JP2016207314A - Nonaqueous electrolyte secondary battery and battery pack thereof - Google Patents

Nonaqueous electrolyte secondary battery and battery pack thereof Download PDF

Info

Publication number
JP2016207314A
JP2016207314A JP2015084517A JP2015084517A JP2016207314A JP 2016207314 A JP2016207314 A JP 2016207314A JP 2015084517 A JP2015084517 A JP 2015084517A JP 2015084517 A JP2015084517 A JP 2015084517A JP 2016207314 A JP2016207314 A JP 2016207314A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
negative electrode
secondary battery
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084517A
Other languages
Japanese (ja)
Other versions
JP6516541B2 (en
Inventor
将人 倉津
Masato Kuratsu
将人 倉津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015084517A priority Critical patent/JP6516541B2/en
Publication of JP2016207314A publication Critical patent/JP2016207314A/en
Application granted granted Critical
Publication of JP6516541B2 publication Critical patent/JP6516541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery using a titanium-containing oxide as a negative electrode active material, which is little in the generation of gas during cycle operations and exhibits excellent cycle stability.SOLUTION: A nonaqueous electrolyte secondary battery of the present invention includes a negative electrode, a positive electrode, and a nonaqueous electrolyte interposed between the negative electrode and the positive electrode. The negative electrode includes a titanium-containing oxide as a negative electrode active material. The nonaqueous electrolyte contains a salt having a silsesquioxane structure. The content of the salt having a silsesquioxane structure is 0.01 wt.% or more with respect to 100 wt.% of the nonaqueous electrolyte.SELECTED DRAWING: None

Description

本発明は非水電解液二次電池及びその組電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and its assembled battery.

近年、携帯機器、ハイブリット自動車、電気自動車、家庭用蓄電用途に用いられる非水電解質二次電池の研究開発が盛んに行われている。これらの分野に用いられる非水電解質二次電池は、正極活物質としてリチウム含有コバルト複合酸化物やリチウム含有ニッケル複合酸化物、負極活物質としてカーボン系材料、電解液としてLiBF、LiPF等のリチウム塩を有機溶媒に溶解した非水電解質をそれぞれ用いており、高容量、高出力など複数の特性を同時に満たすための研究が継続して行われている。さらに近年では電池の発熱・発火現象が報告されており、これまでよりも高い安全性を有する電池の開発が求められている。 In recent years, research and development of non-aqueous electrolyte secondary batteries used for portable devices, hybrid cars, electric cars, and household power storage have been actively conducted. Nonaqueous electrolyte secondary batteries used in these fields include lithium-containing cobalt composite oxides and lithium-containing nickel composite oxides as positive electrode active materials, carbon-based materials as negative electrode active materials, LiBF 4 , LiPF 6 and the like as electrolyte solutions. Non-aqueous electrolytes in which lithium salts are dissolved in organic solvents are used, and research is ongoing to simultaneously satisfy multiple characteristics such as high capacity and high output. Furthermore, in recent years, heat generation and ignition phenomena of batteries have been reported, and development of batteries having higher safety than before has been demanded.

そのような特性を満たすものとして負極の集電箔に塗工される負極活物質に、チタン酸リチウムや二酸化チタンのようなチタン含有酸化物を用いた非水電解質二次電池が開発されている(例えば、特許文献1)。しかし、負極の活物質にチタン含有酸化物を用いた非水電解質二次電池は、充放電サイクル時に活物質表面の異常活性点が電解液を分解することによりガスが発生し、その結果、内圧のため電池が膨らみ、電池特性が低下するという問題がある。   A non-aqueous electrolyte secondary battery using a titanium-containing oxide such as lithium titanate or titanium dioxide as a negative electrode active material applied to a negative electrode current collector foil has been developed to satisfy such characteristics. (For example, patent document 1). However, in non-aqueous electrolyte secondary batteries using a titanium-containing oxide as the active material for the negative electrode, gas is generated due to the decomposition of the electrolyte due to the abnormally active sites on the active material surface during the charge / discharge cycle. Therefore, there is a problem that the battery swells and the battery characteristics deteriorate.

特許文献2には、電池ケース内に非水電解液が供給されているリチウムイオン二次電池において、非水電解液に、シルセスキオキサンを含ませ、負極の近傍に、シルセスキオキサンおよび/またはその反応生成物を存在させることにより、充放電を繰り返した際の電池容量の低下を抑制することに関する記載がある。しかしながら、一般にシルセスキオキサン自体は有機溶媒への溶解度が低いため、添加量が多い場合、電解液に溶けていないシルセスキオキサンにより、特性劣化が引き起こされると考えられ、改善が必要である。   In Patent Document 2, in a lithium ion secondary battery in which a nonaqueous electrolyte is supplied in a battery case, silsesquioxane is included in the nonaqueous electrolyte, and silsesquioxane and There is a description relating to suppressing a decrease in battery capacity when charging / discharging is repeated by the presence of the reaction product. However, since silsesquioxane itself generally has low solubility in organic solvents, it is considered that silsesquioxane that is not dissolved in the electrolyte solution causes deterioration in characteristics when the addition amount is large, and improvement is necessary. .

特許第3502118号公報Japanese Patent No. 3502118 特許第2014−093158号公報Japanese Patent No. 2014-093158

本発明が解決しようとする課題は、負極活物質にチタン含有酸化物を用いた非水電解質二次電池において、サイクル運転時においてガス発生が少なく、優れたサイクル安定性を発現する非水電解質二次電池を提供することである。   The problem to be solved by the present invention is that in a non-aqueous electrolyte secondary battery using a titanium-containing oxide as a negative electrode active material, there is little gas generation during cycle operation and the non-aqueous electrolyte secondary battery exhibiting excellent cycle stability. The next battery is to provide.

本発明者らが、上記課題を解決するために鋭意検討した結果、負極にチタン含有酸化物を用い、非水電解質にシルセスキオキサン構造を有する塩を添加することで、電極表面にイオン性の保護層が形成され、効率的なリチウムイオンの授受を可能としつつ、活物質表面の異常活性点による溶媒の分解に伴うガス発生を抑制することができ、出力特性・サイクル特性の両立が可能となることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, the use of a titanium-containing oxide for the negative electrode and the addition of a salt having a silsesquioxane structure to the non-aqueous electrolyte results in ionicity on the electrode surface. A protective layer is formed, enabling efficient exchange of lithium ions, while suppressing gas generation due to decomposition of the solvent due to abnormally active sites on the active material surface, allowing both output characteristics and cycle characteristics to be compatible As a result, the present invention has been completed.

本発明は、非水電解質に添加するシルセスキオキサンがアニオンを包接している塩、及び/またはイオン性官能基を有する塩であるため、電解液への溶解性が高く、上記の保護膜形成が効果的に行われ、効率的にガス発生抑制や電池特性低下防止の効果が発現する。   In the present invention, since the silsesquioxane added to the non-aqueous electrolyte is a salt containing an anion and / or a salt having an ionic functional group, the above-mentioned protective film has high solubility in an electrolytic solution. Formation is performed effectively, and the effect of suppressing gas generation and preventing deterioration of battery characteristics is exhibited.

すなわち、本発明は、負極、正極、及び前記負極と前記正極との間に介在される非水電解質を備える二次電池であって、前記負極が、負極活物質としてチタン含有酸化物を含み、前記非水電解質が、シルセスキオキサン構造を有する塩を含有してなり、前記シルセスキオキサン構造を有する塩が、前記非水電解質100重量%に対して0.01重量%以上であることを特徴とする、非水電解質二次電池に関する。   That is, the present invention is a secondary battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte interposed between the negative electrode and the positive electrode, wherein the negative electrode includes a titanium-containing oxide as a negative electrode active material, The non-aqueous electrolyte contains a salt having a silsesquioxane structure, and the salt having the silsesquioxane structure is 0.01% by weight or more with respect to 100% by weight of the non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte secondary battery.

また、前記シルセスキオキサン構造が、以下の式(1)で表すことのできることが好ましい。   Moreover, it is preferable that the said silsesquioxane structure can be represented by the following formula | equation (1).

Figure 2016207314
Figure 2016207314

上記式中、Rは同一であっても、異なっていてもよく、いずれも水素原子または水素原子や炭素原子が他の元素で置換されていてもよい炭素原子数1〜12の有機基であり、nは1〜10の整数である。   In the above formula, R may be the same or different, and each is a hydrogen atom or an organic group having 1 to 12 carbon atoms in which a hydrogen atom or a carbon atom may be substituted with another element. , N is an integer of 1-10.

また、前記シルセスキオキサン構造を有する塩が、かご型シルセスキオキサン構造を有することが好ましい。   The salt having the silsesquioxane structure preferably has a cage silsesquioxane structure.

また、前記シルセスキオキサン構造を有する塩が、分子内にハロゲンアニオンを包接していることが好ましい。   The salt having the silsesquioxane structure preferably includes a halogen anion in the molecule.

また、前記Rの少なくとも1つが重合性官能基及び/またはイオン性官能基を有していることが好ましい。   Moreover, it is preferable that at least one of the R has a polymerizable functional group and / or an ionic functional group.

また、前記チタン含有酸化物が、チタン酸リチウムおよび/又は二酸化チタンであることが好ましい。   The titanium-containing oxide is preferably lithium titanate and / or titanium dioxide.

また、前記正極において、正極活物質がLi1+xMn2―x―y(0≦x≦0.2、0<y≦0.6、Mは2〜13族でかつ第3〜4周期に属する元素からなる群から選択される少なくとも1種)で表されるスピネル型マンガン酸リチウムを含むことが好ましい。 Further, in the positive electrode, the positive electrode active material is Li 1 + x M y Mn 2−xy O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, M is 2 to 13 and It is preferable to include a spinel type lithium manganate represented by at least one selected from the group consisting of elements belonging to four periods.

また、上記非水電解質二次電池を複数個接続してなる組電池に関する。   The present invention also relates to an assembled battery formed by connecting a plurality of the nonaqueous electrolyte secondary batteries.

本発明によれば、充放電サイクル時のガス発生がなく、優れたサイクル安定性を有する非水電解質二次電池が得られる。   According to the present invention, a non-aqueous electrolyte secondary battery that does not generate gas during a charge / discharge cycle and has excellent cycle stability can be obtained.

本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されるものではない。   An embodiment of the present invention will be described as follows, but the present invention is not limited to this.

本発明の非水電解質二次電池は、負極、正極、セパレータ、非水電解質、および外装材からなるリチウムイオン電池とすることができる。この正極及び負極には各々、リチウムイオンの挿入及び脱離が可能な活物質を含む活物質層が形成されており、この挿入及び脱離により、本発明のリチウムイオン二次電池の充電及び放電が為される。   The nonaqueous electrolyte secondary battery of the present invention can be a lithium ion battery comprising a negative electrode, a positive electrode, a separator, a nonaqueous electrolyte, and an exterior material. Each of the positive electrode and the negative electrode is formed with an active material layer containing an active material capable of inserting and removing lithium ions, and charging and discharging of the lithium ion secondary battery of the present invention by this insertion and removal. Is done.

<1.負極>
本発明の非水電解質二次電池に用いる負極は、金属製集電体の両面に、少なくとも負極活物質が含まれる負極活物質層が形成されている。負極活物質としてチタン含有酸化物を含む。チタン含有酸化物としては、チタン酸リチウム、および/又は二酸化チタンが好ましい。中でも、材料自身の安定性が高いことから、チタン酸リチウムがより好ましく、リチウムイオンの挿入・脱離の反応における活物質の膨張収縮が小さい点から、スピネル構造のチタン酸リチウムが特に好ましい。チタン酸リチウムには、たとえばNbなどのリチウム、チタン以外の元素が微量含まれていてもよい。
<1. Negative electrode>
In the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention, a negative electrode active material layer containing at least a negative electrode active material is formed on both surfaces of a metal current collector. Titanium-containing oxide is included as a negative electrode active material. As the titanium-containing oxide, lithium titanate and / or titanium dioxide are preferable. Among these, lithium titanate is more preferable because of high stability of the material itself, and spinel-structured lithium titanate is particularly preferable from the viewpoint of small expansion and contraction of the active material in the reaction of insertion / extraction of lithium ions. Lithium titanate may contain a small amount of elements other than lithium such as Nb and titanium, for example.

また、二酸化チタンとしては、B型二酸化チタン、アナターゼ型二酸化チタン、ラムズデライト型二酸化チタン等が例示されるが、不可逆容量が小さいこと、およびサイクル安定性に優れることから、B型二酸化チタンが好ましい。   Examples of titanium dioxide include B-type titanium dioxide, anatase-type titanium dioxide, and ramsdellite-type titanium dioxide. B-type titanium dioxide is preferred because of its low irreversible capacity and excellent cycle stability. .

チタン含有酸化物の表面は、導電性向上、あるいは安定性向上のため、炭素材料、金属酸化物、あるいは高分子等で覆われてもよい。   The surface of the titanium-containing oxide may be covered with a carbon material, a metal oxide, a polymer, or the like in order to improve conductivity or stability.

チタン含有酸化物は1種類でもよいし、2種類以上組み合わせて用いてもよい。   One type of titanium-containing oxide may be used, or two or more types may be used in combination.

本発明に係る前記チタン含有酸化物の平均粒子径は、副反応の抑制の観点から1μm以上、20μm以下のものを用いることができるが、サイクル特性の観点から2μm以上、15μm以下が好ましく、より好ましくは、3μm以上、10μm以下である。   The titanium-containing oxide according to the present invention may have an average particle size of 1 μm or more and 20 μm or less from the viewpoint of suppressing side reactions, but preferably 2 μm or more and 15 μm or less from the viewpoint of cycle characteristics. Preferably, they are 3 micrometers or more and 10 micrometers or less.

本発明に係る前記チタン含有酸化物の比表面積は、1m/g以上、25m/g以下のものを用いることができるが、良好なサイクル特性を示すことから、1.5m/g以上、20m/g以下が好ましく、副反応の抑制とのバランスから、2m/g以上、15m/g以下がより好ましい。 The titanium-containing oxide according to the present invention may have a specific surface area of 1 m 2 / g or more and 25 m 2 / g or less, and since it exhibits good cycle characteristics, 1.5 m 2 / g or more. 20 m 2 / g or less is preferable, and from the balance with suppression of side reactions, 2 m 2 / g or more and 15 m 2 / g or less are more preferable.

本発明の負極には導電助剤を含有してもよく、導電助材としては、特に限定されないが、金属材料、炭素材料が好ましい。金属材料の場合は、銅、およびニッケルなど、炭素材料の場合は天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、およびファーネスブラックなどが挙げられる。これら導電助材は1種類でもよいし、2種類以上用いてもよい。本発明において、負極に含まれる導電助材の量は、負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。上記範囲であれば、負極の導電性が確保される。また、後述のバインダーとの接着性が維持され、集電体との接着性を十分に得ることができる。   The negative electrode of the present invention may contain a conductive additive, and the conductive additive is not particularly limited, but a metal material and a carbon material are preferable. Examples of the metal material include copper and nickel, and examples of the carbon material include natural graphite, artificial graphite, vapor grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. These conductive aids may be used alone or in combination of two or more. In the present invention, the amount of the conductive additive contained in the negative electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. If it is the said range, the electroconductivity of a negative electrode will be ensured. Moreover, the adhesiveness with the below-mentioned binder is maintained and sufficient adhesiveness with a collector can be obtained.

本発明の負極には、活物質を集電体に結着させるためバインダーを使用してよい。バインダーとしては、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム、ポリイミドおよびそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。バインダーは負極の作製しやすさから、非水溶媒または水に溶解、または分散されていることが好ましい。非水溶媒は、特に限定されないが、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、およびテトラヒドロフランなどを挙げることができる。これらに分散剤、増粘剤を加えてもよい。本発明において、負極に含まれるバインダーの量は、負極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。上記範囲であれば、負極活物質と導電助材との接着性が維持され、集電体との接着性を十分に得ることができる。   In the negative electrode of the present invention, a binder may be used for binding the active material to the current collector. The binder is not particularly limited. For example, at least one selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof can be used. . The binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of easy production of the negative electrode. The non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. You may add a dispersing agent and a thickener to these. In the present invention, the amount of the binder contained in the negative electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the negative electrode active material. If it is the said range, the adhesiveness of a negative electrode active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.

本発明の負極は、負極活物質、導電助材、およびバインダーの混合物を集電体上に形成することによって作製されるが、作製方法の容易さから、上記混合物および溶媒でスラリーを作製し、得られたスラリーを集電体上に塗工した後に、溶媒を除去することによって作製する方法が好ましい。   The negative electrode of the present invention is produced by forming a mixture of a negative electrode active material, a conductive additive, and a binder on a current collector. From the ease of the production method, a slurry is produced with the above mixture and solvent, A method is preferred in which the obtained slurry is applied on a current collector and then the solvent is removed.

本発明の負極に用いることのできる集電体は、銅、SUS、ニッケル、チタン、アルミニウムおよびそれらの合金が好ましい。集電体の厚みは、特に限定されないが、10μm以上100μm以下であることが好ましい。なお、集電体は、金属材料(銅、SUS、ニッケル、チタン、およびそれらの合金)の表面に負極の電位で反応しない金属を被覆したものも用いることもできる。   The current collector that can be used in the negative electrode of the present invention is preferably copper, SUS, nickel, titanium, aluminum, or an alloy thereof. The thickness of the current collector is not particularly limited, but is preferably 10 μm or more and 100 μm or less. As the current collector, a metal material (copper, SUS, nickel, titanium, and alloys thereof) coated with a metal that does not react with the potential of the negative electrode can be used.

本発明において、負極の厚みは、特に限定されないが、10μm以上200μm以下であることが好ましい。   In the present invention, the thickness of the negative electrode is not particularly limited, but is preferably 10 μm or more and 200 μm or less.

本発明において、負極の密度は、1.0g/cm以上3.0g/cm以下であることが好ましく、負極活物質、導電助材との接触が十分にあり、かつ後述の非水電解質が負極内に浸透しやすいことから、1.3g/cm以上、2.7g/cm以下がさらに好ましく、負極活物質、導電助材との接触と、非水電解質の負極内へ浸透しやすさのバランスが最も取れている、1.5g/cm以上、2.5g/cm以下が特に好ましい。 In the present invention, the density of the negative electrode is preferably 1.0 g / cm 3 or more and 3.0 g / cm 3 or less, has sufficient contact with the negative electrode active material and the conductive additive, and will be described later as a non-aqueous electrolyte. Is more preferable to be 1.3 g / cm 3 or more and 2.7 g / cm 3 or less, and the contact with the negative electrode active material and the conductive additive and the penetration into the negative electrode of the nonaqueous electrolyte. The balance of easiness is most preferably 1.5 g / cm 3 or more and 2.5 g / cm 3 or less.

前記負極の密度は、所望の厚みまで電極を圧縮することによって制御することが出来る。前記圧縮は、特に限定されないが、例えば、ロールプレス、油圧プレス等を用いて行うことができる。電極の圧縮は、後述の正極を形成する前でも、後でもよい。   The density of the negative electrode can be controlled by compressing the electrode to a desired thickness. Although the said compression is not specifically limited, For example, it can carry out using a roll press, a hydraulic press, etc. The electrode may be compressed before or after the positive electrode described later is formed.

前記負極の密度は、負極活物質層の厚みおよび重量から算出することが出来る。   The density of the negative electrode can be calculated from the thickness and weight of the negative electrode active material layer.

<2.正極>
本発明の非水電解質二次電池に用いる正極は、金属製集電体の両面に、少なくとも正極活物質が含まれる正極活物質層が形成されている。正極活物質としては特に限定されず、金属酸化物やリチウム遷移金属複合酸化物などが用いられ得る。これらの中で、良好なサイクル特性を示すことから、Li1+xn2―x―yO4(0≦x≦0.2、0<y≦0.6、Mは2〜13族でかつ第3〜4周期に属する元素からなる群から選択される少なくとも1種)で表されるスピネル型マンガン酸リチウムが好ましい。前記Li1+xMn2―x―y(0≦x≦0.2、0<y≦0.6、Mは2〜13族でかつ第3〜4周期に属する元素からなる群から選択される少なくとも1種)で表されるスピネル型マンガン酸リチウムは、正極活物質自身の安定性向上の効果が大きい点から、2〜13族でかつ第3〜4周期に属する元素は、Al、Mg、Zn、Ni、Co、Fe、Ti、Cu、Zr、およびCrが好ましく、Al、Mg、Zn、Ni、TiおよびCrがより好ましく、正極活物質自身の安定性向上の効果が特に大きいことから、Al、Mg、Zn、TiおよびNiが特に好ましい。
<2. Positive electrode>
In the positive electrode used in the nonaqueous electrolyte secondary battery of the present invention, a positive electrode active material layer containing at least a positive electrode active material is formed on both surfaces of a metal current collector. It does not specifically limit as a positive electrode active material, A metal oxide, lithium transition metal complex oxide, etc. can be used. Among these, Li 1 + x M y M n2−xy O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, M is a group of 2 to 13 and shows good cycle characteristics. Spinel-type lithium manganate represented by at least one selected from the group consisting of elements belonging to the third to fourth periods is preferable. Li 1 + x M y Mn 2−xy O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, M is a group consisting of elements belonging to Groups 2 to 13 and belonging to the 3rd to 4th periods. The spinel-type lithium manganate represented by (at least one selected) has a large effect of improving the stability of the positive electrode active material itself, and therefore the element belonging to Group 2-13 and belonging to the 3rd to 4th period is Al. Mg, Zn, Ni, Co, Fe, Ti, Cu, Zr, and Cr are preferable, Al, Mg, Zn, Ni, Ti, and Cr are more preferable, and the effect of improving the stability of the positive electrode active material itself is particularly large. Therefore, Al, Mg, Zn, Ti and Ni are particularly preferable.

これらの中でも、後述の非水電解質との組み合わせで、ガス発生減少、および充電終止電圧の高電圧化の効果が大きいことから、Li1+xAlMn2―x―y(0≦x≦0.1、0<y≦0.1)、Li1+xMgMn2―x―y(0≦x≦0.1、0<y≦0.1)、Li1+xZnMn2―x―y(0≦x≦0.1、0<y≦0.1)、Li1+xCrMn2―x―y(0≦x≦0.1、0<y≦0.1)Li1+xNiMn2―x―y(0≦x≦0.05、0.45≦y≦0.5)、Li1+xNiy−zAlMn2―x―y(0≦x≦0.05、0.45≦y≦0.5、0.005≦z≦0.03)、およびLi1+xNiy−zTiMn2―x―y(0≦x≦0.05、0.45≦y≦0.5、0.005≦z≦0.03)から選ばれる1種が好ましく、より大きい効果が得られる、Li1+xAlMn2―x―y(0≦x≦0.1、0<y≦0.1)、Li1+xMgMn2―x―y(0≦x≦0.1、0<y≦0.1)、Li1+xNiMn2―x―y(0≦x≦0.05、0.45≦y≦0.5)、およびLi1+xNiy−zTiMn2―x―y(0≦x≦0.05、0.45≦y≦0.5、0.005≦z≦0.03)が特に好ましい。 Among these, in combination with the non-aqueous electrolyte will be described later, the gas generation decreases, and since the effect of the higher voltage of the charge voltage is high, Li 1 + x Al y Mn 2-x-y O 4 (0 ≦ x ≦ 0.1, 0 <y ≦ 0.1), Li 1 + x Mg y Mn 2−xy O 4 (0 ≦ x ≦ 0.1, 0 <y ≦ 0.1), Li 1 + x Zn y Mn 2− x-y O 4 (0 ≦ x ≦ 0.1,0 <y ≦ 0.1), Li 1 + x Cr y Mn 2-x-y O 4 (0 ≦ x ≦ 0.1,0 <y ≦ 0. 1) Li 1 + x Ni y Mn 2−xy O 4 (0 ≦ x ≦ 0.05, 0.45 ≦ y ≦ 0.5), Li 1 + x Ni yz Al z Mn 2−xy O 4 (0 ≦ x ≦ 0.05,0.45 ≦ y ≦ 0.5,0.005 ≦ z ≦ 0.03), and Li 1 + x Ni y-z Ti z Mn 2-x Preferably one selected from y O 4 (0 ≦ x ≦ 0.05,0.45 ≦ y ≦ 0.5,0.005 ≦ z ≦ 0.03), greater effect can be obtained, Li 1 + x Al y Mn 2−xy O 4 (0 ≦ x ≦ 0.1, 0 <y ≦ 0.1), Li 1 + x Mg y Mn 2−xy O 4 (0 ≦ x ≦ 0.1, 0 < y ≦ 0.1), Li 1 + x Ni y Mn 2-x-y O 4 (0 ≦ x ≦ 0.05,0.45 ≦ y ≦ 0.5), and Li 1 + x Ni y-z Ti z Mn 2 -x-y O 4 (0 ≦ x ≦ 0.05,0.45 ≦ y ≦ 0.5,0.005 ≦ z ≦ 0.03) is particularly preferred.

これらの中から、負極活物質との組み合わせを考慮して適宜選択すればよい。また、複数の正極活物質を組み合わせて用いてもよい。   What is necessary is just to select suitably from these considering the combination with a negative electrode active material. A plurality of positive electrode active materials may be used in combination.

本発明に用いられる正極活物質の表面は、導電性向上、あるいは安定性向上のため、炭素材料、金属酸化物、あるいは高分子等で覆われてもよい。   The surface of the positive electrode active material used in the present invention may be covered with a carbon material, a metal oxide, a polymer, or the like in order to improve conductivity or stability.

本発明の正極には導電助材を含有させてもよい。導電助材としては、特に限定されないが、炭素材料が好ましい。例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、およびファーネスブラックなどが挙げられる。これら炭素材料は1種類でもよいし、2種類以上用いてもよい。本発明の正極に含まれる導電助材の量は、正極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。上記範囲であれば、正極の導電性が確保される。また、後述のバインダーとの接着性が維持され、集電体との接着性を十分に得ることができる。   The positive electrode of the present invention may contain a conductive additive. Although it does not specifically limit as a conductive support material, A carbon material is preferable. Examples thereof include natural graphite, artificial graphite, vapor grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. These carbon materials may be used alone or in combination of two or more. The amount of the conductive additive contained in the positive electrode of the present invention is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. If it is the said range, the electroconductivity of a positive electrode is ensured. Moreover, the adhesiveness with the below-mentioned binder is maintained and sufficient adhesiveness with a collector can be obtained.

本発明の正極にはバインダーを含有させてよい。バインダーは、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム、ポリイミド、およびそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。バインダーは正極の作製しやすさから、非水溶媒または水に溶解または分散されていることが好ましい。非水溶媒は、特に限定されないが、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、およびテトラヒドロフランなどを挙げることができる。これらに分散剤、増粘剤を加えてもよい。本発明の正極に含まれるバインダーの量は、正極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。上記範囲であれば、正極活物質と導電助材との接着性が維持され、集電体との接着性を十分に得ることができる。   The positive electrode of the present invention may contain a binder. The binder is not particularly limited, and for example, at least one selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof can be used. . The binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of easy production of the positive electrode. The non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. You may add a dispersing agent and a thickener to these. The amount of the binder contained in the positive electrode of the present invention is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. If it is the said range, the adhesiveness of a positive electrode active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.

本発明の正極は、正極活物質、導電助材、およびバインダーの混合物を集電体上に形成することによって作製されるが、作製方法の容易さから、上記混合物および溶媒でスラリーを作製し、得られたスラリーを集電体上に塗工した後に、溶媒を除去することによって作製する方法が好ましい。スラリーの作製は従来公知の条件、方法を使用すればよい。また、塗工、溶媒除去についても従来公知の条件、方法を使用すればよい。   The positive electrode of the present invention is produced by forming a mixture of a positive electrode active material, a conductive additive, and a binder on a current collector. From the ease of the production method, a slurry is produced with the above mixture and solvent, A method is preferred in which the obtained slurry is applied on a current collector and then the solvent is removed. Conventionally known conditions and methods may be used to prepare the slurry. Moreover, what is necessary is just to use a conventionally well-known condition and method also about coating and solvent removal.

本発明の正極に用いる集電体は、アルミニウムおよびその合金であることが好ましい。前記アルミニウムは、正極反応雰囲気下で安定であることから、特に限定されないが、JIS規格1030、1050、1085、1N90、1N99等に代表される高純度アルミニウムであることが好ましい。集電体の厚みは、特に限定されないが、10μm以上100μm以下であることが好ましい。なお、集電体は、アルミニウム以外の金属(銅、SUS、ニッケル、チタン、およびそれらの合金)の表面にアルミニウムを被覆したものも用いることもできる。   The current collector used for the positive electrode of the present invention is preferably aluminum and its alloys. The aluminum is not particularly limited because it is stable in a positive electrode reaction atmosphere, but is preferably high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like. The thickness of the current collector is not particularly limited, but is preferably 10 μm or more and 100 μm or less. As the current collector, a metal whose surface is coated with aluminum other than aluminum (copper, SUS, nickel, titanium, and alloys thereof) can also be used.

本発明の正極の厚みは、特に限定されないが、10μm以上200μm以下であることが好ましい。   The thickness of the positive electrode of the present invention is not particularly limited, but is preferably 10 μm or more and 200 μm or less.

本発明の正極の密度は、1.0g/cm以上4.0g/cm以下であることが好ましく、正極活物質、導電助材との接触が十分にあり、かつ後述の非水電解質が正極内に浸透しやすいことから、1.5g/cm以上、3.5g/cm以下がさらに好ましく、正極活物質、導電助材との接触と、非水電解質の正極内への浸透しやすさのバランスが最も取れている、2.0g/cm以上、3.0g/cm以下が特に好ましい。 The density of the positive electrode of the present invention is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less, has sufficient contact with the positive electrode active material and the conductive additive, and has a nonaqueous electrolyte described later. Since it is easy to penetrate into the positive electrode, 1.5 g / cm 3 or more and 3.5 g / cm 3 or less are more preferable, contact with the positive electrode active material and conductive additive, and penetration of the nonaqueous electrolyte into the positive electrode. It is particularly preferably 2.0 g / cm 3 or more and 3.0 g / cm 3 or less, where the balance of ease is most achieved.

前記正極の密度は、所望の厚みまで電極を圧縮することによって制御することが出来る。前記圧縮は、特に限定されないが、例えば、ロールプレス、油圧プレス等を用いて行うことができる。電極の圧縮は、前述の負極を形成する前でも、後でもよい。   The density of the positive electrode can be controlled by compressing the electrode to a desired thickness. Although the said compression is not specifically limited, For example, it can carry out using a roll press, a hydraulic press, etc. The electrode may be compressed before or after the above-described negative electrode is formed.

前記正極の密度は、正極活物質層の厚みおよび重量から算出することが出来る。   The density of the positive electrode can be calculated from the thickness and weight of the positive electrode active material layer.

<3.セパレータ>
本発明の非水電解質二次電池に用いるセパレータは、前述の正極と負極との間に設置され、絶縁性かつ後述の非水電解質を含むことが出来る構造であればよく、例えば、ナイロン、セルロース、ポリスルホン、ポリエチレン、ポリプロピレン、ポリブテン、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリエチレンテレフタラート、及びそれらを2種類以上複合したものの織布、不織布、微多孔膜などが挙げられる。
<3. Separator>
The separator used for the non-aqueous electrolyte secondary battery of the present invention may be any structure as long as it is installed between the positive electrode and the negative electrode described above and has an insulating property and can contain the non-aqueous electrolyte described later. Polysulfone, polyethylene, polypropylene, polybutene, polyacrylonitrile, polyimide, polyamide, polyethylene terephthalate, and composites of two or more of them, woven fabrics, nonwoven fabrics, microporous membranes, and the like.

セパレータには、各種可塑剤、酸化防止剤、難燃剤が含まれてもよいし、金属酸化物等で被覆されていてもよい。   The separator may contain various plasticizers, antioxidants, flame retardants, and may be coated with a metal oxide or the like.

セパレータの厚みは、特に限定されないが、10μm以上100μm以下であることが好ましく、15μm以上50μm以下であることがさらに好ましい。   The thickness of the separator is not particularly limited, but is preferably 10 μm or more and 100 μm or less, and more preferably 15 μm or more and 50 μm or less.

前記セパレータの空隙率は、30%以上、90%以下であることが好ましく、リチウムイオンの拡散性の確保、および短絡の防止のバランスの観点から、35%以上、85%以下がより好ましく、前記バランスが特に優れていることから、40%以上、80%以下が特に好ましい。   The separator has a porosity of preferably 30% or more and 90% or less, more preferably 35% or more and 85% or less from the viewpoint of ensuring the diffusibility of lithium ions and preventing short circuit. Since balance is particularly excellent, 40% or more and 80% or less are particularly preferable.

<4.非水電解質>
本発明の非水電解質二次電池に用いる非水電解質は、前記負極と前記正極との間に介在され、それらの間のイオン伝達を媒介する働きを有する。
<4. Non-aqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is interposed between the negative electrode and the positive electrode, and has a function of mediating ion transmission therebetween.

前記非水電解質は、シルセスキオキサン構造を有する塩を非水電解質100重量%に対して0.01重量%以上含有している。これにより、電極表面にイオン性の保護層が形成され、効率的なリチウムイオンの授受を可能としつつ、活物質表面の異常活性点による溶媒の分解に伴うガス発生を抑制することができ、出力特性・サイクル特性の両立が可能となる。   The non-aqueous electrolyte contains a salt having a silsesquioxane structure in an amount of 0.01% by weight or more with respect to 100% by weight of the non-aqueous electrolyte. As a result, an ionic protective layer is formed on the electrode surface, enabling efficient transfer of lithium ions, while suppressing gas generation due to decomposition of the solvent due to abnormally active sites on the surface of the active material. It is possible to achieve both characteristics and cycle characteristics.

非水電解質に用いられる、非水溶媒は、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、前記に加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチルラクトン、1,2−ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよい。   The nonaqueous solvent used for the nonaqueous electrolyte preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. Examples of the chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers. In addition to the above, a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propion For example, methyl acid can be used. These solvents may be used alone or in combination of two or more.

非水電解質に用いるリチウム塩としてはLiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、Li[N(SOCF]、Li[N(SO]、Li[N(SOF)]、Li[N(CN)]などが挙げられる。溶解度が高く、サイクル特性が良好なことから、LiClO、LiBF、LiPF、Li[N(SOF)]、Li[N(CN)]、が好ましい。 Lithium salts used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), Li [N (SO 2 CF 3 ) 2 ], Li [N N (SO 2 C 2 F 5 ) 2 ], Li [N (SO 2 F) 2 ], Li [N (CN) 2 ], and the like can be given. LiClO 4 , LiBF 4 , LiPF 6 , Li [N (SO 2 F) 2 ], and Li [N (CN) 2 ] are preferable because of high solubility and good cycle characteristics.

前記リチウム塩の濃度としては、0.5mol/L以上2.0mol/L以下であることが好ましい。   The concentration of the lithium salt is preferably 0.5 mol / L or more and 2.0 mol / L or less.

前記シルセスキオキサン構造は以下の式(1)で表される。   The silsesquioxane structure is represented by the following formula (1).

Figure 2016207314
Figure 2016207314

上記式中、Rは同一であっても、異なっていてもよく、いずれも水素原子または水素原子や炭素原子が他の元素で置換されていてもよい炭素原子数1〜12の有機基であり、nは1〜10の整数である。   In the above formula, R may be the same or different, and each is a hydrogen atom or an organic group having 1 to 12 carbon atoms in which a hydrogen atom or a carbon atom may be substituted with another element. , N is an integer of 1-10.

上記式(1)中、Rとしては、水素原子;メチル基やエチル基などのアルキル基;ビニル基やアリル基などのアルケニル基;エチニル基やプロピニル基などのアルキニル基;シクロヘキシル基やノルボルナニル基などのシクロアルキル基;アルキル基を有していても良いフェニル基などのアリール基;トリメチルシリル基などのトリアルキルシリル基;トリメチルシロキシ基などのトリアルキルシロキシ基;これらの官能基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子、シアノ基などで置換した、クロロメチル基、トリフルオロプロピル基、シアノエチル基、トリフルオロメチルフェニル基などが挙げられる。ガス抑制の観点からRの少なくとも1つは重合性官能基であることが好ましい。これらの官能基の炭素数は、溶解性の観点から2〜8が好ましい。前記R中の重合性官能基としては、ビニル基、アリル基、スチリル基、アクリロイル基などが挙げられる。サイクル特性の観点からビニル基、アリル基が好ましく、ガス抑制の観点からビニル基が特に好ましい。   In the above formula (1), R represents a hydrogen atom; an alkyl group such as a methyl group or an ethyl group; an alkenyl group such as a vinyl group or an allyl group; an alkynyl group such as an ethynyl group or a propynyl group; a cyclohexyl group or a norbornanyl group; An aryl group such as a phenyl group which may have an alkyl group; a trialkylsilyl group such as a trimethylsilyl group; a trialkylsiloxy group such as a trimethylsiloxy group; bonded to a carbon atom of these functional groups Examples include a chloromethyl group, a trifluoropropyl group, a cyanoethyl group, a trifluoromethylphenyl group, etc., in which part or all of the hydrogen atoms are substituted with a halogen atom, a cyano group, or the like. From the viewpoint of gas suppression, at least one of R is preferably a polymerizable functional group. As for carbon number of these functional groups, 2-8 are preferable from a soluble viewpoint. Examples of the polymerizable functional group in R include a vinyl group, an allyl group, a styryl group, and an acryloyl group. A vinyl group and an allyl group are preferable from the viewpoint of cycle characteristics, and a vinyl group is particularly preferable from the viewpoint of gas suppression.

また、上記式中のnはサイクル特性の観点から2〜8が好ましく、ガス抑制の観点から4または5が特に好ましい。   Further, n in the above formula is preferably 2 to 8 from the viewpoint of cycle characteristics, and 4 or 5 is particularly preferable from the viewpoint of gas suppression.

シルセスキオキサン構造は特に限定されず、かご型、ラダー型、ランダム型のいずれであっても良く、2種類以上の混合物でもよい。中でも、サイクル特性の観点からかご型またはラダー型が好ましく、ガス抑制の観点からかご型が特に好ましい。   The silsesquioxane structure is not particularly limited, and may be a cage type, a ladder type, or a random type, or a mixture of two or more types. Among these, a cage type or a ladder type is preferable from the viewpoint of cycle characteristics, and a cage type is particularly preferable from the viewpoint of gas suppression.

n=4のかご型シルセスキオキサン(T8)としては以下の式(2)で表される。   The cage silsesquioxane (T8) with n = 4 is represented by the following formula (2).

Figure 2016207314
Figure 2016207314

また、n=5のかご型シルセスキオキサン(T10)としては以下の式(3)で表される。   Moreover, as cage-type silsesquioxane (T10) of n = 5, it represents with the following formula | equation (3).

Figure 2016207314
Figure 2016207314

前記シルセスキオキサン構造を有する塩は、分子内にアニオンを包接していることが好ましい。包接されるアニオンとしては、特に限定されないが、包接状態の安定性の観点からハロゲン化物イオンが好ましく、性能のバランスが良いことからフッ化物イオンが特に好ましい。前記シルセスキオキサン構造を有する塩が分子内にアニオンを包接している場合は、対カチオンを有するが、特に限定されず、アルカリ金属イオン、アルカリ土類金属イオン、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオン、イミダゾリウムイオンなどが挙げられる。出力特性や溶解性の観点から、リチウムイオン、ナトリウムイオン、マグネシウムイオン、テトラアルキルアンモニウムイオン、イミダゾリウムイオンが好ましい。テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオン、イミダゾリウムイオンについては前記R中に含まれていても良い。   The salt having a silsesquioxane structure preferably includes an anion in the molecule. The anion to be included is not particularly limited, but a halide ion is preferable from the viewpoint of the stability of the inclusion state, and a fluoride ion is particularly preferable because of a good balance of performance. When the salt having the silsesquioxane structure includes an anion in the molecule, it has a counter cation, but is not particularly limited, and is not limited to alkali metal ions, alkaline earth metal ions, tetraalkylammonium ions, tetraalkyls. Examples thereof include phosphonium ions and imidazolium ions. From the viewpoint of output characteristics and solubility, lithium ion, sodium ion, magnesium ion, tetraalkylammonium ion and imidazolium ion are preferable. Tetraalkylammonium ions, tetraalkylphosphonium ions, and imidazolium ions may be contained in R.

前記シルセスキオキサン構造を有する塩が分子内にアニオンを包接していない場合は、前記Rの少なくとも1つがイオン性官能基を有している。   When the salt having the silsesquioxane structure does not include an anion in the molecule, at least one of the R has an ionic functional group.

前記R中のイオン性官能基としては、カチオン性のテトラアルキルアンモニウム基、イミダゾリウム基、テトラアルキルホスホニウム基;アニオン性のホスフェート基、カルボキシレート基、ナイトレート基などが挙げられる。サイクル特性の観点からカチオン性の官能基が好ましく、ガス抑制の観点からテトラアルキルアンモニウム基やイミダゾリウム基が特に好ましい。前記Rにイオン性官能基を有している場合は、その対イオンは特に限定されないが、カチオンとしてはアルカリ金属イオン、アルカリ土類金属イオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオンなどが挙げられ、アニオンとしてはアミドアニオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、トリフルオロメチルスルホン酸イオンなどが挙げられる。   Examples of the ionic functional group in R include a cationic tetraalkylammonium group, an imidazolium group, a tetraalkylphosphonium group; an anionic phosphate group, a carboxylate group, and a nitrate group. From the viewpoint of cycle characteristics, a cationic functional group is preferable, and from the viewpoint of gas suppression, a tetraalkylammonium group and an imidazolium group are particularly preferable. When R has an ionic functional group, the counter ion is not particularly limited, but as a cation, an alkali metal ion, an alkaline earth metal ion, a tetraalkylammonium ion, a tetraalkylphosphonium ion, an imidazolium ion Examples of the anion include amide anion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, and trifluoromethylsulfonate ion.

シルセスキオキサン構造を有する塩の量としては非水電解質100重量%に対して0.01%以上であれば良いが、サイクル特性の観点から0.05%以上10%以下が好ましく、最もバランスが良いことから0.1%以上5%以下が特に好ましい。   The amount of the salt having a silsesquioxane structure may be 0.01% or more with respect to 100% by weight of the non-aqueous electrolyte, but is preferably 0.05% or more and 10% or less from the viewpoint of cycle characteristics, and the most balanced Is preferably 0.1% or more and 5% or less.

非水電解質は、あらかじめ正極、負極およびセパレータに含ませてもよいし、正極と負極との間にセパレータを配置したものを積層した後に添加してもよい。また、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。   The nonaqueous electrolyte may be included in the positive electrode, the negative electrode, and the separator in advance, or may be added after laminating a separator disposed between the positive electrode and the negative electrode. Further, a gel electrolyte in which a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a nonaqueous solvent can be used.

<5.外装材>
本発明に係る外装材の材料としては、熱融着により封止することが出来、外部からの水分の侵入を防ぎ、逆に内部から非水電解質が漏洩することを防ぐことが出来るラミネートフィルムを用いる。具体的な例としては、金属箔にヒートシール用の熱可塑性樹脂層を設けた複合フィルムが挙げられる。金属箔は外部からの水分の侵入を防ぎつつシート全体の強度を向上させるものであれば特に限定されないが、水分遮断性と重量ならびにコストの面からアルミ箔が好適に用いられ得る。シート全体の強度が確保できるのであれば、金属箔の代わりに蒸着やスパッタリングなどにより金属層を設けても良い。
<5. Exterior material>
As a material of the exterior material according to the present invention, a laminate film that can be sealed by heat sealing, prevents moisture from entering from outside, and conversely prevents leakage of nonaqueous electrolyte from inside. Use. A specific example is a composite film in which a metal foil is provided with a thermoplastic resin layer for heat sealing. The metal foil is not particularly limited as long as it prevents the intrusion of moisture from the outside and improves the strength of the entire sheet, but an aluminum foil can be suitably used from the viewpoint of moisture barrier properties, weight, and cost. If the strength of the entire sheet can be secured, a metal layer may be provided by vapor deposition or sputtering instead of the metal foil.

熱可塑性樹脂層の組成については特に限定されないが、ヒートシール可能な温度範囲ならびに非水電解質の遮断性の観点から、ポリエチレンやポリプロピレンが好適に用いられ得る。   The composition of the thermoplastic resin layer is not particularly limited, but polyethylene and polypropylene can be suitably used from the viewpoint of the heat-sealable temperature range and the non-aqueous electrolyte barrier property.

金属箔と熱可塑性樹脂との密着性を向上させるため、両者の間に接着層を設けていても良いし、金属箔の酸化防止のため、熱可塑性樹脂層を設けるのとは反対側の面に、保護層を設けていても良い。   In order to improve the adhesion between the metal foil and the thermoplastic resin, an adhesive layer may be provided between them, or the surface opposite to the one provided with the thermoplastic resin layer to prevent oxidation of the metal foil. In addition, a protective layer may be provided.

<6.非水電解質二次電池>
本発明の非水電解質二次電池の正極および負極は、集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよい。
<6. Non-aqueous electrolyte secondary battery>
The positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery of the present invention may have a form in which the same electrode is formed on both surfaces of the current collector, and the positive electrode is formed on one surface of the current collector and the negative electrode is formed on one surface. Alternatively, it may be a bipolar electrode.

本発明の非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを捲回したものであってもよいし、積層したものであってもよい。正極、負極、およびセパレータには、リチウムイオン伝導を担う非水電解質が含まれている。   The nonaqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side. The positive electrode, the negative electrode, and the separator contain a nonaqueous electrolyte that is responsible for lithium ion conduction.

本発明の非水電解質二次電池における電極活物質層の面積は電池の設計によって適宜選択することができるが、サイクル安定性、安全性の観点から下記式(4)を満たすことが好ましい。   The area of the electrode active material layer in the nonaqueous electrolyte secondary battery of the present invention can be appropriately selected depending on the design of the battery, but it is preferable to satisfy the following formula (4) from the viewpoint of cycle stability and safety.

Figure 2016207314
Figure 2016207314

但し、Aは正極活物質層の面積、Bは負極活物質層の面積を示す。   However, A shows the area of a positive electrode active material layer, B shows the area of a negative electrode active material layer.

また、負極活物質層とセパレータとの面積比は特に限定されないが、下記式(5)を満たすことが好ましい。   Moreover, the area ratio between the negative electrode active material layer and the separator is not particularly limited, but it is preferable that the following formula (5) is satisfied.

Figure 2016207314
Figure 2016207314

但し、Bは負極活物質層の面積、Cはセパレータの面積を示す。   However, B shows the area of a negative electrode active material layer, C shows the area of a separator.

本発明の非水電解質二次電池における正極の電気容量と負極の電気容量との比は、下記式(6)を満たすことが好ましい。    The ratio of the electric capacity of the positive electrode and the electric capacity of the negative electrode in the nonaqueous electrolyte secondary battery of the present invention preferably satisfies the following formula (6).

Figure 2016207314
Figure 2016207314

但し、上記式(6)中、Eは正極1cmあたりの電気容量を示し、Dは負極1cmあたりの電気容量を示す。 However, in said formula (6), E shows the electrical capacity per 1 cm < 2 > of positive electrodes, D shows the electrical capacity per 1 cm < 2 > of negative electrodes.

本発明の非水電解質二次電池は、上記積層体を捲回、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガスを放出するための機構が備わっていてもよい。積層体の積層数は、所望の電圧値、電池容量を発現するまで積層させることができる。   The non-aqueous electrolyte secondary battery of the present invention may be wound or laminated with a laminate film after the laminate is wound, or may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can. The exterior may be provided with a mechanism for releasing the generated gas. The number of stacked layers can be stacked until a desired voltage value and battery capacity are exhibited.

<7.組電池>
本発明の非水電解質二次電池は、複数接続することによって組電池とすることができる。本発明の組電池は、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、前記組電池に制御回路が付属されていることが好ましい。
<7. Battery pack>
The nonaqueous electrolyte secondary battery of the present invention can be formed into an assembled battery by connecting a plurality of the nonaqueous electrolyte secondary batteries. The assembled battery of the present invention can be produced by appropriately connecting in series or in parallel according to a desired size, capacity, and voltage. Moreover, it is preferable that a control circuit is attached to the assembled battery in order to confirm the state of charge of each battery and improve safety.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples, In the range which does not change the summary, it can change suitably.

(正極の製造例)
正極に用いる正極活物質として、スピネル型のマンガン酸リチウム(Li1.1Al0.1Mn1.8)を用いた。
(Example of positive electrode production)
As the positive electrode active material used for the positive electrode, spinel type lithium manganate (Li 1.1 Al 0.1 Mn 1.8 O 4 ) was used.

スピネル型のマンガン酸リチウム(Li1.1Al0.1Mn1.8)、導電助材(アセチレンブラック)、およびバインダー(PVdF)を、それぞれ固形分濃度で100重量部、5重量部、および5重量部となるように混合し、スラリーを作製した。なお、バインダーは固形分濃度5wt%のN−メチル−2−ピロリドン(NMP)溶液に調整したものを使用し、後述の塗工をしやすいように、さらにNMPを加えて粘度調整した。 Spinel type lithium manganate (Li 1.1 Al 0.1 Mn 1.8 O 4 ), conductive additive (acetylene black), and binder (PVdF) are each 100 parts by weight and 5 parts by weight in solid content concentration. , And 5 parts by weight to prepare a slurry. The binder used was an N-methyl-2-pyrrolidone (NMP) solution adjusted to a solid content concentration of 5 wt%, and the viscosity was adjusted by further adding NMP so as to facilitate the coating described later.

このスラリーをアルミニウム箔(20μm)に片面塗工して120℃のオーブンで乾燥させた後、裏面も同様に塗工・乾燥を行い、さらに170℃で真空乾燥することによって正極(片面50cm)を作製した。 This slurry was coated on an aluminum foil (20 μm) on one side and dried in an oven at 120 ° C., then the back side was coated and dried in the same manner, and further vacuum dried at 170 ° C. to obtain a positive electrode (single side 50 cm 2 ). Was made.

正極の容量は次の充放電試験で測定した。   The capacity of the positive electrode was measured by the following charge / discharge test.

前述と同様にアルミニウム箔の片面に塗工した電極を16mmΦに打ち抜き動作極、Li金属を16mmΦに打ち抜き対極とした。これらの電極を用いて、動作極(片面塗工)/セパレータ/Li金属の順に試験セル(HSセル、宝泉社製)内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF 1mol/L)を0.15mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、0.4mAで定電流充電(終止電圧:4.5V)および定電流放電(終止電圧:3.5V)を5回繰り返し、5回目の結果を放電容量の正極の容量とした。その結果、正極の容量は、1.0mAh/cmであった。 In the same manner as described above, an electrode coated on one surface of an aluminum foil was punched into a working electrode of 16 mmΦ, and a Li metal was punched out of 16 mmΦ as a counter electrode. Using these electrodes, a working electrode (single-sided coating) / separator / Li metal was laminated in this order in a test cell (HS cell, manufactured by Hosen Co., Ltd.), and a non-aqueous electrolyte (ethylene carbonate / dimethyl carbonate = 3/7 vol). %, LiPF 6 1 mol / L) was added to prepare a half cell. The half-cell was allowed to stand at 25 ° C. for one day, and then connected to a charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko). This half-cell was subjected to constant current charging (end voltage: 4.5 V) and constant current discharge (end voltage: 3.5 V) at 25 ° C. and 0.4 mA five times, and the fifth result was the capacity of the positive electrode of the discharge capacity. It was. As a result, the capacity of the positive electrode was 1.0 mAh / cm 2 .

(負極の製造例)
負極活物質として、平均粒子径が5μm、比表面積が4m/gのスピネル型のチタン酸リチウム(Li4/3Ti5/3)を用いた。この負極活物質、導電助材(アセチレンブラック)、およびバインダー(PVdF)を、それぞれ固形分濃度で100重量部、5重量部、および5重量部となるように混合し、スラリーを作製した。なお、バインダーは固形分濃度5wt%のNMP溶液に調製したものを使用し、後述の塗工をしやすいように、さらにNMPを加えて粘度調整した。このスラリーをアルミニウム箔(20μm)に塗工した後に、120℃のオーブンで乾燥させた後、さらに170℃で真空乾燥することによって負極(55cm)を作製した。
(Example of negative electrode production)
As the negative electrode active material, spinel type lithium titanate (Li 4/3 Ti 5/3 O 4 ) having an average particle diameter of 5 μm and a specific surface area of 4 m 2 / g was used. The negative electrode active material, the conductive additive (acetylene black), and the binder (PVdF) were mixed at a solid concentration of 100 parts by weight, 5 parts by weight, and 5 parts by weight, respectively, to prepare a slurry. The binder used was an NMP solution prepared with a solid content concentration of 5 wt%, and the viscosity was adjusted by further adding NMP so that it can be easily applied as described below. The slurry was applied to an aluminum foil (20 μm), dried in an oven at 120 ° C., and then vacuum dried at 170 ° C. to prepare a negative electrode (55 cm 2 ).

負極の容量は次の充放電試験で測定した。   The capacity of the negative electrode was measured by the following charge / discharge test.

前述と同様の条件でアルミニウム箔の片面に電極を塗工し、16mmΦに打ち抜き動作極を作製した。Li金属を16mmΦに打ち抜き対極とした。これらの電極を用いて、動作極(片面塗工)/セパレータ/Li金属の順に試験セル(HSセル、宝泉社製)内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF 1mol/L)を0.15mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、0.4mAで定電流放電(終止電圧:1.0V)および定電流充電(終止電圧:2.0V)を5回繰り返し、5回目の放電容量の結果を負極の容量とした。その結果、負極の容量は、1.2mAh/cmであった。 An electrode was applied to one side of the aluminum foil under the same conditions as described above, and a working electrode was punched out to 16 mmΦ. Li metal was punched out to 16 mmΦ as a counter electrode. Using these electrodes, a working electrode (single-sided coating) / separator / Li metal was laminated in this order in a test cell (HS cell, manufactured by Hosen Co., Ltd.), and a non-aqueous electrolyte (ethylene carbonate / dimethyl carbonate = 3/7 vol). %, LiPF 6 1 mol / L) was added to prepare a half cell. The half-cell was allowed to stand at 25 ° C. for one day, and then connected to a charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko). This half-cell was subjected to constant current discharge (end voltage: 1.0 V) and constant current charge (end voltage: 2.0 V) at 25 ° C. and 0.4 mA five times, and the result of the fifth discharge capacity was determined as the negative electrode capacity. It was. As a result, the capacity of the negative electrode was 1.2 mAh / cm 2 .

(実施例1〜8、比較例1〜3)
製造例で作製した正極、負極を用い、セパレータは、セルロース系不職布(25μm、60cm)を用いた。最初に、正極、負極、およびセパレータを、セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータの順に積層し、次に、正極および負極それぞれの未塗工部にアルミニウムタブを振動溶着させた後に、上下から二枚のアルミラミネートフィルムで挟み、3辺を180℃×7秒で二回ヒートシールして融着させた。ここに各種シルセスキオキサン構造を有する塩を含有する非水電解質(エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート=15/15/70vol%、LiPF 1mol/L)6mLを入れた後に、減圧しながら残りの辺を180℃×7秒で二回ヒートシールし、非水電解質二次電池を得た。なお、実施例1〜6のシルセスキオキサン構造を有する塩の対イオンはテトラブチルアンモニウムイオン、実施例7、8のシルセスキオキサン構造を有する塩の対イオンはヘキサフルオロリン酸イオンである。
(Examples 1-8, Comparative Examples 1-3)
A positive electrode and a negative electrode produced in the production example were used, and a cellulose-based unwoven cloth (25 μm, 60 cm 2 ) was used as the separator. First, a positive electrode, a negative electrode, and a separator are laminated in the order of separator / negative electrode / separator / positive electrode / separator / negative electrode / separator, and then an aluminum tab is vibration welded to each uncoated portion of the positive electrode and negative electrode. It was sandwiched between two aluminum laminate films from above and below, and the three sides were heat-sealed twice at 180 ° C. for 7 seconds and fused. After putting 6 mL of nonaqueous electrolyte (ethylene carbonate / propylene carbonate / ethyl methyl carbonate = 15/15/70 vol%, LiPF 6 1 mol / L) containing salts having various silsesquioxane structures, The remaining side was heat-sealed twice at 180 ° C. for 7 seconds to obtain a nonaqueous electrolyte secondary battery. The counter ions of the salts having the silsesquioxane structure of Examples 1 to 6 are tetrabutylammonium ions, and the counter ions of the salts having the silsesquioxane structure of Examples 7 and 8 are hexafluorophosphate ions. .

(非水電解質二次電池のサイクル特性評価)
実施例または比較例で作製した非水電解質二次電池を、充放電装置(HJ1005SD8、北斗電工社製)に接続し、エージング工程を経た後に充放電サイクル運転を行った。
(Evaluation of cycle characteristics of non-aqueous electrolyte secondary batteries)
The nonaqueous electrolyte secondary battery produced in the example or the comparative example was connected to a charge / discharge device (HJ1005SD8, manufactured by Hokuto Denko Co., Ltd.), and the charge / discharge cycle operation was performed after the aging process.

エージング工程では、各非水電解質二次電池を満充電(2.7V)にしたのちに、60℃で168時間放置し、その後、室温(25℃)まで徐冷した。   In the aging step, each non-aqueous electrolyte secondary battery was fully charged (2.7 V), then allowed to stand at 60 ° C. for 168 hours, and then gradually cooled to room temperature (25 ° C.).

エージング工程後に、60℃、25mA定電流充電、50mA定電流放電を500回繰り返した。このときの充電終止電圧および放電終止電圧はそれぞれ2.7Vおよび2.0Vとした。サイクル特性の安定性は、1回目の放電容量を100としたときの、500回目の放電容量の維持率で評価した。ガス発生が無く、500回目の放電容量維持率で80%以上を良好、80%未満を不良とした。この結果を表1に記載した。なお、ガス発生の判定は、充放電サイクル運転前後の電池の体積をアルキメデス法で測定し、その増加分であるガス発生量が0.5mL/Ah未満であった場合をガス発生なし、0.5mL/Ah以上であった場合をガス発生有とした。   After the aging step, 60 ° C., 25 mA constant current charging, and 50 mA constant current discharging were repeated 500 times. The charge end voltage and discharge end voltage at this time were set to 2.7 V and 2.0 V, respectively. The stability of the cycle characteristics was evaluated based on the maintenance rate of the 500th discharge capacity when the first discharge capacity was 100. There was no gas generation, and the discharge capacity maintenance ratio at the 500th time was 80% or more as good and less than 80% as bad. The results are shown in Table 1. In the determination of gas generation, the volume of the battery before and after the charge / discharge cycle operation was measured by the Archimedes method, and when the amount of generated gas was less than 0.5 mL / Ah, no gas was generated. The case where it was 5 mL / Ah or more was regarded as having gas generation.

Figure 2016207314
Figure 2016207314

実施例1〜8はシルセスキオキサン構造を有する塩を含有していることにより、負極近傍に良好な膜が形成され、ガス発生が抑制された上、良好なサイクル特性を有している。   In Examples 1 to 8, since a salt having a silsesquioxane structure is contained, a good film is formed in the vicinity of the negative electrode, gas generation is suppressed, and good cycle characteristics are obtained.

これに対して、比較例1は、シルセスキオキサン構造を有する塩を添加していないため、保護膜が形成されず、負極の異常活性点により電解液が分解され、ガスが発生しているものと考えられる。比較例2、3は、シルセスキオキサンが塩となっておらず、非水電解質への溶解度が低いため良好な膜形成ができないためにガス発生が抑制できなかったものと推察される。   On the other hand, in Comparative Example 1, since no salt having a silsesquioxane structure was added, a protective film was not formed, and the electrolyte was decomposed by the abnormally active sites of the negative electrode, and gas was generated. It is considered a thing. In Comparative Examples 2 and 3, it is presumed that gas generation could not be suppressed because silsesquioxane was not converted into a salt and the solubility in the nonaqueous electrolyte was low, so that good film formation was not possible.

以上の結果から、非水電解質二次電池において、負極活物質としてチタン含有酸化物を含み、非水電解質に、シルセスキオキサン構造を有する塩を含有してなり、前記シルセスキオキサン構造を有する塩を、非水電解質100重量%に対して0.01重量%以上含有させることで、ガス発生が抑制され、優れたサイクル特性を有することが明らかとなった。
From the above results, in the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte contains a titanium-containing oxide, and the non-aqueous electrolyte contains a salt having a silsesquioxane structure. It has been clarified that by containing the salt having 0.01% by weight or more with respect to 100% by weight of the nonaqueous electrolyte, gas generation is suppressed and excellent cycle characteristics are obtained.

Claims (8)

負極、正極、及び前記負極と前記正極との間に介在される非水電解質を備える二次電池であって、
前記負極が、負極活物質としてチタン含有酸化物を含み、
前記非水電解質が、シルセスキオキサン構造を有する塩を含有してなり、
前記シルセスキオキサン構造を有する塩が、前記非水電解質100重量%に対して0.01重量%以上であることを特徴とする、非水電解質二次電池。
A secondary battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte interposed between the negative electrode and the positive electrode,
The negative electrode includes a titanium-containing oxide as a negative electrode active material,
The non-aqueous electrolyte contains a salt having a silsesquioxane structure,
The nonaqueous electrolyte secondary battery, wherein the salt having the silsesquioxane structure is 0.01 wt% or more with respect to 100 wt% of the nonaqueous electrolyte.
前記シルセスキオキサン構造が、以下の式(1)で表すことのできることを特徴とする、請求項1に記載の非水電解質二次電池。
Figure 2016207314
(上記式(1)中、Rは同一であっても、異なっていてもよく、いずれも水素原子または水素原子や炭素原子が他の元素で置換されていてもよい炭素原子数1〜12の有機基であり、nは1〜10の整数である)
The nonaqueous electrolyte secondary battery according to claim 1, wherein the silsesquioxane structure can be represented by the following formula (1).
Figure 2016207314
(In the above formula (1), R may be the same or different, and in any case, a hydrogen atom or a hydrogen atom or a carbon atom having 1 to 12 carbon atoms in which another element may be substituted. An organic group, and n is an integer of 1 to 10)
前記シルセスキオキサン構造を有する塩が、かご型シルセスキオキサン構造を有することを特徴とする請求項1〜2のいずれか一項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the salt having the silsesquioxane structure has a cage-type silsesquioxane structure. 前記シルセスキオキサン構造を有する塩が、分子内にハロゲンアニオンを包接していることを特徴とする、請求項1〜3のいずれか一項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the salt having a silsesquioxane structure includes a halogen anion in a molecule. 前記Rの少なくとも1つが重合性官能基及び/またはイオン性官能基を有していることを特徴とする請求項1〜4のいずれか一項に記載の非水電解質二次電池。   5. The nonaqueous electrolyte secondary battery according to claim 1, wherein at least one of R has a polymerizable functional group and / or an ionic functional group. 前記チタン含有酸化物が、チタン酸リチウムおよび/又は二酸化チタンである、請求項1〜5のいずれか一項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the titanium-containing oxide is lithium titanate and / or titanium dioxide. 前記正極において、正極活物質がLi1+xMn2―x―y(0≦x≦0.2、0<y≦0.6、Mは2〜13族でかつ第3〜4周期に属する元素からなる群から選択される少なくとも1種)で表されるスピネル型マンガン酸リチウムを含む、請求項1〜6のいずれか一項に記載の非水電解質二次電池。 In the positive electrode, the positive electrode active material is Li 1 + x M y Mn 2−xy O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, M is a group 2 to 13 and the third to fourth periods. The nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, comprising a spinel type lithium manganate represented by at least one selected from the group consisting of elements belonging to: 請求項1〜7のいずれか一項に記載の非水電解質二次電池を複数個接続してなる組電池。
An assembled battery formed by connecting a plurality of the nonaqueous electrolyte secondary batteries according to any one of claims 1 to 7.
JP2015084517A 2015-04-16 2015-04-16 Non-aqueous electrolyte secondary battery and its assembled battery Active JP6516541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084517A JP6516541B2 (en) 2015-04-16 2015-04-16 Non-aqueous electrolyte secondary battery and its assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084517A JP6516541B2 (en) 2015-04-16 2015-04-16 Non-aqueous electrolyte secondary battery and its assembled battery

Publications (2)

Publication Number Publication Date
JP2016207314A true JP2016207314A (en) 2016-12-08
JP6516541B2 JP6516541B2 (en) 2019-05-22

Family

ID=57490126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084517A Active JP6516541B2 (en) 2015-04-16 2015-04-16 Non-aqueous electrolyte secondary battery and its assembled battery

Country Status (1)

Country Link
JP (1) JP6516541B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306549A (en) * 2002-02-13 2003-10-31 Chisso Corp Organosilicon compound
JP2003317801A (en) * 2002-04-19 2003-11-07 Chisso Corp Nonaqueous electrolyte liquid for secondary cell
JP2010173943A (en) * 2009-01-27 2010-08-12 Hiroshima Univ Method for producing inclusion compound
JP2013008647A (en) * 2011-06-27 2013-01-10 Kyoto Institute Of Technology Solid conductive material
JP2014093158A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Lithium ion secondary battery
JP2014099291A (en) * 2012-11-13 2014-05-29 Kaneka Corp Anode active material, method of producing the same, and nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306549A (en) * 2002-02-13 2003-10-31 Chisso Corp Organosilicon compound
JP2003317801A (en) * 2002-04-19 2003-11-07 Chisso Corp Nonaqueous electrolyte liquid for secondary cell
JP2010173943A (en) * 2009-01-27 2010-08-12 Hiroshima Univ Method for producing inclusion compound
JP2013008647A (en) * 2011-06-27 2013-01-10 Kyoto Institute Of Technology Solid conductive material
JP2014093158A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Lithium ion secondary battery
JP2014099291A (en) * 2012-11-13 2014-05-29 Kaneka Corp Anode active material, method of producing the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6516541B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2011027530A1 (en) Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
WO2010128584A1 (en) Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JP2008300302A (en) Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
JP2016207313A (en) Nonaqueous electrolyte secondary battery and battery pack thereof
JP2016009677A (en) Lithium ion secondary battery and method for manufacturing the same
JP2014049294A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2014212034A (en) Nonaqueous electrolyte secondary battery
JP7136092B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR20130117351A (en) The electrodes for secondary battery and the secondary battery comprising the same
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
WO2016171276A1 (en) Lithium ion cell
JP6936851B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP2017182917A (en) Lithium ion secondary battery and method for manufacturing the same, and battery pack
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2016181457A (en) Flat plate type laminate battery and battery pack thereof
JP6516541B2 (en) Non-aqueous electrolyte secondary battery and its assembled battery
JPWO2018173452A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250