JP5697713B2 - Power converter and control method thereof - Google Patents

Power converter and control method thereof Download PDF

Info

Publication number
JP5697713B2
JP5697713B2 JP2013103837A JP2013103837A JP5697713B2 JP 5697713 B2 JP5697713 B2 JP 5697713B2 JP 2013103837 A JP2013103837 A JP 2013103837A JP 2013103837 A JP2013103837 A JP 2013103837A JP 5697713 B2 JP5697713 B2 JP 5697713B2
Authority
JP
Japan
Prior art keywords
power conversion
current
conversion efficiency
control
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013103837A
Other languages
Japanese (ja)
Other versions
JP2014225972A (en
Inventor
秀人 馬庭
秀人 馬庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013103837A priority Critical patent/JP5697713B2/en
Publication of JP2014225972A publication Critical patent/JP2014225972A/en
Application granted granted Critical
Publication of JP5697713B2 publication Critical patent/JP5697713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、電力変換装置に係り、特に高負荷によるパワー素子および磁性部品等の破壊防止に関する。   The present invention relates to a power conversion device, and particularly to prevention of destruction of a power element, a magnetic component, and the like due to a high load.

従来、特に大電力を取り扱うような電力変換装置において高負荷状態が継続すると、電力変換装置の電力変換回路を構成するパワー素子や磁性部品が高温になり、最悪熱破壊に至るため、電力変換装置の出力電流を制限することが行われている(例えば下記特許文献1参照)。   Conventionally, when a high load state continues in a power conversion device that handles particularly large power, the power elements and magnetic components constituting the power conversion circuit of the power conversion device become high temperature, leading to the worst thermal destruction. (See, for example, Patent Document 1 below).

また、パワー素子や磁性部品の温度を温度センサにて検出し、温度がある所定値以上になると、電力変換装置の出力電流を制限する手法も行われている。   In addition, there is a technique in which the temperature of the power element or magnetic component is detected by a temperature sensor and the output current of the power conversion device is limited when the temperature exceeds a predetermined value.

特開平5−260761号公報Japanese Patent Laid-Open No. 5-260761

しかしながら、高負荷状態が継続したことによる出力電流制限は、出力制限がかからない程度の高負荷付近の状態で継続動作した場合、累積的な発熱により、パワー素子や磁性部品が熱破壊に至る可能性が高い。また、温度センサによる出力制限は、直接的にパワー素子や磁性部品の温度を検出しているため、熱破壊至ることは無いが、素子や磁性部品に対応した温度センサが必要になることと、各素子や磁性部品に対する温度の閾値設定、及び複数の閾値に対する出力制限への処理が複雑になるという問題があった。また、高負荷状態が継続した場合等には、電力変換装置を冷却する冷却器も高出力状態が続き冷却器のポンプやファンの破損も起こり得る。   However, the output current limitation due to the continued high load state may cause the power element and magnetic parts to be thermally destroyed due to cumulative heat generation when the operation continues in the vicinity of a high load that does not limit the output. Is expensive. In addition, the output restriction by the temperature sensor directly detects the temperature of the power element and the magnetic component, so it does not cause thermal destruction, but the temperature sensor corresponding to the element and the magnetic component is necessary, There has been a problem that the process of setting the temperature threshold value for each element or magnetic component and the output restriction for a plurality of threshold values become complicated. In addition, when the high load state continues, the cooler that cools the power conversion device continues to be in a high output state, and the pump and fan of the cooler may be damaged.

この発明は、上記のような問題点を解決するために成されたものであって、通常の制御に使用されている電力変換装置の入出力のそれぞれの電圧センサ、電流センサの値から求めた電力変換効率に基づき、電力変換回路のパワー素子や磁性部品の熱破壊防止、又、冷却器の負荷軽減、のための制御を行う電力変換装置等を提供することを目的としている。   The present invention has been made to solve the above-described problems, and was obtained from the values of the voltage sensor and the current sensor of the input / output of the power converter used for normal control. An object of the present invention is to provide a power conversion device that performs control for preventing thermal destruction of power elements and magnetic parts of a power conversion circuit and reducing a load on a cooler based on power conversion efficiency.

この発明は、入力電圧を所望の出力電圧に変換する電力変換回路と、前記入力電圧を測定する入力電圧測定部と、前記電力変換回路への入力電流を測定する入力電流測定部と、前記出力電圧を測定する出力電圧測定部と、前記電力変換回路からの出力電流を測定する出力電流測定部と、前記電力変換回路を冷却する冷却器と、前記入力電圧測定部、前記入力電流測定部、前記出力電圧測定部、及び前記出力電流測定部の測定値に基づいて、前記電力変換回路での電力変換効率を演算する電力変換効率演算部と、前記電力変換回路の電力変換制御を行うと共に、前記電力変換効率演算部からの電力変換効率が第一の閾値未満又は以下となった場合に、前記電力変換効率が第二の閾値より大きく又は以上となるように前記入力電流の制限、前記出力電流の制限、および前記冷却器の冷却性能を上げる制御のうち少なくとも1つを行う制御部と、を備え、前記制御部は、前記入力電流および出力電流の場合に電流を所定値に下げる又は所定値以上に上げないことで電流を制限し、前記冷却器の場合に流れる水又は空気の流量を上げることで冷却性能を上げる、ことを特徴とする電力変換装置等にある。 The present invention includes a power conversion circuit that converts an input voltage into a desired output voltage, an input voltage measurement unit that measures the input voltage, an input current measurement unit that measures an input current to the power conversion circuit, and the output An output voltage measurement unit that measures voltage, an output current measurement unit that measures output current from the power conversion circuit, a cooler that cools the power conversion circuit, the input voltage measurement unit, the input current measurement unit, Based on the measured values of the output voltage measurement unit and the output current measurement unit, a power conversion efficiency calculation unit that calculates power conversion efficiency in the power conversion circuit, and power conversion control of the power conversion circuit, when the power conversion efficiency from the power conversion efficiency calculation unit becomes the first less than the threshold value or less, limits the input current to the power conversion efficiency is the second larger or more than the threshold value, the output Limiting current, and the cooling unit of the control unit for performing at least one of control for increasing the cooling performance, Bei example, said control unit decreases the current in the case of the input current and output current to a predetermined value or The power conversion device or the like is characterized in that the current is limited by not increasing to a predetermined value or more and the cooling performance is improved by increasing the flow rate of water or air flowing in the case of the cooler .

この発明では、既存のセンサから得られる電力変換装置入出力それぞれの電圧および電流から求めた電力変換効率に基づき、パワー素子や磁性部品の熱破壊を防止する制御を行う電力変換装置等を提供できる。   According to the present invention, it is possible to provide a power conversion device that performs control to prevent thermal destruction of a power element and a magnetic component based on the power conversion efficiency obtained from the voltage and current of each input / output of the power conversion device obtained from an existing sensor. .

この発明による電力変換装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the power converter device by this invention. この発明の実施の形態1における電力変換効率の経時変化と効率低下に伴う制御閾値との関係を示した図である。It is the figure which showed the relationship between the time-dependent change of the power conversion efficiency in Embodiment 1 of this invention, and the control threshold value accompanying efficiency fall. この発明の実施の形態1における出力電流制限状態での出力電流の制限電流値の経時変化を示した図である。It is the figure which showed the time-dependent change of the limiting current value of the output current in the output current limiting state in Embodiment 1 of this invention. この発明の実施の形態2における電力変換効率の経時変化と効率上昇に伴う制御閾値との関係を示した図である。It is the figure which showed the relationship between the time-dependent change of the power conversion efficiency in Embodiment 2 of this invention, and the control threshold value accompanying an efficiency increase. この発明の実施の形態3における電力変換効率の経時変化と効率変動に伴う制御目標値との関係を示した図である。It is the figure which showed the relationship between the time-dependent change of the power conversion efficiency in Embodiment 3 of this invention, and the control target value accompanying an efficiency fluctuation | variation.

以下、この発明による電力変換装置等を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。   Hereinafter, a power converter according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

実施の形態1.
図1は、この発明による電力変換装置の構成の一例を示す構成図である。図1において、電力変換装置100は、電力変換回路3、冷却器6、演算部7、制御部8、入力電圧センサ1、入力電流センサ2、出力電圧センサ9、出力電流センサ10よりなり、入力側に電源(ここでは交流電源として示されている)11、入力側に出力負荷12が接続されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing an example of the configuration of a power conversion device according to the present invention. In FIG. 1, a power conversion device 100 includes a power conversion circuit 3, a cooler 6, a calculation unit 7, a control unit 8, an input voltage sensor 1, an input current sensor 2, an output voltage sensor 9 and an output current sensor 10. A power source (shown here as an AC power source) 11 is connected to the side, and an output load 12 is connected to the input side.

電力変換装置100の入力端子間には,入力電圧値V1を検出する入力電圧センサ1が挿入され、一方の入力端子と電力変換回路3の間には、入力電流値I1を検出する入力電流センサ2が挿入されている。電力変換装置100の出力端子間には、出力電圧値V2を検出する出力電圧センサが挿入され、一方の出力端子と電力変換回路3の間には、出力電流値I2を検出する出力電流センサ10が挿入されている。   An input voltage sensor 1 that detects an input voltage value V1 is inserted between input terminals of the power conversion device 100, and an input current sensor that detects an input current value I1 is interposed between one input terminal and the power conversion circuit 3. 2 is inserted. An output voltage sensor that detects the output voltage value V2 is inserted between the output terminals of the power conversion device 100, and an output current sensor 10 that detects the output current value I2 is interposed between the one output terminal and the power conversion circuit 3. Has been inserted.

電力変換効率演算部を構成する演算部7は、それぞれ測定部である各センサ1,2,9,10で検出された入力電圧値V1、入力電流値I1、出力電圧値V2、及び出力電流値I2に従って、所定の演算を行う。そして制御部8が、電力変換回路3内のパワー素子のスイッチング制御により、電力変換回路3の通常の電力変換制御を行うと共に、演算部7での演算結果に従って電力変換回路3を制御し、電源11の電圧V11を所望の出力電圧、又は出力電流、又はその両方となるように変換し、出力負荷12に供給する。この際、この発明による制御部8は後述するように冷却器6の制御も行う。   The calculation unit 7 constituting the power conversion efficiency calculation unit includes an input voltage value V1, an input current value I1, an output voltage value V2, and an output current value detected by the sensors 1, 2, 9, and 10 as measurement units. A predetermined calculation is performed according to I2. The control unit 8 performs normal power conversion control of the power conversion circuit 3 by switching control of power elements in the power conversion circuit 3, and controls the power conversion circuit 3 according to the calculation result in the calculation unit 7, 11 is converted to a desired output voltage and / or output current, and supplied to the output load 12. At this time, the control unit 8 according to the present invention also controls the cooler 6 as described later.

ここで、例えば入力電圧センサ1からの入力電圧値V1への変換は、通常、センサよりアナログ値をA/D(Analog-to-Digital)変換器にてディジタル値に変換し、所定の換算式により入力電圧値V1へ変換することにより行われる。   Here, for example, the conversion from the input voltage sensor 1 to the input voltage value V1 is normally performed by converting an analog value from the sensor into a digital value by an A / D (Analog-to-Digital) converter, and a predetermined conversion formula. Is performed by converting the input voltage value to V1.

また、上記A/D変換器を含めた入力電圧値V1への変換、演算部7での演算、及び制御部8での制御は、通常、1つのMPU(Micro-Processing Unit)で行われる。例えば、各センサ1,2,9、10からのアナログ信号のA/D変換を行うA/D変換部(図示省略)、演算部7、制御部8が1つのMPUで構成されている。   The conversion to the input voltage value V1 including the A / D converter, the calculation in the calculation unit 7, and the control in the control unit 8 are usually performed by one MPU (Micro-Processing Unit). For example, an A / D conversion unit (not shown) that performs A / D conversion of analog signals from the sensors 1, 2, 9, and 10, an arithmetic unit 7, and a control unit 8 are configured by one MPU.

電力変換回路3は、ダイオード、MOS(Metal Oxide Semiconductor)、又はIGBT(Insulated Gate Bipolar Transistor)等のパワー素子4、及びリアクトル、又はトランス等の磁性部品5を有する。特に大電力を取り扱う電力変換装置において、パワー素子4、又は磁性部品5は、電力損失による発熱量が大きく、最悪熱破壊につながるため、冷却器6により冷却される。冷却方式には、水冷方式と空冷方式とがある。   The power conversion circuit 3 includes a power element 4 such as a diode, a MOS (Metal Oxide Semiconductor), or an IGBT (Insulated Gate Bipolar Transistor), and a magnetic component 5 such as a reactor or a transformer. In particular, in a power conversion device that handles high power, the power element 4 or the magnetic component 5 has a large amount of heat generated due to power loss and leads to the worst thermal destruction, and thus is cooled by the cooler 6. There are a water cooling method and an air cooling method as the cooling method.

電力変換装置100の電力損失は、入力電力から出力電力を引いたものであり、   The power loss of the power conversion device 100 is the input power minus the output power,

電力変換効率E=(V2×I2)/(V1×I1)     Power conversion efficiency E = (V2 × I2) / (V1 × I1)

によりあらわすことができる。電力変換効率Eは、入力電圧V1、入力電流I1、出力電圧V2、及び出力電流I2を演算部7で演算することにより容易に求めることができる。   Can be represented. The power conversion efficiency E can be easily obtained by calculating the input voltage V1, the input current I1, the output voltage V2, and the output current I2 by the calculation unit 7.

図2は、電力変換効率の経時変化と効率低下に伴う制御閾値との関係を示した図である。ここで、
TL1:制御開始閾値1 ETH1:制御解除閾値1
TL2:制御開始閾値2 ETH2:制御解除閾値2
TL3:制御開始閾値3 ETH3:制御解除閾値3
である。各制御開始閾値を第1の閾値、各制御解除閾値を第2の閾値とする。
FIG. 2 is a diagram showing the relationship between the change over time in the power conversion efficiency and the control threshold accompanying the efficiency reduction. here,
E TL1 : Control start threshold value 1 E TH1 : Control release threshold value 1
E TL2 : Control start threshold 2 E TH2 : Control release threshold 2
E TL3 : Control start threshold 3 E TH3 : Control release threshold 3
It is. Each control start threshold value is a first threshold value, and each control release threshold value is a second threshold value.

演算部7で算出した電力変換効率Eが、制御開始閾値1(ETL1)を下回った、又は以下の場合(E<ETL1、又はE≦ETL1)、電力変換効率Eを上げようと制御部8が制御を行う。具体的な例としては、出力電流、又は入力電流を制限し(所定値に下げる、又は所定値以上上げない)、電力変換装置の損失を低減するか、冷却器6の冷却性能を上げる(冷却器を流れる、水、又は空気の流量を上げる)ことを行う。 Control is performed to increase the power conversion efficiency E when the power conversion efficiency E calculated by the calculation unit 7 is lower than the control start threshold 1 (E TL1 ) or in the following cases (E <E TL1 or E ≦ E TL1 ). The unit 8 performs control. As a specific example, the output current or the input current is limited (reduced to a predetermined value or not increased more than a predetermined value), the loss of the power conversion device is reduced, or the cooling performance of the cooler 6 is increased (cooling). The flow rate of water or air flowing through the vessel).

制御部8による電流制限、又は冷却性能向上は、電力変換効率Eが制御解除閾値1(ETH1)を上回った、又は以上の場合(E>ETH1、又はE≧ETH1)まで継続する。 The current limitation or the cooling performance improvement by the control unit 8 continues until the power conversion efficiency E exceeds the control release threshold value 1 (E TH1 ) or is equal to or higher than that (E> E TH1 or E ≧ E TH1 ).

図2は、制御閾値を3段階にした例を示しており、電流制限値、又は冷却性能向上値(流量値)が異なるだけで、制御開始閾値2(ETL2)、制御解除閾値2(ETH2)、制御開始閾値3(ETL3)、制御解除閾値3(ETH3)の動作は、上記制御開始閾値1(ETL1)、制御解除閾値1(ETH1)の動作と同様である。尚、制御閾値の段階数は、特に3段に限定するものではなく、1段階を含む、任意の段階数でよい。 FIG. 2 shows an example in which the control threshold value is set in three stages. The control threshold value 2 (E TL2 ) and the control release threshold value 2 (E are only different in the current limit value or the cooling performance improvement value (flow rate value). The operations of TH2 ), the control start threshold 3 ( ETL3 ), and the control release threshold 3 ( ETH3 ) are the same as the operations of the control start threshold 1 ( ETL1 ) and the control release threshold 1 ( ETH1 ). Note that the number of steps of the control threshold is not particularly limited to three, and may be any number of steps including one.

図3を用いて、上記出力電流制限を説明する。
図3は、出力電流制限状態における出力電流の制限電流値の経時変化を示した図である。電力変換効率Eが、制御開始閾値1(ETL1)を下回った、又は以下の場合(E<ETL1、又はE≦ETL1)に出力制限状態1に移行する。本出力制限状態1においては、本来の所望とする出力電流値が予め設定された出力制限状態1の制限電流値1を上回った場合は、制限電流値1に制限する。
The output current limitation will be described with reference to FIG.
FIG. 3 is a diagram showing a change with time of the limit current value of the output current in the output current limit state. When the power conversion efficiency E falls below the control start threshold value 1 (E TL1 ) or when the following occurs (E <E TL1 or E ≦ E TL1 ), the state shifts to the output restriction state 1. In the present output restriction state 1, when the originally desired output current value exceeds the preset restriction current value 1 in the output restriction state 1, the restriction is performed to the restriction current value 1.

他の出力制限状態2,3に関しても同様であり、制限電流値2、又は制限電流値3に出力電流を制限する。尚、図3において、出力制限値3は0Aであり、電力変換装置の出力が停止している状態を例として示している。   The same applies to the other output limit states 2 and 3, and the output current is limited to the limit current value 2 or the limit current value 3. In FIG. 3, the output limit value 3 is 0A, and the state where the output of the power converter is stopped is shown as an example.

図3は出力電流制限についての例であるが、入力電流を制限する場合は、出力電流制限に対して制御対象が入力電流になり、冷却器性能を向上させる場合は、出力電流制限に対して制御対象が冷却器を流れる、水、冷却液、又は空気の流量になるだけであり、流量を上げると冷却性能が向上する。   FIG. 3 shows an example of output current limitation. When the input current is limited, the control target is the input current with respect to the output current limitation. When the cooler performance is improved, the output current limitation is limited. The control target is only the flow rate of water, coolant, or air that flows through the cooler, and the cooling performance improves when the flow rate is increased.

このようにこの実施の形態では、各センサ1,2,9,10で検出された入出力電圧および電流の検出値に基づき演算部7で演算された電力変換効率が降下して第1の閾値未満又は以下となった際には、制御部8は、電力変換回路3内のパワー素子4及び磁性部品5が過負荷状態にあり機能低下しているものと判断して、演算される電力変換効率が第2の閾値より大きく又は以上になるように、冷却器6の機能を上げることで冷却効果を上げたり、入力電流又は出力電流の制限を行うことで過負荷状態を回避して、パワー素子4及び磁性部品5の機能を回復させる。   As described above, in this embodiment, the power conversion efficiency calculated by the calculation unit 7 on the basis of the detected values of the input / output voltage and current detected by the sensors 1, 2, 9, 10 decreases, and the first threshold value is reached. When less than or less than, the control unit 8 determines that the power element 4 and the magnetic component 5 in the power conversion circuit 3 are in an overload state and the function is deteriorated, and the calculated power conversion is performed. The cooling effect is increased by increasing the function of the cooler 6 so that the efficiency is greater than or greater than the second threshold, and the overload condition is avoided by limiting the input current or output current. The functions of the element 4 and the magnetic component 5 are restored.

以上のようにこの発明の実施の形態1によれば、電力変換効率Eを、電力変換装置100に使用されている、入力電圧センサ1、入力電流センサ2、出力電圧センサ9、及び出力電流センサ10の値を用いて算出し、算出した電力変換効率Eによりパワー素子4や磁性部品5の熱破壊を出力電流制限等により防止するため、パワー素子4や磁性部品5へ温度センサを追加する必要がない。   As described above, according to the first embodiment of the present invention, the power conversion efficiency E is determined based on the input voltage sensor 1, the input current sensor 2, the output voltage sensor 9, and the output current sensor that are used in the power conversion device 100. It is necessary to add a temperature sensor to the power element 4 and the magnetic component 5 in order to prevent thermal destruction of the power element 4 and the magnetic component 5 by the output current limitation etc. There is no.

また、基板間やトランス等部品と端子台間等の接続部に接触抵抗の増大、接続配線の配線抵抗増加なども損失増加となるので、電力変換効率に基づいて検出可能である。   In addition, an increase in contact resistance and an increase in the wiring resistance of the connection wiring, etc., at the connection portion between the boards and between the components such as the transformer and the terminal block, etc., result in an increase in loss, and can be detected based on the power conversion efficiency.

実施の形態2.
以下、この発明の実施の形態2における電力変換装置について図に基づいて説明する。この発明の実施の形態に係わる電力変換装置は、図1に示した実施の形態1と同様の構成である。
Embodiment 2. FIG.
Hereinafter, the power converter in Embodiment 2 of this invention is demonstrated based on figures. The power conversion apparatus according to the embodiment of the present invention has the same configuration as that of the first embodiment shown in FIG.

図4は、電力変換効率の経時変化と効率上昇に伴う制御閾値との関係を示した図である。ここで、ETH4は制御開始閾値4、ETL4は制御解除閾値4である。図2の開始閾値の方が解除閾値より大きい。制御開始閾値を第1の閾値、制御解除閾値を第2の閾値とする。 FIG. 4 is a diagram showing the relationship between the change over time in power conversion efficiency and the control threshold accompanying the increase in efficiency. Here, E TH4 is the control start threshold value 4, and E TL4 is the control release threshold value 4. The start threshold value in FIG. 2 is larger than the release threshold value. The control start threshold is set as the first threshold, and the control release threshold is set as the second threshold.

演算部7で算出した上記電力変換効率Eが、制御開始閾値4(ETH4)を上回った、又は以上の場合(E>ETH4、又はE≧ETH4)、電力変換効率Eを下げようと制御部8が制御を行う。具体的な例としては、冷却器6の冷却性能を下げる(冷却器を流れる、水、冷却液、又は空気の流量を下げる)ようにする。 When the power conversion efficiency E calculated by the calculation unit 7 exceeds the control start threshold 4 (E TH4 ) or more than that (E> E TH4 or E ≧ E TH4 ), the power conversion efficiency E is to be reduced. The control unit 8 performs control. As a specific example, the cooling performance of the cooler 6 is lowered (the flow rate of water, coolant, or air flowing through the cooler is lowered).

以上のようにこの発明の実施の形態2によれば、電力変換効率Eを、電力変換装置100に使用されている、入力電圧センサ1、入力電流センサ2、出力電圧センサ9、及び出力電流センサ10の値を用いて算出し、算出した電力変換効率Eが制御開始値を上回った、又は以上になった場合は。冷却器6の冷却性能を下げるため、冷却器6に使用されているポンプやファン(図示省略)の寿命を延ばすことができる。なお、別の観点からすれば、省エネルギーにもなる。   As described above, according to the second embodiment of the present invention, the power conversion efficiency E is determined based on the input voltage sensor 1, the input current sensor 2, the output voltage sensor 9, and the output current sensor used in the power conversion device 100. When the power conversion efficiency E calculated using the value of 10 exceeds or exceeds the control start value. Since the cooling performance of the cooler 6 is lowered, the life of a pump and a fan (not shown) used in the cooler 6 can be extended. From another point of view, it also saves energy.

実施の形態3.
以下、この発明の実施の形態3における電力変換装置について図に基づいて説明する。この発明の実施の形態に係わる電力変換装置は、図1に示された実施の形態1と同様の構成である。
Embodiment 3 FIG.
Hereinafter, the power converter in Embodiment 3 of this invention is demonstrated based on figures. The power conversion apparatus according to the embodiment of the present invention has the same configuration as that of the first embodiment shown in FIG.

図5は、電力変換効率の経時変化と効率変動に伴う制御目標値との関係を示した図である。ここで、Eは制御目標値である。 FIG. 5 is a diagram showing the relationship between the change over time in power conversion efficiency and the control target value accompanying the efficiency fluctuation. Here, E T is the control target value.

演算部7で算出した上記電力変換効率Eが、制御目標値(E)に追従するように制御部8が動作する。具体的な例としては、電力変換効率Eが制御目標値(E)を上回った、又は以上になった場合は、冷却器6の冷却性能を下げ(冷却器を流れる、水、冷却液、又は空気の流量を下げる)、電力変換効率Eが制御目標値(E)を下回った、又は以下になった場合は、冷却器6の冷却性能を上げる(冷却器を流れる、水、冷却液、又は空気の流量を上げる)ようにする。 The control unit 8 operates so that the power conversion efficiency E calculated by the calculation unit 7 follows the control target value (E T ). As a specific example, when the power conversion efficiency E exceeds or exceeds the control target value (E T ), the cooling performance of the cooler 6 is lowered (water, coolant, If the power conversion efficiency E falls below the control target value (E T ) or falls below, the cooling performance of the cooler 6 is increased (water, coolant, flowing through the cooler). Or increase air flow).

以上のようにこの発明の実施の形態3によれば、電力変換効率Eを、電力変換装置100に使用されている、入力電圧センサ1、入力電流センサ2、出力電圧センサ9、及び出力電流センサ10の値を用いて算出し、算出した電力変換効率Eが制御目標値に追従するように冷却器6の冷却性能を必要とされる最適な性能に制御するため、冷却器6に使用されているポンプやファンの寿命を延ばすことができる。なお、別の観点からすれば、省エネルギーにもなる。   As described above, according to the third embodiment of the present invention, the power conversion efficiency E is determined based on the input voltage sensor 1, the input current sensor 2, the output voltage sensor 9, and the output current sensor used in the power conversion device 100. It is used for the cooler 6 in order to control the cooling performance of the cooler 6 to the optimum performance required so that the calculated power conversion efficiency E follows the control target value. Can extend the life of existing pumps and fans. From another point of view, it also saves energy.

なお、図1における電力変換装置100は、この発明を説明する上で最低限必要な構成を記載したもので、この発明の構成を限定するものでない。また、電源11は、直流でも交流でもよく、出力電圧も直流でも交流でもよく、出力負荷12もインバータ、モータ、電気・電子回路、二次電池等でもよい。また、入力電圧センサ1、入力電流センサ2、出力電圧センサ9、又は出力電流センサ10は、電力変換装置100の外部にあってもよい。この場合においても、例えば、各センサとそのA/D変換器等の部分が測定部となる。   Note that the power conversion apparatus 100 in FIG. 1 describes the minimum configuration necessary for explaining the present invention, and does not limit the configuration of the present invention. The power source 11 may be direct current or alternating current, the output voltage may be direct current or alternating current, and the output load 12 may be an inverter, a motor, an electric / electronic circuit, a secondary battery, or the like. Further, the input voltage sensor 1, the input current sensor 2, the output voltage sensor 9, or the output current sensor 10 may be outside the power conversion apparatus 100. Also in this case, for example, each sensor and its A / D converter and the like serve as a measurement unit.

また、各実施の形態に関し例えば、図2及び図4おいて、各制限開始閾値と制限解除閾値とは、電流制限又は冷却器性能の向上による電力変換効率Eの変動が急峻である場合に異なる値であった方が、電力変換装置の制御を安定させる上で好ましいのであって、同じ値であってもよい(ETL1=ETH1、ETL2=ETH2、ETL3=ETH3、ETL4=ETH4)。 Further, for example, in each of the embodiments, in FIGS. 2 and 4, the restriction start threshold value and the restriction release threshold value are different when the fluctuation of the power conversion efficiency E due to the current restriction or the improvement of the cooler performance is steep. The value is preferable for stabilizing the control of the power conversion device, and may be the same value (E TL1 = E TH1 , E TL2 = E TH2 , E TL3 = E TH3 , E TL4 = ETH4 ).

また図3において、出力電流制限値は各出力制限状態において、一定値となっているが、電力変換効率Eに応じて変化する形でもよい(例えば、電力変換効率Eに比例して変化)。入力電流制限値および冷却性能向上量の場合も同様に電力変換効率Eに応じて変化する形でもよい。   In FIG. 3, the output current limit value is a constant value in each output limit state, but may be changed in accordance with the power conversion efficiency E (for example, change in proportion to the power conversion efficiency E). Similarly, in the case of the input current limit value and the cooling performance improvement amount, the input current limit value and the cooling performance improvement amount may be changed in accordance with the power conversion efficiency E.

以上のようにこの発明に係る電力変換装置において、電力変換装置を構成するパワー素子や磁性部品の温度が上昇しているということは、パワー素子や磁性部品の損失が増加していることに他ならない。また、パワー素子や磁性部品の損失が増加しているということは、電力変換効率が低下しているということである。よって、電力変換効率をモニタすることにより、パワー素子や磁性部品の温度が上昇したことを検出することが可能である。   As described above, in the power conversion device according to the present invention, the temperature of the power element and the magnetic component constituting the power conversion device is rising, in addition to the increase in the loss of the power element and the magnetic component. Don't be. In addition, an increase in the loss of the power element and the magnetic component means that the power conversion efficiency is reduced. Therefore, by monitoring the power conversion efficiency, it is possible to detect that the temperature of the power element or magnetic component has risen.

また、電力変換効率は、電力変換装置の電力変換回路を制御するのに通常使用される、入力電圧センサ、入力電流センサ、出力電圧センサ、及び出力電流センサの値を用いて算出可能であり、パワー素子や磁性部品へ温度センサを追加する必要がない。また、基板間やトランス等部品と端子台間等の接続部に接触抵抗の増大、接続配線の配線抵抗増加なども損失増加となるので、電力変換効率に基づいて検出可能である。   In addition, the power conversion efficiency can be calculated using values of an input voltage sensor, an input current sensor, an output voltage sensor, and an output current sensor that are normally used to control the power conversion circuit of the power conversion device. There is no need to add a temperature sensor to the power element or magnetic component. In addition, an increase in contact resistance and an increase in the wiring resistance of the connection wiring, etc., at the connection portion between the boards and between the components such as the transformer and the terminal block, etc., result in an increase in loss, and can be detected based on the power conversion efficiency.

なおこの発明は上記各実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含むことは云うまでもない。例えば、制御部は、測定値に基づいて演算された電力変換効率と閾値との関係に基づき、電力変換回路を冷却する冷却器の冷却能力、電力変換回路への入力電流、出力電流の少なくとも1つを制御することにより、電力変換効率を所望の範囲の値になるようにする。電力変換回路の入力電流と出力電流を同時に制御する場合には、それぞれに上記の閾値を設定する。   The present invention is not limited to the above-described embodiments, and it goes without saying that all possible combinations thereof are included. For example, the control unit, based on the relationship between the power conversion efficiency calculated based on the measurement value and the threshold value, at least one of the cooling capacity of the cooler that cools the power conversion circuit, the input current to the power conversion circuit, and the output current By controlling one of them, the power conversion efficiency is set to a value within a desired range. When simultaneously controlling the input current and the output current of the power conversion circuit, the above threshold values are set for each.

1 入力電圧センサ、2 入力電流センサ、3 電力変換回路、4 パワー素子、5 磁性部品、6 冷却器、7 演算部、8 制御部、9 出力電圧センサ、10 出力電流センサ、11 電源、12 出力負荷、100 電力変換装置。   1 input voltage sensor, 2 input current sensor, 3 power conversion circuit, 4 power element, 5 magnetic component, 6 cooler, 7 calculation unit, 8 control unit, 9 output voltage sensor, 10 output current sensor, 11 power supply, 12 output Load, 100 power converter.

Claims (6)

入力電圧を所望の出力電圧に変換する電力変換回路と、
前記入力電圧を測定する入力電圧測定部と、
前記電力変換回路への入力電流を測定する入力電流測定部と、
前記出力電圧を測定する出力電圧測定部と、
前記電力変換回路からの出力電流を測定する出力電流測定部と、
前記電力変換回路を冷却する冷却器と、
前記入力電圧測定部、前記入力電流測定部、前記出力電圧測定部、及び前記出力電流測定部の測定値に基づいて、前記電力変換回路での電力変換効率を演算する電力変換効率演算部と、
前記電力変換回路の電力変換制御を行うと共に、前記電力変換効率演算部からの電力変換効率が第一の閾値未満又は以下となった場合に、前記電力変換効率が第二の閾値より大きく又は以上となるように前記入力電流の制限、前記出力電流の制限、および前記冷却器の冷却性能を上げる制御のうち少なくとも1つを行う制御部と、
を備え、
前記制御部は、前記入力電流および出力電流の場合に電流を所定値に下げる又は所定値以上に上げないことで電流を制限し、前記冷却器の場合に流れる水又は空気の流量を上げることで冷却性能を上げる、
ことを特徴とする電力変換装置。
A power conversion circuit that converts an input voltage into a desired output voltage;
An input voltage measuring unit for measuring the input voltage;
An input current measuring unit for measuring an input current to the power conversion circuit;
An output voltage measuring unit for measuring the output voltage;
An output current measuring unit for measuring an output current from the power conversion circuit;
A cooler for cooling the power conversion circuit;
A power conversion efficiency calculation unit that calculates power conversion efficiency in the power conversion circuit based on measurement values of the input voltage measurement unit, the input current measurement unit, the output voltage measurement unit, and the output current measurement unit;
While performing power conversion control of the power conversion circuit, when the power conversion efficiency from the power conversion efficiency calculation unit is less than or less than the first threshold, the power conversion efficiency is greater than or greater than the second threshold A control unit that performs at least one of the input current limitation, the output current limitation, and the control for increasing the cooling performance of the cooler ,
Bei to give a,
In the case of the input current and the output current, the control unit limits the current by lowering the current to a predetermined value or not exceeding the predetermined value, and increases the flow rate of water or air flowing in the case of the cooler. Increase cooling performance,
The power converter characterized by the above-mentioned.
前記第一の閾値と前記第二の閾値とが等しいことを特徴とする請求項1に記載の電力変換装置。 The power converter according to claim 1 , wherein the first threshold and the second threshold are equal. 入力電圧を所望の出力電圧に変換する電力変換回路と、
前記入力電圧を測定する入力電圧測定部と、
前記電力変換回路への入力電流を測定する入力電流測定部と、
前記出力電圧を測定する出力電圧測定部と、
前記電力変換回路からの出力電流を測定する出力電流測定部と、
前記電力変換回路を冷却する冷却器と、
前記入力電圧測定部、前記入力電流測定部、前記出力電圧測定部、及び前記出力電流測定部の測定値に基づいて、前記電力変換回路での電力変換効率を演算する電力変換効率演算部と、
前記電力変換回路の電力変換制御を行うと共に、前記電力変換効率演算部からの電力変換効率が第一の閾値より大きく又は以上となった場合に、前記電力変換効率が第二の閾値未満又は以下となるように前記入力電流の制御、前記出力電流の制御、および前記冷却器の冷却性能を下げる制御のうち少なくとも1つを行う制御部と、
を備え、
前記制御部は、前記入力電流および出力電流の場合に電流を所定値に上げる又は所定値以下に下げないことで電流を制御し、前記冷却器の場合に流れる水又は空気の流量を下げることで冷却性能を下げる、
ことを特徴とする電力変換装置。
A power conversion circuit that converts an input voltage into a desired output voltage;
An input voltage measuring unit for measuring the input voltage;
An input current measuring unit for measuring an input current to the power conversion circuit;
An output voltage measuring unit for measuring the output voltage;
An output current measuring unit for measuring an output current from the power conversion circuit;
A cooler for cooling the power conversion circuit;
A power conversion efficiency calculation unit that calculates power conversion efficiency in the power conversion circuit based on measurement values of the input voltage measurement unit, the input current measurement unit, the output voltage measurement unit, and the output current measurement unit;
While performing power conversion control of the power conversion circuit, and when the power conversion efficiency from the power conversion efficiency calculation unit is greater than or greater than a first threshold, the power conversion efficiency is less than or less than a second threshold A control unit that performs at least one of the control of the input current, the control of the output current, and the control of reducing the cooling performance of the cooler ,
Bei to give a,
In the case of the input current and the output current, the control unit controls the current by raising the current to a predetermined value or not lowering to a predetermined value or less, and reduces the flow rate of water or air flowing in the case of the cooler. Reduce cooling performance,
The power converter characterized by the above-mentioned.
前記第一の閾値と前記第二の閾値とが等しいことを特徴とする請求項3に記載の電力変換装置。 The power conversion device according to claim 3 , wherein the first threshold value and the second threshold value are equal. 入力電圧を所望の出力電圧に変換する電力変換回路と、
前記入力電圧を測定する入力電圧測定部と、
前記電力変換回路への入力電流を測定する入力電流測定部と、
前記出力電圧を測定する出力電圧測定部と、
前記電力変換回路からの出力電流を測定する出力電流測定部と、
前記電力変換回路を冷却する冷却器と、
前記入力電圧測定部、前記入力電流測定部、前記出力電圧測定部、及び前記出力電流測定部の測定値に基づいて、前記電力変換回路での電力変換効率を演算する電力変換効率演算部と、
前記電力変換回路の電力変換制御を行うと共に、前記電力変換効率演算部からの電力変換効率が目標値に追従するように前記入力電流の制御、前記出力電流の制御、および前記冷却器の冷却性能の制御のうち少なくとも1つを行う制御部と、
を備え、
前記制御部は、前記入力電流および出力電流の場合に電流を、前記電力変換効率が下がった場合に所定値に下げる又は所定値以上に上げない、前記電力変換効率が上がった場合に所定値に上げる又は所定値以下に下げないことで電流を制御し、前記冷却器の場合に流れる水又は空気の流量を、前記電力変換効率が下がった場合に上げ前記電力変換効率が上がった場合に下げることで冷却性能を制御する、
ことを特徴とする電力変換装置。
A power conversion circuit that converts an input voltage into a desired output voltage;
An input voltage measuring unit for measuring the input voltage;
An input current measuring unit for measuring an input current to the power conversion circuit;
An output voltage measuring unit for measuring the output voltage;
An output current measuring unit for measuring an output current from the power conversion circuit;
A cooler for cooling the power conversion circuit;
A power conversion efficiency calculation unit that calculates power conversion efficiency in the power conversion circuit based on measurement values of the input voltage measurement unit, the input current measurement unit, the output voltage measurement unit, and the output current measurement unit;
While performing power conversion control of the power conversion circuit, the control of the input current, the control of the output current, and the cooling performance of the cooler so that the power conversion efficiency from the power conversion efficiency calculation unit follows a target value A control unit that performs at least one of the control of
Bei to give a,
The control unit reduces the current in the case of the input current and the output current to a predetermined value when the power conversion efficiency decreases or does not increase it to a predetermined value or more, and increases the current to a predetermined value when the power conversion efficiency increases. The current is controlled by raising or not lowering below a predetermined value, and the flow rate of water or air flowing in the case of the cooler is raised when the power conversion efficiency is lowered and lowered when the power conversion efficiency is raised. Control the cooling performance with
The power converter characterized by the above-mentioned.
入力電圧を所望の出力電圧に変換する電力変換回路を備えた電力変換装置において、前記電力変換回路の前記入力電圧、入力電流、前記出力電圧および出力電流の測定値に基づいて、前記電力変換回路での電力変換効率を演算し、演算された電力変換効率と閾値との関係に基づき、前記電力変換回路を冷却する冷却器の冷却能力の制御、前記電力変換回路への前記入力電流の制御、前記出力電流の制御のうちの少なくとも1つを行い、前記入力電流および出力電流の場合に電流を、前記電力変換効率が下がった場合に所定値に下げる又は所定値以上に上げない、前記電力変換効率が上がった場合に所定値に上げる又は所定値以下に下げないことで電流を制御し、前記冷却器の場合に流れる水又は空気の流量を、前記電力変換効率が下がった場合に上げ前記電力変換効率が上がった場合に下げることで冷却性能を制御し、前記電力変換効率を所望の範囲の値になるようにすることを特徴とする電力変換装置の制御方法。 In a power conversion device including a power conversion circuit that converts an input voltage into a desired output voltage, the power conversion circuit based on measured values of the input voltage, input current, output voltage, and output current of the power conversion circuit calculates the power conversion efficiency in, based on the relationship between the calculated power conversion efficiency and the threshold, control of the cooling capacity of the cooler for cooling the power conversion circuit, a control of the input current to the power converter circuit, The power conversion, wherein at least one of the control of the output current is performed and the current is reduced to a predetermined value or not higher than a predetermined value when the power conversion efficiency is decreased in the case of the input current and the output current When the efficiency is increased, the current is controlled by raising it to a predetermined value or not lowering to a predetermined value or less, and the flow rate of water or air flowing in the case of the cooler is reduced when the power conversion efficiency is lowered. It said controlling the cooling performance by decreasing when the power conversion efficiency rises, the control method of the power converter, characterized in that set to be the power conversion efficiency of the value of the desired range up to.
JP2013103837A 2013-05-16 2013-05-16 Power converter and control method thereof Active JP5697713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103837A JP5697713B2 (en) 2013-05-16 2013-05-16 Power converter and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103837A JP5697713B2 (en) 2013-05-16 2013-05-16 Power converter and control method thereof

Publications (2)

Publication Number Publication Date
JP2014225972A JP2014225972A (en) 2014-12-04
JP5697713B2 true JP5697713B2 (en) 2015-04-08

Family

ID=52124256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103837A Active JP5697713B2 (en) 2013-05-16 2013-05-16 Power converter and control method thereof

Country Status (1)

Country Link
JP (1) JP5697713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152159B2 (en) 2017-01-26 2022-10-12 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Position measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931828A (en) * 2015-06-15 2015-09-23 浪潮电子信息产业股份有限公司 CPU RV conversion efficiency test system and method
JP2017011952A (en) * 2015-06-25 2017-01-12 株式会社デンソー Power conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260761A (en) * 1992-03-10 1993-10-08 Meidensha Corp Detecting device for load of invertor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152159B2 (en) 2017-01-26 2022-10-12 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Position measuring device

Also Published As

Publication number Publication date
JP2014225972A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US10966291B2 (en) Power conversion apparatus and power conversion method
JP2020028176A (en) Motor driving device having input power supply voltage adjustment function
US20140326442A1 (en) Method and system for cooling a device
JP5697713B2 (en) Power converter and control method thereof
RU2581612C1 (en) Limitation of overload when operating at peak power
JP2005143232A (en) Protection method for power semiconductor device
JP6029796B1 (en) Power converter
KR20200007295A (en) Inverter apparatus of electric vehicle
JP2011066989A (en) Power conversion device
JP5887854B2 (en) Anomaly detection device
JP6168836B2 (en) DC power supply device and converter output current limiting method
JP2014239576A (en) Power conversion device
KR102056156B1 (en) Inverter Protecting Method of Electric Vehicle
JP6619393B2 (en) Power converter
JP6497081B2 (en) Braking resistance control device and braking resistance control method
JP2016140122A (en) Control method for electric power conversion system
JP2007174832A (en) Power converter
JP2016208667A (en) Overcurrent protective device
JP2010110075A (en) Motor driving inverter device
JP7077167B2 (en) Power converter and its control method
WO2020261421A1 (en) State determination device and elevator device
CN116321928A (en) Thermal conditioning and protection of power electronics components
JP2014171354A (en) Gate drive circuit for semiconductor switching element
JP2019187186A (en) Power conversion device
JPS58115839A (en) Electric power converter using semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5697713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250