JP2016208114A - 置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム - Google Patents

置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム Download PDF

Info

Publication number
JP2016208114A
JP2016208114A JP2015084242A JP2015084242A JP2016208114A JP 2016208114 A JP2016208114 A JP 2016208114A JP 2015084242 A JP2015084242 A JP 2015084242A JP 2015084242 A JP2015084242 A JP 2015084242A JP 2016208114 A JP2016208114 A JP 2016208114A
Authority
JP
Japan
Prior art keywords
radio station
station apparatus
design support
radio
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084242A
Other languages
English (en)
Other versions
JP6397365B2 (ja
Inventor
拓人 新井
Takuto Arai
拓人 新井
厚 太田
Atsushi Ota
厚 太田
裕史 白戸
Yushi Shirato
裕史 白戸
一輝 丸田
Kazuteru Maruta
一輝 丸田
辰彦 岩國
Tatsuhiko Iwakuni
辰彦 岩國
正孝 飯塚
Masataka Iizuka
正孝 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015084242A priority Critical patent/JP6397365B2/ja
Publication of JP2016208114A publication Critical patent/JP2016208114A/ja
Application granted granted Critical
Publication of JP6397365B2 publication Critical patent/JP6397365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】チャネル容量を安定的に向上させることが可能となる置局設計支援方法、置局設計支援装置、及び置局設計支援プログラムを提供する。
【解決手段】置局設計支援方法は、等間隔アレーを有するアンテナを制御する基地局装置と複数の無線局装置との間で空間多重伝送を実行する無線通信システムにおける置局設計支援方法であって、第1の無線局装置の位置情報を取得するステップと、第1の無線局装置と同時に空間多重伝送を実行する1局又は2局以上の第2の無線局装置のそれぞれの位置に対して、予め定められた条件を第1の無線局装置の位置が満たすか否かを判定するステップと、条件を満たす場合、第1の無線局装置の位置情報をデータベースに記憶させるステップとを有する。
【選択図】図4

Description

本発明は、置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム関し、特に、MIMO(Multiple Input Multiple Output)による高速伝送技術に関する。
現在、スマートフォンの爆発的な普及に伴って、利便性の高いマイクロ波帯の周波数資源が枯渇している。対策として、第3世代の携帯電話から第4世代の携帯電話への移行や、新しい周波数帯の割り当てが行われている。しかし、サービスの提供を望む事業者が多いことから、各事業者に割り当てられる周波数資源は限られている。
携帯電話のサービスにおいては、複数のアンテナ素子を利用したマルチアンテナ・システムによる周波数利用効率の向上を目指す検討が進められている。既に普及している無線標準規格IEEE(The Institute of Electrical and Electronics Engineers, Inc.)802.11nでは、送信と受信との双方に複数のアンテナ素子を用いるMIMO伝送技術を用いることで空間多重伝送が行われている。これにより、IEEE802.11nでは、伝送容量を高めて周波数利用効率を向上させることが行われている。なお、MIMOという用語は、一般には送信局及び受信局共に複数アンテナを備えることを想定して使われる。受信側が単数アンテナの場合には、MIMOではなく、MISO(Multiple Input Single Output)という用語が使われる。ただし、以下では、これらを全て包含する意味でMIMOという用語を用いる。
最近の通信技術としては、OFDM(Orthogonal Frequency Division Multiplexing)変調方式やSC−FDE(Single Carrier Frequency Domain Equalization)方式のように、複数のサブキャリア(周波数成分)に分割して周波数軸上で信号処理を行う方式が一般的である。以下の説明では、特にOFDMやSC−FDEの区別をせず、それらに共通する一般的な方式を前提として「サブキャリア」という用語を用いて説明する。
MIMO伝送技術においては、送信局と受信局との間の伝送路情報を知ることで、より効率的な伝送を行うことが可能となる。最も単純な例としては、送信側にN本のアンテナ素子を備え、受信側に1本のアンテナ素子のみを備え、N本のアンテナ素子から送信される信号が受信アンテナにおいて同位相合成されるように送信側で指向性制御を行う技術がある。これにより、回線利得を高めることができる。具体的には、第kサブキャリアにおける送信局の第jアンテナから受信局のアンテナまでの間のチャネル情報をh (k)としたときに、そのアンテナ素子に対して下記の式(1)の送信ウエイトw (k)を算出し、これを送信信号に乗算したものを各アンテナから送信する。なお、上記チャネル情報は、厳密には、送信系および受信系のRF(Radio Frequency)回路内のアンプ、フィルタ等の複素位相の回転、及び振幅の変動情報を含む。
Figure 2016208114
各アンテナに対応させたチャネル情報及び送信ウエイトを各成分とするベクトルを、チャネルベクトルh(k)=(h (k),...,h (k),...,h (k))および送信ウエイトベクトルw(k)=(w (k),...,w (k),...,w (k)(Tは転置を表す)と称する。受信信号Rxは、送信信号Txおよびノイズnを用いて下記の式(2)で与えられる。
Figure 2016208114
式(1)を式(2)に代入すると、チャネルベクトルh(k)の各成分h (k)の絶対値を全成分にわたって加算した値がチャネル利得として得られる。N本のアンテナで信号が送信された場合、1本のアンテナで信号が送信された場合と比較して、受信信号は振幅がN倍になると期待される。この値が複数のアンテナ素子をアレーアンテナとして利用した場合の利得である。
一般的には、シャノンの定理により、SNR(Signal-Noise Ratio)の改善量に対して、伝送容量の増加は、低SNR領域ほど大きく、高SNR領域ほど小さいことが知られている。そのため、回線利得の改善によって伝送容量の向上を目指すより、受信側にも複数のアンテナを備え、空間多重によって伝送容量の向上を目指すことが多い。空間多重によって伝送容量のアップを目指すのがMIMO伝送技術である。複数の送信アンテナと受信アンテナとの間のチャネル情報が既知の場合には、そのチャネル行列をSVD(Singular Value Decomposition)分解し、固有モードでの伝送を行うことで伝送容量を最大化する。具体的には、式(3)のように、チャネル行列Hをユニタリー行列UとV、および特異値λを対角成分にもつ対角行列Dに分解する。
Figure 2016208114
この際、送信ウエイト行列としてユニタリー行列Vを用いれば、受信信号ベクトルRxは、送信信号ベクトルTx、ノイズベクトルnに対して、式(4)で与えられる。
Figure 2016208114
受信側では、ユニタリー行列Uのエルミート共役の行列Uを乗算することで、式(5)を得る。
Figure 2016208114
式(5)において、対角行列Dの非対角成分はゼロであるから、送信信号のクロスタームは既にキャンセルされ、信号分離された状態となる。各特異値λの絶対値の2乗値が個別の信号系列の回線利得に相当する。各特異値λは、信号系統ごとに異なる値となる。この固有モードの特異値にあわせた伝送モードを最適化することによって、伝送容量を最大化することができる。伝送モードは、変調多値数と誤り訂正の符号化率などの組み合わせで定まる信号伝送の具体的なモードである。
上記は、1台の基地局装置と1台の端末局装置とを想定したシングルユーザMIMO伝送技術に関する説明である。同様の説明は、1台の基地局装置と複数台の端末局装置との間において同時に同一周波数軸上で通信を行うマルチユーザMIMOにも拡張可能である。マルチユーザMIMOにおいては、一般に、各端末局装置は空間多重する合計の信号系統数よりも少ない本数のアンテナ素子で通信を行う。そのため、ダウンリンクにおいては、送信側で事前にユーザ間干渉を抑圧するための指向性制御を行う。具体的な式は若干異なるが、基本的には上記の固有モード伝送と同様に、チャネル行列を把握した上でそれに合わせた送信ウエイトを用いる。
また、上記の説明では、ダウンリンクを中心に説明を行ったが、アップリンクにおいても同様に事前にチャネル情報を把握した上で、そのチャネル情報を利用した通信を行うことができる。例えば、最初に説明したアレーアンテナとしての処理においては、式(1)にて与えられる同位相合成のウエイトを受信ウエイトとして用いる他、最大比合成のウエイトとして、式(6)で与えられるものを用いることも可能である。
Figure 2016208114
式(6)の定数Cは適宜定められる係数である。ベクトルの各成分の中でh (k)の絶対値が大きいものは大きな重みで足し合わさるように、また小さな信号は小さな重みで足し合わされるように、係数Cが決定される。これにより、SNRの大きな信号を重視し、SNRの小さな信号の雑音が過度に影響を与えないように調整が図られる。
以上のマルチユーザMIMO及びアレーアンテナの技術を更に発展させた新しい空間多重伝送技術として、大規模アンテナシステムの提案がなされている(非特許文献1及び非特許文献2参照)。
図8は、大規模アンテナシステムの例を示す図である。図8には、基地局装置1と、無線局装置2と、見通し波3と、ビル等の構造物による安定反射波4と、地上付近の多重反射波5と、地上付近の多重反射波6と、構造物7とが示されている。図8の大規模アンテナシステムにおいては、基地局装置1は、多数(例えば100本以上)のアンテナ素子を用いて、ビルの屋上や高い鉄塔の上など高所に設置される。無線局装置2も同様に、ビルの屋上、家屋の屋根の上、電信柱や鉄塔の上など高所に設置される。そのため、基地局装置1と無線局装置2の間は概ね見通し環境にあり、その間には見通し波3のパスや大型の安定的な構造物7の安定反射波4などに加え、地上付近での車や人などの移動体などによる多重反射波5及び6が混在する。無線局装置2は高所にある。更に指向性アンテナを用いる場合などは特に、地上付近の多重反射波5及び6は、見通し波3及び安定反射波4などに比べて受信レベルが低くなる。
図9は、見通し外環境と見通し環境とのそれぞれにおける、インパルス応答を示す図である。図9(a)は見通し外環境でのインパルス応答を示している。図9(b)は見通し環境でのインパルス応答を示している。図9(a)と図9(b)において、横軸は遅延時間、縦軸は各遅延波の受信レベルを表す。図9(a)に示した見通し外環境の場合、見通し区間の直接波成分は存在せず、様々な経路の多重反射波が数多く成分として存在し、各振幅及び複素位相は時間と共にランダムに激しく変動する。これに対し、図8に示した大規模アンテナシステムのような見通し環境を想定する場合、見通し波3及び構造物7による安定反射波4の安定パスはレベルが高い。見通し波3及び構造物7による安定反射波4よりも一般的に遅延量が大きい時変動パスの多重反射波は、多重反射と経路長にともなう減衰により、図9(b)に示すように相対的にレベルが小さくなる。このようなチャネル情報を複数回取得して平均化すると、安定パスの成分は振幅及び複素位相共に毎回安定して同様の値を取っているにもかかわらず、時変動パスの成分は複素空間上でランダムに合成され平均化される。そのため、平均化により安定成分のみを効果的に抽出することが可能になる。
このようにして得られる時変動のない安定パスのチャネル情報に基づいて、基地局装置1(図8参照)は送受信ウエイトを算出する。基地局装置1は、算出した送受信ウエイトを用いて多数のアンテナ素子で同位相合成を行うための指向性制御を行う。上記の送受信ウエイトを用いることで、基地局装置1は、指向性制御のターゲットとする通信相手の無線局装置への指向性利得をアンテナ本数Nの2乗倍に比例して高めることができる。また、ターゲット以外の無線局装置への与干渉の指向性利得はN倍に留まるため、相対的に希望信号と干渉信号との間には単純計算でN倍のギャップが生じる。結果的にSIR(Signal to Interference Ratio)の期待値は10Log10(N)[dB]となる。この期待値は、Nが100の場合には20dBとなる。更に相関の小さな無線局装置を選択的に空間多重する場合には、更なるSIR特性の改善が期待され、より高い空間多重が実現できる。
非特許文献2には、上記の送受信ウエイトでは抑圧しきれない干渉を更に抑圧するための技術や、チャネル情報の空間相関(チャネル相関)のより低い無線局装置の組み合わせを選択する技術が紹介されている。超高次の空間多重を実現するためには、チャネル相関の小さな無線局装置を組み合わせることが重要である。基地局装置の多数のアンテナと第j無線局装置との間の第kサブキャリアに関するチャネル情報を成分とするチャネル情報ベクトル→h (k)(「h (k)」の前の記号「→」は、hの上に付与されてベクトルを表すための記号である)と、別の第i無線局装置におけるチャネル情報ベクトルh (k)との間のチャネル相関は、式(7)で与えられる。
Figure 2016208114
見通し波のみで構成される仮想的なチャネルモデルを想定すると、上記のチャネル相関は、2台の無線局装置2の方位角の差θに強く依存した振る舞いを示すと考えられる。
図10は、基地局装置1からの方位角の差がθである2台の無線局装置2の座標の例を示す図である。無線局装置2−1のチャネル情報ベクトルを→h (k)とし、無線局装置2−2のチャネル情報ベクトルを→h (k)とすると、基地局装置1からの方位角の差θに依存するチャネル相関を算出することができる。
図11は、基地局装置1からの方位角の差と、チャネル相関との関係の例を示す図である。ここでのシミュレーション条件としては、基地局装置1のアンテナ数を128本とし、5.2GHzの周波数帯において、2波長間隔で128本のアンテナを円形に配置することを想定した。基地局装置1と無線局装置2との間は3kmで固定し、円形に無線局装置2の座標を動かしながらチャネル相関を計算している。図11を読み取ると、方位角の差θが例えば5度程度以下である場合、チャネル相関は大きな値になる場合があるが、方位角の差θが閾値α度を越える場合、チャネル相関は概ね0.2以下となる。非特許文献2に示されるスケジューリング法は、基地局装置1からの方位角の差が5度以上である場合にチャネル相関が低くなることを積極的に利用するスケジューリング方法である。
特開2014−230257号公報
太田厚 外、「大規模アンテナ無線エントランスシステムの提案 〜マルチユーザMIMO技術の新しいアプローチ〜」、信学技報, vol.113, no.8, RCS2013-5, pp.25-30, 2013年4月. 丸田一輝 外、「大規模アンテナ無線エントランスシステムの提案 〜計算機シミュレーションによる特性評価〜」、信学技報, vol.113, no.8, RCS2013-6, pp.31-36, 2013年4月. 新井拓人 外、「大規模アンテナ無線エントランスシステムにおける複数平面平行四辺形アレー及び簡易ユーザスケジューリングを用いたシステム化の検討」、信学技報, vol.114, no.86, RCS2014-78, pp.269-274, 2014年6月.
図11に示す関係の特性については、基地局装置1のアンテナ素子を水平面上に円形に配置する円形アレーを使用した場合に確認できる特徴である。しかしながら、基地局装置1のアンテナ素子を、直線上に配置するリニアアレーや、素子を垂直面上に正方格子状に配置する正方アレーなどの等間隔アレーとした場合、複数の無線局装置2の間に方位差があっても、無線局装置2と基地局装置1との距離や、無線局装置2と基地局装置1との高度の差によって、高相関となる位置座標が存在し、図11に示す関係は成り立たない。これは、特に見通しの強い環境において明確に現れる。つまり、基地局装置1のアンテナ構成に応じて異なるチャネル相関の特性が示される。このため、より汎用的なスケジューリング法が求められている。
非特許文献3に示されているスケジューリング法は、全ての無線局装置の間のチャネル相関を事前に算出し、チャネル相関が所定の閾値を超える組み合わせを選ばないように制御するスケジューリング法である。非特許文献2や非特許文献3に記載のスケジューリング法は、基地局装置に対してスケジューリングの対象となる無線局装置が多数存在する場合には、スケジューリングの効果によるチャネル相関低減によって、異なる無線局装置の間の干渉低減が期待できる。
しかしながら、スケジューリングの候補となる無線局装置の数が比較的少なく限定的な場合や、無線局装置の位置に著しい偏りがある場合には、スケジューリングは効果的でない。無線通信システム(大規模アンテナシステム)の想定する条件において、見通しの強い環境で、基地局装置と限定的な無線局装置との間でマルチユーザMIMOを行う場合、
基地局装置のアンテナ構成に応じて異なるチャネル相関の特性が示されるため、スケジューリングの適用は困難である。従来の置局設計による無線通信システムでは、基地局装置と複数の無線局装置との位置関係によっては、チャネル相関が高相関となる状況が継続してしまい、チャネル容量を安定的に向上させることができない場合があった。
上記事情に鑑み、本発明は、チャネル容量を安定的に向上させることが可能となる置局設計支援方法、置局設計支援装置、及び置局設計支援プログラムを提供することを目的としている。
本発明の一態様は、等間隔アレーを有するアンテナを制御する基地局装置と複数の無線局装置との間で空間多重伝送を実行する無線通信システムにおける置局設計支援方法であって、第1の無線局装置の位置情報を取得するステップと、前記第1の無線局装置と同時に前記空間多重伝送を実行する1局又は2局以上の第2の無線局装置のそれぞれの位置に対して、予め定められた条件を前記第1の無線局装置の位置が満たすか否かを判定するステップと、前記条件を満たす場合、前記第1の無線局装置の位置情報をデータベースに記憶させるステップと、を有する置局設計支援方法である。
本発明の一態様は、上記の置局設計支援方法であって、前記条件は、チャネルの空間相関が閾値以下になるという条件である。
本発明の一態様は、上記の置局設計支援方法であって、前記等間隔アレーは、ブロードサイドアレー、リニアアレー又は格子状にアンテナ素子を配置したアレーである。
本発明の一態様は、上記の置局設計支援方法であって、前記条件を満たさない場合、前記第1の無線局装置を設置することが可能である代替の位置を算出するステップを更に有する。
本発明の一態様は、等間隔アレーを有するアンテナを制御する基地局装置と複数の無線局装置との間で空間多重伝送を実行する無線通信システムにおける置局設計支援装置であって、第1の無線局装置の位置情報を取得する取得部と、前記第1の無線局装置と同時に前記空間多重伝送を実行する第2の無線局装置の位置に対して、予め定められた条件を前記第1の無線局装置の位置が満たすか否かを判定する判定部と、前記条件を満たす場合、前記第1の無線局装置の位置情報をデータベースに記憶させる処理部と、を備える置局設計支援装置である。
本発明の一態様は、上記の置局設計支援装置であって、前記条件を満たさない場合、前記第1の無線局装置を設置することが可能である代替の位置を算出する算出部を更に備える。
本発明の一態様は、上記の置局設計支援装置であって、前記第1の無線局装置の位置情報を外部のデータベースに記憶させるデータベースアクセス部を更に備える。
本発明の一態様は、等間隔アレーを有するアンテナを制御する基地局装置と複数の無線局装置との間で、空間多重伝送を実行する無線通信システムにおける置局設計支援装置のコンピュータに、第1の無線局装置の位置情報を取得する手順と、前記第1の無線局装置と同時に前記空間多重伝送を実行する1局又は2局以上の第2の無線局装置のそれぞれの位置に対して、予め定められた条件を前記第1の無線局装置の位置が満たすか否かを判定する手順と、前記条件を満たす場合、前記第1の無線局装置の位置情報をデータベースに記憶させる手順と、を実行させるための置局設計支援プログラムである。
本発明により、チャネル容量を安定的に向上させることが可能となる。
本発明の実施形態における、無線通信システムの第1例を示す図である。 本発明の実施形態における、無線通信システムの第2例を示す図である。 本発明の実施形態における、無線通信システムの第3例を示す図である。 本発明の第1の実施形態における、置局設計支援装置の構成の第1例を示す図である。 本発明の第1の実施形態における、置局設計処理の手順の例を示すフローチャートである。 本発明の第2の実施形態における、置局設計支援装置の構成の第2例を示す図である。 本発明の第3の実施形態における、置局設計支援装置の構成の第3例を示す図である。 大規模アンテナシステムの例を示す図である。 見通し外環境と見通し環境とのそれぞれにおける、インパルス応答の例を示す図である。 基地局装置からの方位角の差がθである2台の無線局装置の座標の例を示す図である。 基地局装置からの方位角の差と、チャネル相関との関係の例を示す図である。
本発明の実施形態について図面を参照して詳細に説明する。
図1は、無線通信システムの第1例を示す図である。図1では、無線通信システム100(大規模アンテナシステム)は、基地局装置10と、無線局装置20と、無線局装置30と、アンテナ40とを備える。無線通信システム100は、更に多くの無線局装置を備えてもよい。基地局装置10は、例えば、基地局に備えられる。基地局装置10は、アンテナ40を制御する。アンテナ40は、ブロードサイドアレー41を備える。ブロードサイドアレー41は、アンテナ素子を直線上に水平方向に配置した等間隔アレーである。
無線通信システム100は、送受信される無線信号を多数のアンテナ素子によって同位相合成することにより、指向性利得を向上させ、空間多重時のSIR特性を改善することができる。ここで、空間多重時のSIR特性は、無線局装置20と無線局装置30との間のチャネルの空間相関が低相関であるほど向上する。
なお、指向性を向けた所望の受信点(例えば、無線局装置20)において、所望波が同位相で受信されるように所望波の位相が制御された場合、干渉波の位相については制御されずにランダムに合成される。したがって、干渉波が一部で重なることはあっても、平均化すると干渉波の合成利得は無視することができる。
見通し波が支配的な場合、無線局装置20と無線局装置30との間のチャネルの空間相関は、基地局装置10が制御するアンテナ40のアンテナ素子の配置と、無線局装置20と無線局装置30との間の位置関係とに依存する。基地局装置10が制御するアンテナが等間隔アレーである場合、基地局装置10は、無線局装置20と、無線局装置20に対して高相関となる可能性が高い無線局装置30との位置関係を、把握することができる。
まず、基地局装置10のアンテナが、アンテナ素子を水平方向に等間隔に配置するブロードサイドアレーである場合における、チャネルの空間相関が高相関となる確率が高い無線局装置20と無線局装置30との位置関係について説明する。
以下、基準方位50は、アンテナ40のアンテナ素子の指向性が向く方向である。図1では、無線局装置20(無線局装置i)は、基地局装置10からの水平方向の方位角が基準方位50に対してθhiとなる方位に位置している。また、無線局装置30(無線局装置j)は、基準方位50に対して水平方向に無線局装置20とは反対側(負値)の方位角「−θhj」となる位置に存在している。
以下、dhantは、アンテナ40において等間隔に並ぶアンテナ素子の水平方向の間隔を示す。λは波長を示す。無線信号の位相状態が等しくなることによって無線局装置20(無線局装置i)とのチャネルの空間相関が高相関となる水平方向の方位角θhg(i)は、式(8)で与えられる。
Figure 2016208114
式(8)に示すnは、式(9)を満たす値0以上の整数である。
Figure 2016208114
無線局装置20(無線局装置i)とのチャネルの空間相関が高相関となる方位角θhg(i)は、無線局装置20(無線局装置i)に対して所望のメインビームを形成した場合に、水平方向のリニアアレーによってグレーティングローブが出現する水平方向の方位角である。また、n=0である場合、θhg(i)は、無線局装置20(無線局装置i)に対して所望のメインビームをアンテナ40が形成した場合に、メインビームが干渉する水平方向の方位角である。
したがって、無線局装置20(無線局装置i)の方位角θhiが基準方位50に対して−90度から+90度までの範囲にあり、かつ、間隔dhantが2分の1波長(=λ/2)以下である場合、チャネルの空間相関が高相関となる方位角θhg(i)は、メインビームのみの方向を示す方位角となる。
無線局装置20(無線局装置i)に対して所望のメインビームをアンテナ40が形成した場合に、式(8)に示す方位角θhg(i)と無線局装置30(無線局装置j)の方位角θhjとの差が、ビーム幅ΔΨの半分(=ΔΨ/2)以上に広い角度である場合、基地局装置10は、無線局装置20と無線局装置30とのチャネルの空間相関が高相関となる(閾値を超える)ことを、回避することができる。ここで、ある方位角にビームの指向性が向いている場合、アンテナ40のビーム幅(角度)は、そのビームの指向性が有効となる実効的なビーム幅として、式(10)によって与えられる。
Figure 2016208114
式(10)におけるNは、アンテナ40のアンテナ素子の数を示す。dantは、アンテナ40のアンテナ素子の間隔を示す。したがって、無線局装置30である無線局装置jの方位角θhjが無線局装置iに対して式(11)を満たす場合、基地局装置10は、無線局装置20(無線局装置i)と無線局装置30(無線局装置j)とのチャネルの空間相関が高相関となる(閾値を超える)ことを回避することができる。
Figure 2016208114
式(11)におけるNは、アンテナ40のアンテナ素子の数を表す。また、θhg(i)は、無線局装置20(無線局装置i)の式(8)を満たすグレーティングローブの方位角を示す。なお、式(11)は一例である。式(11)の右辺の式は、ビーム幅に応じて高相関が回避できる(閾値以下となる)条件式であれば、特定の条件式に限定されない。
次に、基地局装置10が制御するアンテナが、アンテナ素子を垂直方向に等間隔に配置したリニアアレーである場合における、チャネルの空間相関が高相関となる確率が高い無線局装置20と無線局装置30との位置関係について説明する。
図2は、無線通信システムの第2例を示す図である。図2では、無線通信システム101は、基地局装置10と、無線局装置20と、無線局装置30と、アンテナ40とを備える。無線通信システム101は、更に多くの無線局装置を備えてもよい。基地局装置10は、例えば、基地局に備えられる。基地局装置10は、アンテナ40を制御する。リニアアレー42は、アンテナ素子を直線上に垂直方向に配置した等間隔アレーである。
図2では、無線局装置20(無線局装置i)は、基地局装置10から距離rの位置に存在する。無線局装置20(無線局装置i)は、リニアアレー42の高度を基準にして、高度差Lとなる高度に存在する。この場合、垂直方向の方位角θviは、式(12)によって与えられる。
Figure 2016208114
vantは、アンテナ40に等間隔に配置されたアンテナ素子の垂直方向の間隔を示す。無線信号の位相状態が等しくなることによって無線局装置iとのチャネルの空間相関が高相関となる垂直方向の方位角θvg(i)は、式(13)によって与えられる。
Figure 2016208114
式(13)に示すmは、式(14)を満たす値0以上の整数である。
Figure 2016208114
無線局装置20(無線局装置i)とのチャネルの空間相関が高相関となる方位角θvg(i)は、無線局装置20(無線局装置i)に対して所望のメインビームをアンテナ40が形成した場合に、垂直方向のアレーによってグレーティングローブが出現する垂直方向の方位角である。また、m=0である場合、θvg(i)は、無線局装置20(無線局装置i)に対して所望のメインビームをアンテナ40が形成した場合に、メインビームが干渉する垂直方向の方位角である。
式(13)における方位角θvg(i)となる位置に無線局装置g(不図示)が配置されている場合、基地局装置10と無線局装置gとの距離rと、基地局装置10と無線局装置gとの高度差Lとは、式(15)を満たす。
Figure 2016208114
無線局装置iに対して所望のメインビームを形成した場合に、式(13)に示す方位角θvg(i)と無線局装置30の方位角θvjとの差が、ビーム幅ΔΨの半分(=ΔΨ/2)以上に広い角度である場合、基地局装置10は、無線局装置20と無線局装置30とのチャネルの空間相関が高相関となる(閾値を超える)ことを、回避することができる。したがって、無線局装置30(無線局装置j)の方位角θvjが、無線局装置20(無線局装置i)に対して式(16)を満たす場合、基地局装置10は、無線局装置20と無線局装置30とのチャネルの空間相関が高相関となることを回避することができる。
Figure 2016208114
式(16)におけるNは、アンテナ40のアンテナ素子の数を表す。また、θvg(i)は、無線局装置20(無線局装置i)の式(13)を満たすグレーティングローブの方位角を示す。図2では、無線局装置30(無線局装置j)は、基地局装置10からの垂直方向の方位角が基準方位50に対してθvjとなる方位に位置している。なお、式(16)は一例である。式(16)の右辺の式は、ビーム幅に応じて高相関が回避できる条件式であれば、特定の条件式に限定されない。
次に、基地局装置10のアンテナが、アンテナ素子を垂直面上に正方格子状に配置した正方アレーである場合における、チャネルの空間相関が高相関となる確率が高い無線局装置20と無線局装置30との位置関係について説明する。
図3は、無線通信システムの第3例を示す図である。図3では、無線通信システム102は、基地局装置10と、無線局装置20と、無線局装置30と、アンテナ40とを備える。無線通信システム100は、更に多くの無線局装置を備えてもよい。基地局装置10は、例えば、基地局に備えられる。基地局装置10は、アンテナ40を制御する。アンテナ40は、正方アレー43を備える。正方アレー43は、アンテナ素子を垂直平面上に正方格子状に配置する等間隔アレーである。
正方アレーのように垂直平面上に2次元的にアンテナ素子を配置する場合、水平方向に位置の異なるアンテナ素子同士は、無線局装置20と無線局装置30との間の水平方向の方位差に対して、チャネルの空間相関の低減に寄与する。また、正方アレーのように垂直平面上に2次元的にアンテナ素子を配置する場合、垂直方向に位置の異なるアンテナ素子同士は、距離rと距離rとの差と、無線局装置20と無線局装置30との高度の差とに応じて、垂直方向の方位角の差に対して、チャネルの空間相関の低減に寄与する。
したがって、正方アレーのような平面アレーの指向性特性は、水平方向の指向特性と垂直方向の指向特性との乗算により表現することができる。このため、水平方向に並ぶリニアアレーにおける式(11)と、垂直方向に並ぶリニアアレーにおける式(16)とを、無線局装置20及び無線局装置30が満たす場合、基地局装置10は高相関を回避することができる。
正方アレー43は、平行四辺形の格子状にアンテナ素子を配置した平行四辺形アレーでもよい。特許文献1や非特許文献3に示されている平行四辺形格子状に配置する平行四辺形アレーを想定した場合に、高相関となる確率が高い無線局装置の位置関係について説明する。平行四辺形アレーにおいても、正方アレーのように水平方向の指向特性と垂直方向の指向特性の乗算により表現することができる。
平行四辺形アレーは正方アレーに傾斜を与えたものと考えることができる。このため、平行四辺形アレーにおいて高相関となる無線局装置同士の位置関係は、正方アレーにおいて高相関となる無線局装置同士の位置関係を、傾斜面上で考えればよい。したがって、水平方向において高相関となり得る方位角θhgは、正方アレーと同様に式(8)で表すことができる。また、水平方向の条件式は式(11)を用いればよい。
無線局装置30(無線局装置j)の方位角θhjが方位角θhgと等しい場合に、平行四辺形アレーの傾斜に相当する垂直方向の高度の差が正方アレー43に生じた場合、正方アレーと同様に、無線局装置20と無線局装置30とが高相関となる確率は高くなる。平行四辺形アレーである正方アレー43のアンテナ素子の水平方向へのオフセット(シフト)を示す傾斜θは、式(17)で与えられる。
Figure 2016208114
ここで簡単のため、水平方向の素子間隔dhantと、垂直方向の素子間隔dvantとが等しいとする。この場合、式(17)は式(18)のように表される。
Figure 2016208114
したがって、垂直方向については傾斜θを考慮し、無線局装置20である無線局装置iに対して、無線局装置30である無線局装置jが、式(19)及び式(20)の少なくとも一方を満たす場合、基地局装置10はチャネルの空間相関が高相関となることを回避可能である。
Figure 2016208114
Figure 2016208114
式(19)に示す条件式と、式(20)に示す条件式とは、正方アレー43が垂直方向に対して傾く方向に応じて適宜選択される。ブロードサイドアレー、リニアアレー、正方アレー等について、条件式による高相関の判定には、正方アレー43に対する無線局装置30等の方位角に応じて複数の条件式を切り替えて用いられてもよい。
したがって、ブロードサイドアレー41の条件式は、例えば、式(11)である。リニアアレー42の条件式は、例えば、式(16)である。正方アレー43の条件式は、例えば、式(11)及び式(16)の少なくとも一方である。正方アレー43が平行四辺形アレーである場合、平行四辺形アレーの条件式は、例えば、式(19)及び式(20)の少なくとも一方である。
[第1の実施形態]
図4は、置局設計支援装置60の構成の第1例を示す図である。第1の実施形態では、置局設計支援装置60を「置局設計支援装置60a」という。置局設計支援装置60aは、取得部61と、判定部62と、記憶処理部63と、出力部64と、基地局装置情報データベース65と、無線局装置情報データベース66とを備える。
置局設計支援装置60aは、記憶部を更に備えてもよい。記憶部は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記憶媒体(非一時的な記憶媒体)を有する。記憶部は、例えば、RAM(Random Access Memory)やレジスタなどの揮発性の記憶媒体を有していてもよい。記憶部は、例えば、ソフトウェア機能部を機能させるためのプログラムを記憶してもよい。
取得部61と、判定部62と、記憶処理部63と、出力部64との一部または全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、メモリに記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。
取得部61は、設置の可否(可能又は非推奨)を判定する対象の無線局装置20(無線局装置i)ごとに、アンテナの座標及び高度の情報を取得する。アンテナの座標及び高度は、例えば、ユーザが定める。取得部61は、アンテナの座標及び高度の情報を記憶させることを示す信号を取得した場合、アンテナの座標及び高度の情報を、記憶処理部63に出力する。アンテナの座標及び高度の情報を記憶させることを示す信号は、ユーザによる操作に応じて定まる。
判定部62は、基地局装置10の位置情報を、基地局装置情報データベース65から取得する。判定部62は、無線局装置20の位置情報を、取得部61から取得する。判定部62は、無線局装置30等の位置情報を、無線局装置情報データベース66から取得する。無線局装置20や無線局装置30等の位置情報は、チャネル状態情報(CSI: Channel State Information)や環境情報とは異なり、無線通信システムを運用する前において置局設計を実行する際に取得が可能である。
判定部62は、基地局装置10の位置情報と、無線局装置20の位置情報と、無線局装置30等の位置情報とに基づいて、無線局装置情報データベース66に記憶されている無線局装置20の全てに対して条件式が満たされているかを判定する。すなわち、判定部62は、設置の可否の判定が既になされて無線局装置情報データベース66に設置の可否が記憶されている無線局装置30の全てに対して条件式が満たされているかを、基地局装置10の位置情報と、無線局装置20の位置情報と、無線局装置30等の位置情報と、に基づいて判定する。条件式が満たされている場合、新たに設置の可否を判定する対象の無線局装置20と、設置の可否が判定済みの無線局装置30とのチャネルの空間相関は、見通し波を前提とした場合、高相関(閾値以上)とならない。
判定部62は、無線局装置20の設置の可否の判定結果を示す情報を、出力部64に出力する。判定部62は、メッセージ情報を出力部64に出力する。メッセージ情報は、アンテナの座標及び高度の情報を無線局装置情報データベース66に記憶させるか否かを問い合わせるためのメッセージ情報である。メッセージ情報が通知されたユーザは、アンテナの座標及び高度の情報を無線局装置情報データベース66に記憶させることを示す信号を、取得部61に取得させることができる。
記憶処理部63は、アンテナの座標及び高度の情報を記憶させることを示す信号を取得部61が取得した場合、取得部61から取得したアンテナの座標及び高度の情報を、無線局装置20の位置情報として、無線局装置情報データベース66に記憶させる。
出力部64は、メッセージ情報を外部の装置に出力する。外部の装置は、例えば、表示装置である。出力部64は、無線局装置20の設置の可否の判定結果を示す情報を、外部の装置に出力する。出力装置は、表示装置でもよい。出力装置は、メッセージ情報を表示することによって、メッセージ情報をユーザに通知してもよい。
基地局装置情報データベース65は、基地局装置10の位置情報を記憶する。
無線局装置情報データベース66は、無線局装置20や無線局装置30等の位置情報を記憶する。無線局装置20の位置情報は、例えば、無線局装置20のアンテナの水平方向の座標の情報、及び無線局装置20のアンテナの高度の情報を含む。無線局装置30の位置情報は、例えば、無線局装置30のアンテナの水平方向の座標の情報、及び無線局装置30のアンテナの高度の情報を含む。
なお、基地局装置情報データベース65に記憶されている情報は、任意のタイミングで更新されてもよい。また、無線局装置情報データベース66に記憶されている情報は、任意のタイミングで更新されてもよい。
次に、置局設計処理の手順の例を説明する。
図5は、置局設計処理の手順の例を示すフローチャートである。置局設計支援装置60aは、図5に示す置局設計処理によって、無線局装置の置局設計を支援する。判定部62は、設置の可否を新たに判定する無線局装置20(無線局装置i)に割り当てられた管理番号(識別番号)iを、「j+1」に更新する。jは、設置済みの無線局装置30の台数を示す変数である(ステップS101)。
取得部61は、設置の可否を新たに判定する無線局装置20(無線局装置i)の位置情報を取得する。すなわち、取得部61は、置局する対象の無線局装置20(無線局装置i)の位置情報を取得する。位置情報は、例えば、基地局装置10を基準とした座標及び高度で表現される。位置情報は、例えば、基地局装置10を基準とした水平方向の方位角θhiや、垂直方向の方位角θviで表現されてもよい(ステップS102)。
判定部62は、式(8)を満たすグレーティングローブの水平方向の方位角θhg(i)、及び、式(13)を満たすグレーティングローブの垂直方向の方位角θvg(i)の少なくとも一方を、取得部61によって取得された無線局装置20(無線局装置i)の位置情報に基づいて算出する(ステップS103)。
判定部62は、算出された水平方向の方位角θhg(i)が、既に設置されて無線局装置情報データベース66に記憶されているj台の無線局装置30の全てに対して、条件式が満たされているか否かを判定する。また、判定部62は、算出された垂直方向の方位角θvg(i)が、設置の可否の判定が既になされて無線局装置情報データベース66に記憶されているj台の無線局装置の全てに対して、条件式が満たされているか否かを判定する(ステップS104)。
無線局装置情報データベース66に記憶されているj台の無線局装置30の全てに対して条件式が満たされている場合(ステップS104:YES)、判定部62は、無線局装置20(無線局装置i)の位置の判定結果を、OK(設置可能)と定める(ステップS105)。無線局装置情報データベース66に記憶されているj台の無線局装置30のいずれかに対して条件式が満たされていない場合(ステップS104:NO)、判定部62は、無線局装置20(無線局装置i)の位置の判定結果を、NG(設置非推奨)と定める(ステップS106)。
出力部64は、判定結果を出力する(ステップS107)。判定結果は、例えば、「OK」又は「NG」と表現されてもよい。また、判定結果は、例えば、相関値の最悪値や平均値などの定量的な数値で表現されてもよい。ユーザは、出力部64によって表示装置に表示された数値に基づいて、「OK」又は「NG」を判断してもよい。
出力部64は、無線局装置iの位置情報を無線局装置情報データベース66に記憶させるか否かについて、ユーザに可否を問い合わせるための情報を出力する(ステップS108)。記憶させる場合(ステップS108:YES)、記憶処理部63は、無線局iの水平方向の方位角θhiと、垂直方向の方位角θviと、管理番号iとを、互いに対応付けて無線局装置情報データベース66に記憶させる(ステップS109)。判定部62は、設置済みの無線局装置の台数を示す変数jを、管理番号iに更新する(ステップS110)。置局設計支援装置60aは、図5に示す置局設計処理を終了する。
以上のように、第1の実施形態の置局設計支援方法、置局設計支援装置60a、及び置局設計支援プログラムは、等間隔アレーを有するアンテナを制御する基地局装置10と、複数の無線局装置20等との間で、空間多重伝送を実行する無線通信システム102等における置局設計支援方法であって、無線局装置20の位置情報を取得するステップと、無線局装置20と同時に空間多重伝送を実行する1局又は2局以上の無線局装置30のそれぞれの位置に対して、予め定められた条件を無線局装置20の位置が満たすか否かを判定するステップと、条件を満たす場合、無線局装置20の位置情報を、無線局装置データベース66に記憶させるステップとを有する。
これによって、第1の実施形態の置局設計支援方法、置局設計支援装置60a、及び置局設計支援プログラムは、チャネル容量を安定的に向上させることが可能となる。第1の実施形態の置局設計支援方法、置局設計支援装置60a、及び置局設計支援プログラムは、安定したSINR特性が実現できる置局設計を支援することができる。
第1の実施形態の置局設計支援方法、置局設計支援装置60a、及び置局設計支援プログラムは、サブキャリアに関わらず位置情報に基づいて置局設計を支援する。無線リソースのスケジューリング装置は、容易にスケジューリングが可能となる。
[第2の実施形態]
第2の実施形態では、置局設計支援装置60がデータベースアクセス部67を備える点が、第1の実施形態と相違する。第2の実施形態では、第1の実施形態との相違点についてのみ説明する。
図6は、置局設計支援装置60の構成の第2例を示す図である。第2の実施形態では、置局設計支援装置60を「置局設計支援装置60b」という。置局設計支援装置60bは、取得部61と、判定部62と、記憶処理部63と、出力部64と、データベースアクセス部67とを備える。第2の実施形態では、基地局装置情報データベース65と、無線局装置情報データベース66とは、置局設計支援装置60bの外部に備えられている。
データベースアクセス部67は、例えば、CPU等のプロセッサが、メモリに記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSIやASIC等のハードウェア機能部であってもよい。
データベースアクセス部67は、基地局装置10の位置情報を基地局装置情報データベース65に記憶させる。また、データベースアクセス部67は、無線局装置20の位置情報を、記憶処理部63から取得する。データベースアクセス部67は、無線局装置20の位置情報を、外部の無線局装置情報データベース66に記憶させる。
データベースアクセス部67は、判定部62からの要求に応じて、基地局装置10の位置情報を基地局装置情報データベース65から取得する。データベースアクセス部67は、判定部62からの要求に応じて、無線局装置30の位置情報を無線局装置情報データベース66から取得する。データベースアクセス部67は、基地局装置10の位置情報と、無線局装置20の位置情報とを判定部62に転送する。
なお、データベースアクセス部67は、記憶処理部63と一体でもよい。すなわち、記憶処理部63は、基地局装置10の位置情報を、置局設計支援装置60bの外部の基地局装置情報データベース65に記憶させてもよい。また、記憶処理部63は、無線局装置20の位置情報を、置局設計支援装置60bの外部の無線局装置情報データベース66に記憶させてもよい。
以上のように、第2の実施形態の置局設計支援方法、置局設計支援装置60b、及び置局設計支援プログラムは、無線局装置20の位置情報を、置局設計支援装置60bの外部の無線局装置情報データベース66に記憶させることが可能となる。
[第3の実施形態]
第3の実施形態では、置局設計支援装置60が算出部68を備える点が、第1の実施形態と相違する。第3の実施形態では、第1の実施形態との相違点についてのみ説明する。
図7は、置局設計支援装置60の構成の第3例を示す図である。第3の実施形態では、置局設計支援装置60を「置局設計支援装置60c」という。置局設計支援装置60cは、取得部61と、判定部62と、記憶処理部63と、出力部64と、基地局装置情報データベース65と、無線局装置情報データベース66と、算出部68とを備える。
算出部68は、例えば、CPU等のプロセッサが、メモリに記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSIやASIC等のハードウェア機能部であってもよい。
算出部68は、判定部62による判定結果がNG(設置非推奨)となった場合、無線局装置20を設置することが可能である代替の位置を算出する。代替の位置は、取得部61が取得した無線局装置20の位置情報が示す位置の周囲の座標及び高度のうち、式(15)及び式(16)等の条件式を満たす位置である。
例えば、算出部68は、取得部61が取得した3次元の位置座標を(x,y,z)とした場合、座標成分x及びyを固定して、高度zを増減させることによって、条件式を満たす代替の位置を算出する。例えば、算出部68は、取得部61が取得した位置座標を(x,y,z)とした場合、高度zを固定して、位置座標(x,y)を中心に半径r[m]の範囲の中で、座標成分x及びyを増減させ、条件式を満たす代替の位置を算出してもよい。半径rの値は、予め定められてもよいし、取得部61が取得してもよい。算出部68は、条件式を満たす代替の位置を、ユーザが定めた制約条件等に基づいて算出してもよい。算出部68は、代替の位置の情報を出力部64に出力する。
以上のように、第3の実施形態の置局設計支援装置60cは、条件式を満たさない場合、無線局装置30を設置することが可能である代替の位置を算出する算出部68を備える。これによって、第3の実施形態の置局設計支援方法、置局設計支援装置60c、及び置局設計支援プログラムは、無線局装置30を設置することが可能である代替の位置を、ユーザに通知することが可能となる。
上述した実施形態における基地局装置、無線局装置、置局設計支援装置をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…基地局装置、2…無線局装置、3…見通し波、4…安定反射波、5…多重反射波、6…多重反射波、7…構造物、10…基地局装置、20…無線局装置、30…無線局装置、40…アンテナ、41…ブロードサイドアレー、42…リニアアレー、43…正方アレー、50…基準方位、60a…置局設計支援装置、60b…置局設計支援装置、60c…置局設計支援装置、61…取得部、62…判定部、63…記憶処理部、64…出力部、65…基地局装置情報データベース、66…無線局装置情報データベース、67…データベースアクセス部、68…算出部、100…無線通信システム、101…無線通信システム、102…無線通信システム

Claims (8)

  1. 等間隔アレーを有するアンテナを制御する基地局装置と複数の無線局装置との間で空間多重伝送を実行する無線通信システムにおける置局設計支援方法であって、
    第1の無線局装置の位置情報を取得するステップと、
    前記第1の無線局装置と同時に前記空間多重伝送を実行する1局又は2局以上の第2の無線局装置のそれぞれの位置に対して、予め定められた条件を前記第1の無線局装置の位置が満たすか否かを判定するステップと、
    前記条件を満たす場合、前記第1の無線局装置の位置情報をデータベースに記憶させるステップと、
    を有する置局設計支援方法。
  2. 前記条件は、チャネルの空間相関が閾値以下になるという条件である、請求項1に記載の置局設計支援方法。
  3. 前記等間隔アレーは、ブロードサイドアレー、リニアアレー又は格子状にアンテナ素子を配置したアレーである、請求項1又は請求項2に記載の置局設計支援方法。
  4. 前記条件を満たさない場合、前記第1の無線局装置を設置することが可能である代替の位置を算出するステップ
    を更に有する、請求項1から請求項3のいずれか一項に記載の置局設計支援方法。
  5. 等間隔アレーを有するアンテナを制御する基地局装置と複数の無線局装置との間で空間多重伝送を実行する無線通信システムにおける置局設計支援装置であって、
    第1の無線局装置の位置情報を取得する取得部と、
    前記第1の無線局装置と同時に前記空間多重伝送を実行する第2の無線局装置の位置に対して、予め定められた条件を前記第1の無線局装置の位置が満たすか否かを判定する判定部と、
    前記条件を満たす場合、前記第1の無線局装置の位置情報をデータベースに記憶させる処理部と、
    を備える置局設計支援装置。
  6. 前記条件を満たさない場合、前記第1の無線局装置を設置することが可能である代替の位置を算出する算出部
    を更に備える、請求項5に記載の置局設計支援装置。
  7. 前記第1の無線局装置の位置情報を外部のデータベースに記憶させるデータベースアクセス部
    を更に備える、請求項5又は請求項6に記載の置局設計支援装置。
  8. 等間隔アレーを有するアンテナを制御する基地局装置と、複数の無線局装置との間で、空間多重伝送を実行する無線通信システムにおける置局設計支援装置のコンピュータに、
    第1の無線局装置の位置情報を取得する手順と、
    前記第1の無線局装置と同時に前記空間多重伝送を実行する1局又は2局以上の第2の無線局装置のそれぞれの位置に対して、予め定められた条件を前記第1の無線局装置の位置が満たすか否かを判定する手順と、
    前記条件を満たす場合、前記第1の無線局装置の位置情報をデータベースに記憶させる手順と、
    を実行させるための置局設計支援プログラム。
JP2015084242A 2015-04-16 2015-04-16 置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム Active JP6397365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084242A JP6397365B2 (ja) 2015-04-16 2015-04-16 置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084242A JP6397365B2 (ja) 2015-04-16 2015-04-16 置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム

Publications (2)

Publication Number Publication Date
JP2016208114A true JP2016208114A (ja) 2016-12-08
JP6397365B2 JP6397365B2 (ja) 2018-09-26

Family

ID=57490548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084242A Active JP6397365B2 (ja) 2015-04-16 2015-04-16 置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム

Country Status (1)

Country Link
JP (1) JP6397365B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075693A (ja) * 2017-10-16 2019-05-16 株式会社Nttドコモ 無線通信システムの評価装置
JP2019075692A (ja) * 2017-10-16 2019-05-16 株式会社Nttドコモ 無線通信システムの評価装置
CN113287343A (zh) * 2019-02-01 2021-08-20 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056203A (ja) * 2002-07-16 2004-02-19 Advanced Telecommunication Research Institute International アレーアンテナの空間相関係数の計算方法及び無線局の置局設計方法
JP2013135426A (ja) * 2011-12-27 2013-07-08 Nippon Telegr & Teleph Corp <Ntt> 無線リソース割当方法、及び基地局装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056203A (ja) * 2002-07-16 2004-02-19 Advanced Telecommunication Research Institute International アレーアンテナの空間相関係数の計算方法及び無線局の置局設計方法
JP2013135426A (ja) * 2011-12-27 2013-07-08 Nippon Telegr & Teleph Corp <Ntt> 無線リソース割当方法、及び基地局装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新井拓人: "超高次空間多重を実現する大規模アンテナ無線エントランス技術", 電子情報通信学会2014年通信ソサイエティ大会講演論文集1, JPN6018010434, 9 September 2014 (2014-09-09), pages 14 - 15, ISSN: 0003763983 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075693A (ja) * 2017-10-16 2019-05-16 株式会社Nttドコモ 無線通信システムの評価装置
JP2019075692A (ja) * 2017-10-16 2019-05-16 株式会社Nttドコモ 無線通信システムの評価装置
JP6998722B2 (ja) 2017-10-16 2022-01-18 株式会社Nttドコモ 無線通信システムの評価装置
JP6998721B2 (ja) 2017-10-16 2022-01-18 株式会社Nttドコモ 無線通信システムの評価装置
CN113287343A (zh) * 2019-02-01 2021-08-20 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11849406B2 (en) 2019-02-01 2023-12-19 Sony Group Corporation Electronic device and method for wireless communication, and computer-readable storage medium
JP7456447B2 (ja) 2019-02-01 2024-03-27 ソニーグループ株式会社 無線通信のための電子装置及び方法、コンピュータ可読記憶媒体
CN113287343B (zh) * 2019-02-01 2024-04-30 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Also Published As

Publication number Publication date
JP6397365B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
Sun et al. Multi-beam antenna combining for 28 GHz cellular link improvement in urban environments
US9252864B2 (en) Method and apparatus for fast beam-link construction in mobile communication system
JP6809748B2 (ja) 無線通信装置
US10178685B2 (en) Scheduling method and apparatus in mobile communication system
JP2012521120A (ja) 改良型中継器
WO2015124071A1 (zh) 一种双流波束赋形方法和装置
JP6397365B2 (ja) 置局設計支援方法、置局設計支援装置、及び置局設計支援プログラム
Yamazaki et al. DL MU-MIMO field trial with 5G low SHF band massive MIMO antenna
Simon et al. Performance evaluation of massive MIMO with beamforming and nonorthogonal multiple access based on practical channel measurements
Okuyama et al. Antenna deployment for 5G ultra high-density distributed antenna system at low SHF bands
WO2018163333A1 (ja) 無線通信装置および無線通信方法
JP2006203658A (ja) 適応アンテナアレー送信装置および適応アンテナアレー送信方法
JP6450249B2 (ja) 空間スケジューリング方法、及び、空間スケジューリング装置
JP6259354B2 (ja) 空間多重スケジューリング方法、基地局装置及びプログラム
JP6397351B2 (ja) アンテナ、無線基地局装置及びアンテナ素子の配置方法
JP6053160B2 (ja) アンテナ、基地局装置、及びアンテナ素子の配置方法
JP6251118B2 (ja) 空間多重スケジューリング方法、基地局装置及びプログラム
Khawar Spectrum sharing between radar and communication systems
US9503172B2 (en) Method for dual mode beamforming and apparatus for the same
Kataoka et al. Basic performance of massive MIMO in indoor scenario at 20-GHz band
JP6294769B2 (ja) アンテナ装置及び基地局装置
KR102041669B1 (ko) 수신 장치의 이동성 지원을 위한 송신 장치의 다중 안테나 빔 형성 방법 및 시스템
WO2024020951A1 (en) Beamforming scheme
Kikuma et al. Experimental Validation of Massive MIMO Linearity Enhancement with DPD in Low-SHF-Band for 5G
JP5965354B2 (ja) アンテナ及び基地局装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180831

R150 Certificate of patent or registration of utility model

Ref document number: 6397365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150