JP2016208667A - Overcurrent protective device - Google Patents

Overcurrent protective device Download PDF

Info

Publication number
JP2016208667A
JP2016208667A JP2015087781A JP2015087781A JP2016208667A JP 2016208667 A JP2016208667 A JP 2016208667A JP 2015087781 A JP2015087781 A JP 2015087781A JP 2015087781 A JP2015087781 A JP 2015087781A JP 2016208667 A JP2016208667 A JP 2016208667A
Authority
JP
Japan
Prior art keywords
current
temperature
measurement value
value
overcurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015087781A
Other languages
Japanese (ja)
Inventor
今井 誠
Makoto Imai
誠 今井
勝久 立川
Katsuhisa Tachikawa
勝久 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015087781A priority Critical patent/JP2016208667A/en
Publication of JP2016208667A publication Critical patent/JP2016208667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an overcurrent protective device capable of correctly determining an overcurrent, if a current measurement value becomes abnormal.SOLUTION: The overcurrent protective device includes: a temperature measurement unit which measures the temperature of an element in an inverter, to output the temperature measurement value of the element; a load current measurement unit which measures a load current flowing between the inverter and a load, to output a current measurement value of the load current; and a microcomputer which controls the electric conduction of the element on the basis of the current measurement value, and estimates the element temperature from the current measurement value to derive the temperature estimation value of the element. The microcomputer determines that the electric conduction current of the element is an overcurrent when the current measurement value is a predetermined threshold or lower and the temperature measurement value is different from the temperature estimation value by a predetermined difference or greater.SELECTED DRAWING: Figure 1

Description

本発明は、過電流保護装置に関する。   The present invention relates to an overcurrent protection device.

従来、トランジスタの保護回路において、ドレイン電流を測定して入力される信号レベルが所定の基準電圧を超えるとき、過電流が検出されたと判定する技術が知られている(例えば、特許文献1を参照)。   2. Description of the Related Art Conventionally, in a transistor protection circuit, a technique for determining that an overcurrent has been detected when a signal level input by measuring a drain current exceeds a predetermined reference voltage is known (for example, see Patent Document 1). ).

特開平07−84655号公報Japanese Patent Laid-Open No. 07-84655

しかしながら、上述の従来技術では、電流の測定値が異常になると、基準電圧と比較される信号レベルも異常になるので、過電流を正しく判定することができない。そこで、電流測定値が異常になっても、過電流を正しく判定できる、過電流保護装置の提供を目的とする。   However, in the above-described prior art, when the measured value of the current becomes abnormal, the signal level compared with the reference voltage also becomes abnormal, so that the overcurrent cannot be correctly determined. Therefore, an object of the present invention is to provide an overcurrent protection device that can correctly determine an overcurrent even if a current measurement value becomes abnormal.

一つの案では、
インバータ内の素子の温度を測定し、前記素子の温度測定値を出力する温度測定部と、
前記インバータと負荷との間に流れる負荷電流を測定し、前記負荷電流の電流測定値を出力する負荷電流測定部と、
前記電流測定値に基づいて前記素子の通電を制御し、且つ、前記電流測定値から前記素子の温度を推定して前記素子の温度推定値を導出する、マイクロコンピュータとを備え、
前記マイクロコンピュータは、前記電流測定値が所定の閾値以下、且つ、前記温度測定値と前記温度推定値とが所定の差以上乖離した場合、前記素子の通電電流を過電流と判定する、過電流保護装置が提供される。
One idea is that
A temperature measuring unit that measures the temperature of the element in the inverter and outputs a temperature measurement value of the element;
A load current measurement unit that measures a load current flowing between the inverter and a load and outputs a current measurement value of the load current;
A microcomputer that controls energization of the element based on the current measurement value, and estimates the temperature of the element from the current measurement value to derive a temperature estimation value of the element;
The microcomputer determines an energization current of the element as an overcurrent when the measured current value is equal to or less than a predetermined threshold value and the measured temperature value and the estimated temperature value are more than a predetermined difference. A protection device is provided.

一態様によれば、前記電流測定値が異常になっても、前記温度測定値と前記温度推定値との差が考慮されるので、過電流を正しく判定することができる。   According to one aspect, even if the current measurement value becomes abnormal, the difference between the temperature measurement value and the temperature estimation value is taken into account, so that an overcurrent can be correctly determined.

過電流保護装置を備える駆動システムの構成の一例を示す図である。It is a figure which shows an example of a structure of a drive system provided with an overcurrent protection apparatus.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、過電流保護装置1を備える駆動システムの構成の一例を示す図である。図1の駆動システムは、モータ10と、モータ10を駆動するインバータ30と、過電流保護装置1とを備える。過電流保護装置1は、インバータ30内の素子を過電流から保護する装置である。   FIG. 1 is a diagram illustrating an example of a configuration of a drive system including an overcurrent protection device 1. The drive system of FIG. 1 includes a motor 10, an inverter 30 that drives the motor 10, and an overcurrent protection device 1. The overcurrent protection device 1 is a device that protects elements in the inverter 30 from overcurrent.

インバータ30は、三相式のモータ10を駆動する駆動回路の一例である。インバータ30は、ハイサイドの素子とローサイドの素子とが直列に接続される直列回路を、三相式のモータ10の相数と同数の三個、並列に備える。第一相の直列回路は、中間ノード37に対してハイサイドの電源電位40側に設けられた素子31と、中間ノード37に対してローサイドのグランド電位41側に設けられた素子32とを有する。同様に、第二相の直列回路は、中間ノード38に対してハイサイドの素子33と、中間ノード38に対してローサイドの素子34とを有し、第三相の直列回路は、中間ノード39に対してハイサイドの素子35と、中間ノード39に対してローサイドの素子36とを有する。   The inverter 30 is an example of a drive circuit that drives the three-phase motor 10. The inverter 30 includes a series circuit in which a high-side element and a low-side element are connected in series, three in number, which are the same as the number of phases of the three-phase motor 10. The first-phase series circuit includes an element 31 provided on the high-side power supply potential 40 side with respect to the intermediate node 37 and an element 32 provided on the low-side ground potential 41 side with respect to the intermediate node 37. . Similarly, the second-phase series circuit includes a high-side element 33 with respect to the intermediate node 38 and a low-side element 34 with respect to the intermediate node 38, and the third-phase series circuit includes an intermediate node 39. In contrast, a high-side element 35 and a low-side element 36 with respect to the intermediate node 39 are included.

各素子31−36は、マイクロコンピュータ50から供給される駆動信号に従ってオンオフするスイッチング素子である。スイッチング素子の具体例として、還流ダイオードが並列に接続されたIGBT等のトランジスタが挙げられる。   Each of the elements 31 to 36 is a switching element that is turned on / off according to a drive signal supplied from the microcomputer 50. As a specific example of the switching element, a transistor such as an IGBT having a reflux diode connected in parallel can be given.

モータ10は、中間ノード37,38,39に接続される誘導性の負荷の一例であり、例えば、車両を動かす動力源である。   The motor 10 is an example of an inductive load connected to the intermediate nodes 37, 38, and 39, and is a power source that moves the vehicle, for example.

過電流保護装置1は、例えば、温度測定部44と、負荷電流測定部20と、マイクロコンピュータ50とを備える。   The overcurrent protection device 1 includes, for example, a temperature measurement unit 44, a load current measurement unit 20, and a microcomputer 50.

温度測定部44は、インバータ30内の特定の素子の温度を測定し、当該特定の素子の温度測定値Tsを出力する。インバータ30内の特定の素子とは、素子31−36の全ての素子でもよいし、素子31−36のうちの一部の素子でもよい。   The temperature measurement unit 44 measures the temperature of a specific element in the inverter 30 and outputs a temperature measurement value Ts of the specific element. The specific element in the inverter 30 may be all of the elements 31 to 36 or a part of the elements 31 to 36.

温度測定部44は、例えば、温度測定部44が設けられているチップに形成されている素子(つまり、温度測定部44と同一チップ上の素子)の温度を測定し、その温度測定した素子の温度測定値Tsを表す素子温度信号を出力する。例えば、素子31の温度測定値Tsを出力する温度測定部44は、素子31と同一チップ上に設けられている。温度測定部44は同一チップ上の素子の温度を測定することにより、温度測定値Tsの測定精度を高めることができる。温度測定部44は、素子31−36の全ての素子に対して設けられてもよいし、素子31−36のうちの一部の素子に対して設けられてもよい。   For example, the temperature measurement unit 44 measures the temperature of an element (that is, an element on the same chip as the temperature measurement unit 44) formed on the chip on which the temperature measurement unit 44 is provided, and the temperature measurement element 44 An element temperature signal representing the temperature measurement value Ts is output. For example, the temperature measurement unit 44 that outputs the temperature measurement value Ts of the element 31 is provided on the same chip as the element 31. The temperature measurement unit 44 can increase the measurement accuracy of the temperature measurement value Ts by measuring the temperature of the elements on the same chip. The temperature measurement unit 44 may be provided for all of the elements 31-36, or may be provided for some of the elements 31-36.

負荷電流測定部20は、インバータ30とモータ10との間に流れる負荷電流Imを測定し、負荷電流Imの電流測定値Imaを出力する。負荷電流測定部20は、例えば、インバータ30とモータ10との間を結ぶ電流配線をモニタし、電流測定値Imaを表す負荷電流信号を出力する電流センサである。   The load current measuring unit 20 measures a load current Im flowing between the inverter 30 and the motor 10 and outputs a current measurement value Ima of the load current Im. The load current measurement unit 20 is, for example, a current sensor that monitors a current wiring connecting the inverter 30 and the motor 10 and outputs a load current signal representing the current measurement value Ima.

マイクロコンピュータ50は、電流測定値Imaに基づいてインバータ30内の各素子31−36の通電を制御し、且つ、電流測定値Imaからインバータ30内の各素子31−36の温度を推定して各素子31−36の温度推定値Teを導出する。負荷電流Imは各素子31−36を流れるので、各素子31−36の通電電流Icは、負荷電流Imが大きくなるほど大きくなる。一方、各素子31−36の温度は、各素子31−36の通電電流Icが大きくなるほど高くなる。つまり、各素子31−36の温度は、負荷電流Imの電流値と相関する。また、各素子31−36の通電は電流測定値Imaに基づいて制御されるので、各素子31−36の通電電流Icの通電時間及び電流値は、電流測定値Imaに応じて決定される。したがって、マイクロコンピュータ50は、負荷電流Imの電流測定値Imaから各素子31−36の温度を推定でき、各素子31−36の温度推定値Teを導出できる。   The microcomputer 50 controls energization of each element 31-36 in the inverter 30 based on the current measurement value Ima, and estimates the temperature of each element 31-36 in the inverter 30 from the current measurement value Ima. The temperature estimated value Te of the elements 31-36 is derived. Since the load current Im flows through each element 31-36, the energization current Ic of each element 31-36 increases as the load current Im increases. On the other hand, the temperature of each element 31-36 increases as the conduction current Ic of each element 31-36 increases. That is, the temperature of each element 31-36 correlates with the current value of the load current Im. In addition, since the energization of each element 31-36 is controlled based on the current measurement value Ima, the energization time and the current value of the energization current Ic of each element 31-36 are determined according to the current measurement value Ima. Therefore, the microcomputer 50 can estimate the temperature of each element 31-36 from the measured current value Ima of the load current Im, and can derive the estimated temperature value Te of each element 31-36.

次に、マイクロコンピュータ50が電流測定値Imaに基づいて各素子31−36の通電を制御している正常時に、負荷電流測定部20の異常により、電流測定値Imaが異常値(例えば、零)に低下する故障が発生した場合を考える。   Next, when the microcomputer 50 controls the energization of each element 31-36 based on the current measurement value Ima, the current measurement value Ima becomes an abnormal value (for example, zero) due to an abnormality of the load current measurement unit 20. Let us consider a case in which a failure that decreases rapidly occurs.

マイクロコンピュータ50は、フィードバック入力された電流測定値Imaの低下が検出されると、実際の負荷電流Imが増加するように負のフィードバック制御を行って、各素子31−36の通電を制御する。したがって、当該故障が発生すると、各素子31−36を流れる通電電流Icは、正常時よりも増加し始めるので、各素子31−36の温度の実測値である温度測定値Tsも、正常時よりも上昇し始める。しかしながら、負荷電流Imが増加し始めても、電流測定値Imaは当該故障により異常値に低下したままである。したがって、マイクロコンピュータ50は、電流測定値Imaのフィードバック入力により、負荷電流Imが更に増加するように各素子31−36の通電を制御する。その結果、各素子31−36を流れる通電電流Icは、過大になり(すなわち、過電流が各素子31−36に流れ)、各素子31−36の温度測定値Tsは、更に上昇することになる。   When the microcomputer 50 detects a decrease in the current measurement value Ima input by feedback, the microcomputer 50 performs negative feedback control so that the actual load current Im increases, thereby controlling the energization of each element 31-36. Therefore, when the failure occurs, the energization current Ic flowing through each element 31-36 starts to increase compared to the normal time, so that the temperature measurement value Ts that is an actual measurement value of the temperature of each element 31-36 is also higher than the normal time. Also starts to rise. However, even if the load current Im starts to increase, the current measurement value Ima remains lowered to an abnormal value due to the failure. Therefore, the microcomputer 50 controls energization of each element 31-36 so that the load current Im further increases by feedback input of the current measurement value Ima. As a result, the energization current Ic flowing through each element 31-36 becomes excessive (that is, the overcurrent flows through each element 31-36), and the temperature measurement value Ts of each element 31-36 further increases. Become.

一方、マイクロコンピュータ50は、電流測定値Imaから各素子31−36の温度を推定するので、当該故障の発生時に電流測定値Imaが異常値(例えば、零)に低下することにより、各素子31−36の実際の温度よりも低い温度推定値Teを導出する。つまり、温度推定値Teは、正常時よりも低下し、温度測定値Tsと乖離する。   On the other hand, since the microcomputer 50 estimates the temperature of each element 31-36 from the current measurement value Ima, the current measurement value Ima drops to an abnormal value (for example, zero) when the failure occurs, so that each element 31-31. A temperature estimate Te lower than the actual temperature of -36 is derived. That is, the temperature estimated value Te is lower than that in the normal state and deviates from the temperature measured value Ts.

そこで、マイクロコンピュータ50は、電流測定値Imaが所定の閾値Ith以下に低下し、且つ、インバータ30内の素子の温度測定値Tsと当該素子の温度推定値Teとが所定の差以上乖離した場合、当該素子を流れる通電電流Icを過電流と判定する。この判定方法によれば、電流測定値Imaが異常になっても、温度測定値Tsと温度推定値Teとの差が考慮されるので、過電流を正しく判定することができる。   Therefore, the microcomputer 50 reduces the current measurement value Ima to a predetermined threshold value Ith or less and the temperature measurement value Ts of the element in the inverter 30 and the temperature estimation value Te of the element deviate by a predetermined difference or more. The energization current Ic flowing through the element is determined as an overcurrent. According to this determination method, even if the current measurement value Ima becomes abnormal, the difference between the temperature measurement value Ts and the temperature estimation value Te is taken into account, so that the overcurrent can be correctly determined.

なお、閾値Ithは、零よりも大きな値である。また、インバータ30内の各素子31−36のうち、温度測定値Tsと温度推定値Teとの比較が行われるのは、一部の素子でもよいし全部の素子でもよい。   The threshold value Ith is a value larger than zero. Of the elements 31-36 in the inverter 30, the measured temperature value Ts and the estimated temperature value Te may be compared with some or all elements.

また、マイクロコンピュータ50は、このように温度測定値Tsと温度推定値Teとを比較する機能を有するので、過電流の判定ばらつき範囲を低減できる。過電流の判定ばらつき範囲とは、通電電流Icが過電流と判定されない最も低い下限電流値(判定ばらつき下限)と通電電流Icが過電流と判定されない最も高い上限電流値(判定ばらつき上限)との間の異常電流域である。   Further, since the microcomputer 50 has the function of comparing the temperature measurement value Ts and the temperature estimation value Te in this way, the overcurrent determination variation range can be reduced. The overcurrent determination variation range refers to the lowest lower limit current value (determination variation lower limit) at which the energization current Ic is not determined to be an overcurrent and the highest upper limit current value (determination variation upper limit) at which the energization current Ic is not determined to be an overcurrent. It is an abnormal current region between.

また、マイクロコンピュータ50は、インバータ30内の少なくとも一つの素子の通電電流Icを過電流と判定した場合、電流測定値Imaに基づいて各素子31−36の通電を制御することを中止する。そして、マイクロコンピュータ50は、各素子31−36の通電電流Icの電流値を正常電流域に低下させる予め決めらた駆動信号を供給することによって、各素子31−36の通電を制御することを開始する。正常電流域とは、電流値が判定ばらつき下限よりも低い常用電流域である。マイクロコンピュータ50は、このような制御を開始することにより、各素子31−36を過電流から保護して正常電流域で継続的に作動でき、各素子31−36を異常電流域で動作させることによる寿命低下を回避できる。   Further, when the microcomputer 50 determines that the energization current Ic of at least one element in the inverter 30 is an overcurrent, the microcomputer 50 stops controlling the energization of each element 31-36 based on the current measurement value Ima. The microcomputer 50 controls the energization of each element 31-36 by supplying a predetermined drive signal for reducing the current value of the energization current Ic of each element 31-36 to the normal current region. Start. The normal current region is a normal current region whose current value is lower than the determination variation lower limit. By starting such control, the microcomputer 50 can protect each element 31-36 from overcurrent and can continuously operate in the normal current range, and operate each element 31-36 in the abnormal current range. It is possible to avoid a decrease in service life due to.

一方、マイクロコンピュータ50は、電流測定値Imaが所定の閾値Ithを超えている場合、インバータ30内の各素子31−36の通電電流Icを過電流と判定しない。又は、マイクロコンピュータ50は、インバータ30内の素子の温度測定値Tsと当該素子の温度推定値Teとが所定の差以上乖離していない場合、当該素子を流れる通電電流Icを過電流と判定しない。   On the other hand, when the current measurement value Ima exceeds the predetermined threshold value Ith, the microcomputer 50 does not determine that the energization current Ic of each element 31-36 in the inverter 30 is an overcurrent. Alternatively, when the measured temperature value Ts of the element in the inverter 30 and the estimated temperature value Te of the element do not deviate by a predetermined difference or more, the microcomputer 50 does not determine the energization current Ic flowing through the element as an overcurrent. .

ところで、過電流保護装置1は、素子電流測定部45を備えてもよい。素子電流測定部45は、インバータ30内の特定の素子の通電電流Icを測定し、当該特定の素子の通電電流Icの電流測定値Icaを出力する。素子電流測定部45は、例えば、通電電流Icの測定対象の素子と同一又は別チップ上に設けられ、電流測定値Icaを表す素子電流信号を出力する。素子電流測定部45は、例えば、通電電流Icの測定対象の素子とは異なる半導体基板に設けられてもよい。素子電流測定部45は、素子31−36の全ての素子に対して設けられてもよいし、素子31−36のうちの一部の素子に対して設けられてもよい。   By the way, the overcurrent protection device 1 may include an element current measurement unit 45. The element current measuring unit 45 measures the energization current Ic of a specific element in the inverter 30 and outputs a current measurement value Ica of the energization current Ic of the specific element. The element current measurement unit 45 is provided, for example, on the same chip or a different chip as the element to be measured for the energization current Ic, and outputs an element current signal representing the current measurement value Ica. For example, the element current measuring unit 45 may be provided on a semiconductor substrate different from the element to be measured for the energization current Ic. The element current measurement unit 45 may be provided for all elements of the elements 31-36, or may be provided for a part of the elements 31-36.

マイクロコンピュータ50は、上記の判定方法によれば、素子電流測定部45自体が電流測定値Icaに基づき特定の素子の通電電流Icを過電流と判定し当該特性の素子をオフする前に、当該特定の素子に流れる通電電流Icを過電流と判定できる。したがって、マイクロコンピュータ50は、当該特定の素子が素子電流測定部45によりオフされる前に、各素子31−36の通電電流Icの電流値を正常電流域に低下させる予め決めらた駆動信号を供給することによって、各素子31−36の通電を制御することを開始できる。これにより、当該特定の素子のオフによる負荷電流Iの急変を抑制することができる。   According to the above determination method, the microcomputer 50 determines that the element current measurement unit 45 itself determines that the energization current Ic of a specific element is an overcurrent based on the current measurement value Ica and turns off the element having the characteristic. The energization current Ic flowing through the specific element can be determined as an overcurrent. Therefore, the microcomputer 50 outputs a predetermined drive signal for reducing the current value of the energization current Ic of each element 31-36 to the normal current range before the specific element is turned off by the element current measuring unit 45. By supplying, control of energization of each element 31-36 can be started. Thereby, a sudden change in the load current I due to the specific element being turned off can be suppressed.

また、電流測定値Imaが所定の閾値Ith以下に低下し、且つ、インバータ30内の素子の温度測定値Tsと当該素子の温度推定値Teとが所定の差以上乖離した状態を、「状態X」とする。マイクロコンピュータ50は、例えば、状態Xが成立し、且つ、電流測定値Imaと当該素子の電流測定値Icaとが所定の第2の差以上乖離した場合、当該素子に流れる通電電流Icを過電流と判定する。この判定方法によれば、電流測定値Imaが異常になっても、電流測定値Imaと電流測定値Icaとの差も考慮されるので、過電流を正しく判定することができ、過電流の判定ばらつき範囲を更に低減することができる。   Further, the state where the current measurement value Ima falls below a predetermined threshold value Ith and the temperature measurement value Ts of the element in the inverter 30 and the temperature estimation value Te of the element deviate by a predetermined difference or more is referred to as “state X " For example, when the state X is established and the measured current value Ima and the measured current value Ica of the element deviate by a predetermined second difference or more, the microcomputer 50 converts the energization current Ic flowing through the element into an overcurrent. Is determined. According to this determination method, even if the current measurement value Ima becomes abnormal, the difference between the current measurement value Ima and the current measurement value Ica is also taken into account, so that it is possible to correctly determine the overcurrent and to determine the overcurrent. The variation range can be further reduced.

一方、マイクロコンピュータ50は、電流測定値Imaと当該素子の電流測定値Icaとが所定の第2の差以上乖離していない場合、当該素子を流れる通電電流Icを過電流と判定しない。   On the other hand, when the current measurement value Ima and the current measurement value Ica of the element do not deviate by a predetermined second difference or more, the microcomputer 50 does not determine that the energization current Ic flowing through the element is an overcurrent.

ところで、温度測定部44の故障により、インバータ30内の素子の温度測定値Tsが異常である場合も考えられる。そこで、状態Xが成立し、且つ、電流測定値Imaと当該素子の電流測定値Icaとが所定の第2の差以上乖離した状態を、「状態Y」とする。マイクロコンピュータ50は、状態Yが成立し、且つ、当該素子の電流測定値Icaが所定の電流閾値(例えば、判定ばらつき下限)以上であり、且つ、当該素子の温度測定値Tsが当該素子の温度推定値Teよりも高い場合、当該素子に流れる通電電流Icを過電流と判定する。この判定方法によれば、当該素子の温度測定値Tsが異常であっても、過電流を正しく判定することができる。   Incidentally, there may be a case where the temperature measurement value Ts of the element in the inverter 30 is abnormal due to a failure of the temperature measurement unit 44. Therefore, a state in which the state X is established and the current measurement value Ima and the current measurement value Ica of the element are different from each other by a predetermined second difference is referred to as “state Y”. In the microcomputer 50, the state Y is established, the current measurement value Ica of the element is equal to or greater than a predetermined current threshold (for example, the lower limit of determination variation), and the temperature measurement value Ts of the element is equal to the temperature of the element. When higher than the estimated value Te, the energizing current Ic flowing through the element is determined as an overcurrent. According to this determination method, even if the temperature measurement value Ts of the element is abnormal, the overcurrent can be correctly determined.

また、マイクロコンピュータ50は、電流測定値Imaとは別にマイクロコンピュータ50に入力される所定の入力情報に基づいて、各素子31−36の通電を制御する場合、当該入力情報及び電流測定値Imaから温度推定値Teを導出してもよい。当該入力情報は、例えば、マイクロコンピュータ50が搭載される車両の動作状態を表す車両情報などが挙げられる。車両情報の具体例として、アクセルペダルの開度情報、車速情報などが挙げられる。   Further, when the microcomputer 50 controls the energization of each element 31-36 based on predetermined input information input to the microcomputer 50 separately from the current measurement value Ima, the microcomputer 50 determines the input information and the current measurement value Ima. The temperature estimated value Te may be derived. Examples of the input information include vehicle information that represents the operating state of the vehicle on which the microcomputer 50 is mounted. Specific examples of the vehicle information include accelerator pedal opening information and vehicle speed information.

以上、過電流保護装置を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。   The overcurrent protection device has been described above by way of the embodiment, but the present invention is not limited to the above embodiment. Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.

例えば、インバータは、モータを駆動するものではなく、他の誘導性の負荷を駆動するものでもよい。   For example, the inverter does not drive a motor but may drive another inductive load.

1 過電流保護装置
20 負荷電流測定部
30 インバータ
31−36 素子
44 温度測定部
45 素子電流測定部
50 マイクロコンピュータ
1 Overcurrent Protection Device 20 Load Current Measuring Unit 30 Inverter 31-36 Element 44 Temperature Measuring Unit 45 Element Current Measuring Unit 50 Microcomputer

Claims (1)

インバータ内の素子の温度を測定し、前記素子の温度測定値を出力する温度測定部と、
前記インバータと負荷との間に流れる負荷電流を測定し、前記負荷電流の電流測定値を出力する負荷電流測定部と、
前記電流測定値に基づいて前記素子の通電を制御し、且つ、前記電流測定値から前記素子の温度を推定して前記素子の温度推定値を導出する、マイクロコンピュータとを備え、
前記マイクロコンピュータは、前記電流測定値が所定の閾値以下、且つ、前記温度測定値と前記温度推定値とが所定の差以上乖離した場合、前記素子の通電電流を過電流と判定する、過電流保護装置。
A temperature measuring unit that measures the temperature of the element in the inverter and outputs a temperature measurement value of the element;
A load current measurement unit that measures a load current flowing between the inverter and a load and outputs a current measurement value of the load current;
A microcomputer that controls energization of the element based on the current measurement value, and estimates the temperature of the element from the current measurement value to derive a temperature estimation value of the element;
The microcomputer determines an energization current of the element as an overcurrent when the measured current value is equal to or less than a predetermined threshold value and the measured temperature value and the estimated temperature value are more than a predetermined difference. Protective device.
JP2015087781A 2015-04-22 2015-04-22 Overcurrent protective device Pending JP2016208667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087781A JP2016208667A (en) 2015-04-22 2015-04-22 Overcurrent protective device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087781A JP2016208667A (en) 2015-04-22 2015-04-22 Overcurrent protective device

Publications (1)

Publication Number Publication Date
JP2016208667A true JP2016208667A (en) 2016-12-08

Family

ID=57490886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087781A Pending JP2016208667A (en) 2015-04-22 2015-04-22 Overcurrent protective device

Country Status (1)

Country Link
JP (1) JP2016208667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933671A (en) * 2021-09-01 2022-01-14 郑州嘉晨电器有限公司 MOS device temperature detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029395A (en) * 2013-07-31 2015-02-12 日立アプライアンス株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029395A (en) * 2013-07-31 2015-02-12 日立アプライアンス株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933671A (en) * 2021-09-01 2022-01-14 郑州嘉晨电器有限公司 MOS device temperature detection device

Similar Documents

Publication Publication Date Title
US7719812B2 (en) Power converters with rate of change monitoring for fault prediction and/or detection
JP5574845B2 (en) Power converter
US7719808B2 (en) Power converters with operating efficiency monitoring for fault detection
WO2009128536A1 (en) Temperature detecting circuit
CN107820664B (en) Drive device
US10924055B2 (en) Motor drive apparatus having input power supply voltage adjustment function
US9035689B2 (en) Thermal controller for semiconductor switching power devices
JP6280975B2 (en) Relay malfunction detection device
JP2012135119A (en) Inverter device
US9065275B2 (en) Driving circuit for an electric motor
JP5974548B2 (en) Semiconductor device
WO2015045565A1 (en) Power conversion device and control method
US20080284449A1 (en) Power converters with component stress monitoring for fault prediction
JP6477923B2 (en) Control circuit
JP5540931B2 (en) Overheat protection device and overheat protection method
JP2016208667A (en) Overcurrent protective device
JP5697713B2 (en) Power converter and control method thereof
JP5887854B2 (en) Anomaly detection device
CN115441760A (en) Power conversion device
JP2008301617A (en) Protective device for power converter
JP2011234461A (en) Inverter device
KR102273830B1 (en) Determination of motor restraint using IGBT temperature measuring device
JP6497081B2 (en) Braking resistance control device and braking resistance control method
CN111987974B (en) Rotary electric machine control device
JP5751123B2 (en) Temperature control system for motor control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180612