JP2016211600A - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP2016211600A
JP2016211600A JP2015092811A JP2015092811A JP2016211600A JP 2016211600 A JP2016211600 A JP 2016211600A JP 2015092811 A JP2015092811 A JP 2015092811A JP 2015092811 A JP2015092811 A JP 2015092811A JP 2016211600 A JP2016211600 A JP 2016211600A
Authority
JP
Japan
Prior art keywords
valve
valve member
guide portion
valve port
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015092811A
Other languages
Japanese (ja)
Inventor
直樹 日下
Naoki Kusaka
直樹 日下
大樹 中川
Daiki Nakagawa
大樹 中川
一也 小林
Kazuya Kobayashi
一也 小林
雄希 北見
Yuki Kitami
雄希 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2015092811A priority Critical patent/JP2016211600A/en
Priority to CN201610243977.5A priority patent/CN106090355B/en
Publication of JP2016211600A publication Critical patent/JP2016211600A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce influence of a pressure of a fluid accumulating in a case on a back pressure chamber to cancel a differential pressure force in a pressure balance type flow control valve.SOLUTION: A valve member 3 is disposed in a guide part 21. A gap between an outer peripheral surface of a cylindrical part 32 of the valve member 3 and an inner peripheral surface of the guide part 21 is sealed with a packing 34. A diameter (a seal diameter) D2 of a contact line between a tapered surface 31a of the valve member 3 and the valve seat 1b is set larger than an inner diameter D1 (an outer diameter D1 of the packing 34) of the guide part 21.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍サイクルなどに使用する流量制御弁に関し、詳細には圧力バランス型の流量制御弁に関する。   The present invention relates to a flow control valve used in a refrigeration cycle, and more particularly to a pressure balance type flow control valve.

従来の圧力バランス型の流量制御弁は、弁部材に加わる差圧力をキャンセルするために、弁部材の上部の背圧室における受圧面積を弁ポートの径と等しくするとともに、弁部材の中央に均圧路を設け、この均圧路により背圧室に弁部材下部(弁ポート側)の圧力を導入し、弁部材の上部と下部を同圧にさせることで、弁部材に加わる正味の差圧力をキャンセルさせるという設計思想である。このような流量制御弁として、例えば、特開2014−35006号公報(特許文献1)に開示されたものがある。   In order to cancel the differential pressure applied to the valve member, the conventional pressure balance type flow control valve makes the pressure receiving area in the back pressure chamber above the valve member equal to the diameter of the valve port and equalizes it in the center of the valve member. A net pressure difference is applied to the valve member by providing a pressure path and introducing the pressure in the lower part of the valve member (valve port side) into the back pressure chamber through this pressure equalizing path, and making the upper and lower parts of the valve member the same pressure. This is a design philosophy of canceling. An example of such a flow control valve is disclosed in Japanese Patent Application Laid-Open No. 2014-35006 (Patent Document 1).

この圧力バランス型の流量制御弁は、弁部材を駆動するために、駆動アクチュエーとしてのステッピングモータを備えている。このステッピングモータは、ケースとケースの周囲にステータコイルを備えるとともに、ケース内に、マグネットロータ、マグネットロータに固定されたロータ軸を収容している。また、ケース内にはロータ軸を支持する支持部材が収容されている。そして、ロータ軸の外周に形成された雄ねじ部を支持部材に形成された雌ねじ部に螺合し、マグネットローラの回転によりロータ軸を直線移動させ、弁ホルダを介してロータ軸に保持された弁部材で弁ポートの開度を制御するものである。これにより、弁ハウジングの横に接続された一次側継手管から流入する流体に対して弁ポートを流れる流量を制御する。また、弁部材の上部に、弁部材に対する流体の差圧力をキャンセルするための背圧室が設けられ、この背圧室は弁部材に形成された均圧路により弁ポートに導通されている。   This pressure balance type flow control valve includes a stepping motor as a drive actuator in order to drive the valve member. The stepping motor includes a case and a stator coil around the case, and houses a magnet rotor and a rotor shaft fixed to the magnet rotor in the case. A support member that supports the rotor shaft is accommodated in the case. Then, the male screw part formed on the outer periphery of the rotor shaft is screwed into the female screw part formed on the support member, the rotor shaft is linearly moved by the rotation of the magnet roller, and the valve held on the rotor shaft via the valve holder The opening of the valve port is controlled by the member. Thereby, the flow volume which flows through a valve port with respect to the fluid which flows in from the primary side coupling pipe connected to the side of the valve housing is controlled. Further, a back pressure chamber for canceling the differential pressure of the fluid with respect to the valve member is provided in the upper part of the valve member, and this back pressure chamber is connected to the valve port by a pressure equalizing path formed in the valve member.

特開2014−35006号公報JP 2014-35006 A

上述した圧力バランス型の流量制御弁では、マグネットロータ、ロータ軸及び支持部材を収容するケースは弁ハウジングに連結され、このケース内は弁ハウジングと共に密閉されている。また、ケース内は、支持部材と弁ホルダとのクリアランス、及び支持部材に形成された導通口(特許文献1では図示されていない。)を介して、前記背圧室と導通される。   In the above-described pressure balance type flow control valve, the case that accommodates the magnet rotor, the rotor shaft, and the support member is connected to the valve housing, and the inside of the case is sealed together with the valve housing. Further, the inside of the case is electrically connected to the back pressure chamber through a clearance between the support member and the valve holder and a conduction port (not shown in Patent Document 1) formed in the support member.

さらに、この種の流量制御弁では、流体を弁ポート側から流す場合もある。この場合には、弁ポート側から勢いよく流れる流体は、均圧路及び背圧室を通って、袋小路状のケース内に溜まり、圧縮される。このため、弁部材の下面の圧力よりも上面の圧力が高くなり、差圧力がキャンセルされなくなる。よって、作動の安定性が損なわれるという問題が発生する。このように従来の流量制御弁では、十分に圧力バランスがとれないという点で、改善の余地があった。   Furthermore, in this type of flow control valve, fluid may flow from the valve port side. In this case, the fluid that flows vigorously from the valve port side passes through the pressure equalization path and the back pressure chamber, accumulates in the case of the bag path, and is compressed. For this reason, the pressure on the upper surface becomes higher than the pressure on the lower surface of the valve member, and the differential pressure is not canceled. Therefore, there arises a problem that the stability of the operation is impaired. Thus, the conventional flow control valve has room for improvement in that the pressure balance cannot be sufficiently achieved.

本発明は、圧力バランス型の流量制御弁において、ケース内に溜まる流体の圧力による背圧室への影響を低減して、差圧力をキャンセルさせることを課題とする。   An object of the present invention is to cancel the differential pressure by reducing the influence on the back pressure chamber due to the pressure of the fluid accumulated in the case in the pressure balance type flow control valve.

請求項1の流量制御弁は、弁ハウジング内に配設された円筒形状のガイド部と、前記ガイド部内に摺動可能に配設されるとともに弁座により画定される弁ポートを開閉する弁部材と、前記弁部材を前記ガイド部の軸線方向に駆動する駆動アクチュエータと、を備え、前記弁部材を軸線方向に移動して前記弁ポートを開閉するとともに、前記弁部材に対する前記弁ポートとは反対側の背圧室と該弁ポートとを均圧路で導通して、該背圧室の流体圧力と弁ポートの流体圧力との圧力バランスをとるようにした流量制御弁であって、前記弁部材における前記弁ポート側の受圧面積を該弁部材における前記背圧室側の受圧面積よりも大きくしたことを特徴とする。   A flow control valve according to claim 1 is a cylindrical guide portion disposed in a valve housing, and a valve member that is slidably disposed in the guide portion and opens and closes a valve port defined by a valve seat. And a drive actuator for driving the valve member in the axial direction of the guide portion, moving the valve member in the axial direction to open and close the valve port, and opposite to the valve port for the valve member A flow control valve for connecting the back pressure chamber on the side and the valve port through a pressure equalizing path so as to balance the fluid pressure in the back pressure chamber and the fluid pressure in the valve port. The pressure receiving area on the valve port side of the member is larger than the pressure receiving area on the back pressure chamber side of the valve member.

請求項2の流量制御弁は、請求項1に記載の流量制御弁であって、前記弁部材は前記ガイド部内に挿通される円柱部を有し、前記ガイド部または前記円柱部に、該ガイド部の内周面と該円柱部の外周面との間をシールするシール部材を備えたことを特徴とする。   The flow rate control valve according to claim 2 is the flow rate control valve according to claim 1, wherein the valve member has a cylindrical portion inserted into the guide portion, and the guide portion or the cylindrical portion includes the guide portion. A seal member is provided for sealing between the inner peripheral surface of the portion and the outer peripheral surface of the cylindrical portion.

請求項3の流量制御弁は、請求項2に記載の流量制御弁であって、前記シール部材が、リング状のパッキンと、該パッキンを覆うカバーとで構成され、該カバーの摺動部を前記ガイド部の内周面または前記円柱部の外周面に摺接するように配置されていることを特徴とする。   The flow rate control valve according to claim 3 is the flow rate control valve according to claim 2, wherein the seal member includes a ring-shaped packing and a cover that covers the packing, and a sliding portion of the cover is provided. It is arrange | positioned so that the inner peripheral surface of the said guide part or the outer peripheral surface of the said cylindrical part may be slidably contacted.

請求項4の流量制御弁は、請求項1または2に記載の流量制御弁であって、前記弁座の内側に、前記ガイド部から前記弁ポートに向かうにしたがって内径が徐々に小さくなって前記弁ポートまで連接される着座面が形成され、弁閉時の、前記弁部材の先端部と前記着座面との接触線の内側に前記弁ポートより径の大きな膨張空間を形成するようにしたことを特徴とする。   A flow control valve according to a fourth aspect is the flow control valve according to the first or second aspect, wherein the inner diameter gradually decreases from the guide portion toward the valve port inside the valve seat. A seating surface connected to the valve port is formed, and when the valve is closed, an expansion space having a diameter larger than that of the valve port is formed inside a contact line between the tip portion of the valve member and the seating surface. It is characterized by.

請求項1の流量制御弁によれば、弁部材における弁ポート側の受圧面積を該弁部材における背圧室側の受圧面積よりも大きくしたので、弁ポートから均圧路を通して駆動アクチュエータの密閉ケースに溜まる流体の圧力の影響を低減して弁部材に作用する流体圧力のバランスを良好にでき、弁部材を確実に作動させることができる。   According to the flow control valve of the first aspect, since the pressure receiving area on the valve port side of the valve member is larger than the pressure receiving area on the back pressure chamber side of the valve member, the sealed case of the drive actuator is passed through the pressure equalizing path from the valve port. The fluid pressure acting on the valve member can be well balanced by reducing the influence of the pressure of the fluid accumulated on the valve member, and the valve member can be operated reliably.

請求項2の流量制御弁によれば、請求項1の効果に加えて、シール部材により、ガイドガイド部の内周面と弁部材の円柱部の外周面との間を確実にシールすることができ、さらに流体圧力のバランスを良好にできる。   According to the flow control valve of claim 2, in addition to the effect of claim 1, the seal member can reliably seal between the inner peripheral surface of the guide guide portion and the outer peripheral surface of the column portion of the valve member. In addition, the fluid pressure balance can be improved.

請求項3の流量制御弁によれば、請求項2の効果に加えて、カバーの摺動部により弁部材の円柱部の外周面とガイド部の内周面(ガイド面)との間がシールされる。弁部材がガイド部内で移動するときカバーの摺動部がガイド部の内周面または弁部材の外周面を摺動するので、摺動抵抗が低減され、さらに、弁部材の作動を確実にすることができる。   According to the flow control valve of the third aspect, in addition to the effect of the second aspect, the sliding portion of the cover provides a seal between the outer peripheral surface of the cylindrical portion of the valve member and the inner peripheral surface (guide surface) of the guide portion. Is done. When the valve member moves in the guide portion, the sliding portion of the cover slides on the inner peripheral surface of the guide portion or the outer peripheral surface of the valve member, so that the sliding resistance is reduced and further the operation of the valve member is ensured. be able to.

請求項4の流量制御弁によれば、請求項1乃至3のいずれか一項の効果に加えて、弁ポートより径の大きな膨張空間が形成されているので、弁ポートから流体を流す流れの場合に、弁ポートから流入する流体が膨張空間で膨張して圧力が低下する。したがって、均圧路を介して背圧室に導入される流体の圧力を抑えることができ、弁部材に対する駆動アクチュエータがわの流体圧力の影響を低減できる。   According to the flow control valve of the fourth aspect, in addition to the effect of any one of the first to third aspects, an expansion space having a diameter larger than that of the valve port is formed. In this case, the fluid flowing in from the valve port expands in the expansion space, and the pressure decreases. Therefore, the pressure of the fluid introduced into the back pressure chamber through the pressure equalizing path can be suppressed, and the influence of the fluid pressure of the drive actuator on the valve member can be reduced.

本発明の第1実施形態の流量制御弁の弁閉状態の縦断面図である。It is a longitudinal cross-sectional view of the valve closed state of the flow control valve of 1st Embodiment of this invention. 本発明の第1実施形態における流体圧力に対する弁部材、ガイド部、弁ポート及び背圧室の作用を説明する図である。It is a figure explaining the effect | action of the valve member, guide part, valve port, and back pressure chamber with respect to the fluid pressure in 1st Embodiment of this invention. 本発明の第2実施形態の流量制御弁の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the flow control valve of 2nd Embodiment of this invention. 本発明の第3実施形態の流量制御弁の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the flow control valve of 3rd Embodiment of this invention. 本発明の第4実施形態の流量制御弁の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the flow control valve of 4th Embodiment of this invention. 本発明の第4実施形態の流量制御弁のリフト量−流量特性を示す図である。It is a figure which shows the lift amount-flow rate characteristic of the flow control valve of 4th Embodiment of this invention. 本発明の第5実施形態の流量制御弁の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the flow control valve of 5th Embodiment of this invention. 本発明の各実施形態におけるシール部材の変形例を示す図である。It is a figure which shows the modification of the sealing member in each embodiment of this invention. 本発明の第6実施形態の流量制御弁の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the flow control valve of 6th Embodiment of this invention.

次に、本発明の流量制御弁の実施形態を図面を参照して説明する。図1は第1実施形態の流量制御弁の弁閉状態の縦断面図である。以下の説明における「上下」の概念は図1の図面における上下に対応する。また、以下の説明で、「D1〜D3」は部材の各部の軸線L回りの径を示し、「S1〜S3」は軸線L方向から見たときのD1〜D3のそれぞれに対応する部分の面積を示す。なお、図面において「S1〜S3」は対応する「D1〜D3」の後に括弧書きで表記する。   Next, an embodiment of the flow control valve of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of the flow control valve of the first embodiment in a closed state. The concept of “upper and lower” in the following description corresponds to the upper and lower sides in the drawing of FIG. In the following description, “D1 to D3” indicates the diameter of each part of the member around the axis L, and “S1 to S3” indicates the area of the portion corresponding to each of D1 to D3 when viewed from the direction of the axis L. Indicates. In the drawings, “S1 to S3” are written in parentheses after the corresponding “D1 to D3”.

この実施形態の流量制御弁は、円筒形状の弁ハウジング1を有しており、弁ハウジング1には円筒状の弁室1Aが形成されるとともに、下端部中央には弁室1Aに連通する円柱空洞の弁ポート1aが形成されている。弁ポート1aの弁室1A側の開口端部は弁座1bとなっている。また、弁ハウジング1には、側面側から弁室1Aに連通する第1継手管11が取り付けられるとともに、下端部に弁ポート1aに連通する第2継手管12が取り付けられている。   The flow control valve of this embodiment has a cylindrical valve housing 1, and a cylindrical valve chamber 1 </ b> A is formed in the valve housing 1, and a column communicating with the valve chamber 1 </ b> A at the center of the lower end portion. A hollow valve port 1a is formed. The opening end of the valve port 1a on the valve chamber 1A side is a valve seat 1b. The valve housing 1 is attached with a first joint pipe 11 communicating with the valve chamber 1A from the side surface side, and with a second joint pipe 12 communicating with the valve port 1a at the lower end.

弁室1A内には、弁ハウジング1の上端から内挿された中空多段円筒状の弁ガイド部材2が配設されている。この弁ガイド部材2は、軸線Lを中心軸として、弁ポート1a側に位置する小径で円筒形状のガイド部21と、ガイド部21より径の大きな中径円筒部22と、弁ハウジング1の上端に填め込まれた大径の取付け部23とを、一体に形成したものである。ガイド部21内にはピストン状の弁部材3が軸線L方向に移動可能に配設されている。そして、弁部材3の一部が弁ガイド部材2内に収容されることにより、弁ガイド部材2の内空間が区画され、弁ガイド部材2内に弁部材3に対する背圧室2Aが形成されている。   A hollow multistage cylindrical valve guide member 2 inserted from the upper end of the valve housing 1 is disposed in the valve chamber 1A. The valve guide member 2 has a small-diameter cylindrical guide portion 21 positioned on the valve port 1a side with an axis L as a central axis, a medium-diameter cylindrical portion 22 having a larger diameter than the guide portion 21, and an upper end of the valve housing 1. And a large-diameter mounting portion 23 that is inserted into the housing. A piston-like valve member 3 is disposed in the guide portion 21 so as to be movable in the direction of the axis L. Then, when a part of the valve member 3 is accommodated in the valve guide member 2, the inner space of the valve guide member 2 is partitioned, and a back pressure chamber 2 </ b> A for the valve member 3 is formed in the valve guide member 2. Yes.

弁部材3は、全体として略円柱形状に形成されており、弁ポート1a側に開口するすり鉢形状及び円筒形状を連結した開口孔3aと、開口孔3aに連なって背圧室2Aに開口する連結孔3bとを有している。そして、この開口孔3aと連結孔3bは、弁ポート1aと背圧室2Aとを導通する均圧路3Aを構成している。また、弁部材3は、弁座1bと対向する円環状のシール部31と、シール部31より僅かに径の小さな円柱形状の円柱部32と、円柱部32より径の小さなボス部33とを有している。シール部31の外周には下方に向かうにしたがって径が小さくなる先細りのテーパ面31aが設けられている。   The valve member 3 is formed in a substantially columnar shape as a whole, and has an opening hole 3a that connects a mortar shape and a cylindrical shape that opens to the valve port 1a side, and a connection that opens to the back pressure chamber 2A connected to the opening hole 3a. And a hole 3b. The opening hole 3a and the connecting hole 3b constitute a pressure equalizing path 3A that connects the valve port 1a and the back pressure chamber 2A. Further, the valve member 3 includes an annular seal portion 31 facing the valve seat 1 b, a columnar column portion 32 having a slightly smaller diameter than the seal portion 31, and a boss portion 33 having a diameter smaller than that of the column portion 32. Have. On the outer periphery of the seal portion 31, there is provided a tapered surface 31a that decreases in diameter as it goes downward.

円柱部32は、ガイド部21の内径に整合する外径を有しており、この円柱部32のボス部33寄りには円環状の溝32aが形成されている。そして、この溝32a内には、円柱部32の外周面とガイド部21の内周面(ガイド面)との間をシールする「シール部材」としてOリング状のパッキン34が装着されている。これにより、弁部材3は、ガイド部21内を摺動しながら移動する。   The cylindrical portion 32 has an outer diameter that matches the inner diameter of the guide portion 21, and an annular groove 32 a is formed near the boss portion 33 of the cylindrical portion 32. In the groove 32 a, an O-ring-shaped packing 34 is mounted as a “seal member” that seals between the outer peripheral surface of the cylindrical portion 32 and the inner peripheral surface (guide surface) of the guide portion 21. Thereby, the valve member 3 moves while sliding in the guide portion 21.

弁ガイド部材2の上部にはフランジ金具41によって支持部材4が固着されており、この支持部材4には軸線L方向に挿通孔42が形成されるとともに、挿通孔42と後述のケース62内とを導通する導通口43が形成されている。挿通孔42には円筒状の弁ホルダ5が軸線L方向に移動可能に挿通され、この弁ホルダ5の下端部に弁部材3のボス部33が固着されている。なお、弁ホルダ5には、弁ホルダ5の内部と背圧室2Aとを導通する透孔5aが形成されている。また、弁ホルダ5は、「駆動アクチュエータ」としての後述するステッピングモータ6のロータ軸61に係合している。   A support member 4 is fixed to the upper portion of the valve guide member 2 by a flange fitting 41, and an insertion hole 42 is formed in the support member 4 in the direction of the axis L. A conduction port 43 that conducts the current is formed. A cylindrical valve holder 5 is inserted into the insertion hole 42 so as to be movable in the direction of the axis L, and a boss portion 33 of the valve member 3 is fixed to a lower end portion of the valve holder 5. The valve holder 5 is formed with a through hole 5a that connects the inside of the valve holder 5 and the back pressure chamber 2A. Further, the valve holder 5 is engaged with a rotor shaft 61 of a stepping motor 6 described later as a “drive actuator”.

ロータ軸61の下端部にはフランジ部61aが一体に形成され、このフランジ部61aが弁ホルダ5の上端の保持部51と共に平滑部材としてのワッシャ52を挟み込み、このロータ軸61の下端部が弁ホルダ5の上端部で回転可能に係合している。この係合により、弁ホルダ5がロータ軸61によって回転可能に吊り下げた状態で支持されている。また、弁ホルダ5内には、バネ受け53が軸線L方向に移動可能に設けられ、バネ受け53と弁部材3のボス部33との間には圧縮コイルバネ54が所定の荷重を与えられた状態で取り付けられている。これにより、バネ受け53がロータ軸61の下端部に当接係合し、弁部材3はロータ軸61に対して下方側に付勢されている。ロータ軸61には雄ねじ部61bが形成されており、この雄ねじ部61bは支持部材4に形成された雌ねじ部4aに螺合している。これにより、ロータ軸61は回転に伴って軸L線方向に移動する。   A flange portion 61a is integrally formed at the lower end portion of the rotor shaft 61. The flange portion 61a sandwiches a washer 52 as a smooth member together with a holding portion 51 at the upper end of the valve holder 5, and the lower end portion of the rotor shaft 61 is a valve portion. The holder 5 is rotatably engaged at the upper end portion. By this engagement, the valve holder 5 is supported in a state of being rotatably suspended by the rotor shaft 61. A spring receiver 53 is provided in the valve holder 5 so as to be movable in the direction of the axis L, and a compression coil spring 54 is given a predetermined load between the spring receiver 53 and the boss portion 33 of the valve member 3. It is attached in a state. As a result, the spring receiver 53 comes into contact with and engages with the lower end portion of the rotor shaft 61, and the valve member 3 is urged downward with respect to the rotor shaft 61. The rotor shaft 61 is formed with a male screw portion 61 b, and the male screw portion 61 b is screwed into a female screw portion 4 a formed on the support member 4. As a result, the rotor shaft 61 moves in the direction of the axis L along with the rotation.

弁ハウジング1の上部には、ステッピングモータ6が取り付けられている。ステッピングモータ6は、前記ロータ軸61、ケース62、マグネットロータ63、ステータコイル64で構成されている。ケース62は、弁ガイド部材2の取付け部23のフランジ部23aと共に、弁ハウジング1に溶接等によって気密に固定されている。ケース62内には、外周部を多極に着磁されたマグネットロータ63が回転可能に設けられ、このマグネットロータ63にはロータ軸61が固着されている。なお、ケース62の天井部にはマグネットロータ63の回転を規制する回転ストッパ機構7が設けられている。また、ケース62の外周には、ステータコイル64が配設されており、ステッピングモータ6は、ステータコイル64にパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ63を回転させる。そして、このマグネットロータ63の回転によってロータ軸61が回転し、この回転に伴うロータ軸61の軸線L方向の移動によって弁ホルダ5と共に弁部材3が軸線L方向に移動する。   A stepping motor 6 is attached to the upper portion of the valve housing 1. The stepping motor 6 includes the rotor shaft 61, a case 62, a magnet rotor 63, and a stator coil 64. The case 62 is airtightly fixed to the valve housing 1 by welding or the like together with the flange portion 23a of the attachment portion 23 of the valve guide member 2. In the case 62, a magnet rotor 63 whose outer periphery is magnetized in multiple poles is rotatably provided, and a rotor shaft 61 is fixed to the magnet rotor 63. A rotation stopper mechanism 7 that restricts the rotation of the magnet rotor 63 is provided on the ceiling of the case 62. A stator coil 64 is disposed on the outer periphery of the case 62, and the stepping motor 6 rotates the magnet rotor 63 according to the number of pulses when a pulse signal is given to the stator coil 64. Then, the rotor shaft 61 is rotated by the rotation of the magnet rotor 63, and the valve member 3 is moved in the axis L direction together with the valve holder 5 by the movement of the rotor shaft 61 in the axis L direction accompanying the rotation.

以上の構成により、ステッピングモータ6の駆動により、弁部材3が軸線L方向に移動し弁部材3が弁ガイド部材2のガイド部21にガイドされ、この弁部材3が弁座1bに対して離座/着座する。これにより、弁ポート1aが開閉される。この弁部材3のシール部31と弁座1bとの距離で決まる弁開度に応じて冷媒流量が制御される。なお、弁部材3が弁座1bに着座するとき、マグネットロータ63及びロータ軸61の回転量は、弁部材3が弁座1bに当接する位置からロータ軸61が僅かに下方に移動するように設定されており、このときのロータ軸61の移動量は、圧縮コイルバネ54の圧縮により吸収される。これにより、弁部材3により閉状態が確実に保持される。   With the above configuration, the valve member 3 is moved in the direction of the axis L by driving the stepping motor 6, and the valve member 3 is guided by the guide portion 21 of the valve guide member 2. The valve member 3 is separated from the valve seat 1b. Sitting / sitting. Thereby, the valve port 1a is opened and closed. The refrigerant flow rate is controlled in accordance with the valve opening determined by the distance between the seal portion 31 of the valve member 3 and the valve seat 1b. When the valve member 3 is seated on the valve seat 1b, the rotation amount of the magnet rotor 63 and the rotor shaft 61 is such that the rotor shaft 61 moves slightly downward from the position where the valve member 3 contacts the valve seat 1b. The amount of movement of the rotor shaft 61 at this time is absorbed by the compression of the compression coil spring 54. Thereby, the closed state is reliably held by the valve member 3.

本発明の実施形態の流量制御弁は、流体(冷媒)が第1継手管11から流入して第2継手管12から流出する第1の流れ(図1の実線の矢印の流れ)と、流体が第2継手管12から流入して第1継手管11から流出する第2の流れ(図1の破線の矢印の流れ)との、2通りの流れの制御に用いられる。そして、第1の流れのときは、弁ポート1aの低圧が均圧路3Aを介して背圧室2Aに導入される。また、第2の流れのときは、弁ポート1a側の高圧が均圧路3Aを介して背圧室2Aに導入される。   In the flow control valve of the embodiment of the present invention, the fluid (refrigerant) flows from the first joint pipe 11 and flows out from the second joint pipe 12 (flow of the solid line arrow in FIG. 1), fluid Is used to control two types of flow, that is, a second flow that flows in from the second joint pipe 12 and flows out from the first joint pipe 11 (the flow indicated by the broken arrows in FIG. 1). During the first flow, the low pressure of the valve port 1a is introduced into the back pressure chamber 2A via the pressure equalizing path 3A. In the second flow, the high pressure on the valve port 1a side is introduced into the back pressure chamber 2A via the pressure equalizing path 3A.

図2は流体圧力に対する弁部材3、ガイド部21、弁ポート1a及び背圧室2Aの作用を説明する図である。ここで、弁室1A(第1継手管11側)における流体圧力をP1、弁ポート1a(第2継手管12側)における流体圧力をP2、背圧室2Aにおける流体圧力をP3とする。また、弁部材3の背圧室2A側の受圧面積をS1、弁部材3の弁ポート1a側の受圧面積をS2、弁部材3の開口孔3aの最少断面積をS3とする。   FIG. 2 is a diagram for explaining the operation of the valve member 3, the guide portion 21, the valve port 1a, and the back pressure chamber 2A with respect to the fluid pressure. Here, the fluid pressure in the valve chamber 1A (first joint pipe 11 side) is P1, the fluid pressure in the valve port 1a (second joint pipe 12 side) is P2, and the fluid pressure in the back pressure chamber 2A is P3. The pressure receiving area on the back pressure chamber 2A side of the valve member 3 is S1, the pressure receiving area on the valve port 1a side of the valve member 3 is S2, and the minimum sectional area of the opening hole 3a of the valve member 3 is S3.

図2に示すように、弁部材3の背圧室2A側の受圧面積S1は、ガイド部21の内径D1(パッキン34の外径D1)で規定される。また、弁部材3が弁座1bに着座した状態での弁部材3の弁ポート1a側の受圧面積S2は、シール部31のテーパ面31aと弁座1bの接触線の径D2(この実施形態では弁ポート1aの内径D2)で規定される。なお、上記シール部31のテーパ面31aと弁座1bの接触線の径D2を「シール径」という。   As shown in FIG. 2, the pressure receiving area S1 on the back pressure chamber 2A side of the valve member 3 is defined by the inner diameter D1 of the guide portion 21 (the outer diameter D1 of the packing 34). The pressure receiving area S2 on the valve port 1a side of the valve member 3 in a state where the valve member 3 is seated on the valve seat 1b is a diameter D2 of a contact line between the tapered surface 31a of the seal portion 31 and the valve seat 1b (this embodiment). Is defined by the inner diameter D2) of the valve port 1a. The diameter D2 of the contact line between the tapered surface 31a of the seal portion 31 and the valve seat 1b is referred to as “seal diameter”.

次に、弁部材3に作用する流体圧力による力と、流体圧力及び径(受圧面積)の関係について説明する。なお、以下の説明では、面積の変わりに径により説明する。軸線L方向において、弁部材3に対して流体圧力により上向きに働く力をFとすると、
F=P1(D1−D2)+P2(D2−D3)−P3(D1−D3)…(1)
となる。なお、この関係は「D1」を「S1」、「D2」を「S2」、「D3」を「S3」と読み替えることで面積についての関係式となる。以下、同様である。
Next, the relationship between the force due to the fluid pressure acting on the valve member 3, the fluid pressure and the diameter (pressure receiving area) will be described. In the following description, the description is based on the diameter instead of the area. In the direction of the axis L, when F is a force acting upward on the valve member 3 by fluid pressure,
F = P1 (D1-D2) + P2 (D2-D3) -P3 (D1-D3) (1)
It becomes. Note that this relationship becomes an area relational expression by replacing “D1” with “S1”, “D2” with “S2”, and “D3” with “S3”. The same applies hereinafter.

流体が流れている場合はP1≠P2であるので、仮にP2=P3かつD1=D2であれば、式(1)より、
F=P1(D1−D2)+P2(D2−D1)
=(P1−P2)(D1−D2)
=0
となり、弁部材3に差圧による負荷はかからない。
Since P1 ≠ P2 when the fluid is flowing, if P2 = P3 and D1 = D2, then from equation (1),
F = P1 (D1-D2) + P2 (D2-D1)
= (P1-P2) (D1-D2)
= 0
Thus, the load due to the differential pressure is not applied to the valve member 3.

しかし、前記第2の流れの場合、すなわちP2>P1の場合、弁ポート1aから均圧路3Aを介してステッピングモータ6(ケース62)の袋小路状の部分に流体が溜まって圧縮されるので、P3>P2となる。このため、D1=D2であれば、式(1)より、
F=(P2−P3)(D1−D3)…(2)
すなわち、Fは負の値となり、弁部材3に下向きの差圧力が加わる。
However, in the case of the second flow, that is, in the case of P2> P1, fluid is accumulated and compressed from the valve port 1a through the pressure equalizing path 3A to the bag path portion of the stepping motor 6 (case 62). P3> P2. For this reason, if D1 = D2, from equation (1),
F = (P2-P3) (D1-D3) (2)
That is, F has a negative value, and a downward differential pressure is applied to the valve member 3.

これに対して、本発明においては上記の差圧力が略0となるように、D2>D1、すなわちS2>S1となるように設定されている。すなわち、弁ポート1aから均圧路3Aを通してステッピングモータ6のケース62に溜まる流体の圧力と、弁ポート1a内の圧力との差圧を相殺するように設定されている。なお、シール径D2とガイド部21の内径D1の比D2/D1の範囲は、
1.00<D2/D1≦1.05
である。
On the other hand, in the present invention, D2> D1, that is, S2> S1, is set so that the differential pressure is substantially zero. That is, it is set so as to cancel out the differential pressure between the pressure of the fluid accumulated in the case 62 of the stepping motor 6 from the valve port 1a through the pressure equalizing path 3A and the pressure in the valve port 1a. The range of the ratio D2 / D1 between the seal diameter D2 and the inner diameter D1 of the guide portion 21 is as follows.
1.00 <D2 / D1 ≦ 1.05
It is.

第2の流れの場合には、P1<P2となるとともに、前記のようにP2<P3となる。しかし、前記のように略F=0となるようにD2>D1に設定されている。したがって、弁部材3に負荷がかからず、弁開から弁閉とするときも、弁閉から弁開とするときも、いずれの場合も弁部材3を容易に駆動することができる。なお、圧縮コイルバネ54のバネ力は、第2の流れで弁部材3が着座した状態でも、この弁部材3が浮き上がらないような強さに設定されている。   In the case of the second flow, P1 <P2 and P2 <P3 as described above. However, as described above, D2> D1 is set so that approximately F = 0. Therefore, no load is applied to the valve member 3, and the valve member 3 can be easily driven in both cases when the valve is opened and closed and when the valve is closed and opened. The spring force of the compression coil spring 54 is set to such a strength that the valve member 3 does not float even when the valve member 3 is seated in the second flow.

図3は第2実施形態の流量制御弁の要部縦断面図、図4は第3実施形態の流量制御弁の要部縦断面図、図5は第4実施形態の流量制御弁の要部縦断面図、図6は第4実施形態の流量制御弁のリフト量−流量特性を示す図、図7は第5実施形態の流量制御弁の要部縦断面図である。各図は、弁部材及び弁座(弁ハウジング)の部分を示している。以下、第2実施形態乃至第5実施形態の流量制御弁において、弁部材及び弁座の形状以外は第1実施形態の流量制御弁と同一であり、第1実施形態と同様な要素には図1及び図2と同符号を付記して重複する説明は適宜省略する。   FIG. 3 is a longitudinal sectional view of an essential part of the flow control valve of the second embodiment, FIG. 4 is a longitudinal sectional view of an essential part of the flow control valve of the third embodiment, and FIG. 5 is an essential part of the flow control valve of the fourth embodiment. FIG. 6 is a view showing the lift amount-flow rate characteristic of the flow control valve of the fourth embodiment, and FIG. 7 is a vertical cross-sectional view of the main part of the flow control valve of the fifth embodiment. Each figure has shown the part of the valve member and the valve seat (valve housing). Hereinafter, in the flow control valve of the second embodiment to the fifth embodiment, except for the shape of the valve member and the valve seat, it is the same as the flow control valve of the first embodiment. The same reference numerals as those in FIG. 1 and FIG.

図3の第2実施形態は、弁座1bの内側に、上方から下方に(ガイド部21から弁ポート1a側に)向かうにしたがって内径が徐々に小さくなる単一のすり鉢形状の着座面1cを形成したものである。この着座面1cは弁座1bから弁ポート1aまで連接されている。そして、着座面1cと軸線Lとの成す角度は、弁部材3におけるシール部31のテーパ面31aと軸線Lとの成す角度より大きくなっている。これにより、弁閉時には弁部材3のシール部31の外周先端部31bが着座面1cに当接する。そして、弁部材3が着座面1cに着座した状態での弁部材3の弁ポート1a側の受圧面積S2は、上記外周先端部31bと着座面1cの接触線の径(シール径)D2で規定される。この第2実施形態でも、第2の流れの場合のP3>P2によって生じる前記差圧力が0となるように、D2>D1(1.00<D2/D1≦1.05)、すなわちS2>S1となるように設定されている。   In the second embodiment of FIG. 3, a single mortar-shaped seating surface 1c is formed on the inner side of the valve seat 1b from the upper side to the lower side (from the guide portion 21 toward the valve port 1a). Formed. The seating surface 1c is connected from the valve seat 1b to the valve port 1a. The angle formed between the seating surface 1 c and the axis L is larger than the angle formed between the taper surface 31 a of the seal portion 31 and the axis L in the valve member 3. Thus, when the valve is closed, the outer peripheral tip 31b of the seal portion 31 of the valve member 3 comes into contact with the seating surface 1c. The pressure receiving area S2 on the valve port 1a side of the valve member 3 in a state where the valve member 3 is seated on the seating surface 1c is defined by the diameter (seal diameter) D2 of the contact line between the outer peripheral tip 31b and the seating surface 1c. Is done. Also in the second embodiment, D2> D1 (1.00 <D2 / D1 ≦ 1.05), that is, S2> S1 so that the differential pressure generated by P3> P2 in the case of the second flow becomes zero. It is set to become.

この第2実施形態では、シール径D2は弁ポート1aの内径より大きくなっているため、弁ポート1aの弁部材3側に弁ポート1aより径の大きな膨張空間1Bが形成される。したがって、第2の流れの場合に、弁ポート1aから流入する流体がこの膨張空間1Bで膨張して圧力が低下する。このため、均圧路3Aを介して背圧室2Aに導入される流体の圧力を抑えることができ、ステッピングモータ6のケース62内の圧力の影響をさらに低減できる。   In the second embodiment, since the seal diameter D2 is larger than the inner diameter of the valve port 1a, an expansion space 1B having a larger diameter than the valve port 1a is formed on the valve member 3 side of the valve port 1a. Therefore, in the case of the second flow, the fluid flowing in from the valve port 1a expands in the expansion space 1B and the pressure decreases. For this reason, the pressure of the fluid introduced into the back pressure chamber 2A via the pressure equalizing path 3A can be suppressed, and the influence of the pressure in the case 62 of the stepping motor 6 can be further reduced.

図4の第3実施形態は、第2実施形態と同様に、弁座1bの内側に単一のすり鉢形状の着座面1cを形成したものであるが、弁部材3のシール部31′にテーパ面を形成せずに、シール部31′を円柱状にしたものである。この第3実施形態でも、弁閉時にはシール部31′の外周先端部31b′が着座面1cに当接する。そして、弁部材3が着座面1cに着座した状態での弁部材3の弁ポート1a側の受圧面積S2は、外周先端部31b′と着座面1cの接触線の径(シール径)D2で規定される。この第3実施形態でも、第2の流れの場合のP3>P2によって生じる前記差圧力が0となるように、D2>D1(1.00<D2/D1≦1.05)、すなわちS2>S1となるように設定されている。また、この第3実施形態でも、弁ポート1aの弁部材3側に弁ポート1aより径の大きな膨張空間1Bが形成されるので、第2実施形態と同様に、均圧路3Aを介して背圧室2Aに導入される流体の圧力を抑えることができ、ステッピングモータ6のケース62内の圧力の影響を低減できる。   In the third embodiment shown in FIG. 4, as in the second embodiment, a single mortar-shaped seating surface 1c is formed inside the valve seat 1b. However, the seal portion 31 'of the valve member 3 is tapered. The seal portion 31 ′ is formed in a columnar shape without forming a surface. Also in the third embodiment, when the valve is closed, the outer peripheral tip 31b 'of the seal 31' contacts the seating surface 1c. The pressure receiving area S2 on the valve port 1a side of the valve member 3 in a state where the valve member 3 is seated on the seating surface 1c is defined by the diameter (seal diameter) D2 of the contact line between the outer peripheral tip 31b ′ and the seating surface 1c. Is done. Also in the third embodiment, D2> D1 (1.00 <D2 / D1 ≦ 1.05), that is, S2> S1 so that the differential pressure generated by P3> P2 in the case of the second flow becomes zero. It is set to become. Also in the third embodiment, since the expansion space 1B having a diameter larger than that of the valve port 1a is formed on the valve member 3 side of the valve port 1a, the back is provided via the pressure equalizing passage 3A as in the second embodiment. The pressure of the fluid introduced into the pressure chamber 2A can be suppressed, and the influence of the pressure in the case 62 of the stepping motor 6 can be reduced.

図5の第4実施形態は、弁ポート1aは第1実施形態と同様に円柱空洞の形状であり、弁部材3のシール部31の外周面に、軸線Lに対する角度が次第に小さくなる第1テーパ面311、第2テーパ面312及び第3テーパ面313を設けたものである。この第4実施形態では、弁部材3が弁座1bに着座した状態での弁部材3の弁ポート1a側の受圧面積S2は、第1テーパ面311と弁座1bの接触線の径(シール径)D2(この実施形態では弁ポート1aの内径D2)で規定される。この第4実施形態でも、第2の流れの場合のP3>P2によって生じる前記差圧力が0となるように、D2>D1(1.00<D2/D1≦1.05)、すなわちS2>S1となるように設定されている。   In the fourth embodiment of FIG. 5, the valve port 1 a has a cylindrical cavity shape as in the first embodiment, and the first taper is formed on the outer peripheral surface of the seal portion 31 of the valve member 3 so that the angle with respect to the axis L gradually decreases. A surface 311, a second tapered surface 312, and a third tapered surface 313 are provided. In the fourth embodiment, the pressure receiving area S2 on the valve port 1a side of the valve member 3 in a state where the valve member 3 is seated on the valve seat 1b is the diameter of the contact line between the first tapered surface 311 and the valve seat 1b (seal (Diameter) D2 (in this embodiment, the inner diameter D2 of the valve port 1a). Also in the fourth embodiment, D2> D1 (1.00 <D2 / D1 ≦ 1.05), that is, S2> S1 so that the differential pressure generated by P3> P2 in the case of the second flow becomes zero. It is set to become.

また、この第4実施形態の流量制御弁における弁部材3の着座位置からのリフト量と流量の関係は図6の実線のグラフのようになる。破線のグラフは一つのテーパ面(1段テーパ)の場合であり、第4実施形態のように角度の異なる第1テーパ面311、第2テーパ面312及び第3テーパ面313により、非線形な流量制御が可能となる。   The relationship between the lift amount from the seating position of the valve member 3 and the flow rate in the flow rate control valve of the fourth embodiment is as shown by the solid line graph in FIG. The broken line graph shows the case of one taper surface (one-step taper), and the non-linear flow rate is reduced by the first taper surface 311, the second taper surface 312 and the third taper surface 313 having different angles as in the fourth embodiment. Control becomes possible.

図7の第5実施形態は、図3の第2実施形態における弁座1bの内側の着座面1cを多段にしたものである。第1テーパ面1c1、第2テーパ面1c2及び第3テーパ面1c3が形成され、各テーパ面と軸線Lとの成す角度は第1テーパ面1c1、第2テーパ面1c2及び第3テーパ面1c3の順に大きくなっている。また、この第5実施形態では第1テーパ面1c1が着座面であり、弁閉時には弁部材3のシール部31の外周先端部31bが第1テーパ面1c1に当接する。そして、弁部材3が第1テーパ面1c1に着座した状態での弁部材3の弁ポート1a側の受圧面積S2は、上記外周先端部31bと第1テーパ面1c1の接触線の径(シール径)D2で規定される。この第5実施形態でも、第2の流れの場合のP3>P2によって生じる前記差圧力が0となるように、D2>D1、すなわちS2>S1となるように設定されている。なお、この第5実施形態における着座位置からのリフト量と流量の関係は図6の実線のグラフと同様になる。   In the fifth embodiment of FIG. 7, the seating surface 1c inside the valve seat 1b in the second embodiment of FIG. A first taper surface 1c1, a second taper surface 1c2, and a third taper surface 1c3 are formed, and the angle formed between each taper surface and the axis L is that of the first taper surface 1c1, the second taper surface 1c2, and the third taper surface 1c3. It becomes larger in order. In the fifth embodiment, the first tapered surface 1c1 is a seating surface, and the outer peripheral tip 31b of the seal portion 31 of the valve member 3 contacts the first tapered surface 1c1 when the valve is closed. The pressure receiving area S2 on the valve port 1a side of the valve member 3 in a state where the valve member 3 is seated on the first tapered surface 1c1 is the diameter of the contact line (seal diameter) between the outer peripheral tip 31b and the first tapered surface 1c1. ) It is defined by D2. Also in the fifth embodiment, D2> D1, that is, S2> S1, is set so that the differential pressure generated by P3> P2 in the case of the second flow becomes zero. The relationship between the lift amount from the seating position and the flow rate in the fifth embodiment is the same as the solid line graph of FIG.

図8は各実施形態におけるシール部材の変形例を示す図である。図8(A)の変形例1は、弁部材3における円柱部32の円環状の溝32a内に、「シール部材」として、Oリング状のパッキン35と、フッ素樹脂、例えばPTFE(ポリテトラフルオロエチレン)、PFA(ペルフルオロアルコキシフッ素樹脂)等のカバー36を装着したものである。なお、パッキン35はリング状であれば、断面が四角形のものでもよい。また、パッキン35及び各実施形態のパッキン34は、弾性部材、例えばNBR、H−NBR、CR、あるいはカバー36と同様にPTFE、PFA等のフッ素樹脂でもよい。カバー36は縦断面がコ字状の形状をしており、パッキン35を外側から覆うようにして設けられ、このカバー36の摺動部36aをガイド部21の内周面に摺接するように配置されている。そして、この摺動部36aにより円柱部32の外周面とガイド部21の内周面(ガイド面)との間がシールされる。カバー36はPTFE製であり、ガイド部21との間の摺動抵抗が低減される。   FIG. 8 is a view showing a modification of the seal member in each embodiment. 8A, in the annular groove 32a of the cylindrical portion 32 in the valve member 3, an O-ring packing 35 and a fluororesin such as PTFE (polytetrafluorocarbon) are used as “seal members”. A cover 36 such as ethylene) or PFA (perfluoroalkoxy fluororesin) is attached. The packing 35 may have a rectangular cross section as long as it has a ring shape. Further, the packing 35 and the packing 34 of each embodiment may be made of an elastic member such as NBR, H-NBR, CR, or a fluororesin such as PTFE or PFA similarly to the cover 36. The cover 36 has a U-shaped longitudinal section, is provided so as to cover the packing 35 from the outside, and is arranged so that the sliding portion 36 a of the cover 36 is in sliding contact with the inner peripheral surface of the guide portion 21. Has been. The sliding portion 36 a seals between the outer peripheral surface of the cylindrical portion 32 and the inner peripheral surface (guide surface) of the guide portion 21. The cover 36 is made of PTFE, and sliding resistance with the guide portion 21 is reduced.

図8(B)の変形例2は、弁部材3における円柱部32に円環状の段部32bを形成し、この段部32bに、「シール部材」として、フッ素樹脂、例えばPTFE、PFA製の一対のLパッキン37,37と、このLパッキン37,37で挟持した補強板38を装着し、これらLパッキン37,37と補強板38を、段部32bに嵌合する固定金具39で固定したものである。Lパッキン37,37により、円柱部32の外周面とガイド部21の内周面(ガイド面)との間がシールされる。Lパッキン37,37はPTFE製であり、ガイド部21との間の摺動抵抗が低減される。なお、シール部材は実施形態及び上記変形例に限らず、例えばピストンリングでもよい。   8B, an annular step 32b is formed in the cylindrical portion 32 of the valve member 3, and a fluororesin such as PTFE or PFA is used as the “seal member” on the step 32b. A pair of L packings 37, 37 and a reinforcing plate 38 sandwiched between the L packings 37, 37 are mounted, and the L packings 37, 37 and the reinforcing plate 38 are fixed by a fixing metal fitting 39 fitted to the step portion 32b. Is. The L packings 37 and 37 seal between the outer peripheral surface of the cylindrical portion 32 and the inner peripheral surface (guide surface) of the guide portion 21. The L packings 37 and 37 are made of PTFE, and sliding resistance with the guide portion 21 is reduced. Note that the seal member is not limited to the embodiment and the modified example, and may be a piston ring, for example.

図9は第6実施形態の流量制御弁の要部縦断面図であり、前記各実施形態の流量制御弁において、弁部材及びガイド部の構造以外は第1実施形態の流量制御弁と同一であり、第1実施形態と同様な要素には図1及び図2と同符号を付記して重複する説明は適宜省略する。   FIG. 9 is a longitudinal sectional view of an essential part of the flow control valve of the sixth embodiment. In the flow control valve of each of the above embodiments, the structure is the same as that of the first embodiment except for the structure of the valve member and the guide part. The same elements as those in the first embodiment are denoted by the same reference numerals as those in FIGS.

この第6実施形態は、シール部材を円筒状のガイド部21側に設けたものである。弁部材3の円柱部32には溝はなく、ガイド部21の内側に円環状の溝21aが形成されていする。そして、この溝21a内に、「シール部材」として、Oリング状のパッキン24と、フッ素樹脂、例えばPTFE(ポリテトラフルオロエチレン)、PFA(ペルフルオロアルコキシフッ素樹脂)等のカバー25を装着したものである。なお、パッキン24はリング状であれば、断面が四角形のものでもよい。カバー25は縦断面がコ字状の形状をしており、パッキン24を内側から覆うようにして設けられ、このカバー25の内周側の摺動部25aを円柱部32の外周面に摺接するように配置されている。そして、この摺動部25aにより円柱部32の外周面とガイド部21の内周面(ガイド面)との間がシールされる。カバー25はPTFE製であり、円柱部32との間の摺動抵抗が低減される。この実施形態のシール部材は図8(A)の変形例1と類似した構成であるが、これに限らず、ガイド部21の溝21a内に配設するシール部材としては、第1乃至第5実施形態のようにOリング状のパッキンのみでもよいし、図8(B)の変形例2のようなLパッキンと補強板で構成したものでもよい。   In the sixth embodiment, a seal member is provided on the cylindrical guide portion 21 side. There is no groove in the cylindrical part 32 of the valve member 3, and an annular groove 21 a is formed inside the guide part 21. In this groove 21a, an O-ring packing 24 and a cover 25 made of a fluororesin such as PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxy fluororesin), etc. are mounted as “seal members”. is there. The packing 24 may have a rectangular cross section as long as it has a ring shape. The cover 25 has a U-shaped longitudinal section, and is provided so as to cover the packing 24 from the inside. The sliding portion 25 a on the inner peripheral side of the cover 25 is in sliding contact with the outer peripheral surface of the cylindrical portion 32. Are arranged as follows. The sliding portion 25a seals between the outer peripheral surface of the cylindrical portion 32 and the inner peripheral surface (guide surface) of the guide portion 21. The cover 25 is made of PTFE, and sliding resistance with the cylindrical portion 32 is reduced. The seal member of this embodiment has a configuration similar to that of the first modification shown in FIG. 8A. However, the present invention is not limited to this, and the seal members disposed in the groove 21a of the guide portion 21 are first to fifth. Only an O-ring-shaped packing as in the embodiment may be used, or an L-packing and a reinforcing plate as in Modification 2 of FIG. 8B may be used.

なお、実施形態では、弁部材を駆動する駆動アクチュエータがステッピングモータである場合を例に説明したが、本発明における駆動アクチュエータとしては、例えば電磁コイルとプランジャで弁部材を駆動するようなものでもよい。この場合、例えばプランジャを密閉収容するプランジャチューブ等が「密閉ケース」に対応する。   In the embodiment, the case where the drive actuator that drives the valve member is a stepping motor has been described as an example. However, as the drive actuator in the present invention, for example, the valve member may be driven by an electromagnetic coil and a plunger. . In this case, for example, a plunger tube that hermetically accommodates the plunger corresponds to the “sealed case”.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention.

1 弁ハウジング
1A 弁室
11 第1継手管
12 第2継手管
1a 弁ポート
2 弁ガイド部材
21 ガイド部
2A 背圧室
3 弁部材
3A 均圧路
31 シール部
32 円柱部
4 支持部材
5 弁ホルダ
6 ステッピングモータ(駆動アクチュエータ)
61 ロータ軸
62 ケース(密閉ケース)
63 マグネットロータ
64 ステータコイル
DESCRIPTION OF SYMBOLS 1 Valve housing 1A Valve chamber 11 1st joint pipe 12 2nd joint pipe 1a Valve port 2 Valve guide member 21 Guide part 2A Back pressure chamber 3 Valve member 3A Pressure equalization path 31 Seal part 32 Column part 4 Support member 5 Valve holder 6 Stepping motor (drive actuator)
61 Rotor shaft 62 Case (sealed case)
63 Magnet rotor 64 Stator coil

Claims (4)

弁ハウジング内に配設された円筒形状のガイド部と、前記ガイド部内に摺動可能に配設されるとともに弁座により画定される弁ポートを開閉する弁部材と、前記弁部材を前記ガイド部の軸線方向に駆動する駆動アクチュエータと、を備え、前記弁部材を軸線方向に移動して前記弁ポートを開閉するとともに、前記弁部材に対する前記弁ポートとは反対側の背圧室と該弁ポートとを均圧路で導通して、該背圧室の流体圧力と弁ポートの流体圧力との圧力バランスをとるようにした流量制御弁であって、
前記弁部材における前記弁ポート側の受圧面積を該弁部材における前記背圧室側の受圧面積よりも大きくしたことを特徴とする流量制御弁。
A cylindrical guide portion disposed in the valve housing, a valve member slidably disposed in the guide portion and opening and closing a valve port defined by a valve seat, and the valve member in the guide portion A drive actuator that drives the valve member in the axial direction, opens and closes the valve port by moving the valve member in the axial direction, and a back pressure chamber opposite to the valve port with respect to the valve member and the valve port And a flow control valve that balances the fluid pressure in the back pressure chamber and the fluid pressure in the valve port.
A flow rate control valve characterized in that a pressure receiving area on the valve port side in the valve member is larger than a pressure receiving area on the back pressure chamber side in the valve member.
前記弁部材は前記ガイド部内に挿通される円柱部を有し、
前記ガイド部または前記円柱部に、該ガイド部の内周面と該円柱部の外周面との間をシールするシール部材を備えたことを特徴とする請求項1に記載の流量制御弁。
The valve member has a cylindrical portion inserted into the guide portion,
The flow rate control valve according to claim 1, wherein a seal member that seals between an inner peripheral surface of the guide portion and an outer peripheral surface of the cylindrical portion is provided in the guide portion or the cylindrical portion.
前記シール部材が、リング状のパッキンと、該パッキンを覆うカバーとで構成され、該カバーの摺動部を前記ガイド部の内周面または前記円柱部の外周面に摺接するように配置されていることを特徴とする請求項2に記載の流量制御弁。   The seal member includes a ring-shaped packing and a cover that covers the packing, and the sliding portion of the cover is disposed so as to be in sliding contact with the inner peripheral surface of the guide portion or the outer peripheral surface of the columnar portion. The flow control valve according to claim 2, wherein: 前記弁座の内側に、前記ガイド部から前記弁ポートに向かうにしたがって内径が徐々に小さくなって前記弁ポートまで連接される着座面が形成され、弁閉時の、前記弁部材の先端部と前記着座面との接触線の内側に前記弁ポートより径の大きな膨張空間を形成するようにしたことを特徴とする請求項1乃至3のいずれか一項に記載の流量制御弁。   A seating surface is formed on the inner side of the valve seat so that the inner diameter gradually decreases from the guide portion toward the valve port and is connected to the valve port. The flow control valve according to any one of claims 1 to 3, wherein an expansion space having a diameter larger than that of the valve port is formed inside a contact line with the seating surface.
JP2015092811A 2015-04-30 2015-04-30 Flow control valve Pending JP2016211600A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015092811A JP2016211600A (en) 2015-04-30 2015-04-30 Flow control valve
CN201610243977.5A CN106090355B (en) 2015-04-30 2016-04-18 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092811A JP2016211600A (en) 2015-04-30 2015-04-30 Flow control valve

Publications (1)

Publication Number Publication Date
JP2016211600A true JP2016211600A (en) 2016-12-15

Family

ID=57549889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092811A Pending JP2016211600A (en) 2015-04-30 2015-04-30 Flow control valve

Country Status (2)

Country Link
JP (1) JP2016211600A (en)
CN (1) CN106090355B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038276A (en) 2017-09-29 2019-04-08 가부시기가이샤 후지고오키 Flow control valve
JP2019218996A (en) * 2018-06-19 2019-12-26 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2019218995A (en) * 2018-06-19 2019-12-26 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2020133737A (en) * 2019-02-19 2020-08-31 タイム技研株式会社 Flow control valve
JP2022015164A (en) * 2020-07-08 2022-01-21 株式会社不二工機 Motor valve
JP2022517018A (en) * 2019-04-02 2022-03-03 浙江三花制冷集団有限公司 Solenoid valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091369B (en) * 2017-05-10 2023-06-30 宁波兴茂电子科技有限公司 Pilot valve flow characteristic testing device and application method thereof
JP6909756B2 (en) * 2018-04-19 2021-07-28 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
CN115370754A (en) * 2021-05-17 2022-11-22 丹佛斯有限公司 Flow control valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518622A (en) * 1974-07-10 1976-01-23 Hirose Barubu Kogyo Kk Sutotsupubarubuno bentaikozo
JPS6384463U (en) * 1986-11-25 1988-06-02
JPH09152033A (en) * 1995-11-30 1997-06-10 Ntn Corp Seal ring, its manufacture, and seal-ring structure
JP2011106407A (en) * 2009-11-19 2011-06-02 Advics Co Ltd Seal structure of piston, piston pump using the same, and brake fluid pressure control device
JP2014196785A (en) * 2013-03-29 2014-10-16 株式会社鷺宮製作所 Flow control valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29706717U1 (en) * 1997-04-14 1997-07-17 Bürkert Werke GmbH & Co., 74653 Ingelfingen Broadband valve
JP2000320711A (en) * 1999-03-08 2000-11-24 Saginomiya Seisakusho Inc Electric control valve
JP5875777B2 (en) * 2011-03-31 2016-03-02 株式会社不二工機 Motorized valve
JP5701825B2 (en) * 2012-08-08 2015-04-15 株式会社鷺宮製作所 Flow control valve
JP2015038368A (en) * 2013-08-19 2015-02-26 株式会社鷺宮製作所 Flow control valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518622A (en) * 1974-07-10 1976-01-23 Hirose Barubu Kogyo Kk Sutotsupubarubuno bentaikozo
JPS6384463U (en) * 1986-11-25 1988-06-02
JPH09152033A (en) * 1995-11-30 1997-06-10 Ntn Corp Seal ring, its manufacture, and seal-ring structure
JP2011106407A (en) * 2009-11-19 2011-06-02 Advics Co Ltd Seal structure of piston, piston pump using the same, and brake fluid pressure control device
JP2014196785A (en) * 2013-03-29 2014-10-16 株式会社鷺宮製作所 Flow control valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038276A (en) 2017-09-29 2019-04-08 가부시기가이샤 후지고오키 Flow control valve
KR102406952B1 (en) 2017-09-29 2022-06-13 가부시기가이샤 후지고오키 Flow control valve
JP2019218996A (en) * 2018-06-19 2019-12-26 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2019218995A (en) * 2018-06-19 2019-12-26 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2020133737A (en) * 2019-02-19 2020-08-31 タイム技研株式会社 Flow control valve
JP7127838B2 (en) 2019-02-19 2022-08-30 タイム技研株式会社 flow control valve
JP2022517018A (en) * 2019-04-02 2022-03-03 浙江三花制冷集団有限公司 Solenoid valve
JP7124229B2 (en) 2019-04-02 2022-08-23 浙江三花制冷集団有限公司 electric valve
JP2022015164A (en) * 2020-07-08 2022-01-21 株式会社不二工機 Motor valve
JP7160369B2 (en) 2020-07-08 2022-10-25 株式会社不二工機 electric valve

Also Published As

Publication number Publication date
CN106090355A (en) 2016-11-09
CN106090355B (en) 2018-07-03

Similar Documents

Publication Publication Date Title
JP2016211600A (en) Flow control valve
JP5860429B2 (en) Flow control valve
CN107631033B (en) Electric valve
CN108779869B (en) Electric valve and refrigeration cycle system
JP7113505B2 (en) electric valve
WO2017154346A1 (en) Motor operated valve
JP6889685B2 (en) Electric valve and refrigeration cycle system
JP2013224708A (en) Motor-operated valve
JP5973197B2 (en) Piston-type working fluid pressure actuator and control valve
JP2016080115A (en) Fluid control valve
JP2017180639A (en) Seal structure and motor valve
JP2016164435A (en) Motor valve
JP6722274B2 (en) Motorized valve and refrigeration cycle system
JP2018105387A (en) Electrical drive valve
KR102394011B1 (en) Valve device for controlling media flows of any type
JP7141484B2 (en) Electric valve and refrigeration cycle system
JP6952015B2 (en) Electric valve and refrigeration cycle system
JP2013137094A (en) Solenoid valve and pilot type solenoid valve
JP2017223293A (en) Valve device
JP5292231B2 (en) Control valve
JP2017180638A (en) Motor valve
JP6945504B2 (en) Electric valve and refrigeration cycle system
ITGE20100102A1 (en) ELETTROVALVOLA
JP2015007443A (en) Pressure operation valve
JP2022015164A (en) Motor valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180213