JP2016205997A - Ultrasonic transmitter-receiver - Google Patents

Ultrasonic transmitter-receiver Download PDF

Info

Publication number
JP2016205997A
JP2016205997A JP2015087677A JP2015087677A JP2016205997A JP 2016205997 A JP2016205997 A JP 2016205997A JP 2015087677 A JP2015087677 A JP 2015087677A JP 2015087677 A JP2015087677 A JP 2015087677A JP 2016205997 A JP2016205997 A JP 2016205997A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
receiver
transmitter
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015087677A
Other languages
Japanese (ja)
Other versions
JP6754922B2 (en
Inventor
片倉 景義
Kageyoshi Katakura
景義 片倉
さゆり 松本
Sayuri Matsumoto
さゆり 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2015087677A priority Critical patent/JP6754922B2/en
Publication of JP2016205997A publication Critical patent/JP2016205997A/en
Application granted granted Critical
Publication of JP6754922B2 publication Critical patent/JP6754922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a spatial resolution and reduce an unobservable region to be formed in the vicinity in a three-dimensional measurement device performing sweep irradiation of ultrasonic signals.SOLUTION: A measurement device using ultrasonic signals is configured to: include a transmitter provided with a one-dimensionally-arrayed vibrator divided into many partial apertures; transmit an ultrasonic signal by applying a drive signal for each partial aperture; and involve a receiver which receives a signal obtained by reflecting the transmitted signal on a target object. In the measurement device, an azimuth resolution and observation region restriction can be simultaneously improved with selection of the configuration of the receiver, the configuration of concave convergence and the configuration of the drive signal.SELECTED DRAWING: Figure 12

Description

本発明は、空間分解能の高い超音波送受波装置に関する。   The present invention relates to an ultrasonic transmission / reception apparatus with high spatial resolution.

空間の三次元情報を超音波により映像化する装置は種々知られている。それらにおいて、最も有効な方法の一例として、分極軸を反転した配列送受波器(特許文献1参照)に周波数の異なる信号を印加し、三次元空間に超音波信号を掃引照射して対象物からの反射信号を受信する事により、三次元空間の情報を収集する水中撮像装置(特許文献2参照)が知られている。   Various apparatuses that visualize three-dimensional information of space with ultrasound are known. Among them, as an example of the most effective method, signals having different frequencies are applied to an array transducer having inverted polarization axes (see Patent Document 1), and an ultrasonic signal is swept and irradiated from a target object to a three-dimensional space. An underwater imaging device (see Patent Document 2) that collects information in a three-dimensional space by receiving a reflected signal is known.

しかし、特許文献2の方式によると、方位方向の高分解能化には、距離分解能の低下を伴い、方位方向の高分解能化及び距離分解能の両者を同時に改善し、高度の三次元空間分解能を実現する事が困難である。   However, according to the method of Patent Document 2, the high resolution in the azimuth direction is accompanied by a decrease in the distance resolution, improving both the high resolution in the azimuth direction and the distance resolution at the same time, and realizing a high degree of three-dimensional spatial resolution. It is difficult to do.

そこで、この問題点を改善する方法として、一次元配列振動子を多数の部分口径に分割し、該部分口径ごとに駆動信号を印加して超音波信号を送信し、該送信信号が、目的物体により反射された信号を受信する構成において、部分口径の電極形状、駆動信号波形、駆動信号強度分布を選定する事により、方位と距離の分解能を同時に改善可能とする超音波送受波装置(特許文献3参照)も知られている。   Therefore, as a method for solving this problem, the one-dimensional array transducer is divided into a plurality of partial apertures, and an ultrasonic signal is transmitted by applying a drive signal for each partial aperture. In the configuration to receive the signal reflected by the ultrasonic wave, the ultrasonic wave transmission / reception device that can simultaneously improve the resolution of azimuth and distance by selecting the electrode shape of partial aperture, drive signal waveform, and drive signal intensity distribution (Patent Literature) 3) is also known.

しかし、この超音波送受波装置は送波器部分口径の電極形状構成が特に複雑になり、空間分解能性能の向上にも限界がある。   However, this ultrasonic transmission / reception apparatus has a particularly complicated electrode shape configuration of the transmitter partial aperture, and there is a limit to improving the spatial resolution performance.

また、超音波信号の掃引照射方向に直交する方向の空間分解能を付与するために、受波器を有限口径とし、受波器を二次元面状とする超音波格子化3次元電子化撮像装置も知られていて、この構成による副次的な効果として空間分解能の向上も期待される(特許文献4参照)。   In addition, in order to provide a spatial resolution in a direction orthogonal to the sweep irradiation direction of the ultrasonic signal, the ultrasonic latticed three-dimensional electronic imaging device in which the receiver has a finite aperture and the receiver has a two-dimensional surface shape. As a secondary effect of this configuration, an improvement in spatial resolution is also expected (see Patent Document 4).

しかし、このような従来の構成によると、受波器併用による指向特性改善効果が不十分であり、空間分解能性能の向上には限界がある。   However, according to such a conventional configuration, the effect of improving the directivity by the combined use of the receiver is insufficient, and there is a limit to improving the spatial resolution performance.

また、特許文献2の方式によると、焦点距離の変更が困難であり、部分口径を駆動する信号の印加時刻を、一次元配列上の部分口径位置に応じ凹面状に設定することにより、焦点距離を電子的に変更可能とする提案も見られるが(特許文献3参照)、送波器開口の辺縁部が貢献しないことから、解像度の低下が甚だしい。   Further, according to the method of Patent Document 2, it is difficult to change the focal length, and by setting the application time of the signal for driving the partial aperture in a concave shape according to the partial aperture position on the one-dimensional array, the focal length is set. There is also a proposal that can be changed electronically (see Patent Document 3), but the edge of the transmitter aperture does not contribute, so the resolution is severely degraded.

さらに、特許文献2の方式によると、各方向への信号照射に有限の時間を要することから、全方向への照射完了までに長時間を要することとなり、この時間帯は送信信号による妨害により受信が困難となり、近距離部位に広範囲の計測不能領域が発生する。   Furthermore, according to the method of Patent Document 2, since finite time is required for signal irradiation in each direction, it takes a long time to complete irradiation in all directions, and this time zone is received due to interference by transmission signals. Becomes difficult, and a wide area where measurement is impossible occurs in a short-distance region.

以上のような状況から、特に近距離観察時において要求される、方位及び距離の分解能を同時に高度化し、高度の三次元空間分解能を実現することは困難である。   From the above situation, it is difficult to simultaneously improve the azimuth and distance resolutions required at the time of short-distance observation and to realize a high degree of three-dimensional spatial resolution.

特開昭47−26160号公報JP 47-26160 A 特公昭51−44773号公報Japanese Patent Publication No. 51-44773 特開2010−71967号公報JP 2010-71967 A 特開2013−57518号公報JP2013-57518A 特開2015−33473号公報JP 2015-33473 A

このように解決しようとする問題点は、超音波信号の掃引照射による三次元計測装置において、方位と距離の空間分解能を同時に簡便に改善する手段が、特に近距離観測空間において提供されない点である。   The problem to be solved in this way is that, in a three-dimensional measurement apparatus using sweep irradiation of an ultrasonic signal, means for easily improving the spatial resolution of the azimuth and the distance at the same time is not provided particularly in the short-distance observation space. .

そこで本発明は、上記問題点を解決するためになされたものであって、特に近距離観測空間において、方位と距離の空間分解能を同時に改善することができる超音波送受波装置を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and provides an ultrasonic transmission / reception apparatus capable of simultaneously improving the spatial resolution of azimuth and distance, particularly in a short-distance observation space. Objective.

本発明に係る超音波送受波装置は、超音波信号の送波方位を周波数に対応させると共に、一次元配列振動子が複数の部分口径に分割された送波器と、前記送波器から送信された信号が目的物体により反射された反射信号を受信すると共に、超音波信号の受波方位を周波数に対応させる受波器を備えた超音波送受波器において、前記受波器が前記送波器の前記部分口径以上の受波器幅を有し、前記受波器幅に対して受波感度の加重を行うことを特徴とする。   An ultrasonic transmission / reception apparatus according to the present invention is adapted to make a transmission direction of an ultrasonic signal correspond to a frequency, a transmitter in which a one-dimensional array transducer is divided into a plurality of partial apertures, and a transmission from the transmitter An ultrasonic transducer having a receiver that receives the reflected signal reflected by the target object and that corresponds to the frequency of the reception direction of the ultrasonic signal, the receiver receiving the reflected signal The receiver has a receiver width equal to or greater than the partial diameter of the receiver, and the receiver sensitivity is weighted with respect to the receiver width.

また、本発明に係る超音波送受波装置は超音波信号の送波方位を周波数に対応させると共に、一次元配列振動子が複数の部分口径に分割された送波器において、前記部分口径を駆動する信号の印加時刻を一次元配列上の部分口径位置に応じて凹面状に設定し、前記送波器が凹面収束用の音響レンズを備えることを特徴とする。   In addition, the ultrasonic transmission / reception device according to the present invention drives the partial aperture in the transmitter in which the transmission direction of the ultrasonic signal corresponds to the frequency and the one-dimensional array transducer is divided into a plurality of partial apertures. The signal application time is set to a concave surface according to the partial aperture position on the one-dimensional array, and the transmitter includes an acoustic lens for converging the concave surface.

また、本発明に係る超音波送受波装置において、前記部分口径を駆動する各方向への信号の信号波形相互に重複部を許容する時間波形とすると好適である。   In the ultrasonic transmission / reception apparatus according to the present invention, it is preferable that the signal waveforms of the signals in the respective directions for driving the partial aperture have a time waveform that allows an overlapping portion between the signal waveforms.

また、本発明に係る超音波受波装置において、前記受波器は、前記一次元配列振動子の反転分極素子の配列方向に直交する方向に前記一次元配列振動子を複数配列し面状の受波器として構成すると好適である。   Further, in the ultrasonic wave receiving apparatus according to the present invention, the receiver has a planar shape in which a plurality of the one-dimensional array transducers are arrayed in a direction orthogonal to the array direction of the inverting polarization elements of the one-dimensional array transducer. It is preferable to configure as a receiver.

本発明によれば、超音波信号を送受波することによって目的物体の計測を行う超音波受波装置において、受波器の構成と凹面収束の構成および、駆動信号の構成を選定する事により、方位分解能および観察領域制限を同時に改善可能とする利点を有する。   According to the present invention, in an ultrasonic wave receiving apparatus that measures a target object by transmitting and receiving an ultrasonic signal, by selecting the configuration of the receiver and the concave surface convergence, and the configuration of the drive signal, There is an advantage that the azimuth resolution and the observation area limitation can be improved simultaneously.

以下、本発明に係る超音波受波装置の実施形態について図面を参照しつつ説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, embodiments of an ultrasonic receiving apparatus according to the present invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .

本発明の第1の実施形態に係る超音波送受波装置に用いられる送波器の構成を説明するための図。The figure for demonstrating the structure of the transmitter used for the ultrasonic transmission / reception apparatus which concerns on the 1st Embodiment of this invention. 図1の送波器による指向特性を示した図。The figure which showed the directional characteristic by the transmitter of FIG. 従来の受波器の構成を説明するための図。The figure for demonstrating the structure of the conventional receiver. 従来の受波器の指向性を利用した送受波総合の指向特性を示した図。The figure which showed the directivity characteristic of the transmission / reception comprehensive using the directivity of the conventional receiver. 本発明の第1の実施形態に係る超音波送受波装置で用いられる駆動信号波形を示す図。The figure which shows the drive signal waveform used with the ultrasonic wave transmission / reception apparatus which concerns on the 1st Embodiment of this invention. 図5に示した駆動信号波形を用いた場合の送受波総合の指向特性を示した図。The figure which showed the directivity characteristic of the transmission / reception wave total at the time of using the drive signal waveform shown in FIG. 本発明の第1の実施形態に係る超音波送受波装置に用いられる受波器の構成を説明するための図。The figure for demonstrating the structure of the receiver used for the ultrasonic transmission / reception apparatus which concerns on the 1st Embodiment of this invention. 図7に示した受波器を用いた場合の送受波総合の指向特性を示した図。The figure which showed the directivity characteristic of the transmission / reception comprehensive at the time of using the receiver shown in FIG. さらに図5に示した駆動信号波形を用いた場合の送受波総合の指向特性を示した図。Furthermore, the figure which showed the directional characteristic of the transmission / reception wave total at the time of using the drive signal waveform shown in FIG. 本発明の第2の実施形態に係る超音波送受波装置に用いられる凹面収束用音響レンズの構成を説明するための図。The figure for demonstrating the structure of the acoustic lens for concave-surface convergence used for the ultrasonic transmission / reception apparatus which concerns on the 2nd Embodiment of this invention. 従来の送波器が全方向への照射完了までに要する時間を説明するための図。The figure for demonstrating the time required for the conventional transmitter to complete the irradiation in all directions. 本発明の第3の実施形態に係る超音波送受波装置に用いられる送波器が全方向への照射完了までに要する時間を説明するための図。The figure for demonstrating the time required for the transmitter used for the ultrasonic transmission / reception apparatus which concerns on the 3rd Embodiment of this invention to complete the irradiation to all directions. 本発明の第3の実施形態に係る超音波送受波装置に用いられる駆動信号波形の変形例を説明するための図。The figure for demonstrating the modification of the drive signal waveform used for the ultrasonic transmission / reception apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る超音波受波装置に用いられる駆動信号波形を用いた場合の送受波総合の指向特性を示した図。The figure which showed the directivity characteristic of the transmission / reception comprehensive at the time of using the drive signal waveform used for the ultrasonic receiving apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る超音波送受波装置に用いられる受波器の構成を説明するための図。The figure for demonstrating the structure of the receiver used for the ultrasonic transmission / reception apparatus which concerns on the 5th Embodiment of this invention. 本発明に係る超音波送受波装置に用いられる受波器の変形例を説明するための図。The figure for demonstrating the modification of the receiver used for the ultrasonic transmission / reception apparatus which concerns on this invention. 本発明の第5の実施形態に係る超音波受波装置の全体構成を説明するための図。The figure for demonstrating the whole structure of the ultrasonic receiver which concerns on the 5th Embodiment of this invention. 本発明の第3の実施形態に係る超音波受波装置に用いられる駆動信号波形の更なる変形例を説明するための図。The figure for demonstrating the further modification of the drive signal waveform used for the ultrasonic receiving apparatus which concerns on the 3rd Embodiment of this invention.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る超音波送受波装置に用いられる送波器の構成を説明するための図であり、部分口径内の素子数をn、配列送波器内の部分口径数をm、総素子数mnとし、駆動信号の時間長をTとしている。
[First Embodiment]
FIG. 1 is a diagram for explaining the configuration of a transmitter used in the ultrasonic transmission / reception apparatus according to the first embodiment of the present invention, where n is the number of elements in the partial aperture, The partial aperture number is m, the total number of elements is mn, and the time length of the drive signal is T.

図1に示されるように、本実施形態に係る超音波送受波装置に用いられる送波器10は、振動子11の分極軸を反転した一次元配列振動子を備え、該一次元配列振動子を複数の部分口径12に分割し、該部分口径12ごとに駆動信号を印加して超音波を送波する。   As shown in FIG. 1, a transmitter 10 used in the ultrasonic wave transmitting / receiving apparatus according to the present embodiment includes a one-dimensional array transducer in which the polarization axis of the transducer 11 is inverted, and the one-dimensional array transducer. Is divided into a plurality of partial apertures 12, and a drive signal is applied to each partial aperture 12 to transmit ultrasonic waves.

また、印加する駆動信号の周波数を部分口径12ごとに変化させることにより超音波を送波する方向が変化する。さらに、送波された超音波を用いた計測において実現される距離分解能は、信号時間長Tにより与えられ、概略cT/2(c:音速)となる。   Further, the direction in which the ultrasonic wave is transmitted is changed by changing the frequency of the drive signal to be applied for each partial aperture 12. Furthermore, the distance resolution realized in the measurement using the transmitted ultrasonic waves is given by the signal time length T, and is approximately cT / 2 (c: sound velocity).

特許文献3に開示された、従来の多分割配列(素子総数128、部分口径数16、部分口径内素子数8、信号長32周期矩形包絡線)による指向特性は図2となる。   FIG. 2 shows directivity characteristics according to the conventional multi-divided arrangement disclosed in Patent Document 3 (total number of elements 128, number of partial apertures 16, number of elements within partial apertures 8, signal length 32 period rectangular envelope).

このように、特許文献3の構成における指向特性は、図2に見られるように、強い不要応答強度を示している。   Thus, the directivity in the configuration of Patent Document 3 shows a strong unnecessary response strength as seen in FIG.

一方、特許文献4には、図1の構成により送波し、反射信号を図3に示す有限口径の受波器120により受信することにより、受波器120の指向性を利用する構成が開示されている。   On the other hand, Patent Document 4 discloses a configuration that uses the directivity of the receiver 120 by transmitting the wave with the configuration of FIG. 1 and receiving the reflected signal by the receiver 120 having a finite aperture shown in FIG. Has been.

この特許文献4の構成によると(送波:素子総数128、部分口径数16、部分口径内素子数8、信号長32周期矩形包絡線)、図3に示す受波器幅を送波器の部分口径幅と同一としている。   According to the configuration of this Patent Document 4 (transmitting: total number of elements 128, number of partial apertures 16, number of elements within partial apertures 8, signal length 32 period rectangular envelope), the width of the receiver shown in FIG. It is the same as the partial aperture width.

この、特許文献4の構成によると、受波器120の指向性を利用することにより、送受波総合の指向特性は図4に示す通りとなる。   According to the configuration of Patent Document 4, by using the directivity of the receiver 120, the directivity characteristics of the total transmission and reception are as shown in FIG.

図4に示すように、特許文献4の構成によると、第一副極大は−25dB程度まで抑圧されるが、特許文献3の構成による図2と類似した不十分な特性であることがわかる。   As shown in FIG. 4, according to the configuration of Patent Document 4, the first submaximal is suppressed to about −25 dB, but it is understood that the characteristics are insufficient similar to those of FIG.

そこで、本発明における第1の実施形態に係る超音波送受波装置の第一構成においては、特許文献4の構成において、駆動信号波形30に図5に示す三角重みを加える。   Therefore, in the first configuration of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention, the triangular weight shown in FIG.

この、本発明における第1の実施形態に係る超音波送受波装置の第一構成(送波:素子総数128、部分口径数16、部分口径内素子数8、信号長64周期三角形包絡線)による送受波総合の指向特性は図6となり、図6から明らかなように、副極大は大幅に抑圧される。   According to the first configuration of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention (transmitting: total number of elements 128, number of partial apertures 16, number of elements within partial aperture 8, signal length 64 period triangular envelope) The directivity characteristics of the transmission / reception wave synthesis are as shown in FIG. 6, and as is clear from FIG. 6, the sub-maximum is greatly suppressed.

さらに、本発明における第1の実施形態に係る超音波送受波装置の第二構成においては、受波器20が図3に示した従来の受波器120の2倍の開口幅を有し、開口上に三角形感度重みを加えた図7に示す受波器20により目的対象から反射した反射信号を受信する。   Furthermore, in the second configuration of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention, the receiver 20 has an opening width twice that of the conventional receiver 120 shown in FIG. The reflected signal reflected from the target object is received by the receiver 20 shown in FIG. 7 to which the triangular sensitivity weight is added on the opening.

本発明における第1の実施形態に係る超音波送受波装置の第二構成(送波:素子総数128、部分口径数16、部分口径内素子数8、信号長32周期矩形包絡線)について、開口上に三角感度重みを加えた受波器20を使用した場合においては、図7に示すように、受波器20が図3に示した従来の受波器120の2倍の開口幅を有し、開口上に三角形感度重み21を加えた受波器20により目的対象から反射した反射信号を受信することから、受波指向性における第1零点と送波指向性における第1副極大位置とが一致し、第1零点付近における抑圧度も大きくなることから、送受波総合の指向特性は図8に示す通りとなり、特許文献4の結果から特性が改善される。   The second configuration of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention (transmitting: total number of elements 128, number of partial apertures 16, number of elements within partial aperture 8, signal length 32 period rectangular envelope) When the receiver 20 with the triangular sensitivity weight added thereto is used, as shown in FIG. 7, the receiver 20 has an opening width twice that of the conventional receiver 120 shown in FIG. Since the reflected signal reflected from the target object is received by the receiver 20 to which the triangular sensitivity weight 21 is added on the aperture, the first zero point in the reception directivity and the first submaximal position in the transmission directivity And the degree of suppression in the vicinity of the first zero point also increases, so that the directivity characteristics of the transmitted and received waves are as shown in FIG. 8, and the characteristics are improved from the results of Patent Document 4.

本発明における第1の実施形態に係る超音波送受波装置の第三構成においては、駆動信号波形として図5に示す三角重み波形を使用する。   In the third configuration of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention, the triangular weight waveform shown in FIG. 5 is used as the drive signal waveform.

本発明における第1の実施形態に係る超音波送受波装置の第三構成(送波:素子総数128、部分口径数16、部分口径内素子数8、信号長64周期三角形包絡線)について、駆動信号波形として三角重み波形を使用した場合による送受波総合の指向特性は図9に示す通りとなり、特許文献4の結果からは特性が大幅に改善され、第1の実施形態に係る超音波送受波装置の第一構成からも更に改善され、各種構成中における最高の特性が実現される。   Driving with respect to the third configuration of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention (transmitting: total number of elements 128, number of partial apertures 16, number of elements within partial aperture 8, signal length 64 period triangular envelope) The directional characteristics of the total transmission / reception wave when the triangular weight waveform is used as the signal waveform are as shown in FIG. 9. From the result of Patent Document 4, the characteristics are greatly improved, and the ultrasonic transmission / reception wave according to the first embodiment is obtained. The first configuration of the apparatus is further improved, and the best characteristics among various configurations are realized.

[第2の実施形態]
次に、第1の実施形態とは異なる構成を備えた第2の実施形態に係る超音波送受波装置について説明を行う。従来から知られている特許文献2の方式により近距離物体の計測を行う場合には、音響レンズにより収束させる必要があるが、音響レンズによる収束操作においては収束焦点距離の変更が困難である。
[Second Embodiment]
Next, an ultrasonic transmission / reception apparatus according to the second embodiment having a configuration different from that of the first embodiment will be described. When measuring a short-distance object by the conventionally known method of Patent Document 2, it is necessary to converge with an acoustic lens, but it is difficult to change the convergence focal length in the convergence operation using the acoustic lens.

そこで、部分口径を駆動する信号の印加時刻を、可変遅延線により、一次元配列上の部分口径位置に応じた凹面状に設定し、その遅延時間曲率を可変とすることにより、焦点距離を電子的に変更可能とする構成(特許文献3参照)が知られている。   Therefore, the application time of the signal for driving the partial aperture is set to a concave shape corresponding to the partial aperture position on the one-dimensional array by the variable delay line, and the delay time curvature is made variable, thereby making the focal length electronic. A configuration (see Patent Document 3) that can be changed automatically is known.

しかし、この特許文献3の構成によると、送波器開口の辺縁部が焦点音圧に貢献しないことから、焦点において限界解像度からの甚だしい解像度低下が確認された。   However, according to the configuration of Patent Document 3, since the edge of the transmitter aperture does not contribute to the focal sound pressure, a significant resolution decrease from the limit resolution at the focal point was confirmed.

このような、焦点における解像度低下を防止する本実施形態に係る超音波送受波装置による構成を、第2の実施形態として図10に示す。   FIG. 10 shows the configuration of the ultrasonic wave transmitting / receiving apparatus according to the present embodiment that prevents such a decrease in resolution at the focal point as a second embodiment.

本実施形態に係る超音波送受波装置は、特許文献3における凹面可変遅延のみによる収束構成と異なり、図10に示すように、特定焦点距離用の凹面収束用音響レンズLZと、一次元配列上の部分口径12位置に、固定焦点距離からの距離変更に対応する変更用微小遅延時間(凹面、平面あるいは凸面となる)を与える、補正遅延回路VDとを有する。   Unlike the converging configuration based only on the concave variable delay in Patent Document 3, the ultrasonic wave transmitting / receiving apparatus according to the present embodiment has a concave surface converging acoustic lens LZ for a specific focal length and a one-dimensional array as shown in FIG. And a correction delay circuit VD that gives a minute delay time for change (becomes a concave surface, a flat surface, or a convex surface) corresponding to a distance change from the fixed focal length.

本実施形態に係る超音波送受波装置においては、凹面収束用の音響レンズLZを有することから、辺縁部からの音波a,dも焦点oに同位相にて到達し、送波器の全開口が焦点における音圧形成に貢献することから、送波器の開口と音波波長により定まる限界解像度が、焦点において実現される。   In the ultrasonic wave transmitting / receiving apparatus according to the present embodiment, since the acoustic lens LZ for converging the concave surface is provided, the sound waves a and d from the edge also reach the focal point o in the same phase, and the entire wave transmitter is transmitted. Since the aperture contributes to the formation of sound pressure at the focal point, a critical resolution determined by the aperture of the transmitter and the sound wave wavelength is achieved at the focal point.

[第3の実施形態]
次に、上述した実施形態と異なる駆動信号を用いた第3の実施形態に係る超音波送受波装置について説明を行う。
[Third Embodiment]
Next, an ultrasonic wave transmitting / receiving apparatus according to the third embodiment using a drive signal different from the above-described embodiment will be described.

従来から知られている特許文献2の方式によると、図1に示すように、1方向への照射に時間mT(=L/c、c:音速)を要することから、照射方向をK方向とし、各方向への照射パルス長をTnとすると、図11に示すように、全方向への照射完了までにm(T1+T2+−−−−+Tk)なる長時間を要することとなる。 According to the conventionally known method of Patent Document 2, as shown in FIG. 1, since time mT (= L / c, c: speed of sound) is required for irradiation in one direction, the irradiation direction is set to the K direction. Assuming that the irradiation pulse length in each direction is T n , as shown in FIG. 11, it takes a long time of m (T 1 + T 2 + −−−− + T k ) to complete irradiation in all directions. Become.

この音波照射時間中は、送信信号による妨害により、反射信号の受信が困難となり、近距離部位に広範囲の計測不能領域が発生する。   During this sound wave irradiation time, it is difficult to receive the reflected signal due to the interference by the transmission signal, and a wide range of non-measurable regions is generated in a short distance region.

そこで、本実施形態に係る超音波送受波装置で用いられる駆動信号は、図12に示すように、各方向への駆動信号を重畳させて送波器10より送波する。   Therefore, as shown in FIG. 12, the drive signal used in the ultrasonic transmission / reception apparatus according to the present embodiment is transmitted from the transmitter 10 with the drive signal in each direction superimposed.

このような駆動信号とすることにより、信号駆動時間がmT1+T2+・・・Tkとなり、図10に示した第2の実施形態に係る超音波送受波装置の構成に比して大幅に短縮され、近傍の観測不能領域が大幅に減少される。   By using such a drive signal, the signal drive time becomes mT1 + T2 +... Tk, which is significantly shortened compared to the configuration of the ultrasonic wave transmitting / receiving apparatus according to the second embodiment shown in FIG. The unobservable area is greatly reduced.

また、図13に示すように、部分口径12ごとに波形が異なる波形により駆動することにより、収束用音響レンズLZを使用することなく、近傍における理想的な収束を実現可能になる(特許文献5)が、この方式にも、図12に示した駆動方式は当然適用可能であり、このような構成においても、同様に近傍の観測不能領域が大幅に減少される。   Moreover, as shown in FIG. 13, by driving with a waveform having a different waveform for each partial aperture 12, ideal convergence in the vicinity can be realized without using the convergence acoustic lens LZ (Patent Document 5). However, the drive method shown in FIG. 12 can naturally be applied to this method, and in such a configuration, the nearby unobservable regions are also greatly reduced.

[第4の実施形態]
図4に示すように、受波指向特性を利用する特許文献4の構成によると、第一副極大は−25dB程度まで抑圧されるが、特許文献3の構成による図2と類似した不十分な特性である。
[Fourth Embodiment]
As shown in FIG. 4, according to the configuration of Patent Document 4 using the received wave directivity, the first submaximal is suppressed to about −25 dB, but it is not sufficient, similar to FIG. 2 with the configuration of Patent Document 3. It is a characteristic.

そこで、受波指向特性を利用することなく、第4の実施形態に係る超音波送受波装置においては、特許文献3に開示された構成において、駆動波形を図5に示した三角重みを加えた駆動信号とすると、指向特性は図14に示す通りとなり、図2の特性から大幅に改善される。   Therefore, in the ultrasonic wave transmitting / receiving apparatus according to the fourth embodiment without using the reception directivity characteristic, the driving waveform is added with the triangular weight shown in FIG. 5 in the configuration disclosed in Patent Document 3. When the drive signal is used, the directivity characteristics are as shown in FIG. 14, which is greatly improved from the characteristics shown in FIG.

[第5の実施形態]
また、図7に示した一次元配列の受波器20を、特許文献3に示されたように、反転分極素子の配列方向に直交する方向に複数配列し面状の受波器20´とする図15に示す構成においても、本発明の構成が有効に適用可能であり、この実施形態の全体構成を図17に示す。
[Fifth Embodiment]
Further, as shown in Patent Document 3, a plurality of the one-dimensional array of receivers 20 shown in FIG. 7 are arranged in a direction orthogonal to the array direction of the inverting polarization elements, and a planar receiver 20 ′. In the configuration shown in FIG. 15 as well, the configuration of the present invention can be effectively applied, and the overall configuration of this embodiment is shown in FIG.

本発明は、以上述べた構成に限定されるものではなく、駆動波形を図5に示す三角重みを加えた駆動波形とする処理は、濾波処理あるいは相関処理等による畳み込み処理等により等価に実現することも可能である。   The present invention is not limited to the configuration described above, and the processing for converting the driving waveform into a driving waveform to which the triangular weight shown in FIG. 5 is added is equivalently realized by convolution processing such as filtering processing or correlation processing. It is also possible.

また、図15に示す面状の受波器20´とする構成において、図16に示すように、受波面の形状あるいは吸音材22を載置するなどの加重処理により、一方向への投影量が周辺部で低下するような状況、例えば菱形あるいは円盤形とすることにより、更に指向性における不要応答が低下することも可能である。   Further, in the configuration of the planar wave receiver 20 ′ shown in FIG. 15, the projection amount in one direction is applied by weighting processing such as placing the shape of the wave receiving surface or the sound absorbing material 22 as shown in FIG. In such a situation that lowers at the periphery, for example, a diamond shape or a disk shape, it is possible to further reduce the unnecessary response in directivity.

これらの有効な加重形態にはハニング、ガウス等種々知られている。   Various effective weighting forms such as Hanning and Gauss are known.

また、図13に示す構成において、図18に示す長時間波形あるいは加重波形により送波器10を駆動することにより、図5の波形を使用した場合と同様に、方位分解能の向上が可能となる。   Further, in the configuration shown in FIG. 13, by driving the transmitter 10 with the long-time waveform or the weighted waveform shown in FIG. 18, the azimuth resolution can be improved as in the case of using the waveform of FIG. .

本発明は、簡便な構成により、方位分解能および観察領域に対する制限を同時に改善可能とする利点を有することから、超音波信号による計測装置の高度化に有効である。   The present invention has an advantage that the restriction on the azimuth resolution and the observation area can be improved at the same time with a simple configuration, and thus is effective for the advancement of a measurement apparatus using ultrasonic signals.

10 送波器,
11 振動子,
12 部分口径,
20,20´,120 受波器,
21 三角感度重み,
22 吸音材,
30 駆動信号。
10 Transmitter,
11 vibrator,
12 partial caliber,
20, 20 ', 120 receiver,
21 Triangular sensitivity weight,
22 sound absorbing material,
30 Drive signal.

Claims (4)

超音波信号の送波方位を周波数に対応させると共に、一次元配列振動子が複数の部分口径に分割された送波器と、前記送波器から送信された信号が目的物体により反射された反射信号を受信すると共に、超音波信号の受波方位を周波数に対応させる受波器を備えた超音波送受波器において、
前記受波器が前記送波器の前記部分口径以上の受波器幅を有し、前記受波器幅に対して受波感度の加重を行うことを特徴とする超音波送受波装置。
The transmitter direction of the ultrasonic signal is made to correspond to the frequency, the transmitter in which the one-dimensional array transducer is divided into a plurality of partial apertures, and the reflection in which the signal transmitted from the transmitter is reflected by the target object In an ultrasonic transmitter / receiver equipped with a receiver for receiving a signal and corresponding a frequency to the receiving direction of the ultrasonic signal,
The ultrasonic wave transmitting / receiving apparatus, wherein the wave receiver has a wave receiver width equal to or larger than the partial aperture of the wave transmitter, and weights the wave receiving sensitivity to the wave receiver width.
超音波信号の送波方位を周波数に対応させると共に、一次元配列振動子が複数の部分口径に分割された送波器において、
前記部分口径を駆動する信号の印加時刻を一次元配列上の部分口径位置に応じて凹面状に設定し、前記送波器が凹面収束用の音響レンズを備えることを特徴とする超音波受波装置。
In the transmitter in which the transmission direction of the ultrasonic signal corresponds to the frequency and the one-dimensional array transducer is divided into a plurality of partial apertures,
An ultrasonic wave reception characterized in that an application time of a signal for driving the partial aperture is set in a concave shape according to a partial aperture position on a one-dimensional array, and the transmitter includes an acoustic lens for converging the concave surface. apparatus.
請求項1又は2に記載の超音波送受波装置において、
前記部分口径を駆動する各方向への信号の信号波形相互に重複部を許容する時間波形とすることを特徴とする超音波送受波装置。
The ultrasonic transmission / reception apparatus according to claim 1 or 2,
An ultrasonic wave transmitting / receiving apparatus characterized in that a signal waveform of a signal in each direction for driving the partial aperture has a time waveform that allows an overlapping portion between the signal waveforms.
請求項1から3のいずれか1項に記載の超音波送受波装置において、
前記受波器は、前記一次元配列振動子の反転分極素子の配列方向に直交する方向に前記一次元配列振動子を複数配列し面状の受波器として構成したことを特徴とする超音波送受波装置。
The ultrasonic transmission / reception apparatus according to any one of claims 1 to 3,
The ultrasonic wave is configured as a planar wave receiver in which a plurality of the one-dimensional array transducers are arranged in a direction orthogonal to the arrangement direction of the inverting polarization elements of the one-dimensional array transducer. Transmitter / receiver.
JP2015087677A 2015-04-22 2015-04-22 Ultrasonic wave transmitter / receiver Active JP6754922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087677A JP6754922B2 (en) 2015-04-22 2015-04-22 Ultrasonic wave transmitter / receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087677A JP6754922B2 (en) 2015-04-22 2015-04-22 Ultrasonic wave transmitter / receiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019212374A Division JP6884326B2 (en) 2019-11-25 2019-11-25 Ultrasonic wave transmitter / receiver

Publications (2)

Publication Number Publication Date
JP2016205997A true JP2016205997A (en) 2016-12-08
JP6754922B2 JP6754922B2 (en) 2020-09-16

Family

ID=57487065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087677A Active JP6754922B2 (en) 2015-04-22 2015-04-22 Ultrasonic wave transmitter / receiver

Country Status (1)

Country Link
JP (1) JP6754922B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918024A (en) * 1974-06-24 1975-11-04 Albert Macovski Ultrasonic array for reflection imaging
JP2008107122A (en) * 2006-10-24 2008-05-08 Osaka Univ Ultrasonic array sensor system and delay addition processing method
JP2010071967A (en) * 2008-09-19 2010-04-02 Port & Airport Research Institute Ultrasonic transducer
JP2013057518A (en) * 2011-09-07 2013-03-28 Port & Airport Research Institute Supersonic grating three-dimensional electronic imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918024A (en) * 1974-06-24 1975-11-04 Albert Macovski Ultrasonic array for reflection imaging
JP2008107122A (en) * 2006-10-24 2008-05-08 Osaka Univ Ultrasonic array sensor system and delay addition processing method
JP2010071967A (en) * 2008-09-19 2010-04-02 Port & Airport Research Institute Ultrasonic transducer
JP2013057518A (en) * 2011-09-07 2013-03-28 Port & Airport Research Institute Supersonic grating three-dimensional electronic imaging apparatus

Also Published As

Publication number Publication date
JP6754922B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6085614B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
CN101478922A (en) Ultrasound imaging system and method using multiline acquisition with high frame rate
US20150293223A1 (en) Ultrasonic probe, ultrasonic imaging apparatus, and method of controlling the ultrasonic imaging apparatus
JP2015077393A (en) Ultrasonic measurement apparatus, ultrasonic image apparatus, and ultrasonic measurement method
US20210325533A1 (en) Multimission and multispectral sonar
US10667788B2 (en) Ultrasound imaging pickup apparatus
KR20030058364A (en) Synthetic aperture focusing method for ultrasound imaging based on planar waves
Chang et al. A new synthetic aperture focusing method to suppress the diffraction of ultrasound
US20120071763A1 (en) Medical ultrasound 2-d transducer array using fresnel lens approach
US20080027318A1 (en) Ultrasonographic Device
CN107569254B (en) Ultrasonic signal processing device, ultrasonic signal processing method, and ultrasonic diagnostic device
JP6179973B2 (en) Signal processing device, underwater detection device, signal processing method, and program
JP2010071967A (en) Ultrasonic transducer
JP3740066B2 (en) Synthetic aperture focusing method in ultrasound imaging system
JP6884326B2 (en) Ultrasonic wave transmitter / receiver
JP5991505B2 (en) Transmitter / receiver and three-dimensional measuring apparatus using the same
JP6754922B2 (en) Ultrasonic wave transmitter / receiver
US11194046B2 (en) Multiple frequency side-scan sonar
JP2010068957A (en) Ultrasonic diagnostic apparatus
JP2019521753A (en) Fast synthetic focused ultrasound imaging with a large linear array
JP4184219B2 (en) Ultrasonic transceiver and scanning sonar
JP2014020907A (en) Underwater detection device, underwater detection method and program
JP6331200B2 (en) Ultrasound gridded three-dimensional electrified imaging device
JPH0419504B2 (en)
Opieliński et al. Determining the acoustic field distribution of ultrasonic multi-element probes

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6754922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250