前記圧力センサにより検知された前記吸入圧力が前記上限値を超えた場合、前記減圧装置を作動させ、前記吸入圧力を減少させる
ことを特徴とする空気調和機。
An outdoor unit having a compressor that discharges refrigerant, a pressure sensor that is provided on the suction side of the compressor and detects a suction pressure of the refrigerant, and a decompression device that is provided on the suction side of the compressor and depressurizes the refrigerant. When,
A plurality of indoor units connected to the outdoor unit via a refrigerant pipe;
A controller that controls a refrigeration cycle formed by the outdoor unit and the plurality of indoor units,
In the compressor, an upper limit value related to the suction pressure is set,
The air conditioner characterized in that, when the suction pressure detected by the pressure sensor exceeds the upper limit during cooling operation, the control unit operates the pressure reducing device to reduce the suction pressure.
冷媒を吐出する圧縮機、および、前記圧縮機の吸入側に設けられ前記冷媒の吸入圧力を検知する圧力センサを有する室外ユニットと、
冷媒配管を介して前記室外ユニットに接続される室内ユニットと、
前記室外ユニットおよび前記室内ユニットにより形成される冷凍サイクルを制御する制御部と、
前記圧縮機の吸入側であって、前記室外ユニットのガス配管と前記室内ユニットのガス配管の間に設けられた減圧装置と、を備え、
前記圧縮機には、前記吸入圧力に関する上限値が設定され、
前記制御部は、冷房運転時に、前記圧力センサにより検知された前記吸入圧力が前記上限値を超えた場合、前記減圧装置を作動させ、前記吸入圧力を減少させる
ことを特徴とする空気調和機。
An outdoor unit having a compressor that discharges the refrigerant, and a pressure sensor that is provided on the suction side of the compressor and detects the suction pressure of the refrigerant;
An indoor unit connected to the outdoor unit via a refrigerant pipe;
A control unit for controlling a refrigeration cycle formed by the outdoor unit and the indoor unit;
A decompression device provided on the suction side of the compressor and provided between the gas pipe of the outdoor unit and the gas pipe of the indoor unit;
In the compressor, an upper limit value related to the suction pressure is set,
The air conditioner characterized in that, when the suction pressure detected by the pressure sensor exceeds the upper limit during cooling operation, the control unit operates the pressure reducing device to reduce the suction pressure.
JP2015094687A 2015-05-07 2015-05-07 Air conditioner Active JP6584127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094687A JP6584127B2 (en) 2015-05-07 2015-05-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094687A JP6584127B2 (en) 2015-05-07 2015-05-07 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016211772A true JP2016211772A (en) 2016-12-15
JP6584127B2 JP6584127B2 (en) 2019-10-02

Family

ID=57550720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094687A Active JP6584127B2 (en) 2015-05-07 2015-05-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP6584127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017590A (en) * 2019-04-08 2019-07-16 珠海格力电器股份有限公司 Low voltage control method, device, heat pump system and the storage medium of water chiller-heater unit
CN111623484A (en) * 2020-05-13 2020-09-04 青岛海尔空调电子有限公司 Air conditioner, control method thereof and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129358A (en) * 1981-02-02 1982-08-11 Nippon Denso Co Capacity controller for car air conditioner
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method
JP2007263444A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioning apparatus
JP2012233640A (en) * 2011-05-02 2012-11-29 Mitsubishi Electric Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129358A (en) * 1981-02-02 1982-08-11 Nippon Denso Co Capacity controller for car air conditioner
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method
JP2007263444A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioning apparatus
JP2012233640A (en) * 2011-05-02 2012-11-29 Mitsubishi Electric Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017590A (en) * 2019-04-08 2019-07-16 珠海格力电器股份有限公司 Low voltage control method, device, heat pump system and the storage medium of water chiller-heater unit
CN110017590B (en) * 2019-04-08 2020-02-28 珠海格力电器股份有限公司 Low-pressure control method and device for cold and hot water unit, heat pump system and storage medium
CN111623484A (en) * 2020-05-13 2020-09-04 青岛海尔空调电子有限公司 Air conditioner, control method thereof and computer readable storage medium

Also Published As

Publication number Publication date
JP6584127B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
US10006678B2 (en) Air-conditioning apparatus
JP5145674B2 (en) Refrigeration equipment
US6807816B2 (en) Air conditioning system with two compressors and method for operating the same
JP6870382B2 (en) Air conditioner
WO2008032559A1 (en) Air conditioner
JP6707189B2 (en) Air conditioner and fan speed control method for air conditioner
KR102330339B1 (en) Multi-type air conditioner and control method for the same
JP6091614B2 (en) Heat pump equipment
JP5846226B2 (en) Air conditioner
JPWO2011089652A1 (en) Air conditioning and hot water supply complex system
JP6950191B2 (en) Air conditioner
JP6045440B2 (en) Air conditioner control device
US10359209B2 (en) Air conditioning apparatus
JP2015145742A (en) Refrigeration device
KR20140000936A (en) Multi-air conditioner for heating and cooling operations at the same time
JP6584127B2 (en) Air conditioner
EP3112777B1 (en) Air conditioner and operation method of the same
WO2016098626A1 (en) Air-conditioning device
JP5582838B2 (en) Multi-type air conditioner
JP5056794B2 (en) Air conditioner
KR102130437B1 (en) air-conditioning system
JP2003240310A (en) Air conditioner and outdoor machine used in the same
KR102390900B1 (en) Multi-type air conditioner and control method for the same
KR20090021593A (en) Multi air conditioner improved air heating efficiency
KR101240765B1 (en) Multi type air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6584127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150