JP2016205133A - Method for decreasing discharging of greenhouse effect gas - Google Patents

Method for decreasing discharging of greenhouse effect gas Download PDF

Info

Publication number
JP2016205133A
JP2016205133A JP2015006271A JP2015006271A JP2016205133A JP 2016205133 A JP2016205133 A JP 2016205133A JP 2015006271 A JP2015006271 A JP 2015006271A JP 2015006271 A JP2015006271 A JP 2015006271A JP 2016205133 A JP2016205133 A JP 2016205133A
Authority
JP
Japan
Prior art keywords
gas
internal combustion
combustion engine
hydrogen
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015006271A
Other languages
Japanese (ja)
Other versions
JP6132317B2 (en
Inventor
寛治 泉
Kanji Izumi
寛治 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016510119A priority Critical patent/JP6183981B2/en
Priority to PCT/JP2015/054216 priority patent/WO2015146368A1/en
Publication of JP2016205133A publication Critical patent/JP2016205133A/en
Application granted granted Critical
Publication of JP6132317B2 publication Critical patent/JP6132317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Coke Industry (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply an internal combustion engine capable of reducing discharging of greenhouse effect gas "CO" to cope with global warming, as power generating facility.SOLUTION: The problem described above is resolved in such a way that there are provided taking-out facility Ms for reacting water and carbon with waste-heat of an internal combustion engine 1 to take out mixture gas of hydrogen and carbon mono-oxide and a storage gas tank MT for storing mixture gas of taken-out hydrogen and carbon mono-oxide, the taken-out mixture gas of hydrogen and carbon mono-oxide is stored or applied as fuel for the internal combustion engine 1 through the storage gas tank and further the taking-out facility Ms is installed at a transporting device and applied as fuel for the internal combustion engine installed at the transporting device, further carbon dioxide of the discharged gas is also made into mixture gas of hydrogen and carbon mono-oxide and the taken-out hydrogen and carbon mono-oxide are separated into hydrogen gas and carbon dioxide and taken out separately, quality of carbon dioxide is improved and the carbon dioxide is applied as starting material for generating synthesis gas.SELECTED DRAWING: Figure 1

Description

温室効果ガス排出削減に寄与する内燃機関であって、特に植物を主とする炭素Cと水HOを内燃機関内で合成ガス(H+CO)に生成し、生成した合成ガスを当該内燃機関の燃料とし、更に前記合成ガスの燃焼により排出される二酸化炭素をも分離し内燃機関内で合成ガスH+CO及び水素に改質し該合成ガス及び水素を当該内燃機関の燃料とするものである。 An internal combustion engine that contributes to the reduction of greenhouse gas emissions, particularly producing carbon C and water H 2 O, mainly plant, into synthesis gas (H 2 + CO) in the internal combustion engine, Further, carbon dioxide discharged from the combustion of the synthesis gas is separated as fuel for the internal combustion engine and reformed into synthesis gas H 2 + CO and hydrogen in the internal combustion engine, and the synthesis gas and hydrogen are used as fuel for the internal combustion engine. To do.

温室効果ガスが地球温暖化の大きな要因であり、「温室効果ガスを削減すべきである」と考えるのは世界共通の認識であるが、「具体的数値目標を・・」と言う段階に成ると、国際価格競争時代の今、温室効果ガス削減コストを掛ける事となるので話が進展していないのが現状である。
2014年現在の温室効果ガス排出削減策の自動車(内燃機関)の動力源としては、電気自動車,水素とのハイブリット,あるいは水素のみを燃料したものや「バイオエタノール」を燃料としたエンジンシステム特開2008−298030や「バイオエタノール」の燃料を水素と一酸化炭素とを含む燃料に改質して該改質ガスを燃料とする、温室効果ガスを排出削減する技術もあるが、しかし前記先行技術で製品化するにはそれぞれ解決しなければならない問題点が残っており、それぞれの問題は解決途上で決め手を欠いている部分を残しているのが現状と認識している。
又前記技術の内、電気を動力源とする技術では電気の製造は2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり該火力発電は石炭を始めとする化石燃料を使用しており「CO」を排出しているのでこの発電設備からの「CO」を排出しない策が実現しなければ、電気を動力源としても地球温暖化の温室効果ガスを削減に寄与する内燃機関の動力源とは言えない。
又前記技術の動力源を電気をとして温室効果ガスを削減する「CO」を排出しない電力供給源には原子力発電がある、しかし「福島原発」の問題もあり、新たに新設するのは困難であり廃炉の方向に向かうとの見方が大勢を占めていると思っている。
Greenhouse gases are a major cause of global warming, and it is a common recognition in the world to think that “greenhouse gases should be reduced.” However, it is at the stage of “specific numerical targets…” In the era of international price competition, the current situation is that the story has not progressed because it will incur greenhouse gas reduction costs.
As a power source of an automobile (internal combustion engine) of a greenhouse gas emission reduction measure as of 2014, an electric vehicle, a hybrid with hydrogen, or an engine system using only hydrogen or "bioethanol" as fuel There is also a technology for reducing greenhouse gas emissions by reforming a fuel of 2008-298030 or “bioethanol” into a fuel containing hydrogen and carbon monoxide and using the reformed gas as a fuel. There are still problems that must be solved in order to commercialize products, and it is recognized that there is a part that each problem is lacking in the process of solving.
Of the technologies mentioned above, in the technology using electricity as the power source, according to the statistics of the Electricity Federation of 2011, about 82% of Japan's total power generation is thermal power generation. since the discharging "CO 2" and using the fossil fuels, including unless realized measures that do not emit "CO 2" from the power plant, a greenhouse global warming electricity as a power source It cannot be said that it is a power source of the internal combustion engine that contributes to reducing the effect gas.
Moreover, nuclear power generation is a power source that does not emit “CO 2 ”, which uses electricity as the power source of the above technology to reduce greenhouse gases. However, there is a problem of “Fukushima nuclear power plant”, so it is difficult to establish a new one. And I think that the view that it goes to the direction of decommissioning occupies a lot.

前記「CO」を低減させる設備は既に存在している、その方法は排出された二酸化炭素を地底層深く(A)もしくは海底層に隔離(Sequestiern)(B)する提案である。2014年にアメリカで世界一の規模の石炭火力発電所が完成しているが、この発電で排出される「CO」の処理は15〇〇mの地底層に封じ込める構造(前記A)であり、この発電所の建設費用は通常の2倍かかつており、更に15〇〇mの地底層に封じ込めるためのエネルギー費用がかかり、その費用は電気料金に上乗せされ消費者負担と成ると言う問題がある。 Equipment for reducing the “CO 2 ” already exists, and the method is a proposal to sequester the discharged carbon dioxide deeply (A) or sequestered (B). The world's largest coal-fired power plant in the United States was completed in 2014, but the treatment of “CO 2 ” emitted by this power generation is a structure that can be contained in a 150,000-meter underground layer (A). However, the construction cost of this power plant is twice as usual, and there is a problem that it costs energy to contain it in the underground layer of 150,000 m, and this cost is added to the electricity bill and becomes a consumer burden. is there.

前記「CO」を改質して合成ガスまたは水素ガスを得る技術は製鋼所の高炉ガス・転炉ガスの排ガスのエネルー化技術として色々な技術が次々と提案されており現業部門ですでに実用化されておる技術も多くある、又火力発電所の発電工程で排出されるガスについても同様にエネルギーの効率UPに活用されておるが、その殆どが大規模装置産業の定地形態物であり、移動形態物に搭載可能な内燃機関内で該内燃機関から排出する「CO」を改質して該内燃機関の燃料としておる実現可能技術は提案されておらない(見つからない)。 Various technologies have been proposed one after another for the technology to obtain synthesis gas or hydrogen gas by reforming the above-mentioned “CO 2 ”, and have already been proposed in the in-service sector as an energy generation technology for blast furnace gas and converter gas in steelworks. There are many technologies that have been put to practical use, and the gas emitted in the power generation process of thermal power plants is also used to increase energy efficiency, but most of them are fixed-form features in the large-scale equipment industry. In addition, no feasible technology has been proposed (not found) for reforming “CO 2 ” discharged from the internal combustion engine in the internal combustion engine that can be mounted on the moving form and using it as a fuel for the internal combustion engine.

特許5647364.ロータリーピストンエンジン車のエンジン機構。Patent 5647364. Engine mechanism of rotary piston engine car. 特開平11−106770.ジメチルエーテル改質ガスを使用する発電方法および装置JP-A-11-106770. Power generation method and apparatus using dimethyl ether reformed gas 特許4231735.二酸化炭素の分離回収方法および装置Patent 4231735. Method and apparatus for separating and recovering carbon dioxide 特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両。JP 2007-177684 A, a carbon dioxide recovery device for a vehicle, and a vehicle including the same. 特開昭57−150439炭化水素と水蒸気又は二酸化炭素との反応。Reaction of hydrocarbons with water vapor or carbon dioxide. 特許4609718 水素ロータリーピストンエンジンの燃料噴射装置Patent 4,609,718 Hydrogen rotary piston engine fuel injection device 特願平10−543729(特許3345782)合成ガス製造方法。Japanese Patent Application No. 10-543729 (patent 33455782) synthesis gas production method.

補助燃料によって燃焼されるロータリーピストンエンジンと、該ロータリーピストンエンジンのローターハウシングに水を導入管から供給する水供給手段と、供給された水が、ローターハウシングの熱で水蒸気化され、この水蒸気に炭素を供給するとともに、ロータリーピストンエンジンの燃焼工程後の排熱を利用して、吸熱反応化させて、燃料を生成し、前記補助燃料使用中に生成し続けるガスを溜める畜ガス手段を備え、この畜ガス手段の畜ガスと前記補助燃料とを切り替えて、ロータリーピストンエンジンに供給する、切換え手段を備えている構造を特徴とする技術(例えば特許文献1)があり、本願はこの技術をベース技術として、燃料の燃焼による排気ガス中の二酸化炭素(CO)も燃料に改質する技術を取り入れる事で、更なる温室効果ガス排出削減策と成る技術にしている。 A rotary piston engine combusted by auxiliary fuel, a water supply means for supplying water to the rotor housing of the rotary piston engine from the introduction pipe, and the supplied water is steamed by the heat of the rotor housing, And a livestock gas means for storing the gas that is generated by the endothermic reaction using the exhaust heat after the combustion process of the rotary piston engine and generating the fuel while the auxiliary fuel is used. There is a technique (for example, Patent Document 1) characterized by a structure including a switching means for switching the livestock gas of the livestock gas means and the auxiliary fuel to be supplied to the rotary piston engine, and this application is based on this technique. as carbon dioxide in the exhaust gas from the combustion of the fuel (CO 2) also to adopt a technique of reforming a fuel, further We are in a technology that is a greenhouse gas emission reduction measures that.

ジメチルエーテルに水蒸気または炭酸ガスを加えて触媒反応させることによりジメチルエーテルを改質して合成ガスまたは水素ガスを得、このガスを原動機用燃料として使用することを特徴とする、ジメチルエーテル改質ガスを使用する発電方法、ジメチルエーテルの改質を200°Cから500℃の中低温廃熱を利用して行うことを特徴とする上記の発電方法(例えば特許文献2)があり、
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
Uses dimethyl ether reformed gas, characterized in that dimethyl ether is reformed by adding steam or carbon dioxide gas to dimethyl ether to cause a catalytic reaction to obtain synthesis gas or hydrogen gas, and this gas is used as a fuel for a prime mover There is a power generation method, and the above power generation method (for example, Patent Document 2), characterized in that the reforming of dimethyl ether is performed using medium to low temperature waste heat from 200 ° C to 500 ° C.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

製鉄所で発生する副生ガスから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する500℃以下の低品位排熱を利用または活用することを特徴とする二酸化炭素の分離回収方法。(例えば特許文献3)があり、
本願の二酸化炭素を分離回収する技術とするには排ガスを数種の透過膜を透過させる膜型透過機器の設置や真空ポンプ等を設置する必要と言う問題が有る。
A method of separating and recovering carbon dioxide from a by-product gas generated at a steel works by chemical absorption method, which absorbs carbon dioxide from the gas with chemical absorption liquid and then heats the chemical absorption liquid to separate carbon dioxide A method for separating and recovering carbon dioxide, characterized by utilizing or utilizing low-grade exhaust heat of 500 ° C. or less generated at a steelworks. (For example, Patent Document 3)
In order to separate and recover the carbon dioxide of the present application, there is a problem that it is necessary to install a membrane type permeation device that allows several kinds of permeable membranes to pass through the exhaust gas, or to install a vacuum pump or the like.

車両二酸化炭素装置を自動車の排気系に於ける消音機と排気管との間に取り付けており、二酸化炭素を吸収材と三方性の電磁弁を介して接続されているC0吸収部を設けて、二酸化炭素を吸収したアルカノン化合物水溶液から電磁弁を介してエンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であり、分離した二酸化炭素は使用済みのアルカノールアミン化合物の再生に使用される技術(例えば特許文献4)がある。この技術は自動車の排気ガス中の二酸化炭素を分離する技術で分離した二酸化炭素の用途として二酸化炭素を吸収したアルカノン化合物水溶液の再生に使用している技術であるが、本願の排気ガス中の二酸化炭素を分離する技術として使用可能である。
*本願は排気ガス中から分離した二酸化炭素もしくは、排気ガス中の二酸化炭素を水に吸収させて、本願の内燃機関で燃料(ガス)に生成して畜ガスタンク経由で、該内燃機関燃料(ガス)としている事が、作用・効果から言って決定的な相異点である。
And in silencers vehicle carbon dioxide device in an exhaust system of an automobile is mounted between the exhaust pipe, provided with a C0 2 absorption portion which is connected via an absorbent material and the three-way of the solenoid valve carbon dioxide , A structure in which carbon dioxide is released from the aqueous solution of alkanone compound that has absorbed carbon dioxide by absorbing heat from the engine cooling heat through a solenoid valve, and the separated carbon dioxide is used to regenerate used alkanolamine compounds. (For example, Patent Document 4). This technology is used to regenerate the aqueous solution of alkanone compound that has absorbed carbon dioxide as an application of carbon dioxide separated by the technology that separates carbon dioxide in automobile exhaust gas. It can be used as a technique for separating carbon.
* In this application, carbon dioxide separated from the exhaust gas or carbon dioxide in the exhaust gas is absorbed into water and produced in the fuel (gas) by the internal combustion engine of the present application, and the internal combustion engine fuel (gas ) Is the decisive difference in terms of action and effect.

炭化水素と水蒸気若しくは二酸化炭素又はそれらの混合物とを正味吸熱条件に於いて反応させて、炭素化合物及び水素を含む気体とする方法であってニッケル及びコバルトの化合物及びアルカリ金属酸化物と酸性若しくは両性酸化物または混合酸化物との不水溶性化合物からなる触媒を使用する事を特徴とする上記方法に関する技術(例えば特許文献5)がある。
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
A method of reacting a hydrocarbon with water vapor or carbon dioxide or a mixture thereof under a net endothermic condition to form a gas containing a carbon compound and hydrogen, which is acidic or amphoteric with nickel and cobalt compounds and alkali metal oxides. There is a technique (for example, Patent Document 5) relating to the above method characterized by using a catalyst comprising a water-insoluble compound with an oxide or mixed oxide.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

水素ロータリーピストンエンジンの燃料噴射装置であって、水素ロータリーピストンエンジンの作動室を形成するローターハウジングに取り付けられ、水素ロータリーピストンエンジンの作動室に水素を直接噴射する水素インジェクタと、この水素インジェクタが作動室内に圧縮行程中の所定のタイミングで水素を噴射するように噴射タイミングを制御する水素噴射タイミング制御手段と、水素インジェクタからの水素が、水素ロータリーピストンエンジンの低回転域では圧縮行程の作動室のリーディング領域に向かって流出し、高回転域では圧縮行程の作動室の中央領域に向かって流出するように、水素の噴射方向を設定する水素流出方向設定手段と、を有することを特徴としている技術(例えば特許文献6)がある。
*本願の合成ガスの水素ガスと一酸化炭素は、エネルギー的には殆ど等価でありつまり(高位)発熱量はほぼ同じであるので、内燃機関の中で本願の合成ガスを燃料とする構造にはロータリーピストンエンジンで水素を燃料とする構造の説明する先行文献が最適であるので取り上げている。
A fuel injection device for a hydrogen rotary piston engine, which is attached to a rotor housing that forms a working chamber of the hydrogen rotary piston engine and directly injects hydrogen into the working chamber of the hydrogen rotary piston engine, and the hydrogen injector is operated Hydrogen injection timing control means for controlling injection timing so that hydrogen is injected into the chamber at a predetermined timing during the compression stroke, and hydrogen from the hydrogen injector is in the low rotation range of the hydrogen rotary piston engine. And a hydrogen outflow direction setting means for setting the hydrogen injection direction so as to flow out toward the leading region and out toward the central region of the working chamber in the compression stroke in the high rotation region. (For example, Patent Document 6).
* The hydrogen gas and carbon monoxide in the synthesis gas of the present application are almost equivalent in terms of energy, that is, the (higher) calorific value is almost the same. Has taken up the prior literature describing the structure of a rotary piston engine that uses hydrogen as fuel because it is optimal.

含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法であって、該触媒として金属酸化物からなる担体にロジュウム、ルテニュウム、イリジウム、パラジウム、及び白金の中から選ばれる少なくとも一種の触媒金属を担持させた触媒を使用したものに関する技術(例えば特許文献7)がある。 A method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst, wherein the catalyst is composed of a metal oxide as a support, comprising rhodium, ruthenium, iridium, palladium, and platinum. There exists a technique (for example, patent document 7) regarding what uses the catalyst which carry | supported at least 1 type of catalyst metal chosen from these.

本願の技術に前記先行技術文献1,2,3,4,7いずれかの部分技術を組み合わせて排ガス中の「CO」をも本願の内燃機関の合成ガスに改質して燃料として燃費(Km/L)の向上を図り、「COの排出削減をして、地球温暖化を阻止する新たな効果を生む新技術と成った。 Combining the technology of the present application with the partial technology of any one of the above-mentioned prior art documents 1, 2, 3, 4 and 7 also reforms the “CO 2 ” in the exhaust gas into the synthesis gas of the internal combustion engine of the present application to produce fuel consumption ( Km / L), “It became a new technology that produces a new effect of reducing global warming by reducing CO 2 emissions.

最大の課題は地球温暖化に対処する「CO」の(排出)削減であり、
その為の施策の1つの方法と、その方法を構成する機構を発明する事である。
The biggest challenge is the reduction of “CO 2 ” (emissions) to cope with global warming.
Inventing one method of measures for that purpose and the mechanism constituting the method.

最大の課題を解決する為の、
第一の発明は、
水(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備(例えば吸熱反応流路に設けた水蒸気改質の吸熱反応設備)と、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクとを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスタンク経由で当該内燃機関の燃料とする物であり、前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の2か所からの排熱を主としておる排熱であることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。
更にエヤコンの管路から冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
第二の発明は
第一の発明に記載の内燃機関燃焼排ガス中の二酸化炭素(CO)を水に吸収させる吸収手段か分離する分離手段かの何れか一方か両方かを設けており、分離した二酸化炭素を畜ガスする畜ガスタンクと、水に吸収させた含二酸化炭素水を畜水する畜水タンクをそれぞれ設けて畜ガス・畜水しており、畜ガスした二酸化炭素を、前記内燃機関のエンジンブロックに水を供給する導入管路に水とともに導入するかあるいは、前記水に吸収させた含二酸化炭素水を水導入管路に導入するかのいずれかにしており、該内燃機関内の燃焼熱で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にして、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別する為名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテル)を導入し、排ガス熱を吸熱しておる該水蒸気と吸熱気体の二酸化炭素とともに該改質路中の触媒に接触させる事で、水素と一酸化炭素の合成ガスを生成して(改質温度は200°C〜500°C)合成ガスを畜ガスする別の畜ガスタンクを設けて該畜ガスタンク経由で該エンジンの燃料とする構造構成にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第三の発明は
第一の発明乃至第二の発明記載の取り出設備か改質路かのいずれか一方か両方かで取り出した水素(H)と一酸化炭素(CO)の混合気体(合成ガス)を改質する合成ガ改質路(例えばプロトン導電セラミックス管改質路)を排ガス流路に設けて、前記該合成ガス改質路に水素(H)と一酸化炭素(CO)の混合気体を導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、取り出した水素(H)と二酸化炭素はそれぞれ畜ガスタンクを設けて、畜ガスしており、水素は該内燃機関の燃料としており、該二酸化炭素は上記改質路で改質する出発原料の二酸化炭素としておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第四の発明は
第一の発明乃至第三の発明に記載の水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)かの内少なくともいずれか一方以上を設けた内燃機関を運輸機器に搭載し運輸機器の載内機関とすることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第五の発明は
第一の発明乃至第四の発明に記載の内燃機関であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしていることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第六の発明は
第五の発明に記載の蓄電器の蓄電量が上限設定値になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が下限設定値になると内燃機関エンジンで駆動する構造にした事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第七の発明は
第五の発明に記載の内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる構成構造にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第八の発明は
第一の発明乃至第四の発明に記載の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方を設けて、該内燃機関の燃料(ガス)を生成する構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にして設けた事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第九の発明は
熱又は水蒸気を廃棄している製造業に於いて、前記廃棄されている熱又は水蒸気の何れか一方か両方かの何れかを改質熱源として、水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方を設けて、該内燃機関の燃料(ガス)を生成する構成にして当該内燃機関の燃料として内燃機関を運転して,その回転力をそのまま動力発電機の発電動力とする事を特徴とする、第一の発明乃至第三の発明に記載の温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十の発明は
第一の発明乃至第四の発明に記載の畜ガス手段は、該畜ガスタンク{吸熱反応の合成ガスタンクか、あるいは水素ガスタンクか、二酸化炭素ガスタンクか、改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)から取り出した合成ガスタンクかの内少なくともいずれかの一方}を車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十一の発明は
第十の発明に記載の畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の設置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かの、いずれかの手段を設けておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十二の発明は
第一の発明乃至第四の発明に記載の内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物(例えば炭酸水素ナトリュウム、NaHCO)の一方かあるいは両方かの何れかを加工して熱分解若しくは改質して水素Hか、炭素Cか、二酸化炭素化CO、の内少なくともいずれかの一方を取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物(例えば炭酸ナトリュウム、NaCO)を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とする出発原料とするかのいずれかにする事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十三の発明は
第一の発明乃至第四の発明に記載の内燃機関の主燃料を水素(H)とするも出来る事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十四の発明は
第一の発明乃至第三の発明に記載の内燃機関の燃料及び第十三の発明に記載の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十五の発明は
第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にした小規模炭素製造器を提供する。
To solve the biggest problem,
The first invention is
Water (H 2 O) and carbon (C) react with the exhaust heat of the internal combustion engine to extract a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) (for example, in an endothermic reaction channel) An endothermic reaction facility for steam reforming) and a livestock gas tank for stocking the mixed gas of hydrogen and carbon monoxide taken out, and the mixed gas of hydrogen and carbon monoxide taken out via the livestock gas tank The internal combustion engine is used as fuel, and the exhaust heat of the internal combustion engine absorbs heat mainly in a water passage (corresponding to a cooling coolant passage for engine block cooling water) in the engine block of the internal combustion engine, thereby converting the water into water vapor. The exhaust heat used for the exhaust gas and the exhaust heat obtained by endothermically reacting the heat in the exhaust gas through the exhaust gas pipe, and the exhaust heat generated by the endothermic reaction of the exhaust heat in the engine block and the heat in the exhaust gas through the exhaust gas pipe Mainly exhaust heat from two places of heat An internal combustion engine that contributes to greenhouse gas reduction and emission reduction is provided.
Furthermore, further heat can be used for the endothermic reaction by providing a means for absorbing the refrigerant compression heat from the aircon pipe.
The second invention is provided with either one or both of an absorption means for absorbing carbon dioxide (CO 2 ) in combustion exhaust gas of the internal combustion engine described in the first invention by water and a separation means for separating the carbon dioxide. A livestock gas tank for stocking the carbon dioxide produced and a livestock water tank for stocking the carbon dioxide-containing water absorbed in the water are provided for the livestock gas and the livestock water. Either water is introduced into an introduction line for supplying water to the engine block or carbon dioxide-containing water absorbed in the water is introduced into the water introduction line. In the heat of combustion, water is converted into water vapor and carbon dioxide is converted into carbon dioxide as an endothermic gas. (Renamed) reformed flow Catalysts (for example, other metals or compounds can be used in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, and lanthanum. And these compounds, other metals or compounds), a hydrocarbon compound (for example, dimethyl ether) is introduced upstream of the reforming path, and the steam and the endothermic carbon dioxide that absorbs the heat of the exhaust gas. By contacting the catalyst in the reforming path, a synthesis gas of hydrogen and carbon monoxide is generated (reforming temperature is 200 ° C. to 500 ° C.), and another livestock gas tank is provided for livestock synthesis gas. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by having a structure that uses the livestock gas tank as fuel for the engine.

The third invention is a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) taken out by any one or both of the take-out equipment and the reforming path according to the first to second inventions ( A synthesis gas reforming path (for example, a proton conductive ceramic pipe reforming path) for reforming the synthesis gas) is provided in the exhaust gas flow path, and hydrogen (H 2 ) and carbon monoxide (CO) are provided in the synthesis gas reforming path. In the synthesis gas reforming path, hydrogen (H 2 ) and carbon dioxide (CO 2 ) are separately taken out, and the extracted hydrogen (H 2 ) and dioxide are removed. Carbon is provided with a livestock gas tank, and livestock gas is used, hydrogen is used as fuel for the internal combustion engine, and the carbon dioxide is used as carbon dioxide as a starting material to be reformed in the reforming path. Providing internal combustion engines that contribute to reducing greenhouse gases and emissions The

The fourth invention is a hydrogen (H 2 ) and carbon monoxide (CO) take-out facility (for example, an endothermic reaction facility provided in an endothermic reaction channel) or reforming according to the first to third inventions. At least one of a flow path (reforming path for catalytic contact between hydrocarbon compound, water vapor, and endothermic carbon dioxide) or a synthetic gas reforming path (for example, proton conductive ceramic pipe reforming path) is provided. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the internal combustion engine is mounted on a transportation device and used as an onboard engine of the transportation device.

A fifth invention is the internal combustion engine according to any one of the first to fourth inventions, wherein the internal combustion engine is operated under a certain condition, is generated with the rotational force, is stored in a capacitor, and the electricity is powered. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it has a structure in which an automobile is driven as a source.

The sixth aspect of the invention stops driving the internal combustion engine when the amount of electricity stored in the capacitor according to the fifth aspect of the invention reaches the upper limit set value and runs with electric power, and drives with the internal combustion engine when the amount of charge reaches the lower limit set value. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by its structure.

The seventh invention is characterized in that a charging power receiving plug is provided in the internal combustion engine described in the fifth invention, and as a charging means for accumulating electricity in the livestock generator, the electric vehicle is used as a power source to drive the vehicle. To provide an internal combustion engine that contributes to greenhouse gas reduction and emission reduction.

The eighth invention is a means for using the rotational force of the internal combustion engine as described in the first to fourth inventions as it is as the power generation power of the power generator, or reforming the steam that has finished the role of turning the turbine of the thermal power generation. As a heat source, hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment (for example, endothermic reaction equipment provided in the endothermic reaction flow path) or reforming flow path (hydrocarbon compound, water vapor, and endothermic gas dioxide) Providing fuel (gas) for the internal combustion engine by providing at least one of a reforming path for catalytic contact with carbon and a synthesis gas reforming path (for example, a proton conductive ceramic pipe reforming path) Providing an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is provided as a means to merge with existing thermal power generation equipment To do.

In the ninth invention, in the manufacturing industry where heat or steam is discarded, either one or both of the discarded heat and steam is used as a heat source for reforming, and hydrogen (H 2 ). Carbon oxide (CO) extraction equipment (for example, an endothermic reaction equipment provided in an endothermic reaction flow path) or a reforming flow path (a reforming path in which a hydrocarbon compound, water vapor, and carbon dioxide of an endothermic gas are in catalytic contact) Or a synthesis gas reforming path (for example, a proton conductive ceramic pipe reforming path), and providing a fuel (gas) for the internal combustion engine as a fuel for the internal combustion engine by providing at least one of them An internal combustion engine that contributes to greenhouse gas reduction and emission reduction according to any one of the first to third inventions, characterized in that the internal combustion engine is operated and the rotational force is directly used as power generation power of the power generator. I will provide a.

According to a tenth aspect of the present invention, the livestock gas means according to the first to fourth aspects of the present invention is the livestock gas tank {synthetic gas tank for endothermic reaction, hydrogen gas tank, carbon dioxide gas tank, reforming channel (hydrocarbon At least one of the synthesis gas tanks taken out from the reforming path that brings the compound, water vapor, and endothermic carbon dioxide into catalytic contact) is mounted on the top of the vehicle body or mounted on the chassis of the vehicle. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by being mounted on either of these.

The eleventh aspect of the invention is that the livestock gas means described in the tenth aspect of the invention is either a damage prevention means that prevents damage to the tank or a tank separation means that separates the tank from the vehicle installation part in the event of a collision. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by providing either means.

The twelfth invention is one of or both of a carbon-containing compound and a hydrogen-containing compound (for example, sodium hydrogen carbonate, NaHCO 3 ) using the exhaust heat of the internal combustion engine according to the first to fourth inventions as a reforming heat source. Any one of hydrogen H 2 , carbon C, or carbon dioxide CO 2 is processed and pyrolyzed or reformed, and the livestock gas tank is fed with livestock gas, and the gas Whether the extracted compound (for example, sodium carbonate, Na 2 CO 3 ) is sold as a product, and the extracted gas is used as a fuel for the internal combustion engine or as a starting material to be reformed as a fuel An internal combustion engine that contributes to greenhouse gas reduction and emission reduction characterized by any of the above.

The thirteenth invention is characterized in that the main fuel of the internal combustion engine according to any one of the first to fourth inventions can be hydrogen (H 2 ), and the internal combustion that contributes to greenhouse gas reduction and emission reduction Provide institutions.

According to a fourteenth aspect of the present invention, there is provided a water storage tank comprising water absorption means for absorbing heat into water from the fuel of the internal combustion engine according to the first to third aspects and the exhaust gas obtained by burning the fuel according to the thirteenth aspect of the invention. The greenhouse effect is characterized in that the water in the water storage tank is warmed by the water endothermic means, and the water vapor in the endothermic exhaust gas becomes liquid water and is separated and recovered by the water recovery means. An internal combustion engine that contributes to gas reduction and emission reduction is provided.

A fifteenth aspect of the invention is a small-scale carbon production apparatus for producing the carbon of the plant described in the first to fourth aspects of the invention, wherein the wood, etc. (plant raw material) is heated and carbonized in an oxygen-free environment. Carbonization chamber CS to be fired, combustion chamber FC for burning plant raw materials such as wood for heating the carbonization chamber, exhaust gas vent of combustion chamber FC, and pipe J of water vapor generating means for converting water H 2 O into water vapor J Is provided along the inner wall of the carbonization chamber, and is configured to be a fuel that heats the carbonization chamber by introducing the steam generated by the steam generation means and the gas C4 generated in the carbonization process in the carbonization chamber into the combustion chamber. Provide scale carbon production equipment.

発明の詳細な説明Detailed Description of the Invention

発明の具体的事例説明
第一の発明、
水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出し設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOを水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、
前記内燃機関の燃焼行程後の排気管路MS内に吸熱反応流路Sを設けており、前記吸熱反応流路に炭素(主として植物からの炭素C)を導入して、前記水蒸気か加熱水蒸気と、炭素を、吸熱反応流路にて反応させて、水素Hと一酸化炭素CO(合成ガス)を取り出しており、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクMTを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスするかあるいは畜ガスタンク経由で該混合気体を生成しておる当該内燃機関の燃料とするかの何れかにしておる事を特徴としたものであり、
前記内燃機関の排熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所からの排熱であることを特徴とする物で、強調すべきはエンジンのオーバーヒ−ト防止のためにラジエターで冷却していた(動力を使って捨てていた)熱を水蒸気生成手段として活用しておることである。
更にエヤコンの管路から冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
Specific examples of the invention Description of the first invention,
Although it is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine, for example, an internal combustion engine A water passage K is provided in the engine block 1, and either water H 2 O is converted into steam J or steam is converted into heated steam as steam generating means,
An endothermic reaction channel S is provided in the exhaust pipe MS after the combustion stroke of the internal combustion engine, carbon (mainly carbon C from plants) is introduced into the endothermic reaction channel, and the steam or heated steam , Carbon is reacted in an endothermic reaction channel, hydrogen H 2 and carbon monoxide CO (synthetic gas) are taken out, and a livestock gas tank MT for stocking the mixed gas of the taken out hydrogen and carbon monoxide is provided. The extracted hydrogen and carbon monoxide mixed gas is used as livestock gas or as the fuel for the internal combustion engine that generates the mixed gas via the livestock gas tank. And
The exhaust heat of the internal combustion engine is obtained by absorbing heat in a water passage (corresponding to a cooling coolant passage for engine block cooling water) in the engine block of the internal combustion engine and exhaust heat used for converting water into steam. Exhaust heat obtained by endothermic reaction of heat in exhaust gas, and exhaust heat mainly from two places of exhaust heat in the engine block and exhaust heat obtained by endothermic reaction of exhaust gas heat in the exhaust gas pipe line What should be emphasized is that the heat that was cooled by the radiator (discarded using power) to prevent engine overheat is utilized as a means for generating steam.
Furthermore, further heat can be used for the endothermic reaction by providing a means for absorbing the refrigerant compression heat from the aircon pipe.

水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOと炭素を加圧注入し水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、{この時の加圧圧力は概略5Kg/cm程度である。(図3B参照)}
本願は水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、前記吸熱反応流路に触媒(Niが主流)を対峙させ200°〜300°程度の熱で前記吸熱反応させる燃料生成手段や、乾燥改質法や部分酸化方法や、オートサーマル改質方法もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
This is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine. A water passage K is provided in the engine block 1 of the engine, and either water H 2 O and carbon are injected under pressure to form water vapor J or water vapor to be heated water vapor as a water vapor generating means. {The pressurizing pressure at this time is about 5 kg / cm 2 . (See FIG. 3B)}
Although the present application has a configuration exemplifying steam reforming, the known synthesis gas generation method includes the steam reforming method, and a catalyst (Ni is the mainstream) facing the endothermic reaction channel, which is approximately 200 ° to 300 °. There are also fuel generation means for performing the endothermic reaction with the heat of, a dry reforming method, a partial oxidation method, and an autothermal reforming method. Instead of the steam reforming method of the present application, the above syngas generating method may be adopted. I can do it.

内燃機関のエネルギー効率{ロータリーエンジンの場合およそ30%強で、合成ガス反応に利用可能な廃(排)熱は60%程度}から見て、必要量の100%の燃料を生産するに足りない場合は補助的に他所から補足する補足手段を設けており、前記補足手段として本願は補助タンクSTを設けており、該補助タンクの燃料(主に植物の炭素を原料としたバイオエタノールもしくは合成ガス)を必要量の100%の燃料を生産するに足りない場合の補足燃料としている。
最終的には前記炭素は稙物からの炭素100%使用に近づける事で温室効果ガス排出削減策とている。
In view of the energy efficiency of internal combustion engines (about 30% for rotary engines and about 60% of waste (waste) heat available for syngas reaction), it is not enough to produce 100% of the required amount of fuel. In this case, supplementary means for supplementing from other places are provided as supplementary, and as the supplementary means, the present application is provided with an auxiliary tank ST, and fuel in the auxiliary tank (bioethanol or synthesis gas mainly made from plant carbon) ) As supplementary fuel when it is not enough to produce 100% of the required amount of fuel.
Ultimately, the carbon is used as a measure to reduce greenhouse gas emissions by bringing the carbon closer to 100% use from the waste.

本願は1例としてサブタンク燃料と前記内燃機関で生成した混合気体とを切換えて使用する複合燃料方式をとっている、
しかし前記サブタンク燃料を使用している間に主燃料である水素Hと一酸化炭素CO(合成ガス)を生成していると、生成した生成ガスを畜ガスする所が無く畜ガスする畜ガス手段を設ける必要があり、本願は畜ガス手段の畜ガスタンクを設けており、サブタンク燃料を使用している間でも主燃料である水素Hと一酸化炭素CO(合成ガス)は生成され続けており畜ガスタンクに充填し続けている、
従って畜ガスタンクの設定上限まで充填されると燃料切換えバルブで合成ガスを畜ガスタンク経由での使用に切り替え該畜ガスタンクの設定下限に成るとサブタンク燃料を使用する燃料切換え手段を設けたエンジン構造としている、
前記内燃機関で生成した混合気体を畜ガスタンク経由での使用にしているのは、混合気体も原材料や生成場所の温度によって生成されたガス成分構成が変わるので一端畜ガスタンクに取り込む事で生成ガスの均一化を図っている。
As an example, the present application adopts a composite fuel system in which a sub-tank fuel and a mixed gas generated in the internal combustion engine are switched and used.
However, if hydrogen H 2 and carbon monoxide CO (synthetic gas), which are the main fuels, are produced while using the sub-tank fuel, there is no place where the produced gas is livestock gas and livestock gas that is livestock gas. It is necessary to provide means, and the present application is provided with a livestock gas tank for livestock gas means, and hydrogen H 2 and carbon monoxide CO (synthetic gas) as main fuels continue to be generated even when sub tank fuel is used. We continue to fill the animal gas tank,
Accordingly, when the livestock gas tank is filled up to the set upper limit, the fuel switching valve switches the synthesis gas to use via the livestock gas tank, and when it reaches the set lower limit of the livestock gas tank, the engine structure is provided with fuel switching means that uses the subtank fuel. ,
The reason why the mixed gas generated by the internal combustion engine is used via the livestock gas tank is that the mixed gas also changes the composition of the gas component generated depending on the raw materials and the temperature of the production site. Uniformity is intended.

第二の発明
内燃機関燃焼ガス中の二酸化炭素を、水に吸収させる二酸化炭素吸収手段(A)を設けるかあるいは、排気ガス中の二酸化炭素を分離する分離手段(B)を設けて、前記(A)、(B)をそれぞれ畜水手段&該畜ガス手段を設けてそれぞれ畜水,畜ガスして、前記(A)、(B)の何れか1方か両方かを、前記内燃機関のエンジンブロックに水を供給する導入口(1図B、HO入り口)に水とともに導入し、該内燃機関内の燃焼熱{前記内燃機関の燃焼熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で水を水蒸気にした排熱である}で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にしており、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別するため名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記内燃機関に設けている改質流路(二酸化炭素の改質であるので名前を変更している)の改質流路に触媒を対峙させており、該触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事で、水素と一酸化炭素の合成ガスを生成して、畜ガスタンク経由で該エンジンの燃料とする構造構成にしたものであり、{本願の解説では(B)で解説しており、(A)の詳細解説は省略している。}
Second invention The carbon dioxide absorption means (A) for absorbing carbon dioxide in the combustion gas of the internal combustion engine by water or the separation means (B) for separating carbon dioxide in the exhaust gas are provided, A) and (B) are respectively provided with livestock water means and the livestock gas means to feed livestock water and livestock gas, respectively, and either one or both of (A) and (B) above It is introduced together with water into an inlet for supplying water to the engine block (FIG. 1B, H 2 O inlet) and combustion heat in the internal combustion engine {the combustion heat of the internal combustion engine is a water passage (in the engine block of the internal combustion engine ( It corresponds to the cooling water channel of the engine block cooling water), and water is converted into water vapor.} The water is converted into water vapor, the carbon dioxide is converted into carbon dioxide as an endothermic gas, Reforming channel (carbon dioxide reforming In the reforming flow path of the reforming flow path of the steam reforming in order to distinguish from the steam reforming, as an example, other metals or compounds can be used in combination with iron-based metal and / or compound, Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum and their compounds, other metals or compounds, and a hydrocarbon compound (eg, dimethyl ether) upstream of the reforming path. CH 3 OCH 3 ) and the reforming channel of the reforming channel (name changed because of reforming of carbon dioxide) provided in the internal combustion engine together with the water vapor and endothermic carbon dioxide The catalyst is opposed to the gas {hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) and either water vapor or endothermic carbon dioxide]. It is a structure that generates hydrogen and carbon monoxide syngas by contacting them, and uses it as a fuel for the engine via a livestock gas tank. The detailed explanation of (A) is omitted. }

前記炭化水素化合物をジメジエーテルとした場合の反応式は、
A.CHOCH+HO→2CO+4H−48.9Kal/mol
B.CHOCH++CO→3CO+3H−58・8Kal/mol
その反応温度は200〜500℃、好ましくは250〜450℃であり、
その反応圧力は常圧〜10kg/cm2が好ましい。
炭化水素化合物をジメジエーテルの他にメタンを用いた技術も多く公開されている。
The reaction formula when the hydrocarbon compound is dimethyl ether is
A. CH 3 OCH 3 + H 2 O → 2CO + 4H 2 -48.9Kal / mol
B. CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol
The reaction temperature is 200 to 500 ° C., preferably 250 to 450 ° C.
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 .
Many technologies using methane in addition to dimethyl ether as a hydrocarbon compound have been disclosed.

公知技術の二酸化炭素を吸収材に吸収させる二酸化炭素吸収手段(A)及び二酸化炭素分離取り出し手段(B)であるが、
前記(A)には、特表2010−526759,特許3345782,特開2009−77457,特開2001―213545,特開2007−177684,等に開示されており、
前記(B)には特願2001−48591(カルマン渦),特開2007−177684,等に開示されており、
二酸化炭素改質反応による水素及び一酸化炭素の製造法の先行技術には特開平08−231204や特表2010−526759合成ガスの製造方法(CO2の改質を含む)特許文献2の特開平11−106770等々数多く有る、
この技術を本願に取り入れて、排ガス中の二酸化炭素を「本願の内燃機関内発性エネルギーのみで該内燃関の燃料に改質しておる事」が大きな温室効果ガス排出削減策であり、さらに前記廃棄されていたエネルギー(概略70%で、改質に使用出来るのは概略60%)で燃料を生成しており、該燃料生成分程燃費を向上させた事が本願の特徴点である。
The carbon dioxide absorption means (A) and carbon dioxide separation and extraction means (B) for absorbing carbon dioxide by a known technique,
(A) is disclosed in JP 2010-526759, JP 33455782, JP 2009-77457, JP 2001-213545, JP 2007-177684, and the like.
(B) is disclosed in Japanese Patent Application No. 2001-48591 (Karman vortex), Japanese Patent Application Laid-Open No. 2007-177684, etc.
Prior art of the method for producing hydrogen and carbon monoxide by the carbon dioxide reforming reaction includes Japanese Patent Application Laid-Open No. 08-231204 and Japanese Patent Application Laid-Open No. Hei 11 of Japanese Patent Application Laid-Open No. H11-296275. -106770 etc.
Incorporating this technology into this application, the carbon dioxide in the exhaust gas is “a reforming of the internal combustion engine fuel only into the fuel of the internal combustion engine of this application” is a great greenhouse gas emission reduction measure, A feature of the present invention is that fuel is generated with the discarded energy (approximately 70%, and approximately 60% can be used for reforming), and fuel efficiency is improved by the amount of fuel generation.

前記本願発明の内で、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは、化石燃料使用の炭素Cであっても良く前記二酸化炭素を合成ガスに改質しておるので少なくとも数十%のCO排出を削減は可能で、温室効果ガス排出削減策である。 Among the inventions of the present application, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be carbon C using fossil fuel, and the carbon dioxide is reformed into synthesis gas. Therefore, it is possible to reduce CO 2 emissions of at least several tens of percent, and this is a measure for reducing greenhouse gas emissions.

第三の発明
第三の発明に記載した合成ガス改質路は、第一の発明乃至第二の発明で生成した水素(H)と、一酸化炭素(CO)の混合気体と、内燃機関の排熱{前記内燃機関の排熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)にて水を水蒸気にした排熱である}にて水蒸気にしたものとを、例えばプロトン導電セラミックス管内で再度内燃機関の排熱(300°C〜800°C)(前記内燃機関の排熱は排ガス管路にて排ガス中の熱を吸熱させた排熱である)にて反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、前記水素と二酸化炭素を別々に畜ガスする水素畜ガスタンクと二酸化炭素畜ガスタンクを設けて、それぞれに畜ガスして、二酸化炭素は、前記水素を取り出す出発原料として、前記取り出した水素は水素畜ガスタンク経由で当該内燃機関の燃料とする構成構造である。
3rd invention The synthesis gas reforming path described in the 3rd invention includes a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) produced in the first to second inventions, and an internal combustion engine. The exhaust heat of the internal combustion engine {the exhaust heat of the internal combustion engine is exhaust heat obtained by converting water into steam in a water passage (corresponding to a cooling coolant channel for engine block cooling water) in the engine block of the internal combustion engine}. For example, the exhaust heat of the internal combustion engine (300 ° C. to 800 ° C.) again in the proton conductive ceramic tube (the exhaust heat of the internal combustion engine is exhaust heat obtained by absorbing the heat in the exhaust gas in the exhaust gas pipe) ), Hydrogen (H 2 ) and carbon dioxide (CO 2 ) are taken out separately, and a hydrogen livestock gas tank and a carbon dioxide livestock gas tank for stocking the hydrogen and carbon dioxide separately are provided. Carbon dioxide is the water As a starting material for extracting the raw material, the extracted hydrogen is used as a fuel for the internal combustion engine via a hydrogen livestock gas tank.

前記排気管路内の排ガス温度が不足する場合には前記合成ガス改質路の上流に排ガス燃焼部を設けて、
排ガス中の未燃焼燃料ガス又は未燃焼炭素粒に不足温度を補う程度分の畜ガスしている燃料と酸素(空気)を導入して再加熱しても良い。
When exhaust gas temperature in the exhaust pipe is insufficient, an exhaust gas combustion section is provided upstream of the synthesis gas reforming path,
You may introduce and reheat the fuel and oxygen (air) which are the livestock gas of the extent which supplements the shortage temperature to the unburned fuel gas or unburned carbon particle in exhaust gas.

前記二酸化炭素改質は、二酸化炭素と水蒸気の改質材とともに触媒と接触させて水素(H)と一酸化炭素(CO)の混合気体を取り出す技術(特許先行文献2特願特開平11−106770)を本願に組み込んで二酸化炭素をも該内燃機関の燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。 The carbon dioxide reforming is a technique in which a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) is taken out by contacting with a catalyst together with a reforming agent of carbon dioxide and steam (Patent Prior Art 2 Japanese Patent Application No. Hei 11- 106770) is incorporated into the present application, and carbon dioxide is also used as a fuel for the internal combustion engine, thereby improving fuel efficiency and further reducing greenhouse gas emissions.

本願は上記二酸化炭素改質を前記エンジンのエンジンブロック(ロータリーハウジング)に水を導入する導入口(図1BのHO導入口)に二酸化炭と水を導入して、前記二酸化炭素と水はエンジンブロック(ロータリーハウジング)の内外壁間に設けている通水路Kにて吸熱して水は水蒸気に、二酸化炭は吸熱してガスを高温とするとともに混合して、エンジン排気口下流に触媒を対峙させた改質路(二酸化炭素の改質であるので名前を変更している)を設けており、改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事ことで水素(H)と一酸化炭素(CO)の混合気体を取り出すかあるいは、前記エンジンのエンジンブロック(ロータリーハウジング)の通水路Kで水を水蒸気にする管路に加えて該前記エンジンのエンジンブロック(ロータリーハウジング)の通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかのいずれかにしており、(エンジン燃焼工程後の排気口近傍で合流さる事も含む)排気管路に対峙させておる触媒に接触させる構成にするかの何れかにして 水素(H)と一酸化炭素(CO)の混合気体を取り出す構成構造にしており、前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズセリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物がある。 The present application introduces carbon dioxide and water into an inlet (H 2 O inlet in FIG. 1B) for introducing water into the engine block (rotary housing) of the engine for the carbon dioxide reforming. Heat is absorbed in a water passage K provided between the inner and outer walls of the engine block (rotary housing), water is absorbed into water vapor, and carbon dioxide is absorbed to raise the gas to a high temperature and mixed, and a catalyst is placed downstream of the engine exhaust port. There is an opposite reforming path (the name is changed because it is carbon dioxide reforming), and a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is introduced upstream of the reforming path and the steam and The gas {hydrocarbon compound (eg, dimethyl ether CH 3 OCH 3 ) and water vapor or endothermic carbon dioxide, or both} is added to the catalyst together with endothermic carbon dioxide} To remove the mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), or add the water to steam in the water passage K of the engine block (rotary housing) of the engine. A water passage K ′ of the engine block (rotary housing) of the engine is further provided to be a two-line pipe line for heating carbon dioxide, and (exhaust gas after engine combustion process) It is configured to take out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), either by contacting with the catalyst that is confronting the exhaust pipe (including joining near the mouth). For example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, and the like. Kell, chromium manganese, Suzuseryuumu, lanthanum and compounds thereof, there is another metal or compound.

第一の発明に記載の水蒸気改質の改質温度は700°C〜I000°Cで好ましくは800〜900°Cであり炭化水素化合物(例えばジメジエーテルCHOCH)の改質温度は200〜500℃、好ましくは250〜450℃であるので排気管路上流に水蒸気改質部を設け、その下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設けるか、あるいは前記水蒸気改質の下流に合成ガス改質路(改質温度は300°C〜800°C・第三の発明)を設けるかあるいは、水蒸気改質の下流に前記合成ガス改質路を設け更に下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設ける形態のいずれかの形態を取るのが好ましい。 The reforming temperature of the steam reforming described in the first invention is 700 ° C. to 1000 ° C., preferably 800 to 900 ° C., and the reforming temperature of the hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) is 200 to 200 ° C. Since the temperature is 500 ° C., preferably 250 to 450 ° C., a steam reforming section is provided upstream of the exhaust pipe, and a reforming section of a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is provided downstream of the steam reforming section. A synthesis gas reforming path (reforming temperature is 300 ° C. to 800 ° C., the third invention) is provided downstream of the quality, or the synthesis gas reforming path is provided downstream of the steam reforming and further carbonized downstream. It is preferable to take any form of providing a reforming portion of a hydrogen compound (for example, dimethyl ether CH 3 OCH 3 ).

水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路に於いて、更に反応時間を長く取りたい場合か、もしくは同時進行で水蒸気改質又はCO2改質又は合成ガス改質のうち少なくとも何れか1方以上を取りたい場合、前記エンジンのエンジンブロック(又はロータリーハウジング)の内外壁間に設けている通水路Kを、エンジンブロック1内を複数回周回させる構造にするかあるいは、エンジンブロックからの排気管路を複数設けるか(例えばシリンダーの数と同じにするか、シリンダーの数の半分にするか、あるいはローターの数と同数の管路にするか、あるいはエンジンブロックから1本乃至複数本出た排気管路を更に複数に分岐させて順次切り替えて排気を送る等の構造にすることでも良い)あるいは前記通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかの内少なくとも何れか一方以上のいずれかにして、エンジン燃焼工程後の排気口下流の管路に3種の改質路の内少なくとも何れか1種以上を設ける構成にして、水素(H)と一酸化炭素(CO)の混合気体または水素ガス・二酸化炭素を取り出す構成構造にしても良い。 In the hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, the reforming channel, and the syngas reforming channel, if it is desired to take a longer reaction time, or steam reforming or CO 2 is performed simultaneously. When it is desired to take at least one of reforming and syngas reforming, the water passage K provided between the inner and outer walls of the engine block (or rotary housing) of the engine is passed through the engine block 1 a plurality of times. Use a structure that allows the engine to circulate, or provide multiple exhaust lines from the engine block (for example, the same number of cylinders, half the number of cylinders, or the same number of lines as the number of rotors) Alternatively, it may be structured such that one or a plurality of exhaust pipe lines coming out from the engine block are further branched into a plurality of parts and sequentially switched to send the exhaust. A water channel K ′ is further provided, and at least one of the two systems of pipes for heating carbon dioxide is used, and at least one of the two lines is connected to the pipe downstream of the exhaust port after the engine combustion process. A configuration in which at least one of the reforming paths is provided and a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) or hydrogen gas / carbon dioxide may be taken out.

プロトン導電セラミックは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミック等の、プロトン導電セラミックは水素、酸素を活性化させる作用を有する点で、特に有利である。 Proton conductive ceramics have heat resistance according to the combustion temperature and are provided with continuous vents through which combustion gas can pass. Proton conductive ceramics such as strontium serate-based and zirconate-based belogskite oxide ceramics are hydrogen conductive ceramics. This is particularly advantageous in that it has an action of activating oxygen.

二酸化炭素又は炭素を原材料として使用する、製造業等の設備産業における再生可能エネルギー源としての使用は公知技術である。 The use of carbon dioxide or carbon as a raw material as a renewable energy source in equipment industries such as the manufacturing industry is a known technique.

第四の発明
水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路とのいずれか一種か複数種かを設けている内燃機関を運輸機器に搭載し運輸機器の載内機関とする形態を取っており、前記運輸機器には二輪車・軍需兵器の車両・軍需兵器の船舶等々を含んでいる。
Fourth invention An internal combustion engine provided with one or more of hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, reforming flow path, and synthesis gas reforming path as a transportation device It is in the form of an on-board engine for transportation equipment, which includes motorcycles, munitions weapons vehicles, munitions weapons ships, and the like.

第五の発明、
上記内燃機関に既存の水素ロータリーピストンエンジン車が採用している「エンジンを燃費の良い条件(一定の条件)で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させている、」の形態を、該内燃機関に適用する事で安定した燃焼熱が得られ、更に吸熱反応条件も安定するので、本願は上記エンジンを燃費の良い条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として運転させる構造にした事で、更なる燃費の向上と温室効果ガス排出削減をすると言う大きな効果を生んでいる。
Fifth invention,
The existing hydrogen rotary piston engine car is used for the internal combustion engine described above. “The engine is operated under good fuel economy conditions (constant conditions) and is generated by the rotational force and stored in the capacitor. The electricity is used as the power source. By applying the configuration of `` A car is driven as '' to the internal combustion engine, stable combustion heat can be obtained, and the endothermic reaction conditions are also stabilized. Therefore, the present application operates the engine under conditions with good fuel consumption. The structure that generates electricity with the rotational force and stores it in a capacitor and uses the electricity as a power source produces a great effect of further improving fuel consumption and reducing greenhouse gas emissions.

*走行状態(例えば信号待ち・右折対向車通過待ち・交差点右左折時横断歩行者通過待ち・渋態状態時のチョコチョコ駆動・平胆路での惰力運転走行時・追い越し&追い抜き急加速運転時・下り坂運転時等々)の変化に追従させて内燃機関エンジンの出力の制御機構や制御構造がシンプルで良くなる。
更に一定の条件(燃費の良い条件)で運転するので燃費(Km/L)を向上させる効果がある。
* Driving conditions (for example, waiting for traffic lights, waiting for an oncoming vehicle on the right, waiting for crossing pedestrians when turning right or left at the intersection, choco-choco driving in a traffic condition, driving on a flat road, overtaking & overtaking rapid acceleration・ The control mechanism and control structure of the output of the internal combustion engine are simplified and improved by following the changes in the downhill driving, etc.
Furthermore, since driving is performed under a certain condition (good fuel efficiency), there is an effect of improving the fuel efficiency (Km / L).

第六の発明
蓄電器の蓄電量が設定値以上になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が設定値以下になると内燃機関エンジンで駆動する構造にした事で、
動力が不要な走行状態が続く場合その間はエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、エンジンをOFFにして蓄電電力で走行し、燃費の向上を図る事が出来る。
According to the sixth aspect of the invention, when the storage amount of the capacitor is equal to or greater than the set value, the driving of the internal combustion engine is stopped and the vehicle is driven with electric power.
When the driving state that does not require power continues, the engine is continuously operated under certain conditions (good fuel economy conditions), so depending on the driving state, the electricity generated to drive the car becomes overcharged and is generated by the internal combustion engine. Since the electricity is discarded, the engine can be turned off and the vehicle can run with the stored electric power to improve the fuel consumption.

第七の発明
前記内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段としており、その電気を動力源として車を走行させる構成構造にする事で必要動力を全て電池で賄う為に高価な電池を多数設けなくて済み、前記内燃機関の蓄電設備容量を数十%大きくする程度で充電設備を有する場所で受電充電出来、畜電器の設置費用及び燃費向上が図れ、温室効果ガス排出削減策となる。
7th invention The internal combustion engine is provided with a charging / receiving plug and is used as a charging means for storing electricity in a livestock battery. It is expensive to cover all necessary power with a battery by using a structure that allows the vehicle to run using the electricity as a power source. It is not necessary to install a large number of batteries, and the power storage capacity of the internal combustion engine can be increased by several tens of percent. It will be a measure.

動力が不要な走行状態(信号待ち・右折時対向車通過待ち・右左折時横断歩行者通過待ち・渋滞時のチョコチョコ運転時・下り坂走行時・惰力走行運転時等)が発生して、その間の前記運転条件ではエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、該畜電気の蓄電容量が上限設定値になると該エンジンをOFFにして蓄電電力で走行し、蓄電器の蓄電容量が下限設定値になると該エンジンをONにして該エンジンで走行して燃費の向上を図る事が出来る。 Driving conditions that do not require power (waiting for traffic lights, waiting for oncoming vehicles when turning right, waiting for crossing pedestrians when turning left or right, choco chocolate driving during traffic jams, downhill driving, coasting driving, etc.) During this period, the engine is continuously operated under certain conditions (good fuel efficiency). Depending on the driving condition, the electricity generated for driving the car becomes overcharged and the electricity generated by the internal combustion engine is discarded. Therefore, when the storage capacity of the livestock electricity reaches the upper limit set value, the engine is turned off and the vehicle runs with the stored power. When the storage capacity of the battery reaches the lower limit set value, the engine is turned on and the vehicle runs with the engine. The fuel consumption can be improved.

前記下り坂運転時でエンジンブレーキ状態走行時に走行動力を電動モーター使用としている場合はモーターを発電機として使用できるので、エンジンブレーキ状態走行時にはモーターを発電機として使用し蓄電器に充電する形態にすれば更なる燃費の向上と温室効果ガス排出削減となる。 If the electric power is used as the driving power when running in the engine braking state during downhill driving, the motor can be used as a generator.Therefore, when running in the engine braking state, the motor is used as a generator to charge the battery. This will further improve fuel efficiency and reduce greenhouse gas emissions.

前記平胆路での惰力運転走行であるが、惰力運転走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(該略2200回転)で数分運転をして例えば走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す運転方法であり、50年前には運送業では常識の運転方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。 This is a repulsive driving run on the flat road, but a repulsive driving run is a speed at which a driver wants to drive for several minutes with an accelerator operation (approximately 2200 revolutions) that is about 10% higher than the speed at which the driver wants to drive. If it is 60Km / H, turning to 70Km / H will turn off the rotational drive power of the engine (this will be about 1000 revolutions, the number of revolutions when idling). Is a driving method that repeats the operation of turning on the rotational driving force connection of the engine when the speed reaches 60 km / H, which is a common driving method in the transportation industry 50 years ago. Automatic control of this travel mode can further improve fuel consumption and reduce greenhouse gas emissions.

第八の発明
内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気と新たに投入する主として植物の炭素を、前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を補助燃料の代替とする構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にして設けるか、あるいは前記火力発電設備のボイラーの排ガス管路に吸熱反応設備を設けて吸熱反応化させて、生成した燃料(ガス)を畜ガスタンク経由で前記動力発電の燃料とする構成にしても良い。
Eighth Invention The internal combustion engine endowed by the internal combustion engine is the means for directly using the rotational force of the internal combustion engine as the power generation power of the power generator, or the steam that has finished the role of turning the turbine of the thermal power generation and the newly added mainly plant carbon. Either end up in the reaction channel and endothermically react, and the generated fuel (gas) can be used as a substitute for auxiliary fuel, which can be combined with existing thermal power generation equipment. Or an endothermic reaction facility is provided in the exhaust gas pipeline of the boiler of the thermal power generation facility to effect endothermic reaction, and the generated fuel (gas) is used as the fuel for the motive power generation via the livestock gas tank. May be.

水素と一酸化炭素の混合気体は他所の設備で製造し液化した物を使用(又はパイピングで圧縮ガスの状態で輸送)することでも対応出来るし、発電の場合及び船及び大型自動車は内燃機関に近接して、水素(H)と一酸化炭素(CO)の混合気体の製造設備を設置することも出来る。 A mixed gas of hydrogen and carbon monoxide can also be handled by using a liquefied product produced by other facilities (or transported in a compressed gas state by piping). A facility for producing a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) can also be installed in the vicinity.

第九の発明
熱又は水蒸気を廃棄している製造業(例えば製鋼・鉄の鍛造・鉄の鋳造・アルミ精錬&製造等)に於いて、前記廃棄されている熱又は水蒸気の何れか一方か両方かの何れかと、新たに投入する主として植物の炭素を前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を当該内燃機関の燃料として内燃機関を運転して更に前記内燃機関の排ガス中の「CO2」を第二の発明に記載しておる手段で水素と一酸化炭素の合成ガスに生成して該内燃機関の燃料として運転し,その回転力をそのまま動力発電機の発電動力とする内燃機関である。
例えば製鋼所の圧延工程では脱炭された真赤な鋼隗を多数の圧延機を通過させて10mm前後の鋼板ロールにするのであるが、最終圧延後に多量の水を掛けて赤色の圧延板を黒っぽい板に冷却しており、このときの掛ける多量の水は水蒸気となり一部は廃棄されており、更に最終圧延された鋼板ロールは鋼板ロール自然放冷置き場にて天井クレンが吊り降ろし作業するために必要なクランプ具作動幅を持たせて敷設してある複数列のローラーコンベアーに順送りで並べられている。この時の鋼板ロールの温度は700°〜900°であり、このローラーコンベアー間に吸熱反応部を設けて吸熱反応化させて生成した燃料(ガス)を当該内燃機関の燃料として動力発電機の発電動力とすることが電力の削減策であり、温室効果ガス排出削減策となる。
Ninth Invention In a manufacturing industry (for example, steelmaking, iron forging, iron casting, aluminum refining & manufacturing, etc.) that discards heat or steam, either the heat or steam that is discarded or both Either of the above, mainly plant carbon to be newly introduced is introduced into the endothermic reaction flow path of the internal combustion engine to cause endothermic reaction, and the generated fuel (gas) is used as fuel for the internal combustion engine to operate the internal combustion engine. Furthermore, “CO 2” in the exhaust gas of the internal combustion engine is generated as a synthesis gas of hydrogen and carbon monoxide by the means described in the second invention, and is operated as a fuel for the internal combustion engine, and its rotational force is used as it is. This is an internal combustion engine that uses the power generated by the power generator.
For example, in the rolling process of a steel mill, the decarburized crimson steel plate is passed through a number of rolling mills to form a steel plate roll of about 10 mm. The plate is cooled, and the large amount of water applied at this time becomes steam, and a part of it is discarded, and the final rolled steel sheet roll is used for the ceiling crane to hang down in the steel sheet roll natural cooling place. They are lined up in order on a plurality of rows of roller conveyors that have been installed with the required clamping tool operating width. The temperature of the steel sheet roll at this time is 700 ° to 900 °, and the power generation of the motive power generator is performed using the fuel (gas) generated by providing the endothermic reaction section between the roller conveyors to effect the endothermic reaction as the fuel of the internal combustion engine. Using power as a means of reducing electric power will reduce greenhouse gas emissions.

第十の発明、&第十一の発明
前記畜ガスタンク{前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該内燃機関で生成されたガスで少なくとも10分程度運転するのに必要な燃料を畜ガス出来るタンクであれば当該内燃機関を運転(切り替えロスを無視すれば)することは出来る}のタンク損傷を防止する損傷防止手段であるが、1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材HPEを固着して車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着した物であり、タンク分離手段は前記固定具MT5に衝撃が掛かるとV字状の切り欠け部MT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(タンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)構造にしており、
前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはガスを溜める機能は同じであっても構造(規格)は全く違うものである。
Tenth Invention & Eleventh Invention The livestock gas tank {the tank does not require a high-pressure hydrogen gas storage tank of 35 MPa, and is a fuel necessary for operating at least about 10 minutes with the gas generated by the internal combustion engine. It is a damage prevention means to prevent the tank damage of the internal combustion engine (if the switching loss can be ignored) if it is a tank that can store livestock gas. A shock absorbing material HPE such as foamed polyethylene and boron fiber reinforced plastic is fixed to the vehicle body and fixed and held on the upper part of the vehicle, and the fixing device MT5 fixed and fixed to the upper part of the vehicle with the fixed holding device MT1. In the tank separating means, when an impact is applied to the fixture MT5, the V-shaped cutout portion MT6 breaks due to concentrated stress, and the shock absorbing material inclusion body MT3 (t It is possible to adopt a structure in which the support member MT2 is integrated with the fixing member MT5 but is not completely disengaged and is locked to the fixing device MT5 by a linear body or the like. MT3 is a preferred form because it is a measure to avoid secondary damage that completely flies off)
One or both of the damage prevention means for preventing damage to the tank or the tank separation means for separating the tank from the tank installation portion of the vehicle in the event of a collision are provided. Further, it is composed of a non-stationary facility (for example, an automobile) livestock gas tank of the livestock gas means, and the livestock gas tank is mounted on the upper body of a car or mounted on a chassis part of a truck. It is preferable to use one of the forms attached to the stationary equipment, but in the case of stationary equipment (for example, a power plant), the safety standard (in Japan, the registration of JIS B 8265 has been completed. Is ISO 16528), and the non-stationary livestock gas tank and the stationary livestock gas tank (eg chemical factory) It must be composed of those that are within the safety standards or at least have elements that can change the safety standards, so non-stationary equipment (eg automobile) livestock gas tanks and stationary equipment (eg chemical factories) livestock gas tanks Even if the function of storing gas is the same, the structure (standard) is completely different.

第十二の発明
例えば炭酸水素ナトリュウム(NaHCO)を内燃機関の排熱で加工して熱分解して水素(H)と炭酸ナトリュウム(NaCO)を作り、炭酸ナトリュウム(NaCO)は取り出して製品として販売し、水素(H)を畜ガスタンク経由で内燃機関の燃料とする構成にしているもので有るが、内燃機関の排熱で加工して燃料を取り出す取り出し手段を使用して付加価値を付加する物で有れば前記炭酸水素ナトリュウム(NaHCO)は1例とした物で炭酸水素ナトリュウム(NaHCO)に限定するものではない。
A twelfth invention for example to make a bicarbonate Natoryuumu (NaHCO 3) and by processing and thermally decomposed in the exhaust heat of an internal combustion engine hydrogen (H 2) and carbon dioxide Natoryuumu (Na 2 CO 3), carbonate Natoryuumu (Na 2 CO 3 ) is taken out and sold as a product, and hydrogen (H 2 ) is used as a fuel for the internal combustion engine via the livestock gas tank. The sodium hydrogen carbonate (NaHCO 3 ) is an example as long as it is a product that adds value by use, and is not limited to sodium hydrogen carbonate (NaHCO 3 ).

第十三の発明&第十四の発明は
第四の発明に記載の内燃機関の主燃料を水素(H)とする構成にしたものであり、
(第十三の発明の)水素を主燃料とすれば水と窒素を主構成とする排気であり
(第一の発明乃至第二の発明の)燃料は、水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、排気中の二酸化炭素を改質した水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、
いずれの燃料を使用しても水が水蒸気の形で排出されておる、この水蒸気から更なる吸熱手段で改質出発原料の水を温める構造構成にするとともに排ガス中の水蒸気から水を取り出しろ過するろ過手段経由で改質出発原料の水として貯水タンクに戻し入れる物で、
前記水蒸気からの吸熱手段は例えば排気管路の下流部に水貯水タンクを設けて該貯水タンクの水の中に排気管路を通す事で水タンクの水が吸熱して水タンクの水は温水となり排気管路内の水蒸気は水と成り回収する事を特徴とする、水を回収する回収手段、
上記各種の改質手段は水を燃料に改質しておるので相当量の水が必要と成るが水の車載量を大きくすれば車載量の水(重量)を運搬する為のエネルギーが必要と成るので水を回収して循環使用すれば水の車載量を少なく出来更に水タンク中の水は温水とする事が出来るこのことは温室効果ガス削減及び排出削減に寄与する事になる。
The thirteenth invention and the fourteenth invention are configured such that the main fuel of the internal combustion engine described in the fourth invention is hydrogen (H 2 ),
If hydrogen is the main fuel (of the thirteenth invention), it is an exhaust mainly composed of water and nitrogen (the first invention to the second invention) and the fuel burns hydrogen and carbon monoxide. It is an exhaust mainly composed of water, carbon dioxide and nitrogen, and is an exhaust mainly composed of water, carbon dioxide and nitrogen when hydrogen and carbon monoxide are reformed from carbon dioxide in the exhaust.
Regardless of which fuel is used, the water is discharged in the form of water vapor, and the structure is such that the water of the reforming starting material is warmed from this water vapor by further heat absorption means, and the water is removed from the water vapor in the exhaust gas and filtered. It is returned to the storage tank as water for reforming starting material via filtration means,
The heat absorption means from the water vapor is provided, for example, by providing a water storage tank downstream of the exhaust pipe and passing the exhaust pipe through the water in the storage tank so that the water in the water tank absorbs heat and the water in the water tank is heated. Recovery means for recovering water, characterized in that water vapor in the exhaust pipe becomes water and recovers
The above-mentioned various reforming means reform water into fuel, so a considerable amount of water is required. However, if the on-board amount of water is increased, energy for transporting the on-board amount of water (weight) is required. Therefore, if water is collected and recycled, the amount of on-vehicle water can be reduced, and the water in the water tank can be warm water. This contributes to greenhouse gas reduction and emission reduction.

第十五の発明は
第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にした小規模炭素製造器を提供する。
A fifteenth aspect of the invention is a small-scale carbon production apparatus for producing the carbon of the plant described in the first to fourth aspects of the invention, wherein the wood, etc. (plant raw material) is heated and carbonized in an oxygen-free environment. Carbonization chamber CS to be fired, combustion chamber FC for burning plant raw materials such as wood for heating the carbonization chamber, exhaust gas vent of combustion chamber FC, and pipe J of water vapor generating means for converting water H 2 O into water vapor J Is provided along the inner wall of the carbonization chamber, and is configured to be a fuel that heats the carbonization chamber by introducing the steam generated by the steam generation means and the gas C4 generated in the carbonization process in the carbonization chamber into the combustion chamber. Provide scale carbon production equipment.

前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭)であっても良く温室効果ガス排出削減策である。 In the combination of the present invention, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be fossil fuel use (for example, coal), which is a greenhouse gas emission reduction measure. is there.

最大の課題は地球温暖化に対処する「CO」の排出削減であり、
燃料を主に植物の炭素Cを使用する事で、本願の課題である、温室効果ガス削減施策課題の1つを構成する温室効果ガス削減策の内燃機関とする事が出来た、更に前記主に植物の炭素Cの燃焼により発生するCOをも燃料に改質しており、該COをも燃料に改質した事が、更なる温室効果ガス削減と燃費を驚愕するほど向上させる効果を生んでおる、この事が最大の効果である。
The biggest challenge is the reduction of CO 2 emissions to combat global warming.
By using mainly plant carbon C as a fuel, it was possible to make an internal combustion engine for a greenhouse gas reduction measure that constitutes one of the challenges of the greenhouse gas reduction measure that is the subject of the present application. In addition, CO 2 generated by the combustion of plant carbon C is also reformed to fuel, and reforming this CO 2 to fuel also has the effect of further increasing greenhouse gas reduction and fuel efficiency. This is the biggest effect.

この合成ガスを生成し、生成した合成ガスを燃料として使用する内燃機関を火力発電機の代替として使用する事が、今(2014年)のエネルギー問題解決策の筆頭にあげうる案件であり(2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり、真夏電力需要ピーク時の節電要請が各電力会社から出ている現状であり)この案件を実施する事は電力供給に大きな効果がある。 The use of an internal combustion engine that generates this synthesis gas and uses the generated synthesis gas as a fuel as an alternative to a thermal power generator is a project that can be mentioned as the first solution to the current energy problem solution (2011) (2011). According to the statistics of the Federation of Electric Power Companies of the year, about 82% of Japan's total power generation is thermal power generation, and there is a request for power saving at the peak of midsummer power demand from each power company) Doing so has a great effect on power supply.

内燃機関の捨てられていた熱エネルギーを活用して燃料を生成している事が大きな効果である。 The great effect is that fuel is generated by utilizing the thermal energy that was discarded by the internal combustion engine.

本願は内燃機関の回転力をそのまま動力発電設備とした発電用内燃機関に供給する補助燃料の代替に、又製造工程で廃棄されている熱と水蒸気若しくは温水と新たに投入する炭素を吸熱反応流路に導入して上記内燃機関に供給していた補助燃料の石油液化ガス(天然ガス含む)、ガソリン(含む炭化水素系化石燃料)、バイオエタノール等、あるいは合成ガスかの何れかの補助燃料を本願の合成ガスか水素ガスに替えて、畜ガスタンクに畜ガスするのでサブタンクとサブ燃料使用制御構造と、補助燃料の合成ガスを切り替えて使用する切換え弁を含む燃料切換え制御構造が不要となる構成も可能と成る。 The present application is an alternative to the auxiliary fuel supplied to the internal combustion engine for power generation using the rotational force of the internal combustion engine as it is as a power generation facility, and the endothermic reaction flow of heat, steam or hot water discarded in the manufacturing process, and newly input carbon. Auxiliary fuel, either petroleum liquefied gas (including natural gas), gasoline (including hydrocarbon-based fossil fuel), bioethanol, or synthetic gas, that was introduced into the road and supplied to the internal combustion engine A structure that eliminates the need for a fuel switching control structure including a sub-tank, a sub fuel use control structure, and a switching valve that switches and uses the synthesis gas of the auxiliary fuel, because the livestock gas tank is replaced with the synthetic gas or hydrogen gas of the present application. Is also possible.

上記植物の炭素を燃焼させ生成されるCOをも前記合成ガスに生成して更なる温室効果ガスCOの削減策としている事が前記植物の炭素使用の京都議定書のカーボンニゥートラルから更にCOを削減する事が出来、現存公知技術では出来なかった温室効果ガス削減策となる事が最大の効果を生む、
更に本願の内燃機関の炭素を化石燃料の炭素使用としてもCOを100%排出カットは出来ないまでも少なくとも数十%は削減できる大きな効果がある。
The CO 2 produced by burning the carbon of the plant is also generated in the synthesis gas to further reduce the greenhouse gas CO 2 from the carbon neutral of the Kyoto Protocol on the use of carbon of the plant. CO 2 can be reduced, and a greenhouse gas reduction measure that could not be achieved with existing technologies has the greatest effect.
Furthermore, even if carbon of the internal combustion engine of the present application is used for fossil fuel, CO 2 can be reduced by at least several tens of percent even if 100% emission cut cannot be achieved.

温室効果ガスCOの排出枠の買い取りビジネスが活性化する中、日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を数十%削減出来る。 While the purchase of greenhouse gas CO 2 allowances is revitalizing, Japan's purchase amount is estimated to be about 1 trillions of billions, but this purchase amount can be reduced by several tens of percent.

第5の発明に記載したエンジンの負荷変動に関係ない「エンジンを一定した燃費の良い条件」(始動時は別条件)で運転して一定した吸熱反応条件で運転する事で、前記吸熱反応効率も上がり、かつ、燃費の良い条件にする事で燃費(Km/L)を向上させた事が大きな効果である、 The endothermic reaction efficiency can be obtained by operating the engine under the constant endothermic reaction condition by operating the engine under the “constant and fuel-efficient conditions” (different conditions at start-up) that are not related to the engine load fluctuation described in the fifth invention. The improvement of fuel efficiency (Km / L) is achieved by making the fuel efficiency good and the fuel efficiency is good.

上記内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素Cを再生可能な植物を主原料とし、さらに、汚水や食品製造時に出る、産業廃棄物に近い物から作る物質(例えばメタンガスやバイオエタノール)をサブ燃料とするのが好ましいとしており、 The raw materials for generating the fuel for the internal combustion engine are water H 2 O and carbon C. The plant that can regenerate the carbon C is used as a main raw material, and further, it is made from materials close to industrial waste that are produced during the production of sewage and food. Substances (e.g. methane gas or bioethanol) are preferred as sub-fuels,

前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて(カーボンニュ−トラル)、地球温暖化防止に大なる貢献が出来る大きな効果である。 Using the plant as the main raw material means that the plant absorbs carbon dioxide CO 2 and produces oxygen O 2 , so in the Kyoto Protocol it is defined as plus or minus “0” (carbon neutral), and global warming This is a great effect that can greatly contribute to prevention.

排気ガス中の二酸化炭素を合成ガスに生成するサイクルを設けた事で、第一の発明の内燃機関から排出された「CO」を燃料に改質しており、更なる「CO」の排出削減が出来るとともに、燃費を向上させる効果がある。(例えば20Km/Lを25Km/Lにした程度ではなく2倍の40Km/L以上に向上させる驚愕する様な効果を得る事が出来た。
*水HOとCOを燃料に改質した事
By providing a cycle for generating carbon dioxide in the exhaust gas into the synthesis gas, the “CO 2 ” discharged from the internal combustion engine of the first invention is reformed into fuel, and further “CO 2 ” Emissions can be reduced and fuel efficiency can be improved. (For example, it was possible to obtain an astonishing effect of improving 20 Km / L to 40 Km / L or more, not about 20 Km / L to 25 Km / L.
* Reforming water H 2 O and CO 2 into fuel

内燃機関のエンジンブロック冷却水路及び冷却水配管を含むラジエターが不要になる。 A radiator including the engine block cooling water passage and the cooling water piping of the internal combustion engine is not necessary.

上記内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素を再生可能な植物を主原料とし、前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて、地球温暖化防止に大なる貢献が出来る。 The raw materials for generating the fuel for the internal combustion engine are water H 2 O and carbon C. The plant that can regenerate the carbon is the main raw material, and the plant is the main raw material. The plant absorbs carbon dioxide CO 2 . Since oxygen O 2 is released, it is set to plus and minus “0” in the Kyoto Protocol, which can greatly contribute to the prevention of global warming.

前記植物を主原料とする事は放置されていた山林や「田んぼ」を価値ある物(植物からの炭素)を作る「稼働率」のよい工場に出来る、此のことは、農業、林業に活力を与える。 The use of the plant as the main raw material makes it possible to turn abandoned forests and “rice fields” into factories with good “operation rate” to produce valuable things (carbon from plants). This is vital for agriculture and forestry. give.

火力発電はボイラーを火力で熱して蒸気を発生させてその蒸気を更に加熱してタ−ビンを廻して発電しているのでエネルギー効率は50%弱で火力発電のボイラーは加熱し始めに必要な初期エネルギーが大きいので一度ONすると長期間火を落とせないので時間帯による消費電力量変動に追従して稼働のON・OFFする事が出来難いので、季節(春・秋)あるいは時間帯に依っては消費されない余剰電力が発生し、その過剰生産分は廃棄されているが、本願の内燃機関による発電システムにすれば、前記時間消費電力量の変動に追従して稼働のON・OFFする事が自在に出来るので、過剰生産電力は限りなくゼロに近づける事ができるので、太陽光発電のみで補う場合の大容量の蓄電設備と膨大な送電設備・受電設備が不要と成る。 In thermal power generation, the boiler is heated with thermal power to generate steam, and the steam is further heated to generate electricity by rotating the turbine. Therefore, the energy efficiency is less than 50% and the thermal power boiler is necessary to start heating. Since the initial energy is large, it is difficult to turn on / off following the power consumption fluctuations according to the time zone because it is difficult to turn off the fire for a long time once it is turned on, so depending on the season (spring / autumn) or time zone Surplus power that is not consumed is generated, and the excess production is discarded. However, if the power generation system using the internal combustion engine of the present application is used, the operation may be turned ON / OFF following the fluctuation of the time power consumption. Since it can be made freely, excess production power can be brought to zero as much as possible, so there is no need for a large-capacity power storage facility and a vast amount of power transmission / reception facilities when supplemented only by solar power generation.

現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るので送電・受電設備を非常に少なくする事が出来る。 Current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of this application do not need to be adjacent to the water source and can be installed as close to the power demand area as possible, so there are very few transmission / reception facilities I can do it.

化石エネルギーの価格変動(及び為替レート変動)に日本の経済が影響される割合が少なくなる。 The proportion of the Japanese economy affected by fossil energy price fluctuations (and exchange rate fluctuations) will be reduced.

上記第一の発明乃至第三の発明の内燃機関を自動車(2サイクル2輪車・4サイクル2輪車を含む)・船舶・鉄道のディーゼルエンジン車・建設機械・軍需兵器の車両・軍需兵器の船舶等々の運搬機器に搭載する形態での実施であり、前記動力発電機を火力発電設備の代替として使用する形態か、あるいは現存火力発電設備でタービンを回す役目を終えた水蒸気と、新たに投入する炭素を内燃機関の吸熱反応流路に導入して前記燃料不足分に充当する構成にして現有の火力発電設備に併合する形態かの何れかの実施形態である。 The internal combustion engine according to any one of the first to third aspects of the present invention is used for automobiles (including two-cycle two-wheeled vehicles and four-cycle two-wheeled vehicles), marine and railway diesel engine vehicles, construction machinery, munitions weapon vehicles, and munitions weapons. It is implemented in the form of being mounted on a transportation device such as a ship, and the form in which the power generator is used as an alternative to the thermal power generation facility, or steam that has finished the role of turning the turbine in the existing thermal power generation facility, is newly input In this embodiment, the carbon to be introduced is introduced into the endothermic reaction flow path of the internal combustion engine and used for the fuel shortage, and is combined with the existing thermal power generation facility.

図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
Each dimensional relationship in the drawings is enlarged for important portions, exaggerated where details are difficult to understand, and reduced when describing wide portions or portions that are less important in the present invention. Thus, the dimensions between and within the drawings are not proportional, and are not actual or scaled.
If the distance between the lines is narrow, it is likely to become a single line that is black and thick at the scanning stage. Therefore, the distance between the lines is widened or described with a single line.

更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。 Furthermore, parts other than the basic (main) mechanism of the present invention are omitted between the drawings.

水素と一酸化炭素はエネルギー的には殆ど等価であるつまり(高位)発熱量はほぼ同じである、従って本願の明細書に於ける詳細説明は水素を燃料とする公知技術を引用している部分が多々ある。さらに「CO」を合成ガスに改質する技術についても公知技術を引用している部分が多々ある。
本願の主構成は多種の公知技術(中には特許登録されており権利が生きている物も一部含んでいる)を引用しているが、個々の公知技術のみでは得ることが出来ない物を本願で効果を得るべく多様に組み合わせた構成構造にしたことで、前記温室効果ガス排出削減と燃費の向上の面に於いて驚愕する様な効果を得る事が出来た。
Hydrogen and carbon monoxide are almost energetically equivalent, that is, the (higher) calorific value is almost the same. Therefore, the detailed description in the specification of the present application refers to a known technique using hydrogen as a fuel. There are many. Furthermore, there are many parts that cite known techniques for the technique of reforming “CO 2 ” into synthesis gas.
The main structure of this application refers to a variety of known technologies (including some that are patent-registered and alive), but cannot be obtained by individual known technologies alone. In order to obtain the effect in the present application, it was possible to obtain a surprising effect in terms of reducing greenhouse gas emissions and improving fuel consumption.

内燃機関のエンジンブロックに吸熱反応流路を設け、水HOと炭素Cとを内燃機関の排廃熱にて反応させて水素Hと一酸化炭素COの混合気体を取り出し、それらの水素と一酸化炭素の混合気体を燃料とする内燃機関であるが、合成ガスをガソリンあるいは軽油、重油の代替燃料に・・・と考えたことは、どのメーカーでもあると思っている、しかし水素も一酸化炭素も非常に危険(爆発、毒性を有している)従って、液化しての運搬手段(可搬性)安全規格をクリアーする液化ガスの容器の重量に対する内容量の割合が悪い、更に車が大破する様な事故による爆発の問題があり、手がだせなかったと推測する。 An endothermic reaction flow path is provided in the engine block of the internal combustion engine, and water H 2 O and carbon C are reacted with the exhaust heat of the internal combustion engine to take out a mixed gas of hydrogen H 2 and carbon monoxide CO. It is an internal combustion engine that uses a mixed gas of carbon monoxide and fuel, but any manufacturer thinks that synthetic gas can be used as an alternative fuel to gasoline, light oil, heavy oil, etc., but hydrogen also Carbon monoxide is also very dangerous (explosive and toxic). Therefore, liquefied transport means (portability). The ratio of the volume of the liquefied gas to the weight of the container that satisfies safety standards is poor. I suspect that there was an explosion problem caused by the wreck, and I couldn't get it.

この問題を解決する本願の手段は、
*消費燃料をタンクに満タンにして走行に必要な燃料全部を賄うのではなく、燃料生成過程でのエネルギーロス分の補充にサブタンクを設けて、前記サブタンクの燃料を石油液化ガス(天然ガス含む)、ガソリン、含む炭化水素系化石燃料バイオエタノール等、あるいは合成ガスかの何れかを、エネルギーロス分の補充用サブ燃料として使用する、複合燃料補給構造を採用している事(この蓄ガス圧力を考慮した畜ガスタンクの設置位置と車が大破する様な事故時に対応出来る構造部の手段として設けた事)が、本願を「実施可能案」にした大きなポイントである)である。(図1,図2参照)
The means of the present application to solve this problem are:
* Instead of filling the tank with fuel consumption and supplying all the fuel required for driving, a subtank is provided to replenish the energy loss during the fuel generation process, and the fuel in the subtank is used for petroleum liquefied gas (including natural gas) ) Adoption of a composite fuel supply structure that uses gasoline, hydrocarbon-containing fossil fuel bioethanol, etc., or synthetic gas as a supplementary sub-fuel for the energy loss (this stored gas pressure) The installation position of the livestock gas tank in consideration of the above and the means of the structural part that can cope with an accident such as a car being severely damaged) are the main points that made the present application "practical plan"). (See Figures 1 and 2)

前記貯ガス、畜ガスタンクに生成された合成ガスを(圧縮ガスの状態で)一定量ためる、一定量ためる間は、ブタンガス、ガソリン、(含む炭化水素系化石燃料)メタンガス、バイオエタノール等、あるいは、水素、合成ガス、植物からの改質ガス、植物からのメタンガス、のバイオエタノール等かの何れかを補助燃料タンクの貯ガスを使用し、生成された合成ガスの貯ガス量が一定量に成ると合成ガスに切り替えて、合成ガスを生成しながら畜ガスタンクの合成ガスを使用し、前記タンク容量が「0」に近くなると、補助燃料タンク使用に切り替える、複合燃料方式をとり、合成ガスの車載量(タンク重量も含む)を少なくしている手段を設けている、 The storage gas, the synthesis gas generated in the livestock gas tank is stored in a certain amount (in the state of compressed gas), while the certain amount is accumulated, butane gas, gasoline, (including hydrocarbon-based fossil fuel) methane gas, bioethanol, etc., or Any of hydrogen, synthesis gas, reformed gas from plants, methane gas from plants, bioethanol of bioethanol, etc. is used as the storage gas in the auxiliary fuel tank, and the amount of generated synthesis gas is constant. And switch to synthetic gas, use synthetic gas in livestock gas tank while generating synthetic gas, and switch to using auxiliary fuel tank when the tank capacity is close to "0". Means to reduce the amount (including tank weight),

公知技術であるが二酸化炭素を触媒存在下で、水素、一酸化炭素等に転換する技術には1例をあげると本願特許文献2、特開平11−106770.の記載では、含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法とその方法に適した触媒の発明もしており、この技術を本願の二酸化炭素をも燃料に改質する技術として使用している。
また特許文献4の特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両の記載では二酸化炭素吸収材に二酸化炭素を吸収させて二酸化炭素を回収している
An example of a known technique for converting carbon dioxide to hydrogen, carbon monoxide, etc. in the presence of a catalyst is described in Japanese Patent Application Laid-Open No. 11-106770. In the description, a method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst and a catalyst suitable for the method are also disclosed. Is also used as a technology for reforming fuel.
Japanese Patent Application Laid-Open No. 2007-177684, a carbon dioxide recovery device for a vehicle, and a vehicle equipped with the same discloses that carbon dioxide is absorbed by a carbon dioxide absorber and carbon dioxide is recovered.

温室効果ガス排出の主役は内燃機関からの排出と、日本の発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出であり、世界の内燃機関からの排出と火力発電のボイラーからの排出で世界の排出量の1/4をしめており、
1ガロンのガソリンを燃やしたときのCOの放出量は車のエンジンからの排出とガソリン生成工程での放出を合わせて約9Kgである。
従って化石燃料の炭素Cの消費を、植物の炭素Cにシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、
本願の温室効果ガス排出削減策の内燃機関を実現する事及び、燃料と成る植物を主とする炭素Cの調達コストを化石燃料からの調達コストと同じくらいにする施策が必要である。
燃料とする炭素Cの製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
The main sources of greenhouse gas emissions are emissions from internal combustion engines and thermal power generation boilers, which account for about 82% of Japan's power generation (2012 Electricity Federation statistics). And 1/4 of the world ’s emissions from thermal power boilers,
The amount of CO 2 released when 1 gallon of gasoline is burned is about 9 Kg combined with emissions from the car engine and emissions from the gasoline production process.
Therefore, in order to shift the consumption of carbon C from fossil fuels to carbon C from plants and achieve a 25% reduction in greenhouse gas CO 2 emissions early,
It is necessary to implement an internal combustion engine for the greenhouse gas emission reduction measures of the present application and to make the procurement cost of carbon C, which mainly consists of fuel, the same as the procurement cost from fossil fuel.
The production of carbon C as fuel changes when carbonized organic material is heated while shutting off the flow of air and oxygen, and changes to a material rich in black carbon. This process is called carbonization, and charcoal produces this carbonization. This is a good example of a product, and what is produced is an aggregate composed mainly of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.

木材からの固体炭素C(植物原料のC)をナノ粒子化する技術はすでにテレビ等で放映されているので新技術とは言えないがナノ粒子迄細粒化しなくてもミクロ細粒化(100ミクロン程度)でも本願発明の請求項1の炭素Cとして対応可能である。
固体炭素Cは粉砕して微粒状にすれば、反応が起きる表面積を増やすことになるので、細粒化するほど合成ガス生成の効率はよくなる。
前記炭素Cに水を加えてエマルジョン燃料化あるいはゲル状化する事でも対応出来る。
更に酸素が入らない環境で前記木材等(植物原料のC)を加熱→炭化工程の中で炭素Cガスを得る事も出来る。
The technology to make solid carbon C from wood (nano-plant raw material) into nanoparticles is not yet a new technology because it has already been broadcast on TV, etc., but micronization (100 (About a micron) can be dealt with as the carbon C of claim 1 of the present invention.
If the solid carbon C is pulverized into fine particles, the surface area where the reaction takes place is increased. Therefore, the finer the particles, the more efficient the synthesis gas generation.
It can also be handled by adding water to the carbon C to form an emulsion fuel or gel.
Furthermore, the above-mentioned wood and the like (plant raw material C) is heated in an environment where oxygen does not enter, and carbon C gas can be obtained in the carbonization step.

エンジン内で水蒸気→排気管路で吸熱反応→一酸化炭素と水素の合成ガスまたは水素を生成し当該エンジンの燃料として使用するサイクルであるが、
*この案の件案事項としては
畜ガスタンク内容積を広く、蓄圧を低く、出来るタンクにして、車載場所を何処にして、どの様な構造にすれば、車が大破する事故でも畜ガスタンクが破裂しない構造にする事が出来るかであった。
*前記件案事項を下記の構造構成にして解決した。
1、合成ガスタンクの設置場所を車の車体上部に設けるか車のシャーシー部に設けている事であり、車体上部に設ける事は車が崖から転落しても、また乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故でも畜ガスタンクは爆発しない構造のタンクが要求されるが車載可能なボンベで業者が目標としている500Km走行できる目安とされておる水素4Kgで20MPaの圧力では容器内容積が300L必要となり、
マツダ(企業名)プレマシイハイドロジェンREハイブリッド車で搭載の水素74L/35MPaでは満タン充填で計算上123Kmしか走行出来ないので水素のみでは走行出来ないので、500Km走行するには約4倍の300L/35MPaの水素タンクが必要と成るが300Lの水素を74L/35MPの容器で賄うには、約150MPa圧縮で充填出来る容器が必要となり現在の技術では困難である。
そこで載内燃機関で合成ガスを生成することを立案したが載内構造の加圧ポンプでは圧縮圧を上げれば多くの動力を加圧ポンプのために消費する事になるので。スタート時点では油圧機器のアキュウムレーターに相当する機器で畜ガスする事であったが、その畜ガス器を何処に設置すれば良いか、又高速道路の事故で、前記車が崖から転落して上下が逆転するか、乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故をテレビで見て、この様な事故が発生した時爆発を回避出来る構造構成でないと車載は無理とあきらめていた。
合成樹脂を使った他の案件の立案のために先行文献検索やインターネットで前記合成樹脂関係を調べていたら下記発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、見つける事が出来これを使えば前記事故があっても爆発しない所まで解決出来た。しかし最後に残されたタンクの設置場所の問題で頓挫していた。
昨年出願のエコドライブ方法の実験を繰り返す中で車の軽量化するのに何処を樹脂化すれば良いかと考えていた時に乗用車のルーフの考察時、頓挫していた本願の畜ガスタンクを乗用車のルーフに搭載して前記事故時には離れ飛ぶ構成を思いつき、何とか実施可能案となり出願するに至ったので、この畜ガスタンクの構造構成が本願のキーポイントである。(図1A,図2参照)
2,上記畜ガスタンクの外面を図2に記載しているように、ポロン繊維強化プラスチック若しくは発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、前記タンク部を覆う形に固着成形するとか、あるいは、塗布、あるいは、他の合成樹脂材と、多層コーティングして、車が転落、大破する衝撃が掛った時に、車の車体から分離するタンク分離手段を設け、跳ね飛んでも爆発しない構造にしている。(遠くに飛び過ぎない係止構造を設けるのが好ましい。)
3.前記タンクの出し入れ管の車ボディとの分離構造の一例として、電磁バルブの接点構成で通電時はON.非通電時はOFFと成る電磁バルブシーケンス回路を使用し、合成ガスタンクが車のボディから飛ぶ衝撃力が掛かると前記タンクのガス出し入れ管が抜けて(あるいは破損して)も、電磁バルブの作動によりタンクからのガス管路は閉じる構造にしている。(図2.H参照)
4.畜ガスの圧縮圧の問題も補助燃料使用と前記昨年出願のエコドライブ方と内燃機関は発電のみにしているマツダ(企業名)プレマシイハイドロジェンREハイブリッド車の構成を使用すれば
本願第一の発明から第三の発明の改質技術に加えて第六の発明と第七の発明と該発明の詳細説明部を組み合わせれば補助燃料を使用しなくても、合成ガスのみ又は水素のみあるいは合成ガスと水素との切換え使用でも良い実施例と成リ蓄ガス圧も次段落で説明しておる様に低い圧縮圧で対応出来る。
It is a cycle in which steam in the engine → endothermic reaction in the exhaust line → synthesis gas or hydrogen of carbon monoxide and hydrogen or hydrogen is used as fuel for the engine.
* The proposed matter is that the livestock gas tank has a large internal volume, low pressure accumulation, a tank that can be built, where the vehicle is located, and what structure is used. It was possible to make a structure that does not.
* The above-mentioned proposed matter was solved with the following structure.
1. The place where the synthesis gas tank is installed is located in the upper part of the car body or in the chassis part of the car, which is provided in the upper part of the car body even if the car falls from the cliff, Even in an accident that is sandwiched between and crushed, a livestock gas tank is required to have a structure that does not explode. With the pressure of 300L, the volume in the container is 300L,
Mazda (Company name) Premasi Hydrogen RE hybrid vehicle equipped with 74L / 35MP of hydrogen can run only 123Km with full tank filling, so it can not run only with hydrogen, so to run 500Km, about 4 times 300L A / 35 MPa hydrogen tank is required, but in order to cover 300 L of hydrogen with a 74 L / 35 MP container, a container that can be filled with about 150 MPa compression is required, which is difficult with the current technology.
Therefore, it was planned to generate synthesis gas in a mounted internal combustion engine. However, in a pressurized pump with a mounted structure, if the compression pressure is increased, more power is consumed for the pressurized pump. At the start, the gas was accumulated with equipment equivalent to an accumulator of hydraulic equipment, but the car fell from the cliff due to an accident on the highway where the livestock gas equipment should be installed. If the accident is such that the car is flipped upside down or the passenger car is sandwiched between large trucks and crushed in a sandwich, the structure must be such that an explosion can be avoided when such an accident occurs. I gave up on board.
If you are searching for related documents on the Internet and searching for prior literature for planning other projects using synthetic resin, the following foamed polyethylene, (the above-mentioned member has anti-bullet properties and is used for military weapons, (As an example, polyethylene fired polyethylene is fixed to the outer surface of an army water hoat for army movement, and when it is sniped with a rifle etc., the bullet has a bullet-proof property that does not allow a hole to be made in the rubber hote) Can be found, and if this was used, it was able to solve even the place where it did not explode even if the accident occurred. However, the problem was the location of the last remaining tank.
While considering the eco-driving method filed last year and thinking about what to do with resin to reduce the weight of the car, when considering the roof of a passenger car, the livestock gas tank of the present application that had been neglected was used for the roof of the car The structure of this livestock gas tank is the key point of the present application. (See Figure 1A and Figure 2)
2. As shown in FIG. 2, the outer surface of the livestock gas tank is made of poron fiber reinforced plastic or foamed polyethylene. (The above-mentioned members are bullet-proof and are used for military weapons. The fired polyethylene is fixed on the outer surface of the water hoat for moving the water surface, and when it is sniped with a rifle, etc., the bullet has a bullet-proof property so that a hole cannot be made in the rubber hoat)) A tank separation means is provided that separates from the car body when it is impacted by falling or severely damaging the car. It has a structure that does not explode even if it bounces off. (It is preferable to provide a locking structure that does not jump too far.)
3. As an example of the separation structure of the tank inlet / outlet pipe from the vehicle body, the solenoid valve contact configuration is ON when energized. When the solenoid valve sequence circuit is turned off when not energized, and the synthetic gas tank is subjected to an impact force flying from the body of the car, the gas inlet / outlet pipe of the tank may come off (or be damaged). The gas pipeline from the tank is closed. (See Figure 2.H)
4). As for the problem of compression pressure of livestock gas, if the configuration of Mazda (Company Name) Premasi Hydrogen RE hybrid vehicle, which uses auxiliary fuel, the eco-driving method and the internal combustion engine of the last year's application only generate electricity, is the first of the present application. Combining the sixth and seventh inventions with the detailed explanation part of the invention in addition to the reforming technology of the invention from the third invention, the synthesis gas alone or only the hydrogen or synthesis without using auxiliary fuel An embodiment which may be used by switching between gas and hydrogen, and the stored gas pressure can be handled with a low compression pressure as described in the next paragraph.

ガソリンで500Km走行に必要な燃料を水素(合成ガス)で賄うには、水素5Kgで
(水素56,000Lに相当)、(10g/Km=水素11.2Lで)ある。
従って10Km走行程度に必要な燃料(水素・合成ガス・二酸化炭素)の畜ガスタンクの容量は燃料切換えロスを無視すれば11.2L*10=112L(常圧)のガスを畜ガス出来る畜ガスタンクであれば良いことに成る。
従ってタンク製造コストと設置スペースの関係と設定したい切換え周期と前記法律の範囲内で有れば自在に設計できる。
In order to cover the fuel necessary for running 500 km with gasoline with hydrogen (synthetic gas), 5 kg of hydrogen (equivalent to 56,000 L of hydrogen) and (10 g / Km = hydrogen of 11.2 L).
Therefore, the capacity of a livestock gas tank for fuel (hydrogen, synthesis gas, carbon dioxide) required for about 10km travel is a livestock gas tank capable of livestock gas of 11.2L * 10 = 112L (normal pressure) if the fuel switching loss is ignored. It will be good if there is.
Therefore, it can be designed freely as long as it is within the scope of the law and the relationship between the tank manufacturing cost and the installation space and the switching cycle to be set.

第一の発明乃至第三の発明に記載の内燃機関から生成した合成ガスの貯ガスタンクを車の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。 A synthetic gas storage gas tank produced from the internal combustion engine according to the first to third aspects of the invention is provided in the upper part of the vehicle, and an impact buffer (fired polyethylene, boron fiber reinforced plastic, etc.) is fixed to the gas storage tank. A storage tank that protects against explosion or explosion in the event of a car wrecking by fixing either a coating or a multi-layered structure to the storage tank.

図1を説明すると、1図に記載の車は商用車フロントエンジンタイプ商用車に本願の構造を設置した概略構成図であり、フロントエンジンルームに設置した水素ロータリーピストンエンジン(内燃機関)から排気管部に設けた吸熱反応合成ガス生成部でガスを生成して、取り出した合成ガスを上部に設けた貯ガスタンクMTに貯ガスして当該水素ロータリーピストンエンジンの燃料として使用し、ガス生成過程のエネルギーロス分をサブタンクSTの燃料に切り替えて使用している、概略構成図で、
図1Bはレシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成フロー図であって、4気筒のレシプロエンジンのエンジンブロック内に水HO2を水蒸気Jにする通水路Kをもうけて、水HO(または水と二酸化炭素)を供給口より供給して水蒸気生成手段(または/及び二酸化炭素の吸熱手段)としおり、吸気口Aへ空気0を供給する管路3を設けて空気0を吸気口Aへ供給しており、排気口Eから管路4にて合成ガス生成部の排気管に連結しており、前記排気管MS内には排気管内に合成ガス生成吸熱反応部の吸熱反応管をコイル状にして設けており、前記コイル状にしている吸熱反応管内に前記レシプロエンジンのエンジンブロック内で生成された水蒸気Jを導入するとともに炭素を新たに投入しており、合成ガス生成部の排気管にMSを流れる、エンジン燃焼行程で発生する排気ガスEの排熱でCO+Hの合成ガスを生成して、生成された合成ガスは合成ガス貯蔵タンク(畜ガスタンク)MTに畜ガスしており、前記生成燃料の不足分を補う為にサブタンクSTを設けてサブ燃料を貯油しており、サブタンク燃料と畜ガスタンクに畜ガスしておる合成ガスを切換え弁CBで切り替えて燃料供給管路5でインジエクターE2に供給しており、更に強制着火のプラグPをもうけた構成にしておる内燃機関の概略構成図である。
Referring to FIG. 1, the vehicle shown in FIG. 1 is a schematic configuration diagram in which the structure of the present application is installed in a commercial vehicle front engine type commercial vehicle, and an exhaust pipe from a hydrogen rotary piston engine (internal combustion engine) installed in the front engine room. The endothermic reaction synthesis gas generation section provided in the section generates gas, and the extracted synthesis gas is stored in the storage tank MT provided in the upper section and used as fuel for the hydrogen rotary piston engine. In the schematic configuration diagram, switching the loss to the fuel of the sub tank ST,
FIG. 1B is a schematic configuration of an engine block, a synthesis gas generation endothermic reaction flow path section, a fuel supply / injection system, and a spark plug of a reciprocating engine. a schematic configuration flow diagram parts and the fuel supply and injection system ignition plug, the water HO 2 into the engine block of a four cylinder reciprocating engine provided with a water passage K of the steam J, water H 2 O (or water and carbon dioxide) is supplied from the supply port steam generating unit (or / and carbon dioxide heat absorbing means) and bookmarks, intake air 0 2 is provided for supplying duct 3 air 0 2 to the inlet port a P are supplied to the mouth a P, the exhaust port from E P at the conduit 4 is connected to the exhaust pipe of the synthesis gas production unit, endothermic of said exhaust pipe MS syngas product endothermic reaction portion in the exhaust pipe Reaction tube It is provided in a coil shape, and the steam J generated in the engine block of the reciprocating engine is introduced into the coiled endothermic reaction tube and carbon is newly introduced, and the exhaust gas of the synthesis gas generation unit flowing MS to the tube, to produce the exhaust gas E X of the exhaust heat in the synthesis gas CO + H 2 generated in the engine combustion stroke, produced synthesis gas by livestock gas in the synthesis gas storage tank (slaughtering gas tank) MT In order to make up for the shortage of the generated fuel, a sub tank ST is provided to store the sub fuel. The sub tank fuel and the synthetic gas stored in the live gas tank are switched by the switching valve CB, and the fuel supply line 5 FIG. 2 is a schematic configuration diagram of an internal combustion engine that is supplied to the injector E C H 2 and has a configuration in which a plug P for forced ignition is provided.

上記エンジンブロック内に水HO2を水蒸気Jにする通水路Kを設けて、水HOを供給口より供給して水蒸気生成手段としおる通水路Kに加えて、CO2を加熱する通気路をK‘とCO2供給口を設けて、複数設けた排気管路の内少なくとも何れかの一方以上のCO2を改質する管路に供給しており、CO2を改質する管路の他のいずれかを水蒸気改質する管路にするか第三の発明の合成ガス改質路にするかして、水蒸気Jは全ての管路に供給して必要に応じて前記管路K、K’の両方からの供給をいずれかに切り替える供給路にする構成を付加して設けた構成にも出来る。 A water passage K for converting water HO 2 into water vapor J is provided in the engine block, water H 2 O is supplied from the supply port, and in addition to the water passage K serving as a water vapor generating means, an air passage for heating CO 2 is provided. K ′ and a CO2 supply port are provided to supply at least one of the plurality of exhaust pipes to the pipe for reforming CO2 and any other pipe for reforming CO2. The steam J is supplied to all of the pipes as needed to make the steam reforming pipe line or the syngas reforming path of the third invention. It is also possible to add a configuration in which a supply path for switching supply from one to another is added.

図2A.は図1のA−A断面図であり、本図は一例として合成ガスタンクを円筒形状の物MTB4本を、発泡ポリエチレン、ボロン繊維強化プラスチック、等HPEの衝撃緩衝材で1個の包括体にして車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着している状態図で、前記固定具MT5は車が大破する様な衝撃が掛かると前記V字状の切り掛けMT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(一例としてタンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く糸体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)。 FIG. 2A. 1 is a cross-sectional view taken along the line AA in FIG. 1. As an example, this figure shows a synthetic gas tank having four cylindrical MTBs, and a single package made of a shock absorbing material such as foamed polyethylene, boron fiber reinforced plastic, or the like. In the state where the vehicle is fixedly held on the upper part of the vehicle, and is fixed to the fixture MT5 that is fixedly fixed to the upper part of the vehicle with the fixed holding fixture MT1. The V-shaped notch MT6 breaks due to concentrated stress, and the shock absorbing material inclusion MT3 (for example, the tank support MT2 is integrated) is detached from the fixture MT5 (completely disengages). (It is a preferable form to take a structure in which it is locked to the fixing device MT5 or the like with a thread body or the like, because this is a measure for avoiding the secondary damage in which the inclusion body MT3 of the shock absorbing material completely comes off))

上記衝突及び転落時の力が上記タンクに掛った時、1例として、事故時の保持構造を設けて、車から外れ飛ぶ構造(一部は車と繋がっているのが望ましい)を設けており、車から外れ飛んだタンクは、前記タンク外面にコートあるいは全面に固着して設けている、発泡ポリエチレン・ボロン繊維強化プラスチック・衝撃緩衝材等(HTP)であり、衝撃力を吸収あるいは拡散されるので爆発しない構造である。
前記コーティングあるいは全面に固着する、発泡ポリエチレン、ボロン繊維強化プラスチック、衝撃緩衝材等は現時点では高価かも判らないが、2000万台/年・(日本自動車メーカー全体で)近く生産されているので、量産効果によりコストは低くなる。
As an example, when a collision or falling force is applied to the tank, a holding structure in the event of an accident is provided, and a structure (part of which is preferably connected to the car) is provided. The tank that flies off from the vehicle is made of foamed polyethylene, boron fiber reinforced plastic, impact buffering material (HTP), etc., which is provided on the outer surface of the tank and fixed to the entire surface, and absorbs or diffuses impact force. So it does not explode.
The foamed polyethylene, boron fiber reinforced plastic, and shock-absorbing materials that are fixed to the entire surface of the coating or the entire surface may not be expensive at this time, but they are produced almost 20 million units / year (by the entire Japanese automaker). The cost is reduced due to the effect.

図2Bは.リヤーエンジン車に上記衝撃緩衝材の包括体MT3を進行方行に対して直交する形にタンクを搭載した例図であり、D.E.図は搭載タンクの数及び形状には拘らない事を図示したもの、E,は車のルーフ部に前記タンクを前後方向の凹部に格納搭載しており、横面からの美観を良くした物、F.はキャビンの下にエンジンを搭載するタイプにE.と同様にタンクを設置している図、であり、搭載するガスタンクMTB及びタンク包括体MT3の形状設置方向は、設置するタンク容量とガス圧力の関係での設計上の問題である。 FIG. FIG. 6 is an example of a tank mounted on a rear engine vehicle in which the shock-absorbing material MT3 is mounted perpendicularly to the traveling direction; E. The figure shows that there are no restrictions on the number and shape of the tanks. E, the tank is housed in the front and rear recesses on the roof of the car, and the aesthetics from the side are improved. F. Is a type with an engine mounted under the cabin. The shape installation direction of the gas tank MTB and the tank package MT3 to be mounted is a design problem in the relationship between the tank capacity to be installed and the gas pressure.

図2Hは.上記ガスタンクMTB1個のみの場合のガス出入り口部の構造の部分断面図であり合成ガス生成部Sから取り出されたガスはタンク開閉バルブGTbsec (一例として電磁バルブを通電時ON・非通電時OFFとなる接点回路としている)を経由してタンクに貯ガスされ、更にエンジンの燃料切換えバルブCbに導入する構造にしている概略図であり、この非通電時OFFとなる構造にすれば上記衝突及び転落時の力が上記タンクに掛り貯ガスタンクが外れ飛ぶ事態になれば電気配線もはずれ飛ぶので電磁バルブはOFFとなりタンク内のガスは漏れ出ない構造である。
図2,Iは.車上部に固着固定している固定具MT5の両端部に弾性性状を有する逆J状の係止固定構造KRsecを設け、(下部図)車か大破する様な衝撃が掛かると、前記逆J状の係止固定構造KRsecの逆J状の係止機能部が伸びてHPE体が上部に離脱する構造(上部図)にした1例図であり、前記車か大破する様な衝撃力が掛かるとHPE体が上部に離脱する機能を有する構造であれば、金属・合成樹脂・その他・材質および形状にはこだわらない。
上記畜ガスタンクの構造で二酸化炭素畜ガスタンク・水素畜ガスタンクを設ける事が好ましい。
FIG. FIG. 5 is a partial cross-sectional view of the structure of the gas inlet / outlet portion when there is only one gas tank MTB, and the gas taken out from the synthesis gas generator S is a tank open / close valve GTbsec (for example, the electromagnetic valve is turned on when energized and turned off when deenergized. It is a schematic diagram of a structure in which gas is stored in a tank via a contact circuit) and introduced into the fuel switching valve Cb of the engine. If the force is applied to the tank and the gas storage tank comes off, the electrical wiring will be disconnected and the electromagnetic valve will be turned off so that the gas in the tank will not leak.
2 and I are. A reverse J-shaped locking and fixing structure KRsec having elasticity is provided at both ends of the fixing device MT5 fixedly fixed to the upper part of the vehicle. (Lower view) When the car is severely damaged, the reverse J-shaped This is an example of a structure (upper view) in which the reverse J-shaped locking function part of the locking structure KRsec extends and the HPE body is detached from the upper part. As long as the HPE body has a function of separating to the upper part, it does not stick to metal, synthetic resin, other, material and shape.
It is preferable to provide a carbon dioxide livestock gas tank and a hydrogen livestock gas tank in the structure of the livestock gas tank.

上記補足記載であるが、前記水蒸気改質で生成した合成ガスはCOとHの概略物質量1:1の混合物である。気体体積は物質量に比例するので、一酸化炭素量=水素量で気体は標準状態で22.4L/molの体積である。(液体水素:高圧 水素=6:1の運搬効率)水素は1Lあたり39g(700気圧のタンク内重量)である。
前記CO改質で生成したガスは上記第2の発明の段落に記載しているが、一例として改質物質をジメジエーテルとした場合は、ジメジエーテルに水蒸気か二酸化炭素の何れか一方か両方かを加えて反応させると、
A.CHOCH+HO→2CO+4H−48.9Kal/mol 水蒸気の場合
B.CHOCH++CO→3CO+3H−58・8Kal/mol二酸化炭素の場合
C.2CH3OCH3+H2O+CO2−107.7Kal/mol両方の場合 のようになる。
*水素の性質・拡散が早く漏れやすい・高い反応性・特に鉄鋼を含む金属を脆くする。
Although the above-mentioned supplemental described, the synthesis gas produced by the steam reforming is a schematic substance amount 1 of CO and H 2: a mixture of 1. Since the gas volume is proportional to the amount of the substance, the amount of carbon monoxide = the amount of hydrogen and the gas has a volume of 22.4 L / mol in the standard state. (Transport efficiency of liquid hydrogen: high pressure hydrogen = 6: 1) Hydrogen is 39 g per liter (weight in tank of 700 atm).
The gas generated by the CO 2 reforming is described in the paragraph of the second invention, but when the reforming substance is dimethyl ether as an example, the dimethyl ether is either water vapor or carbon dioxide, or both. In addition, if you react,
A. In the case of CH 3 OCH 3 + H 2 O → 2CO + 4H 2 −48.9 Kal / mol water vapor
B. In the case of CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol carbon dioxide
C. In the case of both 2CH3OCH3 + H2O + CO2-107.7 Kal / mol become that way.
* Hydrogen properties, diffusion is quick and easy to leak, high reactivity, and especially brittle metals including steel.

図3A.は図1Aの前後方向断面図で、ロータリーピストンエンジンの水素対応構造部の説明は図6に記載しており後述する。
ロータリーピストンエンジン ロータリーハウジングの内壁と外壁間に少なくとも1/2周する通水路Kを設けており、1方の、水の導入管からは水を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み、前記水が燃料の燃焼熱で吸気→圧縮→爆発→排気工程部に当接する通水路を通る過程で水蒸気Jとなり吸熱反応流路部Sへ送り込まれ、炭素C挿入管より炭素が挿入される、
他方のロータリーピストンエンジン内に空気Oが送り込まれ、次に燃料の合成ガスMTCかサブタンクST燃料(ブタン・バイオ燃料・合成ガス等の何れか)がエンジン内に送り込まれ、→圧縮→爆発→排気Eとなり、吸熱反応流路部Sへ送り込まれる、3図の記載では前記排気Eは吸熱反応流路部Sの管中央部を流れ、水蒸気Jと挿入された炭素は熱反応流路管MSの管壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造の1例概略図である。
CO2改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図1B・図3、の説明構成を適用する。
FIG. 3A. FIG. 1A is a cross-sectional view in the front-rear direction of FIG. 1A, and a description of the hydrogen-compatible structure of the rotary piston engine is shown in FIG.
Rotary piston engine A water passage K that makes at least a half turn between the inner wall and the outer wall of the rotary housing is provided, and water is supplied from one water introduction pipe to the water passage K between the inner wall and the outer wall of the rotary housing. The water is sent to the endothermic reaction channel S through the carbon C insertion tube, and the water becomes steam J in the process of passing through the water passage that contacts the intake → compression → explosion → exhaust process part with the combustion heat of the fuel. The
Air O 2 is sent into the other rotary piston engine, and then the fuel synthesis gas MTC or subtank ST fuel (any of butane, biofuel, synthesis gas, etc.) is sent into the engine, → compression → explosion → exhaust E X next to be fed to the endothermic reaction flow path portion S, the exhaust E X flows through the tube center portion of the endothermic reaction channel section S, carbon inserted with steam J thermal reaction channel is in the description of FIG. 3 flow synthesis gas generator tube provided in a coil shape in contact with the tube wall of the tube MS, the tube in the heat of the exhaust E X flowing a central portion is generated in the synthesis gas is withdrawn from the take-out tube is transferred to savings gas tank MT FIG.
The explanation structure of FIG. 1B and FIG. 3 is applied to the structure of the water passage / ventilation path of the rotary housing corresponding to CO2 reforming and synthesis gas reforming.

図3B.は図3A.の水(HO)の導入管部に水蒸気Jと炭素Cの混合体を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み前記熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造概略図である。
CO改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図3A,B,図4にも図1Bの説明構成を適用する。
FIG. 3B. FIG. A mixture of water vapor J and carbon C is fed into a water passage K between the inner wall and the outer wall of the rotary housing into the water (H 2 O) introduction pipe portion of the water and comes into contact with the inner wall surface of the thermal reaction channel pipe MS in a coil shape the synthesis gas production tube provided in the flow, which is the tube structure schematic diagram central portion is generated heat in the synthesis gas in the exhaust E X flowing retrieved from the take-out tube is transferred to savings gas tank MT.
The structure of the water passage / ventilation path of the rotary housing corresponding to CO 2 reforming and synthesis gas reforming also applies the explanation structure of FIG. 1B to FIGS.

図4は図3の熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管路をストレートの細い管にして設け、前記細い管と細い管の間を排気Eが流れる構成にしたものであり、又吸熱反応流路の設計は排気ガス処理システムで触媒を対峙させて排気を無害化させるシステムで多種実用化されているので、その構造構想を適用しても良い。 Figure 4 is provided to the synthesis gas production pipeline provided in a coil shape in contact with the tube inner wall surface of the thermal reaction flow pipe MS of FIG. 3 in a thin tube of a straight, exhaust between the thin tube and the thin tube E X The design of the endothermic reaction flow path has been put to practical use in a system that makes the exhaust gas harmless by confronting the catalyst in the exhaust gas treatment system. good.

図5は特開2007−211608の水素ロータリーピストンエンジンを示す概略図である。 FIG. 5 is a schematic view showing a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-2111608.

図6は水素ロータリーピストンエンジンの電子制御噴射構造部の主構成を示した図であり前記電子制御噴射弁は、例えば100KWの出力を得る為には2300NL/minの大容量を噴射する必要がある、上図の2個の噴射弁40,42を設けて大容量を噴射している。
さらにローターハウジング側面に大容量の吸気ポート16と排気ポート18を設け、更に爆発室を爆発寸前時に2分する構造にしており2個の点火プラグ14,15を設けている図。
FIG. 6 is a diagram showing a main configuration of an electronically controlled injection structure of a hydrogen rotary piston engine. The electronically controlled injection valve needs to inject a large capacity of 2300 NL / min in order to obtain an output of 100 KW, for example. The two injection valves 40 and 42 in the above figure are provided to inject a large volume.
Further, a large-capacity intake port 16 and an exhaust port 18 are provided on the side of the rotor housing, and the explosion chamber is divided into two when it is about to explode, and two spark plugs 14 and 15 are provided.

近年ハイブリッド車・100%電気の電気自動車が脚光を浴びている。
しかし自動車の殆どを電気エネルギーとすると、家電を始めとする電化のスピードに追従させるのが一杯の電力供給事情に追い打ちを掛ける「福島原発」の問題もあり、電力供給設備の拡充は早急に解決すべき課題と成っている。しかしながら国民は原子力発電所の建設または再稼働問題については、原発を廃止すれば電力料金の負担が増える事もあり賛成方向に理解していても原発廃棄物の処理方法が判らない現状では反対意見が多いと私は理解している、更に世論は脱ダム方向に向いている、従って電力供給設備の拡充は火力発電及び自然エネルギーによる物のウエートが非常に高くなるのは、必死の情勢である。 従ってCO2排出を抑えた電力発電設備を拡充することが早急に解決すべき問題である。
In recent years, hybrid vehicles and 100% electric vehicles have attracted attention.
However, if most of the automobiles are used as electric energy, there is a problem of the “Fukushima nuclear power plant” that overwhelms the power supply situation to follow the speed of electrification including home appliances, and the expansion of the power supply facilities is solved quickly It is an issue that should be done. However, the public disagrees with the current situation regarding the construction or restart of nuclear power plants, as the burden of electricity charges will increase if the nuclear power plant is abolished. I understand that there are many, and further public opinion is toward the direction of damming. Therefore, expansion of power supply facilities is a desperate situation that the weight of things by thermal power generation and natural energy becomes very high . Therefore, expanding the power generation facilities that suppress CO 2 emissions is a problem that should be solved immediately.

ここ数十年外国から安価な木材が輸入され、林業従事者は極端に減少し山林は間伐されず、又松枯れ等害虫に蝕まれた枯木は放置されたままである。
更に農業の活性化であるが、「田んぼ」の殆どは農業用水路が整備されており、更に長年施肥をしていて、肥沃な農地となっている、これを遊ばしておくのは、あまりにも「無駄」である、この「田んぼ」に例えばパルプ材料となる「ケナフ」、養蚕の「桑」を植えるとか、あるいは水の補給が十分に出来る所は、南米のウルグアイが行っている「ユウカリ」をうえるとかするのも1つの案であり、前記農産廃棄物を含めた炭化出来るものを、農家が片手間で出来る小規模な炭化装置(図10参照)を複数軒に1個貸与使用(リース方式にして前記炭化装置で炭化した物の代金で割安にした炭化装置を、例えば5年分割とかで買い取らす方式にすれば、買い取らしたお金をさら多くの林業従事者や農家が片手間で出来る「小規模な炭化装置」を貸与させる予算の一部にする事が出来る)するとか、更に里芋の様に水の供給が十分に出来る場所ではよく育つ「バイオエタノール」に成り得るものを植えるとかするのも一策である。
In recent decades, cheap timber has been imported from foreign countries, the number of forestry workers has decreased dramatically, the forest has not been thinned, and dead trees devoured by pests such as pine wilt have been left unattended.
Furthermore, it is the vitalization of agriculture, but most of the “rice fields” have agricultural waterways, which have been fertilized for many years and have become fertile farmland. For example, “Kenaf”, which is a pulp material, and “Mulberry” in sericulture can be planted in this “rice field”, or “Yukari” from Uruguay in South America can be used. One plan is to use a small-scale carbonization device (see Fig. 10) that can be carbonized by a farmer with a single hand for lending use (lease method). For example, if the carbonization equipment that is cheaper with the price of the carbonized equipment is purchased in a five-year split, for example, a small scale that allows more forestry workers and farmers to use the purchased money with one hand. ”Carbonizing equipment” It is also possible to plant a thing that can become “bioethanol” that grows well in places where water supply is sufficient, such as taro.

2020年迄に温室効果ガス(CO)の排出を 25%削減しようと言う目標も囁かれている中で、世界中がこの目標にどうやって到達するか凌ぎを削っている、日本のCO排出の主役は内燃機関からの排出と発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出である、これらのCOは、石炭・石油・天然ガスを始とする化石燃料の使用による物であり、石炭・石油・天然ガスを始とする化石燃料は限りある資源であり、言うまでも無く再生産不可能な資源である。 The goal of reducing greenhouse gas (CO 2 ) emissions by 25% by 2020 is being asked, and Japan's CO 2 emissions are struggling to see how the world can reach this goal. The main players in this project are emissions from internal combustion engines and emissions from thermal power boilers, which account for about 82% of electricity generation (2012 Electricity Federation statistics). These CO 2 starts with coal, oil and natural gas. Fossil fuels such as coal, oil, and natural gas are limited resources, and of course, resources that cannot be reproduced.

京都議定書によれば、植物の炭素Cの燃焼等により生成される炭酸ガスCO2は植物の炭素同化作用で消費される為 プラス マイナス ゼロでありCO排出量としてカウントされない約束に成っている、従って化石燃料の炭素の消費を、植物の炭素にシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、上記合成ガス生成サイクルの案を実現するのが最良と思う。(環境省2010年資料によると、温室効果ガスCOは全世界で303億tを排出しており日本はその3.8%である) According to the Kyoto Protocol, carbon dioxide CO 2 produced by the combustion of plant carbon C is consumed by plant carbon assimilation, so it is a plus or minus zero and is not counted as CO 2 emissions. Therefore, in order to shift the carbon consumption of fossil fuels to plant carbon and achieve a 25% reduction in greenhouse gas CO 2 emissions at an early stage, it is best to realize the above-mentioned synthesis gas generation cycle plan. think. (According to 2010 data from the Ministry of the Environment, greenhouse gas CO 2 emits 30.3 billion tons worldwide, Japan is 3.8%)

太陽光発電(ソーラー発電パネル使用システム・太陽光集光し、熱で蒸気発生→発電)が今後の発電の主流になる日はそう遠くない。しかしながら太陽光発電は夜・雨・曇りと24Hフルタイム発電出来ないのと、大規模に設置する場所となると電力使用地からかなり遠隔地になるので変電・送電設備を新たに設置する事に成るのが欠点で、太陽光発電のみで賄うには大容量の蓄電設備が必要で、又日照率の良い場所(例えば年間降雨量の少ない砂漠が筆頭候補)となると厖大な送電・受電設備が必要である(前記大容量の蓄電設備・厖大な送電・受電設備には、日本が発明した超伝導があり、すでに実験プラントが試稼動中であり、2008年に1,100, 000Vの国際規格も国際承認を得たところであるが、想定コストとの格差が問題とされている)。
そこで本願発明の燃料製造機構を併用し、太陽光発電可能時間以外は短時間稼動可能な本願発明の内燃機関発電とすれば、温室効果ガスCOの排出削減は、より早期に達成出来ると言える。
The day when solar power generation (system using solar power generation panels, condensing sunlight, generating steam with heat → power generation) will become the mainstream of future power generation is not far away. However, solar power generation is not possible 24 hours full-time power generation at night, rain, and cloudy, and if it is installed on a large scale, it will be quite remote from the power usage area, so it will install new substation and transmission equipment The disadvantage is that large-capacity power storage equipment is necessary to cover only with solar power generation, and if it is a place with a good sunshine rate (for example, a desert with low annual rainfall is the leading candidate), a large amount of power transmission / reception equipment is required. (There is superconductivity invented by Japan in the above-mentioned large-capacity power storage equipment, large-scale power transmission / reception equipment, the experimental plant is already in trial operation, and the international standard of 1,100,000V was also established in 2008. Although it has just gained international approval, the gap with the estimated cost is a problem).
Therefore, if the internal combustion engine power generation of the present invention that can be operated for a short time other than the solar power generation time is used in combination with the fuel production mechanism of the present invention, it can be said that the reduction of greenhouse gas CO 2 emission can be achieved earlier. .

燃料とする炭素Cの調達コスト削減の可否が、本願の実用の成否を握っている。炭素製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
「昔の炭焼き窯の効率を良くした物」炭化装置であり、この炭焼き窯規模のものを山林に多数点在設置して、間伐、枝打ち、下刈りといった作業をしながら、燃料とする炭素Cの調達作業を掛け持ちで出来る構造にした炭素製造装置を順次貸与する形態(補助金に代えて出すことに対しての案)にする事が本願実現の近道となる具体的提案である。
Whether or not the procurement cost of carbon C as a fuel can be reduced holds the success or failure of practical use of the present application. In carbon production, when carbonized organic substances are heated with the air and oxygen flow cut off, they turn into black carbon-rich substances. The resulting product is an aggregate mainly composed of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.
Carbon charcoal used as a fuel while performing many operations such as thinning, pruning and undercutting. It is a concrete proposal that is a shortcut for realizing the present application to sequentially lend carbon production equipment that has a structure that can be handled in a procurement manner (subject to substituting for subsidies).

図10は前述の小規模炭化装置の想定概略図であり、炭素生成室CSに本願の炭素材に適した炭化植物を入れ釜戸の役割をする燃焼室FCに本願の炭素材の概略半分の炭化材植物を燃焼させ、出来た炭素Cの形で集積場に集積する方式にすれば、枝付木材での運搬よりはるかに運搬コストを下げる事が出来る物であり、
酸素が入らない環境で植物原料(木材等)を加熱して炭化させる炭化室CSに木材等を投入して酸素が入らない環境にして、前記炭化室を加熱する加熱用燃料(木材等の植物原料又はその他の燃焼材)を燃焼させる燃焼室FCに投入して燃焼させ、前記炭化室での炭化過程で発生するガスC4と炭化室の内壁に燃焼室FCの排ガスと水タンクから導入した水H2Oを水蒸気にする水蒸気生成手段の管路を設けて、前記炭化過程で発生するガスC4とともに導入管C4で燃焼室に導入して炭化室を加熱する燃料とする構成構造にする、
FIG. 10 is an assumed schematic diagram of the above-described small-scale carbonization apparatus. Carbonization plants suitable for the carbon material of the present application are placed in the carbon production chamber CS, and the combustion chamber FC serving as a pot door is approximately half carbonized of the carbon material of the present application. By burning the timber plant and collecting it in the collection area in the form of carbon C, it is possible to reduce the transportation cost much more than transportation with branch wood,
Fuel for heating (plants such as wood, etc.) that heats the carbonization chamber by introducing wood into the carbonization chamber CS that heats and carbonizes plant raw materials (wood, etc.) in an environment that does not contain oxygen The raw material or other combustion material) is introduced into the combustion chamber FC where it is combusted and combusted. The gas C4 generated in the carbonization process in the carbonization chamber and the water introduced from the exhaust gas of the combustion chamber FC and the water tank on the inner wall of the carbonization chamber A pipe for steam generating means for converting H 2 O into steam is provided, and the gas is generated in the carbonization process together with the gas C4 to be introduced into the combustion chamber through the introduction pipe C4 to form a fuel that heats the carbonization chamber.

上記第2の発明の段落に記載している構造の改質部(COの改質)を、上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かを、前記反応させ小規模炭化装置の燃料とする構成にすると、更に炭化に消費する燃料の節減となり、温室効果ガスの排出削減となる。
更に改質部(COの改質)の使用により、石炭等の化石燃料を使用する事が出来、燃料としていた木材等を植物原料のCに改質する出発改質材に出来る。
前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物である。
The reforming part (CO 2 reforming) having the structure described in the paragraph of the second invention is provided in the discharge part (chimney) of the exhaust gas pipe, and as an example, the reforming substance is dimethyl ether, and the catalyst If the reforming section is made to react with either dimethyl ether or one of water vapor or carbon dioxide to produce fuel for a small-scale carbonization device, fuel consumed for carbonization can be further reduced, and the greenhouse Reduction of effect gas emissions.
Furthermore, by using a reforming section (CO 2 reforming), it is possible to use fossil fuels such as coal, and it is possible to use it as a starting reforming material that reforms wood, etc., used as fuel into plant raw material C.
As an example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum, and the like. These compounds, other metals or compounds.

前記記載の合成ガスは水素と一酸化炭素のみとは限らない、前記合成ガスは主構成を表し、例えば、未燃焼炭素、二酸化炭素、水分、その他大気中に存在する気体及び不純物等を含有している場合も含む。 The synthesis gas described above is not limited to hydrogen and carbon monoxide. The synthesis gas represents a main component, and includes, for example, unburned carbon, carbon dioxide, moisture, and other gases and impurities present in the atmosphere. This includes cases where

炭素(植物原料のC)の調達コストが現在では天然ガス(メタン・ブタン等)、石炭、石油の化石燃料に比べ高く、前記炭素の調達コストが、同等に成るか、行政の補助金等が得られるか、若しくは温室効果ガスCOの排出規制の強化の法律を作るか、する迄は炭素の調達は天然ガス(メタン等)で行うか直接天然ガス(メタン等)を燃料とし、社会全体の欲求が高くなり炭素の調達コストがペイ出来る時点で切り替える方法もある、
しかしながら化学技術の進歩の速度は「ニーズ」に比例する形で進歩していると私は思っている、
従って本願の主原料となる再生可能な炭素Cの調達ニーズが高く成れば、前記調達技術は加速度を付けた状態で進化すると確信している。
本願の内燃機関サイクルに使用する炭素は当面「石炭」を粉末にして使用するのが一番安価であるので、再生可能な炭素Cの調達システムが完備するまでは、前記化石燃料を使用して順次再生可能な炭素Cの調達システムに移行する形態をとることになる。
The procurement cost of carbon (plant raw material C) is currently higher than that of natural gas (methane, butane, etc.), coal, and petroleum fossil fuels. Until it is obtained, or the law of strengthening the emission control of greenhouse gas CO 2 is made, the procurement of carbon will be done with natural gas (methane etc.) or directly with natural gas (methane etc.) as fuel and the whole society There is also a way to switch when the desire for carbon increases and the cost of carbon procurement can be paid,
However, I think that the speed of progress in chemical technology is progressing in proportion to "needs",
Therefore, if the need for procurement of renewable carbon C, which is the main raw material of the present application, becomes high, we are confident that the procurement technology will evolve with acceleration.
The carbon used in the internal combustion engine cycle of the present application is the cheapest to use “coal” as powder for the time being, so the fossil fuel will be used until the renewable carbon C procurement system is complete. It will take the form of shifting to a carbon C procurement system that can be sequentially regenerated.

温室効果ガスCOの排出枠の日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を前記炭素の調達コストの一部として使用すれば、本願発明の実現時期は早くなる。
*、化学工場・製鉄工場・アルミ工場・塵焼却場からパイプラインで水素と一酸化炭素の混合気体・二酸化炭素・水素等の輸送手段とすれば運輸機器での輸送よりはるかに輸送コストを下げる事が出来る。アメリカや欧州各国ではそれぞれ数千Kmの水素輸送パイプラインを敷設しており、世界を競争相手として勝ち残るためにも政府の後押しで早期に実現するべきである。
The amount of purchase of greenhouse gas CO 2 emission allowances in Japan is estimated to be about 1 trillions of billions of yen. If this purchase amount is used as part of the carbon procurement cost, the time of realization of the present invention will be explained. Will be faster.
* If transportation from a chemical factory, steel factory, aluminum factory, dust incineration plant, etc., is carried out using a mixed gas of hydrogen and carbon monoxide, carbon dioxide, hydrogen, etc., the transportation cost will be much lower than transportation using transportation equipment. I can do it. Each US and European country has a hydrogen transport pipeline of thousands of kilometers, and should be realized early with the support of the government in order to survive the world as a competitor.

本願の内燃機関を動力とした動力発電設備は、比較的小規模の動力発電設備(前記動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来るので、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
The power generation facility powered by the internal combustion engine of the present application is a relatively small-scale power generation facility. Because it can be a decentralized power generation system with self-sufficiency in units of mass such as remote islands, mountainous remote areas, industrial parks, submarine transmission cables and power demand It is possible to drastically reduce power transmission facilities, power transformation facilities, and power reception facilities that respond to changes in power consumption.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

メタノールを内燃機関の燃料とする場合、もともとメタノールは化学平衡から有利な高圧にして水素と一酸化炭素から合成されたものである。従って水素に転換して使用するよりは、水素と一酸化炭素の合成ガスの形で使用するのがエネルギー的には最も効率が高い。 When methanol is used as a fuel for an internal combustion engine, methanol is originally synthesized from hydrogen and carbon monoxide at a high pressure advantageous from chemical equilibrium. Therefore, it is most efficient in terms of energy to use it in the form of synthesis gas of hydrogen and carbon monoxide, rather than converting it to hydrogen.

圧縮水素と液体水素の輸送であるが、水素の陸上輸送では、水素ガスの体積貯蔵密度が小さい問題を補うために、14.7〜19.6MPaに加圧し圧縮水素として輸送するが、Cr−Mo鋼の水素容器は重量が重く、一例をあげれば100Kgの水素を輸送するトレイラー車は水素容器の重量だけで7tになる、圧縮水素の輸送コスト低減には、アルミ合金ライナーや高密度ポリエチレンライナーにガラス繊維や炭素繊維で強化したタンクにする必要がある、
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準}
Although transportation of compressed hydrogen and liquid hydrogen is carried out, in order to compensate for the problem that the volume storage density of hydrogen gas is small, hydrogen is pressurized to 14.7 to 19.6 MPa and transported as compressed hydrogen. Mo steel hydrogen container is heavy. For example, a trailer vehicle that transports 100 kg of hydrogen requires 7 tons of hydrogen container. To reduce the cost of transporting compressed hydrogen, aluminum alloy liners and high-density polyethylene liners are used. It is necessary to make a tank reinforced with glass fiber or carbon fiber,
Under current regulations (in Japan, registration of JIS B 8265 has been completed and internationally there is ISO 16528) CFRP for transportation (tank with high-density polyethylene liner reinforced with glass fiber or carbon fiber on the entire surface) ) Since the container has a pressure of up to a capacity of 35 MPa, it is necessary to relax regulations in order to utilize the container. (Japan Industrial Gas Association, hydrogen gas container standards)

一方液体水素は体積貯蔵密度が水素ガスの800倍強でタンクローリ―とか断熱コンテナーが使用されているが、液体水素は液化にエネルギーを必要とすることや、沸点が−253°Cで蒸発ロスが発生する欠点がある。 On the other hand, liquid hydrogen has a volume storage density 800 times higher than that of hydrogen gas, and tank trucks or insulated containers are used. However, liquid hydrogen requires energy for liquefaction and has a boiling point of −253 ° C. and evaporation loss. There are disadvantages that occur.

本願発明の内燃機関は合成ガスを燃料としているが、該合成ガスは自動車内でのパイプ配管供給であり、該内燃機関で生成された合成ガスを畜ガスする畜ガスタンクの蓄圧は前述現存の水素エンジン車に搭載されている圧縮ガスの35MPaの畜ガスタンクにする必要は無く1/40程度の蓄圧であっても良く、その蓄圧を低く出来る分加圧ポンプに使用するエネルギーを使わなくて済むし、蓄ガスタンク構造も現行法規内での多くて数MPa程度の構造にする事も出来る。 The internal combustion engine of the present invention uses synthesis gas as fuel, and the synthesis gas is a pipe supply in an automobile, and the accumulation pressure of the livestock gas tank for livestock synthesis gas produced by the internal combustion engine is the above-mentioned existing hydrogen There is no need to use a 35MPa livestock gas tank of compressed gas installed in the engine car, and it may be about 1/40 of the accumulated pressure, and the energy used for the pressurizing pump can be saved as much as the accumulated pressure can be reduced. The gas storage tank structure can also be a structure of at most several MPa within the current regulations.

水素の定常的大量輸送にはパイプラインによる輸送が最適であり欧州と米国各地ではおのおの千数百Km布設されている、本願の合成ガスも性状は水素と類似性状であり前記パイプラインによる輸送をするのが最適手段である。
前記水素パイプラインのパイプ材としては、現在の先端技術では、通常のラインパイプ鋼材に比し、バナジュウムを減らしニッケルやクロムを少量加えた耐サワー材であれば、通常の輸送環境下での使用材と出来るとしており、それによるコストUP分も10%以下とされておる。
Pipeline transportation is optimal for steady mass transportation of hydrogen, and the synthesis gas of this application is similar to hydrogen in Europe and the United States. It is the best way to do it.
As the pipe material of the hydrogen pipeline, in the current advanced technology, if it is a sour-resistant material with a reduced amount of vanadium and a small amount of nickel or chromium, compared with ordinary line pipe steel, it can be used in a normal transportation environment. It is said that the cost can be increased to 10% or less.

水素を燃料としたロータリ−エンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素(又はガソリン)ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、
この車の特徴は燃費の良い条件でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としておる所であり、
短所としては高圧水素燃料タンク満タンでの走行距離が100Kmと短く、又水素の運搬手段も(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造&輸送コストが高い点等である。
The rotary engine vehicle powered by hydrogen is a Mazda Premacy Hydrogen RE hybrid vehicle that has a structure that can be selected to travel using either hydrogen as fuel or gasoline as fuel. A high-pressure hydrogen fuel tank (35MPa, 74L) And a gasoline tank is mounted on the vehicle, electricity is generated by rotating a hydrogen (or gasoline) rotary engine and stored in a lithium ion battery, and driving of the wheel is electricity stored in the battery,
The feature of this car is that the engine is operated with good fuel economy, and the control of the vehicle speed fluctuations depending on the running state of the car is electric control.
Disadvantages include a short mileage of 100 km in a high-pressure hydrogen fuel tank, and the hydrogen transportation means (assuming transportation by car) has a poor ratio of hydrogen loading weight to the tank weight, leading to the development of infrastructure such as hydrogen stations. There are no points and high hydrogen production & transportation cost.

水素を燃料とした東京都市大学が開発している水素エンジンバスは35MPaに圧縮したタンクを6本屋根の上に積んでおり、該タンクを満タンにした状態で200Km走行できるバスでエンジンはディーゼルエンジンを改良した物で主な改良部位はインテークマニホールドと水素の噴射弁と点火プラグを追加したぐらいで有る。 The hydrogen engine bus developed by Tokyo City University, which uses hydrogen as fuel, is loaded with six tanks compressed to 35MPa on the roof. The main improvements in the engine are the addition of an intake manifold, hydrogen injection valve and spark plug.

水素を燃料とした東京都市大学が開発して作った、水素レシプロエンジンでワゴンタイプの武蔵10は水素冷却インタークーラー付水素エンジンで、液体水素100Lのタンクを搭載しており1充填で300Kmの連続走行を可能にした車である。
上記水素を燃料とする現存車の短所は、水素の運搬手段の(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造コストが高い点等である。
A hydrogen reciprocating engine and a wagon type Musashi 10 developed and developed by Tokyo City University using hydrogen as a fuel, is a hydrogen engine with a hydrogen cooling intercooler, equipped with a tank of 100 L of liquid hydrogen and continuously running at 300 Km per charge. It is a car that made it possible.
Disadvantages of the above-mentioned existing vehicles that use hydrogen as a fuel are that the ratio of hydrogen loading to the tank weight of the hydrogen transport means (assuming transport by car) is poor, the infrastructure development such as the hydrogen station does not progress, and the hydrogen production cost It is a high point.

マツダ(企業名)の水素ロータリーピストンエンジンでは、水素Hを燃料として発電し、その電気でモーターを回転させているのでその発電構成部分を動力発電機として使用出来、その動力発電機としておる発電構成部分を、本願内燃機関に適用している。 The hydrogen rotary piston engine Mazda (company name), and generating the hydrogen H 2 as a fuel, since by rotating the motor in the electric can use the power component as power generators, dwell as a power generator generating The components are applied to the internal combustion engine of the present application.

前段落の動力発電設備とする場合、合成ガスを副産物としているか、あるいは大量に熱を廃棄している製鋼所・化学工場・アルミ製造工場・鋳造工場・鍛造工場・ごみ焼却所とかに、隣接若しくは近接して動力発電所を設置すればさらにランニングコストは低減される。 In the case of the power generation equipment in the previous paragraph, it is adjacent to steelworks, chemical factories, aluminum factories, foundries, forging factories, waste incinerators, etc. that are syngas as a by-product or a large amount of heat is discarded. If the power plant is installed in the vicinity, the running cost can be further reduced.

本願の内燃機関動力発電設備とする場合、比較的小規模の動力発電設備(前記内燃機関動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来る、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
In the case of the internal combustion engine power generation equipment of the present application, a relatively small scale power generation equipment (if the internal combustion engine power generator is assumed to have an output machine of 1000 KW / H as 1 unit / unit, 1 unit to several hundred units The number of units can be set as a decentralized power generation system with self-sufficiency in units of mass, such as remote islands, mountainous areas, and industrial parks. It is possible to greatly reduce the power transmission facilities and power transformation / reception facilities corresponding to the changes.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

前述炭素の供給源には
間伐及び松枯れ等害虫に蝕まれた枯れ木、更に日本の稲作で発生する籾殻・藁等は廃棄されている、この再利用されていない木材と籾殻・藁だけでもかなりの割合で混合気体製造の植物の炭素(C)に成り得る、更に休耕地等の空き地にケナフ(Hibiscuscannabinus L)を栽培し(種には20%の油がある)前記植物の炭素(C)にすることも、更に休耕地等の空き地にトウモロコシ、サトウキビ等の栽培をすれば、植物のバイオ燃料にも出来る、述べるまでもないと思うが、「田んぼ」の多くは農業用水路が確保されており、かつ、長年肥料を施した物であるので、例えば里芋とか、麦を栽培して実は食用として廃棄部分を前記植物のバイオ燃料か植物の炭素(C)にして麦藁を前記植物の炭素(C)にする等、それらから得られる収入と稲作で得られる収入の差額を補填する政策にすると言う方法もある、
The carbon sources mentioned above are dead trees that have been eaten by pests such as thinning and pine wilt, and rice husks and husks generated in Japanese rice farming are discarded. Cultivated kenaf (Hibiscus cannabinus L) in vacant land such as fallow land, which can be mixed gas production plant carbon (C) at a rate of carbon (C) of said plant It goes without saying that cultivating corn, sugarcane, etc. in vacant land such as fallow land can be used as biofuel for plants, but many rice fields have agricultural waterways. In addition, since it has been fertilized for many years, for example, cultivated taro, wheat, and actually edible, the waste part is made into the biofuel of the plant or the carbon of the plant (C) and the wheat straw is converted into the carbon of the plant ( There is also a method to make up for the difference between the income obtained from them and the income obtained from rice cultivation, etc.

今まで国で考えられていた農業(稲作農家)に対する米価(ウルグアイランド)対策として20数年前から実施されている農業規模拡大策で、小さい田んぼ2〜3枚を一枚の田にして農作業効率を上げる事や、数個の農家を一つの企業として大規模化する策や、農業所得補償制度,米の需要減少に対応する、減反助成金政策(2.5兆円)など稲作農家を支援する政策がとられているがいずれの政策も日本の稲作農家を魅力ある職業として次の世代にバトンタッチできる施策とするには程遠いものであり、本願の植物の炭素(C)を燃料源とする政策を実現させる事が「地球温暖化に対処する「CO」の排出削減」と「農・林業を魅力ある職業に出来る事」と、さらに日本の「自動車産業を活性化」と言う「1石数鳥」の効果が期待できる。 Agricultural work with 2 to 3 small rice fields as a single rice field as a measure to expand the scale of agriculture, which has been implemented in the past 20 years as a measure against rice prices (Urg Island) for agriculture (rice farmers) that has been considered in the country. Measures to increase efficiency, measures to increase the size of several farmers as one company, agricultural income compensation system, a subsidy subsidy policy (2.5 trillion yen) to cope with a decrease in rice demand There is a policy to support, but none of these policies are far enough to make Japanese rice farmers an attractive profession for the next generation, using the carbon (C) of the plant as a fuel source. To achieve this policy, “Reducing CO 2 emissions in response to global warming” and “Making agriculture and forestry an attractive occupation” and further revitalizing the Japanese automobile industry. We can expect effect of "one stone several birds" .

本願明細書に記載及び特許請求の範囲に記載されている事象から容易に想到出来る種々の実施形態も、前記特許請求の範囲を逸脱しない範囲であれば本願発明に含まれる。 Various embodiments that can be easily conceived from the events described in the present specification and claims are included in the present invention as long as they do not depart from the scope of the claims.

この案件は1部未開発の部分もあるが、本願の内燃機関は実施可能であり、これらの方法、構成機器の製造に携わる人々が、次にそれらの方法、内燃機関を利用する人々が、更らにそれらに関連する業種の人々に波及する、それらの産業に利用できる。
何より自国の資源を最大限活用するサイクルを作ることが、日本の100年の計を作る土作りとなり、それらの産業の育成につながる。
Although this project is partly undeveloped, the internal combustion engine of the present application can be implemented. Furthermore, it can be used for those industries that spread to people in industries related to them.
Above all, creating a cycle that maximizes the use of your country's resources will create a foundation for Japan's 100-year total, leading to the development of those industries.

A.内燃機関(ロータリーピストンエンジン)で水と炭素を前記エンジン内にてHとCOの合成ガスとする概略構造図。B.レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成図。A. FIG. 3 is a schematic structural diagram of water and carbon as synthesis gas of H 2 and CO in the engine in an internal combustion engine (rotary piston engine). B. The schematic block diagram of the engine block of a water vapor | steam production | generation part of a reciprocating engine, a synthetic gas production | generation endothermic reaction flow path part, a fuel supply / injection system | strain, and a spark plug. A〜F 図1A.の貯ガスタンク設置要領の数種の貯ガスタンク設置例図。 H.貯ガスタンクの1単位のボンベの部分断面・及び当該ボンベのガス出し入れ管路部分図と部分断面図。i.タンク包括体保持・離脱要領図。A-F FIG. The example of several types of storage gas tank installation of the storage gas tank installation procedure. H. The partial cross section of the cylinder of 1 unit of a gas storage tank, and the gas inlet / outlet pipe | tube partial view and partial sectional drawing of the said cylinder. i. Tank comprehensive body holding / removal diagram. A.図1AのEAsecのロータリーエンジンから吸熱反応流路部に至る概略断面図。B.図1.A.のHO供給管に蒸気と炭素を加圧挿入するタイプの断面図。A. FIG. 1B is a schematic cross-sectional view from the EAsec rotary engine of FIG. 1A to the endothermic reaction flow path portion. B. FIG. A. Type cross-sectional view of pressure inserting the vapor and carbon in H 2 O supply pipe. エンジン排気管部に設けた吸熱反応流路部とガス生成管の構造を複数の細管で構成した概略構造例図。The schematic structural example figure which comprised the structure of the endothermic reaction flow-path part provided in the engine exhaust pipe part and the gas production | generation pipe | tube with several thin tubes. 特開2007−211608水素エンジンの制御装置のロータリーエンジンを示す概略図。Schematic which shows the rotary engine of the control apparatus of Unexamined-Japanese-Patent No. 2007-2111608. 特開2007−064169の水素ロータリーピストンエンジンの燃料噴射装置の、A,同上ローターの電子制御、水素噴射構造概略横断面図。 B,A,図の縦方向断面図。A, electronic control of a rotor same as above, and hydrogen injection structure schematic cross-sectional view of a fuel injection device of a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-064169. B, A, the longitudinal cross-sectional view of a figure. 特開2002−039022記載の燃料改質ガスエンジンの実施形態の構成図。The block diagram of embodiment of the fuel reformed gas engine of Unexamined-Japanese-Patent No. 2002-039022. レシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点火栓の概略構成図。1 is a schematic configuration diagram of an electronically controlled hydrogen injection system, intake / exhaust ports, and spark plugs for reciprocating (diesel engine) fuel supply. FIG. 特開2002-256849のカルマン渦を発生させて排気ガスのCOを水に吸集させる、排気管路に設けている排気ガス処理器の概略構造図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural diagram of an exhaust gas treatment device provided in an exhaust pipe that generates Karman vortices of Japanese Patent Application Laid-Open No. 2002-256849 and sucks CO 2 of exhaust gas into water. 小型炭素生成器の1例図。An example figure of a small carbon generator. 世界の化石燃料による,2酸化炭素放出量統計の過時年を捉えた年単位の棒グラフ。Annual bar graph that captures past years of carbon dioxide emissions statistics from fossil fuels around the world.

温室効果ガス排出削減に寄与する内燃機関であって、特に植物を主とする炭素Cと水HOを内燃機関内で合成ガス(H+CO)に生成し、生成した合成ガスを当該内燃機関の燃料とし、更に前記合成ガスの燃焼により排出される二酸化炭素をも分離し内燃機関内で合成ガスH+CO及び水素に改質し該合成ガス及び水素を当該内燃機関の燃料とするものである。 An internal combustion engine that contributes to the reduction of greenhouse gas emissions, particularly producing carbon C and water H 2 O, mainly plant, into synthesis gas (H 2 + CO) in the internal combustion engine, Further, carbon dioxide discharged from the combustion of the synthesis gas is separated as fuel for the internal combustion engine and reformed into synthesis gas H 2 + CO and hydrogen in the internal combustion engine, and the synthesis gas and hydrogen are used as fuel for the internal combustion engine. To do.

温室効果ガスが地球温暖化の大きな要因であり、「温室効果ガスを削減すべきである」と考えるのは世界共通の認識であるが、「具体的数値目標を・・」と言う段階に成ると、国際価格競争時代の今、温室効果ガス削減コストを掛ける事となるので話が進展していないのが現状である。
2014年現在の温室効果ガス排出削減策の自動車(内燃機関)の動力源としては、電気自動車,水素とのハイブリット,あるいは水素のみを燃料したものや「バイオエタノール」を燃料としたエンジンシステム特開2008−298030や「バイオエタノール」の燃料を水素と一酸化炭素とを含む燃料に改質して該改質ガスを燃料とする、温室効果ガスを排出削減する技術もあるが、しかし前記先行技術で製品化するにはそれぞれ解決しなければならない問題点が残っており、それぞれの問題は解決途上で決め手を欠いている部分を残しているのが現状と認識している。
又前記技術の内、電気を動力源とする技術では電気の製造は2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり該火力発電は石炭を始めとする化石燃料を使用しており「CO」を排出しているのでこの発電設備からの「CO」を排出しない策が実現しなければ、電気を動力源としても地球温暖化の温室効果ガスを削減に寄与する内燃機関の動力源とは言えない。
又前記技術の動力源を電気をとして温室効果ガスを削減する「CO」を排出しない電力供給源には原子力発電がある、しかし「福島原発」の問題もあり、新たに新設するのは困難であり廃炉の方向に向かうとの見方が大勢を占めていると思っている。
Greenhouse gases are a major cause of global warming, and it is a common recognition in the world to think that “greenhouse gases should be reduced.” However, it is at the stage of “specific numerical targets…” In the era of international price competition, the current situation is that the story has not progressed because it will incur greenhouse gas reduction costs.
As a power source of an automobile (internal combustion engine) of a greenhouse gas emission reduction measure as of 2014, an electric vehicle, a hybrid with hydrogen, or an engine system using only hydrogen or "bioethanol" as fuel There is also a technology for reducing greenhouse gas emissions by reforming a fuel of 2008-298030 or “bioethanol” into a fuel containing hydrogen and carbon monoxide and using the reformed gas as a fuel. There are still problems that must be solved in order to commercialize products, and it is recognized that there is a part that each problem is lacking in the process of solving.
Of the technologies mentioned above, in the technology using electricity as the power source, according to the statistics of the Electricity Federation of 2011, about 82% of Japan's total power generation is thermal power generation. since the discharging "CO 2" and using the fossil fuels, including unless realized measures that do not emit "CO 2" from the power plant, a greenhouse global warming electricity as a power source It cannot be said that it is a power source of the internal combustion engine that contributes to reducing the effect gas.
Moreover, nuclear power generation is a power source that does not emit “CO 2 ”, which uses electricity as the power source of the above technology to reduce greenhouse gases. However, there is a problem of “Fukushima nuclear power plant”, so it is difficult to establish a new one. And I think that the view that it goes to the direction of decommissioning occupies a lot.

前記「CO」を低減させる設備は既に存在している、その方法は排出された二酸化炭素を地底層深く(A)もしくは海底層に隔離(Sequestiern)(B)する提案である。2014年にアメリカで世界一の規模の石炭火力発電所が完成しているが、この発電で排出される「CO」の処理は1500mの地底層に封じ込める構造(前記A)であり、この発電所の建設費用は通常の2倍かかつており、更に1500mの地底層に封じ込めるためのエネルギー費用がかかり、その費用は電気料金に上乗せされ消費者負担と成ると言う問題がある。 Equipment for reducing the “CO 2 ” already exists, and the method is a proposal to sequester the discharged carbon dioxide deeply (A) or sequestered (B). In 2014 has been completed is coal-fired power plant of the world's largest in the United States, but the processing of the "CO 2", which is discharged in the power generation is a structure to contain the underground layer of 15 00 m (the A), construction cost of this power plant is cage once usually twice or further takes energy costs for containing the underground layer of 15 00 m, the cost there is a problem that becomes a is plus in electricity rates consumers pay.

前記「CO」を改質して合成ガスまたは水素ガスを得る技術は製鋼所の高炉ガス・転炉ガスの排ガスのエネルー化技術として色々な技術が次々と提案されており現業部門ですでに実用化されておる技術も多くある、又火力発電所の発電工程で排出されるガスについても同様にエネルギーの効率UPに活用されておるが、その殆どが大規模装置産業の定地形態物であり、移動形態物に搭載可能な内燃機関内で該内燃機関から排出する「CO」を改質して該内燃機関の燃料としておる実現可能技術は提案されておらない(見つからない)。 Various technologies have been proposed one after another for the technology to obtain synthesis gas or hydrogen gas by reforming the above-mentioned “CO 2 ”, and have already been proposed in the in-service sector as an energy generation technology for blast furnace gas and converter gas in steelworks. There are many technologies that have been put to practical use, and the gas emitted in the power generation process of thermal power plants is also used to increase energy efficiency, but most of them are fixed-form features in the large-scale equipment industry. In addition, no feasible technology has been proposed (not found) for reforming “CO 2 ” discharged from the internal combustion engine in the internal combustion engine that can be mounted on the moving form and using it as a fuel for the internal combustion engine.

特許5647364.ロータリーピストンエンジン車のエンジン機構。Patent 5647364. Engine mechanism of rotary piston engine car. 特開平11−106770.ジメチルエーテル改質ガスを使用する発電方法および装置JP-A-11-106770. Power generation method and apparatus using dimethyl ether reformed gas 特許4231735.二酸化炭素の分離回収方法および装置Patent 4231735. Method and apparatus for separating and recovering carbon dioxide 特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両。JP 2007-177684 A, a carbon dioxide recovery device for a vehicle, and a vehicle including the same. 特開昭57−150439炭化水素と水蒸気又は二酸化炭素との反応。Reaction of hydrocarbons with water vapor or carbon dioxide. 特許4609718 水素ロータリーピストンエンジンの燃料噴射装置Patent 4,609,718 Hydrogen rotary piston engine fuel injection device 特願平10−543729(特許3345782)合成ガス製造方法。Japanese Patent Application No. 10-543729 (patent 33455782) synthesis gas production method.

補助燃料によって燃焼されるロータリーピストンエンジンと、該ロータリーピストンエンジンのローターハウシングに水を導入管から供給する水供給手段と、供給された水が、ローターハウシングの熱で水蒸気化され、この水蒸気に炭素を供給するとともに、ロータリーピストンエンジンの燃焼工程後の排熱を利用して、吸熱反応化させて、燃料を生成し、前記補助燃料使用中に生成し続けるガスを溜める畜ガス手段を備え、この畜ガス手段の畜ガスと前記補助燃料とを切り替えて、ロータリーピストンエンジンに供給する、切換え手段を備えている構造を特徴とする技術(例えば特許文献1)があり、本願はこの技術をベース技術として、燃料の燃焼による排気ガス中の二酸化炭素(CO)も燃料に改質する技術を取り入れる事で、更なる温室効果ガス排出削減策と成る技術にしている。 A rotary piston engine combusted by auxiliary fuel, a water supply means for supplying water to the rotor housing of the rotary piston engine from the introduction pipe, and the supplied water is steamed by the heat of the rotor housing, And a livestock gas means for storing the gas that is generated by the endothermic reaction using the exhaust heat after the combustion process of the rotary piston engine and generating the fuel while the auxiliary fuel is used. There is a technique (for example, Patent Document 1) characterized by a structure including a switching means for switching the livestock gas of the livestock gas means and the auxiliary fuel to be supplied to the rotary piston engine, and this application is based on this technique. as carbon dioxide in the exhaust gas from the combustion of the fuel (CO 2) also to adopt a technique of reforming a fuel, further We are in a technology that is a greenhouse gas emission reduction measures that.

ジメチルエーテルに水蒸気または炭酸ガスを加えて触媒反応させることによりジメチルエーテルを改質して合成ガスまたは水素ガスを得、このガスを原動機用燃料として使用することを特徴とする、ジメチルエーテル改質ガスを使用する発電方法、ジメチルエーテルの改質を200°Cから500℃の中低温廃熱を利用して行うことを特徴とする上記の発電方法(例えば特許文献2)があり、
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
Uses dimethyl ether reformed gas, characterized in that dimethyl ether is reformed by adding steam or carbon dioxide gas to dimethyl ether to cause a catalytic reaction to obtain synthesis gas or hydrogen gas, and this gas is used as a fuel for a prime mover There is a power generation method, and the above power generation method (for example, Patent Document 2), characterized in that the reforming of dimethyl ether is performed using medium to low temperature waste heat from 200 ° C to 500 ° C.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

製鉄所で発生する副生ガスから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する500℃以下の低品位排熱を利用または活用することを特徴とする二酸化炭素の分離回収方法。(例えば特許文献3)があり、
本願の二酸化炭素を分離回収する技術とするには排ガスを数種の透過膜を透過させる膜型透過機器の設置や真空ポンプ等を設置する必要と言う問題が有る。
A method of separating and recovering carbon dioxide from a by-product gas generated at a steel works by chemical absorption method, which absorbs carbon dioxide from the gas with chemical absorption liquid and then heats the chemical absorption liquid to separate carbon dioxide A method for separating and recovering carbon dioxide, characterized by utilizing or utilizing low-grade exhaust heat of 500 ° C. or less generated at a steelworks. (For example, Patent Document 3)
In order to separate and recover the carbon dioxide of the present application, there is a problem that it is necessary to install a membrane type permeation device that allows several kinds of permeable membranes to pass through the exhaust gas, or to install a vacuum pump or the like.

車両二酸化炭素装置を自動車の排気系に於ける消音機と排気管との間に取り付けており、二酸化炭素を吸収材と三方性の電磁弁を介して接続されているC0吸収部を設けて、二酸化炭素を吸収したアルカノン化合物水溶液から電磁弁を介してエンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であり、分離した二酸化炭素は使用済みのアルカノールアミン化合物の再生に使用される技術(例えば特許文献4)がある。この技術は自動車の排気ガス中の二酸化炭素を分離する技術で分離した二酸化炭素の用途として二酸化炭素を吸収したアルカノン化合物水溶液の再生に使用している技術であるが、本願の排気ガス中の二酸化炭素を分離する技術として使用可能である。
*本願は排気ガス中から分離した二酸化炭素もしくは、排気ガス中の二酸化炭素を水に吸収させて、本願の内燃機関で燃料(ガス)に生成して畜ガスタンク経由で、該内燃機関燃料(ガス)としている事が、作用・効果から言って決定的な相異点である。
And in silencers vehicle carbon dioxide device in an exhaust system of an automobile is mounted between the exhaust pipe, provided with a C0 2 absorption portion which is connected via an absorbent material and the three-way of the solenoid valve carbon dioxide , A structure in which carbon dioxide is released from the aqueous solution of alkanone compound that has absorbed carbon dioxide by absorbing heat from the engine cooling heat through a solenoid valve, and the separated carbon dioxide is used to regenerate used alkanolamine compounds. (For example, Patent Document 4). This technology is used to regenerate the aqueous solution of alkanone compound that has absorbed carbon dioxide as an application of carbon dioxide separated by the technology that separates carbon dioxide in automobile exhaust gas. It can be used as a technique for separating carbon.
* In this application, carbon dioxide separated from the exhaust gas or carbon dioxide in the exhaust gas is absorbed into water and produced in the fuel (gas) by the internal combustion engine of the present application, and the internal combustion engine fuel (gas ) Is the decisive difference in terms of action and effect.

炭化水素と水蒸気若しくは二酸化炭素又はそれらの混合物とを正味吸熱条件に於いて反応させて、炭素化合物及び水素を含む気体とする方法であってニッケル及びコバルトの化合物及びアルカリ金属酸化物と酸性若しくは両性酸化物または混合酸化物との不水溶性化合物からなる触媒を使用する事を特徴とする上記方法に関する技術(例えば特許文献5)がある。
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
A method of reacting a hydrocarbon with water vapor or carbon dioxide or a mixture thereof under a net endothermic condition to form a gas containing a carbon compound and hydrogen, which is acidic or amphoteric with nickel and cobalt compounds and alkali metal oxides. There is a technique (for example, Patent Document 5) relating to the above method characterized by using a catalyst comprising a water-insoluble compound with an oxide or mixed oxide.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

水素ロータリーピストンエンジンの燃料噴射装置であって、水素ロータリーピストンエンジンの作動室を形成するローターハウジングに取り付けられ、水素ロータリーピストンエンジンの作動室に水素を直接噴射する水素インジェクタと、この水素インジェクタが作動室内に圧縮行程中の所定のタイミングで水素を噴射するように噴射タイミングを制御する水素噴射タイミング制御手段と、水素インジェクタからの水素が、水素ロータリーピストンエンジンの低回転域では圧縮行程の作動室のリーディング領域に向かって流出し、高回転域では圧縮行程の作動室の中央領域に向かって流出するように、水素の噴射方向を設定する水素流出方向設定手段と、を有することを特徴としている技術(例えば特許文献6)がある。
*本願の合成ガスの水素ガスと一酸化炭素は、エネルギー的には殆ど等価でありつまり(高位)発熱量はほぼ同じであるので、内燃機関の中で本願の合成ガスを燃料とする構造にはロータリーピストンエンジンで水素を燃料とする構造の説明する先行文献が最適であるので取り上げている。
A fuel injection device for a hydrogen rotary piston engine, which is attached to a rotor housing that forms a working chamber of the hydrogen rotary piston engine and directly injects hydrogen into the working chamber of the hydrogen rotary piston engine, and the hydrogen injector is operated Hydrogen injection timing control means for controlling injection timing so that hydrogen is injected into the chamber at a predetermined timing during the compression stroke, and hydrogen from the hydrogen injector is in the low rotation range of the hydrogen rotary piston engine. And a hydrogen outflow direction setting means for setting the hydrogen injection direction so as to flow out toward the leading region and out toward the central region of the working chamber in the compression stroke in the high rotation region. (For example, Patent Document 6).
* The hydrogen gas and carbon monoxide in the synthesis gas of the present application are almost equivalent in terms of energy, that is, the (higher) calorific value is almost the same. Has taken up the prior literature describing the structure of a rotary piston engine that uses hydrogen as fuel because it is optimal.

含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法であって、該触媒として金属酸化物からなる担体にロジュウム、ルテニュウム、イリジウム、パラジウム、及び白金の中から選ばれる少なくとも一種の触媒金属を担持させた触媒を使用したものに関する技術(例えば特許文献7)がある。 A method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst, wherein the catalyst is composed of a metal oxide as a support, comprising rhodium, ruthenium, iridium, palladium, and platinum. There exists a technique (for example, patent document 7) regarding what uses the catalyst which carry | supported at least 1 type of catalyst metal chosen from these.

本願の技術は前記先行技術文献1,2,3,4,7いずれかの部分技術を組み合わせて排ガス中の「CO」を内燃機関の合成ガスに改質して燃料として燃費(Km/L)の向上を図り、「COの排出削減をして、地球温暖化を阻止する新たな効果を生む新技術と成った。 The present technique is the prior art document 1,2,3,4,7 fuel as a fuel reforming to synthesis gas of an internal combustion engine also "CO 2" in the exhaust gas by combining any portion Technology (Km / L) improved, “It became a new technology that produces new effects of reducing CO 2 emissions and preventing global warming.

最大の課題は地球温暖化に対処する「CO」の(排出)削減であり、
その為の施策の1つの方法と、その方法を構成する機構を発明する事である。
The biggest challenge is the reduction of “CO 2 ” (emissions) to cope with global warming.
Inventing one method of measures for that purpose and the mechanism constituting the method.

最大の課題を解決する為の、
第一の発明は、
水(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備(例えば吸熱反応流路に設けた水蒸気改質の吸熱反応設備)と、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクとを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスタンク経由で当該内燃機関の燃料とする物であり、前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で水を水蒸気にするために吸熱した排熱と排ガス管路にて排ガス中の熱を吸熱反応に使用した排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所を吸熱源とした排熱であることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。
更にエヤコンの管路から動力を使って捨てていた冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
第二の発明は
第一の発明に記載の内燃機関燃焼排ガス中の二酸化炭素(CO)を水に吸収させる吸収手段か分離する分離手段かの何れか一方か両方かを設けており、分離した二酸化炭素を畜ガスする畜ガスタンクと、水に吸収させた含二酸化炭素水を畜水する畜水タンクの何れか一方か両方かを設けて畜ガス・畜水しており、畜ガスした二酸化炭素を、前記内燃機関のエンジンブロックに水を供給する導入管路に水とともに導入するかあるいは、前記水に吸収させた含二酸化炭素水を水導入管路に導入するかのいずれかにしており、該内燃機関内の燃焼熱で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にして、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別する為名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物等が有る)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテル)を導入し、排ガス熱を吸熱しておる該水蒸気と吸熱気体の二酸化炭素とともに該改質路中の触媒に接触させる事で、水素と一酸化炭素の合成ガスを生成して(改質温度は200°C〜500°C)合成ガスを畜ガスする別の畜ガスタンクを設けて該畜ガスタンク経由で該エンジンの燃料とする構造構成にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第三の発明は
第一の発明乃至第二の発明記載の取り出設備か改質路かのいずれか一方か両方かで取り出した水素(H)と一酸化炭素(CO)の混合気体(合成ガス)を改質する合成ガ改質路(例えばプロトン導電セラミックス管改質路)を排ガス流路に設けて、前記該合成ガス改質路に水素(H)と一酸化炭素(CO)の混合気体を導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、取り出した水素(H)と二酸化炭素はそれぞれ畜ガスタンクを設けて、畜ガスしており、水素は該内燃機関の燃料としており、該二酸化炭素は上記改質路で改質する出発原料の二酸化炭素としておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第四の発明は
第一の発明乃至第三の発明に記載の水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)かの内少なくともいずれか一方以上を設けた内燃機関を運輸機器に搭載し運輸機器の載内機関とすることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第五の発明は
第一の発明乃至第四の発明に記載の内燃機関であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしていることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第六の発明は
第五の発明に記載の蓄電器の蓄電量が上限設定値になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が下限設定値になると内燃機関エンジンで駆動する構造にした事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第七の発明は
第五の発明に記載の内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる構成構造にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第八の発明は
第一の発明乃至第四の発明に記載の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方以上を設けて、該内燃機関の燃料(ガス)を生成する構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にして設けた事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第九の発明は
熱又は水蒸気又は二酸化炭素又は水素の内いずれか一方以上を廃棄している製造業に於いて、前記廃棄されている熱又は水蒸気の内いずれか一方以上を改質熱源とするかあるいは炭化水素化合物・水素・合成ガスの内いずれか一方以上を燃焼してその燃焼熱を改質熱源とするかの何れかにして、水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方以上を設けて該内燃機関の燃料(ガス)を生成する構成にして当該内燃機関の燃料として内燃機関を運転して,その回転力をそのまま動力発電機の発電動力とする事を特徴とする、第一の発明乃至第三の発明に記載の温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十の発明は
第一の発明乃至第四の発明に記載の畜ガス手段は、該畜ガスタンク{吸熱反応の合成ガスタンクか、あるいは水素ガスタンクか、二酸化炭素ガスタンクか、改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)から取り出した合成ガスタンクかの内少なくともいずれかの一方以上}を車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十一の発明は
第十の発明に記載の畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の設置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かの、いずれかの手段を設けておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十二の発明は
第一の発明乃至第四の発明に記載の内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物(例えば炭酸水素ナトリュウム、NaHCO)の一方かあるいは両方かの何れかを加工して熱分解若しくは改質して水素Hか、炭素Cか、二酸化炭素化CO、の内少なくともいずれかの一方以上を取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物(例えば炭酸ナトリュウム、NaCO)を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とする出発原料とするかのいずれかにする事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十三の発明は
第一の発明乃至第四の発明に記載の内燃機関の主燃料を水素(H)とするも出来る事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十四の発明は
第一の発明乃至第三の発明に記載の内燃機関の燃料及び第十三の発明に記載の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十五の発明は
第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするかあるいは上記第2の発明技術を上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、反応させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器を提供する。
To solve the biggest problem,
The first invention is
Water (H 2 O) and carbon (C) react with the exhaust heat of the internal combustion engine to extract a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) (for example, in an endothermic reaction channel) An endothermic reaction facility for steam reforming) and a livestock gas tank for stocking the mixed gas of hydrogen and carbon monoxide taken out, and the mixed gas of hydrogen and carbon monoxide taken out via the livestock gas tank is intended to fuel of the internal combustion engine, the heat absorbing water in an internal combustion engine exhaust heat is primarily water passage in the engine block of an internal combustion engine (corresponding to cooling the coolant water passage of the engine block cooling water) to the steam The exhaust heat used in the exhaust gas pipe and the exhaust heat using the heat in the exhaust gas for the endothermic reaction . The exhaust heat in the engine block and the exhaust heat obtained by the endothermic reaction of the heat in the exhaust gas through the exhaust pipe pipe. Mainly two places as heat sink The present invention provides an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the exhaust heat is reduced.
Furthermore, further heat can be used for the endothermic reaction by providing means for absorbing the refrigerant compression heat that has been discarded from the air-conduit line using power .
The second invention is provided with either one or both of an absorption means for absorbing carbon dioxide (CO 2 ) in combustion exhaust gas of the internal combustion engine described in the first invention by water and a separation means for separating the carbon dioxide. A livestock gas tank for livestock gas, and a livestock water tank for stocking carbon dioxide-containing water absorbed in water are installed in one or both of livestock gas and livestock water. Carbon is introduced either together with water into an introduction line for supplying water to the engine block of the internal combustion engine or carbon dioxide-containing water absorbed in the water is introduced into the water introduction line. In the internal combustion engine, water is converted into water vapor by the combustion heat, and carbon dioxide is converted into carbon dioxide as an endothermic gas. The name has been changed to distinguish it from reformation. ) In the reforming channel of the catalyst (for example, other metals or compounds can be used in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese , Tin, cerium, lanthanum and their compounds, other metals or compounds, etc. ), and a hydrocarbon compound (for example, dimethyl ether) is introduced upstream of the reforming path to absorb the exhaust gas heat. with carbon dioxide water vapor and endothermic gas is brought into contact with the catalyst of the reforming path, to generate a synthesis gas of hydrogen and carbon monoxide (reforming temperature is 200 ° C~500 ° C) the synthesis gas An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that a separate livestock gas tank is provided for livestock gas, and the engine is configured as fuel for the engine via the livestock gas tank. To provide the relationship.

The third invention is a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) taken out by any one or both of the take-out equipment and the reforming path according to the first to second inventions ( modifying the synthesis gas) synthesis gas Aratameshitsuro (e.g. proton conductive ceramic tube reforming passage) provided in the exhaust gas line, wherein the synthetic gas reforming passage into hydrogen (H 2) and carbon monoxide (CO ) And the reaction gas again reacts with the exhaust heat of the internal combustion engine in the synthesis gas reforming path to separately extract hydrogen (H 2 ) and carbon dioxide (CO 2 ), and the extracted hydrogen (H 2 ) and Carbon dioxide is provided as a livestock gas tank by providing a livestock gas tank, hydrogen is used as fuel for the internal combustion engine, and the carbon dioxide is used as carbon dioxide as a starting material to be reformed in the reforming path. Provides internal combustion engines that contribute to reducing greenhouse gas emissions and emissions To do.

The fourth invention is a hydrogen (H 2 ) and carbon monoxide (CO) take-out facility (for example, an endothermic reaction facility provided in an endothermic reaction channel) or reforming according to the first to third inventions. At least one of a flow path (reforming path for catalytic contact between hydrocarbon compound, water vapor, and endothermic carbon dioxide) or a synthetic gas reforming path (for example, proton conductive ceramic pipe reforming path) is provided. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the internal combustion engine is mounted on a transportation device and used as an onboard engine of the transportation device.

A fifth invention is the internal combustion engine according to any one of the first to fourth inventions, wherein the internal combustion engine is operated under a certain condition, is generated with the rotational force, is stored in a capacitor, and the electricity is powered. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it has a structure in which an automobile is driven as a source.

The sixth aspect of the invention stops driving the internal combustion engine when the amount of electricity stored in the capacitor according to the fifth aspect of the invention reaches the upper limit set value and runs with electric power, and drives with the internal combustion engine when the amount of charge reaches the lower limit set value. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by its structure.

The seventh invention is characterized in that a charging power receiving plug is provided in the internal combustion engine described in the fifth invention, and as a charging means for accumulating electricity in the livestock generator, the electric vehicle is used as a power source to drive the vehicle. To provide an internal combustion engine that contributes to greenhouse gas reduction and emission reduction.

The eighth invention is a means for using the rotational force of the internal combustion engine as described in the first to fourth inventions as it is as the power generation power of the power generator, or reforming the steam that has finished the role of turning the turbine of the thermal power generation. As a heat source, hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment (for example, endothermic reaction equipment provided in the endothermic reaction flow path) or reforming flow path (hydrocarbon compound, water vapor, and endothermic gas dioxide) or reforming path) to catalyst contact with carbon, or synthesis gas reforming channel (e.g. a proton conducting ceramic tube reforming path), is provided at least one of one or more of, of the internal combustion engine fuel (gas) An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is configured as a means to be combined with the existing thermal power generation facility, or is provided as any means provide.

The ninth invention is a manufacturing industry in which any one or more of heat, steam, carbon dioxide or hydrogen is discarded, and any one or more of the discarded heat or steam is used as a reforming heat source. Or combustion of any one or more of hydrocarbon compounds, hydrogen, and synthesis gas and using the combustion heat as a reforming heat source to remove hydrogen (H 2 ) and carbon monoxide (CO). Outlet equipment (for example, endothermic reaction equipment provided in the endothermic reaction channel), reforming channel (reforming channel in which hydrocarbon compound, water vapor, and carbon dioxide of the endothermic gas are brought into catalytic contact), synthesis gas reforming channel (e.g. a proton conducting ceramic tube reforming channel) or by operating an internal combustion engine as a fuel for the internal combustion engine in the configuration for generating the fuel of at least one of the one or more provided the internal combustion engine (gas) of, Move the rotational force as it is That the generation power of the generator, characterized in, providing that contribute the internal combustion engine to reduce greenhouse gas emissions and emissions according to the first invention to third invention.

According to a tenth aspect of the present invention, the livestock gas means according to the first to fourth aspects of the present invention is the livestock gas tank {synthetic gas tank for endothermic reaction, hydrogen gas tank, carbon dioxide gas tank, reforming channel (hydrocarbon compound with steam and or the carbon dioxide endothermic gas equipped with more than one of the at least either of whether the synthetic gas tank taken out from the reforming passage) to catalyst contact} the upper body of the vehicle, or vehicle to the chassis of the car Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by being mounted on the vehicle.

The eleventh aspect of the invention is that the livestock gas means described in the tenth aspect of the invention is either a damage prevention means that prevents damage to the tank or a tank separation means that separates the tank from the vehicle installation part in the event of a collision. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by providing either means.

The twelfth invention is one of or both of a carbon-containing compound and a hydrogen-containing compound (for example, sodium hydrogen carbonate, NaHCO 3 ) using the exhaust heat of the internal combustion engine according to the first to fourth inventions as a reforming heat source. either the processed hydrogen H 2 or pyrolysis or reformed by the, or carbon C, carbon dioxide reduction CO 2, is taken out at least one of one or more of, and slaughter gas into the slaughtering gas tank, wherein The compound from which the gas is extracted (for example, sodium carbonate, Na 2 CO 3 ) is sold as a product, and the extracted gas is used as a fuel for the internal combustion engine or used as a starting material for reforming and fuel. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction characterized by any of the above.

The thirteenth invention is characterized in that the main fuel of the internal combustion engine according to any one of the first to fourth inventions can be hydrogen (H 2 ), and the internal combustion that contributes to greenhouse gas reduction and emission reduction Provide institutions.

According to a fourteenth aspect of the present invention, there is provided a water storage tank comprising water absorption means for absorbing heat into water from the fuel of the internal combustion engine according to the first to third aspects and the exhaust gas obtained by burning the fuel according to the thirteenth aspect of the invention. The greenhouse effect is characterized in that the water in the water storage tank is warmed by the water endothermic means, and the water vapor in the endothermic exhaust gas becomes liquid water and is separated and recovered by the water recovery means. An internal combustion engine that contributes to gas reduction and emission reduction is provided.

A fifteenth aspect of the invention is a small-scale carbon production apparatus for producing the carbon of the plant described in the first to fourth aspects of the invention. Carbonization chamber CS to be fired, combustion chamber FC for burning plant raw materials such as wood for heating the carbonization chamber, exhaust gas vent of combustion chamber FC, and pipe J of water vapor generating means for converting water H 2 O into water vapor J Is provided along the inner wall of the carbonization chamber, and the structure is such that the steam generated by the steam generation means and the gas C4 generated in the carbonization process in the carbonization chamber are introduced into the combustion chamber to serve as fuel for heating the carbonization chamber. Or the said 2nd invention technique is provided in the discharge part (chimney) of the said exhaust gas pipe line, the reforming substance is made into dimethyl ether as an example, and the reforming part facing the catalyst is made of dimethyl ether with water vapor or carbon dioxide. Reacting either one or both Providing small carbon maker provided in the either a configuration in which the fuel small carbonization apparatus.

発明の詳細な説明Detailed Description of the Invention

発明の具体的事例説明
第一の発明、
水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出し設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOを水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、
前記内燃機関の燃焼行程後の排気管路MS内に吸熱反応流路Sを設けており、前記吸熱反応流路に炭素(主として植物からの炭素C)を導入して、前記水蒸気か加熱水蒸気と、炭素を、吸熱反応流路にて反応させて、水素Hと一酸化炭素CO(合成ガス)を取り出しており、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクMTを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスするかあるいは畜ガスタンク経由で該混合気体を生成しておる当該内燃機関の燃料とするかの何れかにしておる事を特徴としたものであり、
前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所からの排熱であることを特徴とする物で、強調すべきはエンジンのオーバーヒ−ト防止のためにラジエターで冷却していた(動力を使って捨てていた)熱を水蒸気生成手段として活用しておることである。
更にエヤコンの管路から動力を使って捨てている冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
Specific examples of the invention Description of the first invention,
Although it is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine, for example, an internal combustion engine A water passage K is provided in the engine block 1, and either water H 2 O is converted into steam J or steam is converted into heated steam as steam generating means,
An endothermic reaction channel S is provided in the exhaust pipe MS after the combustion stroke of the internal combustion engine, carbon (mainly carbon C from plants) is introduced into the endothermic reaction channel, and the steam or heated steam , Carbon is reacted in an endothermic reaction channel, hydrogen H 2 and carbon monoxide CO (synthetic gas) are taken out, and a livestock gas tank MT for stocking the mixed gas of the taken out hydrogen and carbon monoxide is provided. The extracted hydrogen and carbon monoxide mixed gas is used as livestock gas or as the fuel for the internal combustion engine that generates the mixed gas via the livestock gas tank. And
A waste heat using endothermic and water water passage in the engine block of an internal combustion engine (corresponding to cooling the coolant water passage of the engine block cooling water) to the steam in the exhaust heat of the internal combustion engine main exhaust gas pipe Exhaust heat resulting from endothermic reaction of heat in exhaust gas in the road, and exhaust heat from the engine block and exhaust heat resulting from endothermic reaction of exhaust gas in the exhaust gas pipe from two locations. It is a thing characterized by heat, and what should be emphasized is that heat that was cooled with a radiator (discarded using power) was used as a means of steam generation to prevent engine overheat It is.
Furthermore, further heat can be used for the endothermic reaction by providing a means for absorbing the refrigerant compression heat that is discarded from the aircon pipe using power .

水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOと炭素を加圧注入し水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、{この時の加圧圧力は概略5Kg/cm程度である。(図3B参照)}
本願は水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、前記吸熱反応流路に触媒(Niが主流)を対峙させ200°〜300°程度の熱で前記吸熱反応させる燃料生成手段や、乾燥改質法や部分酸化方法や、オートサーマル改質方法もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
This is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine. A water passage K is provided in the engine block 1 of the engine, and either water H 2 O and carbon are injected under pressure to form water vapor J or water vapor to be heated water vapor as a water vapor generating means. {The pressurizing pressure at this time is about 5 kg / cm 2 . (See FIG. 3B)}
Although the present application has a configuration exemplifying steam reforming, the known synthesis gas generation method includes the steam reforming method, and a catalyst (Ni is the mainstream) facing the endothermic reaction channel, which is approximately 200 ° to 300 °. of and the fuel generation unit operable by the heat to the endothermic reaction, drying and reforming and partial oxidation process, there is also autothermal reforming method or the like, adopting a production method of the synthesis gas in place of the steam reforming process of the present You can also.

内燃機関のエネルギー効率{ロータリーエンジンの場合およそ30%強で、合成ガス反応に利用可能な廃(排)熱は60%程度}から見て、必要量の100%の燃料を生産するに足りない場合は補助的に他所から補足する補足手段を設けており、前記補足手段の1例として本願は補助タンクSTを設けており、該補助タンクの燃料(主に植物の炭素を原料としたバイオエタノールもしくは合成ガス若しくは水素)を必要量の100%の燃料を生産するに足りない場合の補足燃料としている。
最終的には前記炭素は稙物からの炭素100%使用に近づける事で温室効果ガス排出削減策とている。
In view of the energy efficiency of internal combustion engines (about 30% for rotary engines and about 60% of waste (waste) heat available for syngas reaction), it is not enough to produce 100% of the required amount of fuel. In this case, supplementary means for supplementing from other places are provided as supplementary, and as an example of the supplementary means, the present application is provided with an auxiliary tank ST, and fuel in the auxiliary tank (bioethanol mainly made from plant carbon) Or, synthesis gas or hydrogen ) is used as a supplementary fuel when it is not enough to produce 100% of the required amount of fuel.
Ultimately, the carbon is used as a measure to reduce greenhouse gas emissions by bringing the carbon closer to 100% use from the waste.

本願は1例としてサブタンク燃料と前記内燃機関で生成した混合気体とを切換えて使用する複合燃料方式をとっている、
しかし前記サブタンク燃料を使用している間に主燃料である水素Hと一酸化炭素CO(合成ガス)を生成していると、生成した生成ガスを畜ガスする所が無く畜ガスする畜ガス手段を設ける必要があり、本願は畜ガス手段の畜ガスタンクを設けており、サブタンク燃料を使用している間でも主燃料である水素Hと一酸化炭素CO(合成ガス)は生成され続けており畜ガスタンクに充填し続けている、
従って畜ガスタンクの設定上限まで充填されると燃料切換えバルブで合成ガスを畜ガスタンク経由での使用に切り替え該畜ガスタンクの設定下限に成るとサブタンク燃料を使用する燃料切換え手段を設けたエンジン構造としている、
前記内燃機関で生成した混合気体を畜ガスタンク経由での使用にしているのは、混合気体も原材料や生成場所の温度によって生成されたガス成分構成が変わるので一端畜ガスタンクに取り込む事で生成ガスの均一化を図っている。
As an example, the present application adopts a composite fuel system in which a sub-tank fuel and a mixed gas generated in the internal combustion engine are switched and used.
However, if hydrogen H 2 and carbon monoxide CO (synthetic gas), which are the main fuels, are produced while using the sub-tank fuel, there is no place where the produced gas is livestock gas and livestock gas that is livestock gas. It is necessary to provide means, and the present application is provided with a livestock gas tank for livestock gas means, and hydrogen H 2 and carbon monoxide CO (synthetic gas) as main fuels continue to be generated even when sub tank fuel is used. We continue to fill the animal gas tank,
Accordingly, when the livestock gas tank is filled up to the set upper limit, the fuel switching valve switches the synthesis gas to use via the livestock gas tank, and when it reaches the set lower limit of the livestock gas tank, the engine structure is provided with fuel switching means that uses the subtank fuel. ,
The reason why the mixed gas generated by the internal combustion engine is used via the livestock gas tank is that the mixed gas also changes the composition of the gas component generated depending on the raw materials and the temperature of the production site. Uniformity is intended.

第二の発明
内燃機関燃焼ガス中の二酸化炭素を、水に吸収させる二酸化炭素吸収手段(A)を設けるかあるいは、排気ガス中の二酸化炭素を分離する分離手段(B)を設けて、前記(A)、(B)をそれぞれ畜水手段&該畜ガス手段を設けてそれぞれ畜水,畜ガスして、前記(A)、(B)の何れか1方か両方かを、前記内燃機関のエンジンブロックに水を供給する導入口(1図B、HO入り口)に水とともに導入し、該内燃機関内の燃焼熱{前記内燃機関の燃焼熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で水を水蒸気にした排熱である}で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にしており、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別するため名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記内燃機関に設けている改質流路(二酸化炭素の改質であるので名前を変更している)の改質流路に触媒を対峙させており、該触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事で、水素と一酸化炭素の合成ガスを生成して、畜ガスタンク経由で該エンジンの燃料とする構造構成にしたものであり、{本願の解説では(B)で解説しており、(A)の詳細解説は省略している。}
Second invention The carbon dioxide absorption means (A) for absorbing carbon dioxide in the combustion gas of the internal combustion engine by water or the separation means (B) for separating carbon dioxide in the exhaust gas are provided, A) and (B) are respectively provided with livestock water means and the livestock gas means to feed livestock water and livestock gas, respectively, and either one or both of (A) and (B) above It is introduced together with water into an inlet for supplying water to the engine block (FIG. 1B, H 2 O inlet) and combustion heat in the internal combustion engine {the combustion heat of the internal combustion engine is a water passage (in the engine block of the internal combustion engine ( It corresponds to the cooling water channel of the engine block cooling water), and water is converted into water vapor.} The water is converted into water vapor, the carbon dioxide is converted into carbon dioxide as an endothermic gas, Reforming channel (carbon dioxide reforming In the reforming flow path of the reforming flow path of the steam reforming in order to distinguish from the steam reforming, as an example, other metals or compounds can be used in combination with iron-based metal and / or compound, Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum and their compounds, other metals or compounds, and a hydrocarbon compound (eg, dimethyl ether) upstream of the reforming path. CH 3 OCH 3 ) and the reforming channel of the reforming channel (name changed because of reforming of carbon dioxide) provided in the internal combustion engine together with the water vapor and endothermic carbon dioxide The catalyst is opposed to the gas {hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) and either water vapor or endothermic carbon dioxide]. It is a structure that generates hydrogen and carbon monoxide syngas by contacting them, and uses it as a fuel for the engine via a livestock gas tank. The detailed explanation of (A) is omitted. }

前記炭化水素化合物をジメジエーテルとした場合の反応式は、
A.CHOCH+HO→2CO+4H−48.9Kal/mol
B.CHOCH++CO→3CO+3H−58・8Kal/mol
その反応温度は200〜500℃、好ましくは250〜450℃であり、
その反応圧力は常圧〜10kg/cm2が好ましい。
炭化水素化合物をジメジエーテルの他にメタンを用いた技術も多く公開されている。
The reaction formula when the hydrocarbon compound is dimethyl ether is
A. CH 3 OCH 3 + H 2 O → 2CO + 4H 2 -48.9Kal / mol
B. CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol
The reaction temperature is 200 to 500 ° C., preferably 250 to 450 ° C.
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 .
Many technologies using methane in addition to dimethyl ether as a hydrocarbon compound have been disclosed.

公知技術の二酸化炭素を吸収材に吸収させる二酸化炭素吸収手段(A)及び二酸化炭素分離取り出し手段(B)であるが、
前記(A)には、特表2010−526759,特許3345782,特開2009−77457,特開2001―213545,特開2007−177684,等に開示されており、
前記(B)には特願2001−48591(カルマン渦),特開2007−177684,等に開示されており、
二酸化炭素改質反応による水素及び一酸化炭素の製造法の先行技術には特開平08−231204や特表2010−526759合成ガスの製造方法(CO2の改質を含む)特許文献2の特開平11−106770等々数多く有る、
この技術を本願に取り入れて、排ガス中の二酸化炭素を「本願の内燃機関内発性エネルギーのみで該内燃関の燃料に改質しておる事」が大きな温室効果ガス排出削減策であり、さらに前記廃棄されていたエネルギー(概略70%で、改質に使用出来るのは概略60%)で燃料を生成しており、該燃料生成分程燃費を向上させた事が本願の特徴点である。
The carbon dioxide absorption means (A) and carbon dioxide separation and extraction means (B) for absorbing carbon dioxide by a known technique,
(A) is disclosed in JP 2010-526759, JP 33455782, JP 2009-77457, JP 2001-213545, JP 2007-177684, and the like.
(B) is disclosed in Japanese Patent Application No. 2001-48591 (Karman vortex), Japanese Patent Application Laid-Open No. 2007-177684, etc.
Prior art of the method for producing hydrogen and carbon monoxide by the carbon dioxide reforming reaction includes Japanese Patent Application Laid-Open No. 08-231204 and Japanese Patent Application Laid-Open No. Hei 11 of Japanese Patent Application Laid-Open No. H11-296275. -106770 etc.
Incorporating this technology into this application, the carbon dioxide in the exhaust gas is “a reforming of the internal combustion engine fuel only into the fuel of the internal combustion engine of this application” is a great greenhouse gas emission reduction measure, A feature of the present invention is that fuel is generated with the discarded energy (approximately 70%, and approximately 60% can be used for reforming), and fuel efficiency is improved by the amount of fuel generation.

前記本願発明の内で、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは、化石燃料使用の炭素Cであっても良く前記二酸化炭素を合成ガスに改質しておるので少なくとも数十%のCO排出を削減は可能で、温室効果ガス排出削減策である。 Among the inventions of the present application, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be carbon C using fossil fuel, and the carbon dioxide is reformed into synthesis gas. Therefore, it is possible to reduce CO 2 emissions of at least several tens of percent, and this is a measure for reducing greenhouse gas emissions.

第三の発明
第三の発明に記載した合成ガス改質路は、第一の発明乃至第二の発明で生成した水素(H)と、一酸化炭素(CO)の混合気体と、内燃機関の排熱{前記内燃機関の排熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)にて水を水蒸気にした排熱である}にて水蒸気にしたものとを、例えばプロトン導電セラミックス管内で再度内燃機関の排熱(300°C〜800°C)(前記内燃機関の排熱は排ガス管路にて排ガス中の熱を吸熱させた排熱である)にて反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、前記水素と二酸化炭素を別々に畜ガスする水素畜ガスタンクと二酸化炭素畜ガスタンクを設けて、それぞれに畜ガスして、二酸化炭素は、前記水素を取り出す出発原料として、前記取り出した水素は水素畜ガスタンク経由で当該内燃機関の燃料とする構成構造である。
3rd invention The synthesis gas reforming path described in the 3rd invention includes a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) produced in the first to second inventions, and an internal combustion engine. The exhaust heat of the internal combustion engine {the exhaust heat of the internal combustion engine is exhaust heat obtained by converting water into steam in a water passage (corresponding to a cooling coolant channel for engine block cooling water) in the engine block of the internal combustion engine}. For example, the exhaust heat of the internal combustion engine (300 ° C. to 800 ° C.) again in the proton conductive ceramic tube (the exhaust heat of the internal combustion engine is exhaust heat obtained by absorbing the heat in the exhaust gas in the exhaust gas pipe) ), Hydrogen (H 2 ) and carbon dioxide (CO 2 ) are taken out separately, and a hydrogen livestock gas tank and a carbon dioxide livestock gas tank for stocking the hydrogen and carbon dioxide separately are provided. Carbon dioxide is the water As a starting material for extracting the raw material, the extracted hydrogen is used as a fuel for the internal combustion engine via a hydrogen livestock gas tank.

前記排気管路内の排ガス温度が不足する場合には前記合成ガス改質路の上流に排ガス燃焼部を設けて、
排ガス中の未燃焼燃料ガス又は未燃焼炭素粒に不足温度を補う程度分の畜ガスしている燃料と酸素(空気)を導入して再加熱しても良い。
When exhaust gas temperature in the exhaust pipe is insufficient, an exhaust gas combustion section is provided upstream of the synthesis gas reforming path,
You may introduce and reheat the fuel and oxygen (air) which are the livestock gas of the extent which supplements the shortage temperature to the unburned fuel gas or unburned carbon particle in exhaust gas.

前記二酸化炭素改質は、二酸化炭素と水蒸気の改質材とともに触媒と接触させて水素(H)と一酸化炭素(CO)の混合気体を取り出す技術(特許先行文献2特願特開平11−106770)を本願に組み込んで二酸化炭素をも該内燃機関の燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。 The carbon dioxide reforming is a technique in which a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) is taken out by contacting with a catalyst together with a carbon dioxide and steam reforming material (Japanese Patent Application Laid-Open No. H11-11). 106770) is incorporated into the present application, and carbon dioxide is also used as a fuel for the internal combustion engine, thereby improving fuel efficiency and further reducing greenhouse gas emissions.

本願は上記二酸化炭素改質を前記エンジンのエンジンブロック(ロータリーハウジング)に水を導入する導入口(図1BのHO導入口)に二酸化炭と水を導入して、前記二酸化炭素と水はエンジンブロック(ロータリーハウジング)の内外壁間に設けている通水路Kにて吸熱して水は水蒸気に、二酸化炭は吸熱してガスを高温とするとともに混合して、エンジン排気口下流に触媒を対峙させた改質路(二酸化炭素の改質であるので名前を変更している)を設けており、改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事ことで水素(H)と一酸化炭素(CO)の混合気体を取り出すかあるいは、前記エンジンのエンジンブロック(ロータリーハウジング)の通水路Kで水を水蒸気にする管路に加えて該前記エンジンのエンジンブロック(ロータリーハウジング)の通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかのいずれかにしており、(エンジン燃焼工程後の排気口近傍で合流さる事も含む)排気管路に対峙させておる触媒に接触させる構成にするかの何れかにして 水素(H)と一酸化炭素(CO)の混合気体を取り出す構成構造にしており、前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズセリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物がある。 The present application introduces carbon dioxide and water into an inlet (H 2 O inlet in FIG. 1B) for introducing water into the engine block (rotary housing) of the engine for the carbon dioxide reforming. Heat is absorbed in a water passage K provided between the inner and outer walls of the engine block (rotary housing), water is absorbed into water vapor, and carbon dioxide is absorbed to raise the gas to a high temperature and mixed, and a catalyst is placed downstream of the engine exhaust port. There is an opposite reforming path (the name is changed because it is carbon dioxide reforming), and a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is introduced upstream of the reforming path and the steam and The gas {hydrocarbon compound (eg, dimethyl ether CH 3 OCH 3 ) and water vapor or endothermic carbon dioxide, or both} is added to the catalyst together with endothermic carbon dioxide} To remove the mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), or add the water to steam in the water passage K of the engine block (rotary housing) of the engine. A water passage K ′ of the engine block (rotary housing) of the engine is further provided to be a two-line pipe line for heating carbon dioxide, and (exhaust gas after engine combustion process) It is configured to take out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), either by contacting with the catalyst that is confronting the exhaust pipe (including joining near the mouth). For example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, and the like. Kell, chromium manganese, tin, Seryuumu, lanthanum and compounds thereof, there is another metal or compound.

第一の発明に記載の水蒸気改質の改質温度は700°C〜I000°Cで好ましくは800〜900°Cであり炭化水素化合物(例えばジメジエーテルCHOCH)の改質温度は200〜500℃、好ましくは250〜450℃であるので排気管路上流に水蒸気改質部を設け、その下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設けるか、あるいは前記水蒸気改質の下流に合成ガス改質路(改質温度は300°C〜800°C・第三の発明)を設けるかあるいは、水蒸気改質の下流に前記合成ガス改質路を設け更に下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設ける形態のいずれかの形態を取るのが好ましい。 The reforming temperature of the steam reforming described in the first invention is 700 ° C. to 1000 ° C., preferably 800 to 900 ° C., and the reforming temperature of the hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) is 200 to 200 ° C. Since the temperature is 500 ° C., preferably 250 to 450 ° C., a steam reforming section is provided upstream of the exhaust pipe, and a reforming section of a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is provided downstream of the steam reforming section. A synthesis gas reforming path (reforming temperature is 300 ° C. to 800 ° C., the third invention) is provided downstream of the quality, or the synthesis gas reforming path is provided downstream of the steam reforming and further carbonized downstream. It is preferable to take any form of providing a reforming portion of a hydrogen compound (for example, dimethyl ether CH 3 OCH 3 ).

水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路に於いて、更に反応時間を長く取りたい場合か、もしくは同時進行で水蒸気改質又はCO2改質又は合成ガス改質のうち少なくとも何れか1方以上を取りたい場合、前記エンジンのエンジンブロック(又はロータリーハウジング)の内外壁間に設けている通水路Kを、エンジンブロック1内複数本設ける構造にするかあるいは、エンジンブロックからの排気管路を複数設けるか(例えばシリンダーの数と同じにするか、シリンダーの数の半分にするか、あるいはローターの数と同数の管路にするか、あるいはエンジンブロックから1本乃至複数本出た排気管路を更に複数に分岐させて順次切り替えて排気を送る等の構造にすることでも良い)あるいは前記通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかの内少なくとも何れか一方以上のいずれかにして、エンジン燃焼工程後の排気口下流の管路に3種の改質路の内少なくとも何れか1種以上を設ける構成にして、水素(H)と一酸化炭素(CO)の混合気体または水素ガス・二酸化炭素を取り出す構成構造にしても良い。 In the hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, the reforming channel, and the syngas reforming channel, if it is desired to take a longer reaction time, or steam reforming or CO 2 is performed simultaneously. If you want to take more than at least any one-way of the modified or synthetic gas reforming water passage K which is provided between the inner and outer walls of the engine block of the engine (or rotary housing), a plurality in the engine block 1 Whether to provide a structure or multiple exhaust pipes from the engine block (for example, the same number of cylinders, half the number of cylinders, or the same number of pipes as the number of rotors) Alternatively, one or a plurality of exhaust pipes extending from the engine block may be further branched into a plurality of branches and sequentially switched to send exhaust gas) or the water flow At least one of the two systems of pipes for heating carbon dioxide by further providing K ′, and three kinds of pipes downstream of the exhaust port after the engine combustion process A structure in which at least one of the reforming paths is provided and a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) or hydrogen gas / carbon dioxide may be taken out.

プロトン導電セラミックは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミック等の、プロトン導電セラミックは水素、酸素を活性化させる作用を有する点で、特に有利である。 Proton conductive ceramics have heat resistance according to the combustion temperature and are provided with continuous vents through which combustion gas can pass. Proton conductive ceramics such as strontium serate-based and zirconate-based belogskite oxide ceramics are hydrogen conductive ceramics. This is particularly advantageous in that it has an action of activating oxygen.

二酸化炭素又は炭素を原材料として使用する、製造業等の設備産業における再生可能エネルギー源としての使用は公知技術である。 The use of carbon dioxide or carbon as a raw material as a renewable energy source in equipment industries such as the manufacturing industry is a known technique.

第四の発明
水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路とのいずれか一種か複数種かを設けている内燃機関を運輸機器に搭載し運輸機器の載内機関とする形態を取っており、前記運輸機器には二輪車・軍需兵器の車両・軍需兵器の船舶等々を含んでいる。
Fourth invention An internal combustion engine provided with one or more of hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, reforming flow path, and synthesis gas reforming path as a transportation device It is in the form of an on-board engine for transportation equipment, which includes motorcycles, munitions weapons vehicles, munitions weapons ships, and the like.

第五の発明、
上記内燃機関に既存の水素ロータリーピストンエンジン車が採用している「エンジンを燃費の良い条件(一定の条件)で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させている、」の形態を、該内燃機関に適用する事で安定した燃焼熱が得られ、更に吸熱反応条件も安定するので、本願を「上記エンジンを燃費の良い条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として運転させる構造にした事で、更なる燃費の向上と温室効果ガス排出削減をすると言う大きな効果を生んでいる。
Fifth invention,
The existing hydrogen rotary piston engine car is used for the internal combustion engine described above. “The engine is operated under good fuel economy conditions (constant conditions) and is generated by the rotational force and stored in the capacitor. The electricity is used as the power source. the form of and is running a car, "as, it is stable combustion heat obtained to be applied to the internal combustion engine, since further be stabilized endothermic reaction conditions, operating the application to" the engine in good condition of fuel and accumulated in the capacitor and generated by the rotating force of the basil and the electric by the structure "be operated as a power source, given rise to great effect to say to improve the greenhouse gas emissions further fuel economy.

*走行状態(例えば信号待ち・右折対向車通過待ち・交差点右左折時横断歩行者通過待ち・渋態状態時のチョコチョコ駆動・平胆路での惰力運転走行時・追い越し&追い抜き急加速運転時・下り坂運転時等々)の変化に追従させて内燃機関エンジンの出力の制御機構や制御構造がシンプルで良くなる。
更に一定の条件(燃費の良い条件)で運転するので燃費(Km/L)を向上させる効果がある。
* Driving conditions (for example, waiting for traffic lights, waiting for an oncoming vehicle on the right, waiting for crossing pedestrians when turning right or left at the intersection, choco-choco driving in a traffic condition, driving on a flat road, overtaking & overtaking rapid acceleration・ The control mechanism and control structure of the output of the internal combustion engine are simplified and improved by following the changes in the downhill driving, etc.
Furthermore, since driving is performed under a certain condition (good fuel efficiency), there is an effect of improving the fuel efficiency (Km / L).

第六の発明
蓄電器の蓄電量が設定値以上になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が設定値以下になると内燃機関エンジンで駆動する構造にした事で、
動力が不要な走行状態が続く場合その間はエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、エンジンをOFFにして蓄電電力で走行し、燃費の向上を図る事が出来る。
According to the sixth aspect of the invention, when the storage amount of the capacitor is equal to or greater than the set value, the driving of the internal combustion engine is stopped and the vehicle is driven with electric power.
When the driving state that does not require power continues, the engine is continuously operated under certain conditions (good fuel economy conditions), so depending on the driving state, the electricity generated to drive the car becomes overcharged and is generated by the internal combustion engine. Since the electricity is discarded, the engine can be turned off and the vehicle can run with the stored electric power to improve the fuel consumption.

第七の発明
前記内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段としており、その電気を動力源として車を走行させる構成構造にする事で必要動力を全て電池で賄う為に高価な電池を多数設けなくて済み、前記内燃機関の蓄電設備容量を数十%大きくする程度で充電設備を有する場所で受電充電出来、畜電器の設置費用及び燃費向上が図れ、温室効果ガス排出削減策となる。
7th invention The internal combustion engine is provided with a charging / receiving plug and is used as a charging means for storing electricity in a livestock battery. It is expensive to cover all necessary power with a battery by using a structure that allows the vehicle to run using the electricity as a power source. It is not necessary to install a large number of batteries, and the power storage capacity of the internal combustion engine can be increased by several tens of percent. It will be a measure.

動力が不要な走行状態(信号待ち・右折時対向車通過待ち・右左折時横断歩行者通過待ち・渋滞時のチョコチョコ運転時・下り坂走行時・惰力走行運転時等)が発生して、その間の前記運転条件ではエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、該畜電気の蓄電容量が上限設定値になると該エンジンをOFFにして蓄電電力で走行し、蓄電器の蓄電容量が下限設定値になると該エンジンをONにして該エンジンで走行して燃費の向上を図る事が出来る。 Driving conditions that do not require power (waiting for traffic lights, waiting for oncoming vehicles when turning right, waiting for crossing pedestrians when turning left or right, choco chocolate driving during traffic jams, downhill driving, coasting driving, etc.) During this period, the engine is continuously operated under certain conditions (good fuel efficiency). Depending on the driving condition, the electricity generated for driving the car becomes overcharged and the electricity generated by the internal combustion engine is discarded. Therefore, when the storage capacity of the livestock electricity reaches the upper limit set value, the engine is turned off and the vehicle runs with the stored power. When the storage capacity of the battery reaches the lower limit set value, the engine is turned on and the vehicle runs with the engine. The fuel consumption can be improved.

前記下り坂運転時でエンジンブレーキ状態走行時に走行動力を電動モーター使用としている場合はモーターを発電機として使用できるので、エンジンブレーキ状態走行時にはモーターを発電機として使用し蓄電器に充電する形態にすれば更なる燃費の向上と温室効果ガス排出削減となる。 If the electric power is used as the driving power when running in the engine braking state during downhill driving, the motor can be used as a generator.Therefore, when running in the engine braking state, the motor is used as a generator to charge the battery. This will further improve fuel efficiency and reduce greenhouse gas emissions.

前記平胆路での惰力運転走行であるが、惰力運転走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(該略2200回転)で数分運転をして例えば走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す運転方法であり、50年前には運送業では常識の運転方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。 This is a repulsive driving run on the flat road, but a repulsive driving run is a speed at which a driver wants to drive for several minutes with an accelerator operation (approximately 2200 revolutions) that is about 10% higher than the speed at which the driver wants to drive. If it is 60Km / H, turning to 70Km / H will turn off the rotational drive power of the engine (this will be about 1000 revolutions, the number of revolutions when idling). Is a driving method that repeats the operation of turning on the rotational driving force connection of the engine when the speed reaches 60 km / H, which is a common driving method in the transportation industry 50 years ago. Automatic control of this travel mode can further improve fuel consumption and reduce greenhouse gas emissions.

第八の発明
内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気と新たに投入する主として植物の炭素を、前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を補助燃料の代替とする構成にして、現有の火力発電設備に併合する形態にする手段とするか、あるいは前記火力発電設備のボイラーの排ガス管路に吸熱反応設備を設けて吸熱反応化させて、生成した燃料(ガス)を畜ガスタンク経由で前記動力発電の燃料とする構成かの何れかの手段にするかにしても良い。
Eighth Invention The internal combustion engine endowed by the internal combustion engine is the means for directly using the rotational force of the internal combustion engine as the power generation power of the power generator, or the steam that has finished the role of turning the turbine of the thermal power generation and the newly added mainly plant carbon. Introduced into the reaction channel and converted to endothermic reaction, the generated fuel (gas) can be used as a substitute for auxiliary fuel, and can be combined with the existing thermal power generation facility, or the thermal power generation An endothermic reaction facility is provided in the exhaust gas pipeline of the boiler of the facility to make the endothermic reaction, and the generated fuel (gas) is used as a fuel for the power generation via the livestock gas tank. Also good.

水素と一酸化炭素の混合気体又は二酸化炭素又は水素の内何れか1以上は他所の設備で製した物を使用(又はパイピングで圧縮ガスの状態で輸送)することでも対応出来るし、発電の場合及び船及び大型自動車は内燃機関に近接して、水素(H)と一酸化炭素(CO)の混合気体の製造設備を設置することも出来る。 It also can be any one or more of the mixed gas or carbon dioxide or hydrogen in the hydrogen and carbon monoxide using a material obtained by manufacturing elsewhere equipment (or transported in a state of compressed gas in the piping) can correspond, for generating Cases and ships and large vehicles can also be equipped with hydrogen (H 2 ) and carbon monoxide (CO) mixed gas production equipment in close proximity to the internal combustion engine.

第九の発明
熱又は水蒸気又は二酸化炭素又は水素を廃棄している製造業(例えば製鋼・鉄の鍛造・鉄の鋳造・アルミ精錬&製造・塵焼却場・石油精製業等)に於いて、前記廃棄されている熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを、第一の発明乃至第三の発明に記載の改質技術の内何れか1以上の改質技術で改質して、生成した燃料(ガス)を当該内燃機関の燃料として内燃機関を運転して、更に前記内燃機関の排ガス中の「CO2」を第二の発明に記載しておる手段で水素と一酸化炭素の合成ガスに生成して該内燃機関の燃料として運転し,その回転力をそのまま動力発電機の発電動力とする内燃機関である。
例えば製鋼所の圧延工程では脱炭された真赤な鋼隗を多数の圧延機を通過させて10mm前後の鋼板ロールにするのであるが、最終圧延後に多量の水を掛けて赤色の圧延板を黒っぽい板に冷却しており、このときの掛ける多量の水は水蒸気となり一部は廃棄されており、更に最終圧延された鋼板ロールは鋼板ロール自然放冷置き場にて天井クレンが吊り降ろし作業するために必要なクランプ具作動幅を持たせて敷設してある複数列のローラーコンベアーに順送りで並べられている。この時の鋼板ロールの温度は700°〜900°であり、このローラーコンベアー間に吸熱反応部を設けて吸熱反応化させて生成した燃料(ガス)を当該内燃機関の燃料として動力発電機の発電動力とすることが電力の削減策であり、温室効果ガス排出削減策となる。
In the ninth invention heat or steam or carbon dioxide or hydrogen manufacturing industries are discarded (e.g., cast-aluminum refining & manufacture and dust incineration forged iron steelmaking iron field, oil refining, etc.), the Any one or more of discarded heat, steam, carbon dioxide or hydrogen is modified by any one or more of the reforming techniques described in the first to third inventions. The generated fuel (gas) is used as the fuel for the internal combustion engine to operate the internal combustion engine, and the CO2 in the exhaust gas of the internal combustion engine is combined with hydrogen by the means described in the second invention. This is an internal combustion engine that is generated in a synthesis gas of carbon oxide and is operated as a fuel for the internal combustion engine, and its rotational force is directly used as the power generation power of the power generator.
For example, in the rolling process of a steel mill, the decarburized crimson steel plate is passed through a number of rolling mills to form a steel plate roll of about 10 mm. The plate is cooled, and the large amount of water applied at this time becomes steam, and a part of it is discarded, and the final rolled steel sheet roll is used for the ceiling crane to hang down in the steel sheet roll natural cooling place. They are lined up in order on a plurality of rows of roller conveyors that have been installed with the required clamping tool operating width. The temperature of the steel sheet roll at this time is 700 ° to 900 °, and the power generation of the motive power generator is performed using the fuel (gas) generated by providing the endothermic reaction section between the roller conveyors to effect the endothermic reaction as the fuel of the internal combustion engine. Using power as a means of reducing electric power will reduce greenhouse gas emissions.

第十の発明、&第十一の発明
前記畜ガスタンク{前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該内燃機関で生成されたガスで少なくとも10分程度運転するのに必要な燃料を畜ガス出来るタンクであれば当該内燃機関を運転(切り替えロスを無視すれば)することは出来る}のタンク損傷を防止する損傷防止手段であるが、例えば1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材HPEを固着して車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着した物であり、タンク分離手段は前記固定具MT5に衝撃が掛かるとV字状の切り欠け部MT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(タンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)例示構造にしており、
前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはガスを溜めると言う機能は同じであっても構造(規格)は全く違うものである。
Tenth Invention & Eleventh Invention The livestock gas tank {the tank does not require a high-pressure hydrogen gas storage tank of 35 MPa, and is a fuel necessary for operating at least about 10 minutes with the gas generated by the internal combustion engine. if the a slaughter gas can tank operating the internal combustion engine is a damage preventing means for preventing the tank damage (ignoring the switching loss) be able}, for example, 1 to a plurality of tanks one A shock absorber HPE such as foamed polyethylene and boron fiber reinforced plastic is fixed as a package and fixed and held on the upper part of the vehicle, and the fixing tool fixed and fixed on the upper part of the vehicle with the fixed holding tool MT1. The tank separating means is fixed to MT5. When the impact is applied to the fixture MT5, the V-shaped notch MT6 breaks due to concentrated stress, and the shock absorbing material inclusion MT (The tank support MT2 is integrated) is disengaged from the fixture MT5 (not completely disengaged but is locked to the fixture MT5 or the like with a wire body or the like). body MT3 is the preferred embodiment since the measures to avoid secondary damage fly completely off) has the illustrated structure,
One or both of the damage prevention means for preventing damage to the tank or the tank separation means for separating the tank from the tank installation portion of the vehicle in the event of a collision are provided. Further, it is composed of a non-stationary facility (for example, an automobile) livestock gas tank of the livestock gas means, and the livestock gas tank is mounted on the upper body of a car or mounted on a chassis part of a truck. It is preferable to use one of the forms attached to the stationary equipment, but in the case of stationary equipment (for example, a power plant), the safety standard (in Japan, the registration of JIS B 8265 has been completed. Is ISO 16528), and the non-stationary livestock gas tank and the stationary livestock gas tank (eg chemical factory) It must be composed of those that are within the safety standards or at least have elements that can change the safety standards, so non-stationary equipment (eg automobile) livestock gas tanks and stationary equipment (eg chemical factories) livestock gas tanks function to say that storing the gas can be the same structure (standard) are those completely different.

第十二の発明
例えば炭酸水素ナトリュウム(NaHCO)を内燃機関の排熱で加工して熱分解して水素(H)と炭酸ナトリュウム(NaCO)を作り、炭酸ナトリュウム(NaCO)は取り出して製品として販売し、水素(H)を畜ガスタンク経由で内燃機関の燃料とする構成にしているもので有るが、内燃機関の排熱で加工して燃料を取り出す取り出し手段を使用して付加価値を付加する物で有れば前記炭酸水素ナトリュウム(NaHCO)は1例とした物で炭酸水素ナトリュウム(NaHCO)に限定するものではない。
A twelfth invention for example to make a bicarbonate Natoryuumu (NaHCO 3) and by processing and thermally decomposed in the exhaust heat of an internal combustion engine hydrogen (H 2) and carbon dioxide Natoryuumu (Na 2 CO 3), carbonate Natoryuumu (Na 2 CO 3 ) is taken out and sold as a product, and hydrogen (H 2 ) is used as a fuel for the internal combustion engine via the livestock gas tank. The sodium hydrogen carbonate (NaHCO 3 ) is an example as long as it is a product that adds value by use, and is not limited to sodium hydrogen carbonate (NaHCO 3 ).

第十三の発明&第十四の発明は
第四の発明に記載の内燃機関の主燃料を水素(H)とする構成にしたものであり、
(第十三の発明の)水素を主燃料とすれば水と窒素を主構成とする排気であり
(第一の発明乃至第二の発明の)燃料は、水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、排気中の二酸化炭素を改質した水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、
いずれの燃料を使用しても水が水蒸気の形で排出されておる、この水蒸気から更なる吸熱手段で改質出発原料の水を温める構造構成にするとともに排ガス中の水蒸気から水を取り出しろ過するろ過手段経由で改質出発原料の水として貯水タンクに戻し入れる物で、
前記水蒸気からの吸熱手段は例えば排気管路の下流部に水貯水タンクを設けて該貯水タンクの水の中に排気管路を通す事で水タンクの水が吸熱して水タンクの水は温水となり排気管路内の水蒸気は水と成り回収する事を特徴とする、水を回収する回収手段、
上記各種の改質手段は水を燃料に改質しておるので相当量の水が必要と成るが水の車載量を大きくすれば車載量の水(重量)を運搬する為のエネルギーが必要と成るので水を回収して循環使用すれば水の車載量を少なく出来更に水タンク中の水は温水とする事が出来るこのことは温室効果ガス削減及び排出削減に寄与する事になる。
The thirteenth invention and the fourteenth invention are configured such that the main fuel of the internal combustion engine described in the fourth invention is hydrogen (H 2 ),
If hydrogen is the main fuel (of the thirteenth invention), it is an exhaust mainly composed of water and nitrogen (the first invention to the second invention) and the fuel burns hydrogen and carbon monoxide. It is an exhaust mainly composed of water, carbon dioxide and nitrogen, and is an exhaust mainly composed of water, carbon dioxide and nitrogen when hydrogen and carbon monoxide are reformed from carbon dioxide in the exhaust.
Regardless of which fuel is used, the water is discharged in the form of water vapor, and the structure is such that the water of the reforming starting material is warmed from this water vapor by further heat absorption means, and the water is removed from the water vapor in the exhaust gas and filtered. It is returned to the storage tank as water for reforming starting material via filtration means,
The heat absorption means from the water vapor is provided, for example, by providing a water storage tank downstream of the exhaust pipe and passing the exhaust pipe through the water in the storage tank so that the water in the water tank absorbs heat and the water in the water tank is heated. Recovery means for recovering water, characterized in that water vapor in the exhaust pipe becomes water and recovers
The above-mentioned various reforming means reform water into fuel, so a considerable amount of water is required. However, if the on-board amount of water is increased, energy for transporting the on-board amount of water (weight) is required. Therefore, if water is collected and recycled, the amount of on-vehicle water can be reduced, and the water in the water tank can be warm water. This contributes to greenhouse gas reduction and emission reduction.

第十五の発明は
第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするかあるいは上記第2の発明技術を上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、反応させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器を提供する。
上記小規模炭素製造器の構成で炭化室CSと燃焼室FCの隔壁を取り除き上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部を設けた構成にする事で、石炭等の化石燃料を使用している暖房器(例えば石炭スト−ブ)にする事も出来る。
此のことは寒冷地の多くは石炭スト−ブを使用しており、石炭の燃焼による二酸化炭素の排出も無視出来ないものであり、本願の第一の発明と第二の発明の構成構造を適用する事で本願の最大の課題の地球温暖化に対処する「CO 」の(排出)削減となる施策の1つの方法である。
A fifteenth aspect of the invention is a small-scale carbon production apparatus for producing the carbon of the plant described in the first to fourth aspects of the invention. Carbonization chamber CS to be fired, combustion chamber FC for burning plant raw materials such as wood for heating the carbonization chamber, exhaust gas vent of combustion chamber FC, and pipe J of water vapor generating means for converting water H 2 O into water vapor J Is provided along the inner wall of the carbonization chamber, and the structure is such that the steam generated by the steam generation means and the gas C4 generated in the carbonization process in the carbonization chamber are introduced into the combustion chamber to serve as fuel for heating the carbonization chamber. Or the said 2nd invention technique is provided in the discharge part (chimney) of the said exhaust gas pipe line, the reforming substance is made into dimethyl ether as an example, and the reforming part facing the catalyst is made of dimethyl ether with water vapor or carbon dioxide. Reacting either one or both Providing small carbon maker provided in the either a configuration in which the fuel small carbonization apparatus.
In the configuration of the small-scale carbon production device, the carbonization chamber CS and the combustion chamber FC are separated from each other, and the carbonization chamber CS section is provided with a generation section for steam J and a separation section for separating carbon dioxide from the exhaust gas. Thus, a heater using a fossil fuel such as coal (for example, a coal stove) can be used.
This means that many cold districts use coal stoves, and carbon dioxide emissions due to coal combustion cannot be ignored. The construction of the first and second inventions of this application Applying this is one of the measures to reduce (emission) “CO 2 to cope with global warming, which is the biggest problem of the present application .

前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭)であっても良く温室効果ガス排出削減策である。 In the combination of the present invention, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be fossil fuel use (for example, coal), which is a greenhouse gas emission reduction measure. is there.

最大の課題は地球温暖化に対処する「CO」の排出削減であり、
燃料を主に植物の炭素Cを使用する事で、本願の課題である、温室効果ガス削減施策課題の1つを構成する温室効果ガス削減策の内燃機関とする事が出来た、更に前記主に植物の炭素Cの燃焼により発生するCOをも燃料に改質しており、該COをも燃料に改質した事が、更なる温室効果ガス削減と燃費を驚愕するほど向上させる効果を生んでおる、この事が最大の効果である。
The biggest challenge is the reduction of CO 2 emissions to combat global warming.
By using mainly plant carbon C as a fuel, it was possible to make an internal combustion engine for a greenhouse gas reduction measure that constitutes one of the challenges of the greenhouse gas reduction measure that is the subject of the present application. In addition, CO 2 generated by the combustion of plant carbon C is also reformed to fuel, and reforming this CO 2 to fuel also has the effect of further increasing greenhouse gas reduction and fuel efficiency. This is the biggest effect.

この合成ガスを生成し、生成した合成ガスを燃料として使用する内燃機関を火力発電機の代替として使用する事が、今(2014年)のエネルギー問題解決策の筆頭にあげうる案件であり(2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり、真夏電力需要ピーク時の節電要請が各電力会社から出ている現状であり)この案件を実施する事は電力供給に大きな効果がある。 The use of an internal combustion engine that generates this synthesis gas and uses the generated synthesis gas as a fuel as an alternative to a thermal power generator is a project that can be mentioned as the first solution to the current energy problem solution (2011) (2011). According to the statistics of the Federation of Electric Power Companies of the year, about 82% of Japan's total power generation is thermal power generation, and there is a request for power saving at the peak of midsummer power demand from each power company) Doing so has a great effect on power supply.

内燃機関の捨てられていた熱エネルギーを活用して燃料を生成している事が大きな効果である。 The great effect is that fuel is generated by utilizing the thermal energy that was discarded by the internal combustion engine.

本願は内燃機関の回転力をそのまま動力発電設備とした発電用内燃機関に供給する補助燃料の代替に、又製造工程で廃棄されている熱と水蒸気若しくは温水と新たに投入する炭素を吸熱反応流路に導入して上記内燃機関に供給していた補助燃料の石油液化ガス(天然ガス含む)、ガソリン(含む炭化水素系化石燃料)、バイオエタノール等、あるいは合成ガスかの何れかの補助燃料を本願の合成ガスか水素ガスに替えて、畜ガスタンクに畜ガスするのでサブタンクとサブ燃料使用制御構造と、補助燃料の合成ガスを切り替えて使用する切換え弁を含む燃料切換え制御構造が不要となる構成も可能と成る。 The present application is an alternative to the auxiliary fuel supplied to the internal combustion engine for power generation using the rotational force of the internal combustion engine as it is as a power generation facility, and the endothermic reaction flow of heat, steam or hot water discarded in the manufacturing process, and newly input carbon. Auxiliary fuel, either petroleum liquefied gas (including natural gas), gasoline (including hydrocarbon-based fossil fuel), bioethanol, or synthetic gas, that was introduced into the road and supplied to the internal combustion engine A structure that eliminates the need for a fuel switching control structure including a sub-tank, a sub fuel use control structure, and a switching valve that switches and uses the synthesis gas of the auxiliary fuel, because the livestock gas tank is replaced with the synthetic gas or hydrogen gas of the present application. Is also possible.

上記植物の炭素を燃焼させ生成されるCOをも前記合成ガスに生成して更なる温室効果ガスCOの削減策としている事が前記植物の炭素使用の京都議定書のカーボンニゥートラルから更にCOを削減する事が出来、現存公知技術では実施出来なかった温室効果ガス削減策とな最大の効果を生む、
更に本願の内燃機関の炭素を化石燃料の炭素使用としてもCOを100%排出カットは出来ないまでも少なくとも数十%は削減できる大きな効果がある。
The CO 2 produced by burning the carbon of the plant is also generated in the synthesis gas to further reduce the greenhouse gas CO 2 from the carbon neutral of the Kyoto Protocol on the use of carbon of the plant. it is possible to reduce the CO 2, produce the maximum effect that Do greenhouse gas reduction measures that could not be carried out in the existing prior art,
Furthermore, even if carbon of the internal combustion engine of the present application is used for fossil fuel, CO 2 can be reduced by at least several tens of percent even if 100% emission cut cannot be achieved.

温室効果ガスCOの排出枠の買い取りビジネスが活性化する中、日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を数十%削減出来る。 While the purchase of greenhouse gas CO 2 allowances is revitalizing, Japan's purchase amount is estimated to be about 1 trillions of billions, but this purchase amount can be reduced by several tens of percent.

第5の発明に記載したエンジンの負荷変動に関係ない「エンジンを一定した燃費の良い条件」(始動時は別条件)で運転して一定した吸熱反応条件で運転する事で、前記吸熱反応効率も上がり、かつ、燃費の良い条件にする事で燃費(Km/L)を向上させた事が大きな効果である、 The endothermic reaction efficiency can be obtained by operating the engine under the constant endothermic reaction condition by operating the engine under the “constant and fuel-efficient conditions” (different conditions at start-up) that are not related to the engine load fluctuation described in the fifth invention. The improvement of fuel efficiency (Km / L) is achieved by making the fuel efficiency good and the fuel efficiency is good.

上記内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素Cを再生可能な植物を主原料とし、さらに、汚水や食品製造時に出る、産業廃棄物に近い物から作る物質(例えばメタンガスやバイオエタノール)をサブ燃料とするのが好ましいとしており、 The raw materials for generating the fuel for the internal combustion engine are water H 2 O and carbon C. The plant that can regenerate the carbon C is used as a main raw material, and further, it is made from materials close to industrial waste that are produced during the production of sewage and food. Substances (e.g. methane gas or bioethanol) are preferred as sub-fuels,

前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて(カーボンニュ−トラル)、地球温暖化防止に大なる貢献が出来る大きな効果である。 Using the plant as the main raw material means that the plant absorbs carbon dioxide CO 2 and produces oxygen O 2 , so in the Kyoto Protocol it is defined as plus or minus “0” (carbon neutral), and global warming This is a great effect that can greatly contribute to prevention.

排気ガス中の二酸化炭素を合成ガスに生成するサイクル(第二の発明)を設けた事で、第一の発明の内燃機関から排出された「CO」を燃料に改質しており、更なる「CO」の排出削減が出来るとともに、燃費を向上させる効果がある。(例えば20Km/Lを25Km/Lにした程度ではなく2倍の40Km/L以上に向上させる驚愕する様な効果を得る事が出来た。
*水HOとCOを燃料に改質した手段を設けた事で前記効果を得る事が出来た
By providing a cycle for generating carbon dioxide in the exhaust gas into the synthesis gas (second invention) , the “CO 2 ” discharged from the internal combustion engine of the first invention is reformed into fuel. It is possible to reduce emissions of “CO 2 ” and to improve fuel efficiency. (For example, it was possible to obtain an astonishing effect of improving 20 Km / L to 40 Km / L or more, not about 20 Km / L to 25 Km / L.
* The above effect could be obtained by providing means for reforming water H 2 O and CO 2 into fuel.

内燃機関のエンジンブロック冷却水路及び冷却水配管を含むラジエターが不要になる。 A radiator including the engine block cooling water passage and the cooling water piping of the internal combustion engine is not necessary.

第一の発明に記載の内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素を再生可能な植物を主原料とし、前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて、地球温暖化防止に大なる貢献が出来る。 The raw materials for generating the fuel for the internal combustion engine according to the first invention are water H 2 O and carbon C. The plant that can regenerate the carbon is the main raw material, and the plant is the main raw material. sucking carbon dioxide CO 2, since out of oxygen O 2 in the Kyoto Protocol plus, have been negative "0", a large becomes contribution possible to prevent global warming.

前記植物を主原料とする事は放置されていた山林や「田んぼ」を価値ある物(植物からの炭素)を作る「稼働率」のよい工場に出来る、此のことは、農業、林業に活力を与える。 The use of the plant as the main raw material makes it possible to turn abandoned forests and “rice fields” into factories with good “operation rate” to produce valuable things (carbon from plants). This is vital for agriculture and forestry. give.

火力発電はボイラーを火力で熱して蒸気を発生させてその蒸気を更に加熱してタ−ビンを廻して発電しているのでエネルギー効率は50%弱で火力発電のボイラーは加熱し始めに必要な初期エネルギーが大きいので一度ONすると長期間火を落とせないので時間帯による消費電力量変動に追従して稼働のON・OFFする事が出来難いので、季節(春・秋)あるいは時間帯に依っては消費されない余剰電力が発生し、その過剰生産分は廃棄されているが、本願の内燃機関による発電システムにすれば、前記時間消費電力量の変動に追従して稼働のON・OFFする事が自在に出来るので、過剰生産電力は限りなくゼロに近づける事ができるので、太陽光発電のみで補う場合の大容量の蓄電設備と膨大な送電設備・受電設備が不要と成る。 In thermal power generation, the boiler is heated with thermal power to generate steam, and the steam is further heated to generate electricity by rotating the turbine. Therefore, the energy efficiency is less than 50% and the thermal power boiler is necessary to start heating. Since the initial energy is large, it is difficult to turn on / off following the power consumption fluctuations according to the time zone because it is difficult to turn off the fire for a long time once it is turned on, so depending on the season (spring / autumn) or time zone Surplus power that is not consumed is generated, and the excess production is discarded. However, if the power generation system using the internal combustion engine of the present application is used, the operation may be turned ON / OFF following the fluctuation of the time power consumption. Since it can be made freely, excess production power can be brought to zero as much as possible, so there is no need for a large-capacity power storage facility and a vast amount of power transmission / reception facilities when supplemented only by solar power generation.

現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るので送電・受電設備を非常に少なくする事が出来る。 Current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of this application do not need to be adjacent to the water source and can be installed as close to the power demand area as possible, so there are very few transmission / reception facilities I can do it.

化石エネルギーの価格変動(及び為替レート変動)に日本の経済が影響される割合が少なくなる。 The proportion of the Japanese economy affected by fossil energy price fluctuations (and exchange rate fluctuations) will be reduced.

上記第一の発明乃至第三の発明の内燃機関を自動車(2サイクル2輪車・4サイクル2輪車を含む)・船舶・鉄道のディーゼルエンジン車・建設機械・軍需兵器の車両・軍需兵器の船舶等々の運搬機器に搭載する形態での実施であり、前記動力発電機を火力発電設備の代替として使用する形態か、あるいは現存火力発電設備でタービンを回す役目を終えた水蒸気と、新たに投入する炭素を内燃機関の吸熱反応流路に導入して前記燃料不足分に充当する構成にして現有の火力発電設備に併合する形態かあるいは第9の発明内の何れか1種類以上の実施形態である。 The internal combustion engine according to any one of the first to third aspects of the present invention is used for automobiles (including two-cycle two-wheeled vehicles and four-cycle two-wheeled vehicles), marine and railway diesel engine vehicles, construction machinery, munitions weapon vehicles, and munitions weapons. It is implemented in the form of being mounted on a transportation device such as a ship, and the form in which the power generator is used as an alternative to the thermal power generation facility, or steam that has finished the role of turning the turbine in the existing thermal power generation facility, is newly input In an embodiment in which carbon to be introduced is introduced into an endothermic reaction flow path of an internal combustion engine and used for the fuel shortage and merged with an existing thermal power generation facility, or in any one or more embodiments within the ninth invention is there.

図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
Each dimensional relationship in the drawings is enlarged for important portions, exaggerated where details are difficult to understand, and reduced when describing wide portions or portions that are less important in the present invention. Thus, the dimensions between and within the drawings are not proportional, and are not actual or scaled.
If the distance between the lines is narrow, it is likely to become a single line that is black and thick at the scanning stage. Therefore, the distance between the lines is widened or described with a single line.

更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。 Furthermore, parts other than the basic (main) mechanism of the present invention are omitted between the drawings.

水素と一酸化炭素はエネルギー的には殆ど等価であるつまり(高位)発熱量はほぼ同じである、従って本願の明細書に於ける詳細説明は水素を燃料とする公知技術を引用している部分が多々ある。さらに「CO」を合成ガスに改質する技術についても公知技術を引用している部分が多々ある。
本願の主構成は多種の公知技術(中には特許登録されており権利が生きている物も一部含んでいる)を引用しているが、個々の公知技術のみでは得ることが出来ない物を本願で効果を得るべく多様に組み合わせた構成構造にしたことで、前記温室効果ガス排出削減と燃費の向上の面に於いて驚愕する様な効果を得る事が出来た。
Hydrogen and carbon monoxide are almost energetically equivalent, that is, the (higher) calorific value is almost the same. Therefore, the detailed description in the specification of the present application refers to a known technique using hydrogen as a fuel. There are many. Furthermore, there are many parts that cite known techniques for the technique of reforming “CO 2 ” into synthesis gas.
The main structure of this application refers to a variety of known technologies (including some that are patent-registered and alive), but cannot be obtained by individual known technologies alone. In order to obtain the effect in the present application, it was possible to obtain a surprising effect in terms of reducing greenhouse gas emissions and improving fuel consumption.

内燃機関のエンジンブロックに吸熱反応流路を設け、水HOと炭素Cとを内燃機関の排廃熱にて反応させて水素Hと一酸化炭素COの混合気体を取り出し、それらの水素と一酸化炭素の混合気体を燃料とする内燃機関であるが、合成ガスをガソリンあるいは軽油、重油の代替燃料に・・・と考えたことは、どのメーカーでもあると思っている、しかし水素も一酸化炭素も非常に危険(爆発、毒性を有している)従って、液化しての運搬手段(可搬性)安全規格をクリアーする液化ガスの容器の重量に対する内容量の割合が悪い、更に車が大破する様な事故による爆発の問題があり、手がだせなかったと推測する。 An endothermic reaction flow path is provided in the engine block of the internal combustion engine, and water H 2 O and carbon C are reacted with the exhaust heat of the internal combustion engine to take out a mixed gas of hydrogen H 2 and carbon monoxide CO. It is an internal combustion engine that uses a mixed gas of carbon monoxide and fuel, but any manufacturer thinks that synthetic gas can be used as an alternative fuel to gasoline, light oil, heavy oil, etc., but hydrogen also Carbon monoxide is also very dangerous (explosive and toxic). Therefore, liquefied transport means (portability). The ratio of the volume of the liquefied gas to the weight of the container that satisfies safety standards is poor. I suspect that there was an explosion problem caused by the wreck, and I couldn't get it.

この問題を解決する本願の手段は、
*消費燃料をタンクに満タンにして走行に必要な燃料全部を賄うのではなく、燃料生成過程でのエネルギーロス分の補充にサブタンクを設けて、前記サブタンクの燃料を石油液化ガス(天然ガス含む)、ガソリン、含む炭化水素系化石燃料バイオエタノール等、あるいは合成ガスかの何れかを、エネルギーロス分の補充用サブ燃料として使用する、複合燃料補給構造を採用している事(この蓄ガス圧力を考慮した畜ガスタンクの設置位置と車が大破する様な事故時に対応出来る構造部の手段として設けた事)が、本願を「実施可能案」にした大きなポイントである)である。(図1,図2参照)
The means of the present application to solve this problem are:
* Instead of filling the tank with fuel consumption and supplying all the fuel required for driving, a subtank is provided to replenish the energy loss during the fuel generation process, and the fuel in the subtank is used for petroleum liquefied gas (including natural gas) ) Adoption of a composite fuel supply structure that uses gasoline, hydrocarbon-containing fossil fuel bioethanol, etc., or synthetic gas as a supplementary sub-fuel for the energy loss (this stored gas pressure) The installation position of the livestock gas tank in consideration of the above and the means of the structural part that can cope with an accident such as a car being severely damaged) are the main points that made the present application "practical plan"). (See Figures 1 and 2)

前記貯ガス、畜ガスタンクに生成された合成ガスを(圧縮ガスの状態で)一定量ためる、一定量ためる間は、ブタンガス、ガソリン、(含む炭化水素系化石燃料)メタンガス、バイオエタノール等、あるいは、水素、合成ガス、植物からの改質ガス、植物からのメタンガス、のバイオエタノール等かの何れかを補助燃料タンクの貯ガスを使用し、生成された合成ガスの貯ガス量が一定量に成ると合成ガスに切り替えて、合成ガスを生成しながら畜ガスタンクの合成ガスを使用し、前記タンク容量が「0」に近くなると、補助燃料タンク使用に切り替える、複合燃料方式をとり、合成ガスの車載量(タンク重量も含む)を少なくしている手段を設けている、 The storage gas, the synthesis gas generated in the livestock gas tank is stored in a certain amount (in the state of compressed gas), while the certain amount is accumulated, butane gas, gasoline, (including hydrocarbon-based fossil fuel) methane gas, bioethanol, etc., or Any of hydrogen, synthesis gas, reformed gas from plants, methane gas from plants, bioethanol of bioethanol, etc. is used as the storage gas in the auxiliary fuel tank, and the amount of generated synthesis gas is constant. And switch to synthetic gas, use synthetic gas in livestock gas tank while generating synthetic gas, and switch to using auxiliary fuel tank when the tank capacity is close to "0". Means to reduce the amount (including tank weight),

公知技術であるが二酸化炭素を触媒存在下で、水素、一酸化炭素等に転換する技術には1例をあげると本願特許文献2、特開平11−106770.の記載では、含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法とその方法に適した触媒の発明もしており、この技術を本願の二酸化炭素をも燃料に改質する技術として使用している。
また特許文献4の特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両の記載では二酸化炭素吸収材に二酸化炭素を吸収させて二酸化炭素を回収している
An example of a known technique for converting carbon dioxide to hydrogen, carbon monoxide, etc. in the presence of a catalyst is described in Japanese Patent Application Laid-Open No. 11-106770. In the description, a method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst and a catalyst suitable for the method are also disclosed. Is also used as a technology for reforming fuel.
Japanese Patent Application Laid-Open No. 2007-177684, a carbon dioxide recovery device for a vehicle, and a vehicle equipped with the same discloses that carbon dioxide is absorbed by a carbon dioxide absorber and carbon dioxide is recovered.

温室効果ガス排出の主役は内燃機関からの排出と、日本の発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出であり、世界の内燃機関からの排出と火力発電のボイラーからの排出で世界の排出量の1/4をしめており、
1ガロンのガソリンを燃やしたときのCOの放出量は車のエンジンからの排出とガソリン生成工程での放出を合わせて約9Kgである。
従って化石燃料の炭素Cの消費を、植物の炭素Cにシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、
本願の温室効果ガス排出削減策の内燃機関を実現する事及び、燃料と成る植物を主とする炭素Cの調達コストを化石燃料からの調達コストと同じくらいにする施策が必要である。
燃料とする炭素Cの製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
The main sources of greenhouse gas emissions are emissions from internal combustion engines and thermal power generation boilers, which account for about 82% of Japan's power generation (2012 Electricity Federation statistics). And 1/4 of the world ’s emissions from thermal power boilers,
The amount of CO 2 released when 1 gallon of gasoline is burned is about 9 Kg combined with emissions from the car engine and emissions from the gasoline production process.
Therefore, in order to shift the consumption of carbon C from fossil fuels to carbon C from plants and achieve a 25% reduction in greenhouse gas CO 2 emissions early,
It is necessary to implement an internal combustion engine for the greenhouse gas emission reduction measures of the present application and to make the procurement cost of carbon C, which mainly consists of fuel, the same as the procurement cost from fossil fuel.
The production of carbon C as fuel changes when carbonized organic material is heated while shutting off the flow of air and oxygen, and changes to a material rich in black carbon. This process is called carbonization, and charcoal produces this carbonization. This is a good example of a product, and what is produced is an aggregate composed mainly of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.

木材からの固体炭素C(植物原料のC)をナノ粒子化する技術はすでにテレビ等で放映されているので新技術とは言えないがナノ粒子迄細粒化しなくてもミクロ細粒化(100ミクロン程度)でも本願発明の請求項1の炭素Cとして対応可能である。
固体炭素Cは粉砕して微粒状にすれば、反応が起きる表面積を増やすことになるので、細粒化するほど合成ガス生成の効率はよくなる。
前記炭素Cに水を加えてエマルジョン燃料化あるいはゲル状化する事でも対応出来る。
更に酸素が入らない環境で前記木材等(植物原料のC)を加熱→炭化工程の中で炭素Cガスを得る事も出来る。
The technology to make solid carbon C from wood (nano-plant raw material) into nanoparticles is not yet a new technology because it has already been broadcast on TV, etc., but micronization (100 (About a micron) can be dealt with as the carbon C of claim 1 of the present invention.
If the solid carbon C is pulverized into fine particles, the surface area where the reaction takes place is increased. Therefore, the finer the particles, the more efficient the synthesis gas generation.
It can also be handled by adding water to the carbon C to form an emulsion fuel or gel.
Furthermore, the above-mentioned wood and the like (plant raw material C) is heated in an environment where oxygen does not enter, and carbon C gas can be obtained in the carbonization step.

エンジン内で水蒸気→排気管路で吸熱反応→一酸化炭素と水素の合成ガスまたは水素を生成し当該エンジンの燃料として使用するサイクルであるが、
*この案の件案事項としては
畜ガスタンク内容積を広く、蓄圧を低く、出来るタンクにして、車載場所を何処にして、どの様な構造にすれば、車が大破する事故でも畜ガスタンクが破裂しない構造にする事が出来るかであった。
*前記件案事項を下記の構造構成にして解決した。
1、合成ガスタンクの設置場所を車の車体上部に設けるか車のシャーシー部に設けている事であり、車体上部に設ける事は車が崖から転落しても、また乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故でも畜ガスタンクは爆発しない構造のタンクが要求されるが車載可能なボンベで業者が目標としている500Km走行できる目安の水素は水素4Kgで20MPaの圧力では容器内容積が300L必要となり、
マツダ(企業名)プレマシイハイドロジェンREハイブリッド車で搭載の水素74L/35MPaでは満タン充填で計算上123Kmしか走行出来ないので水素のみでは走行出来ないので、500Km走行するには約4倍の300L/35MPaの水素タンクが必要と成るが300Lの水素を74L/35MPの容器で賄うには、約150MPa圧縮で充填出来る容器が必要となり現在の技術では困難である。
そこで載内燃機関で合成ガスを生成することを立案したが載内構造の加圧ポンプでは圧縮圧を上げれば多くの動力を加圧ポンプのために消費する事になるので。スタート時点では油圧機器のアキュウムレーターに相当する機器で畜ガスする事であったが、その畜ガス器を何処に設置すれば良いか、又高速道路の事故で、前記車が崖から転落して上下が逆転するか、乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故をテレビで見て、この様な事故が発生した時爆発を回避出来る構造構成でないと車載は無理とあきらめていた。
合成樹脂を使った他の案件の立案のために先行文献検索やインターネットで前記合成樹脂関係を調べていたら下記発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、見つける事が出来これを使えば前記事故があっても爆発しない所まで解決出来た。しかし最後に残されたタンクの設置場所の問題で頓挫していた。
昨年出願のエコドライブ方法の実験を繰り返す中で車の軽量化するのに何処を樹脂化すれば良いかと考えていた時に乗用車のルーフの考察時、頓挫していた本願の畜ガスタンクを乗用車のルーフに搭載して前記事故時には離れ飛ぶ構成を思いつき、何とか実施可能案となり出願するに至ったので、この畜ガスタンクの構造構成が本願のキーポイントである。(図1A,図2参照)
2,上記畜ガスタンクの外面を図2に記載しているように、ポロン繊維強化プラスチック若しくは発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、前記タンク部を覆う形に固着成形するとか、あるいは、塗布、あるいは、他の合成樹脂材と、多層コーティングして、車が転落、大破する衝撃が掛った時に、車の車体から分離するタンク分離手段を設け、跳ね飛んでも爆発しない構造にしている。(遠くに飛び過ぎない係止構造を設けるのが好ましい。)
3.前記タンクの出し入れ管の車ボディとの分離構造の一例として、電磁バルブの接点構成で通電時はON.非通電時はOFFと成る電磁バルブシーケンス回路を使用し、合成ガスタンクが車のボディから飛ぶ衝撃力が掛かると前記タンクのガス出し入れ管が抜けて(あるいは破損して)も、電磁バルブの作動によりタンクからのガス管路は閉じる構造にしている。(図2.H参照)
4.畜ガスの圧縮圧の問題も補助燃料使用と前記昨年出願のエコドライブ方と内燃機関は発電のみにしているマツダ(企業名)プレマシイハイドロジェンREハイブリッド車の構成を使用すれば
本願第一の発明から第三の発明の改質技術に加えて第六の発明と第七の発明と該発明の詳細説明部を組み合わせれば補助燃料を使用しなくても、合成ガスのみ又は水素のみあるいは合成ガスと水素との切換え使用でも良い実施例と成リ蓄ガス圧も次段落で説明しておる様に低い圧縮圧で対応出来る。
It is a cycle in which steam in the engine → endothermic reaction in the exhaust line → synthesis gas or hydrogen of carbon monoxide and hydrogen or hydrogen is used as fuel for the engine.
* The proposed matter is that the livestock gas tank has a large internal volume, low pressure accumulation, a tank that can be built, where the vehicle is located, and what structure is used. It was possible to make a structure that does not.
* The above-mentioned proposed matter was solved with the following structure.
1. The place where the synthesis gas tank is installed is located in the upper part of the car body or in the chassis part of the car. Even in an accident that is sandwiched between and crushed, the livestock gas tank is required to have a tank that does not explode, but the target hydrogen that can run 500Km in a cylinder that can be mounted on the vehicle is 4MPg of hydrogen and 20MPa. The pressure requires 300L of container volume,
Mazda (Company name) Premasi Hydrogen RE hybrid vehicle equipped with 74L / 35MP of hydrogen can run only 123Km with full tank filling, so it can not run only with hydrogen, so to run 500Km, about 4 times 300L A / 35 MPa hydrogen tank is required, but in order to cover 300 L of hydrogen with a 74 L / 35 MP container, a container that can be filled with about 150 MPa compression is required, which is difficult with the current technology.
Therefore, it was planned to generate synthesis gas in a mounted internal combustion engine. However, in a pressurized pump with a mounted structure, if the compression pressure is increased, more power is consumed for the pressurized pump. At the start, the gas was accumulated with equipment equivalent to an accumulator of hydraulic equipment, but the car fell from the cliff due to an accident on the highway where the livestock gas equipment should be installed. If the accident is such that the car is flipped upside down or the passenger car is sandwiched between large trucks and crushed in a sandwich, the structure must be such that an explosion can be avoided when such an accident occurs. I gave up on board.
If you are searching for related documents on the Internet and searching for prior literature for planning other projects using synthetic resin, the following foamed polyethylene, (the above-mentioned member has anti-bullet properties and is used for military weapons, (As an example, polyethylene fired polyethylene is fixed to the outer surface of an army water hoat for army movement, and when it is sniped with a rifle etc., the bullet has a bullet-proof property that does not allow a hole to be made in the rubber hote) Can be found, and if this was used, it was able to solve even the place where it did not explode even if the accident occurred. However, the problem was the location of the last remaining tank.
While considering the eco-driving method filed last year and thinking about what to do with resin to reduce the weight of the car, when considering the roof of a passenger car, the livestock gas tank of the present application that had been neglected was used for the roof of the car The structure of this livestock gas tank is the key point of the present application. (See Figure 1A and Figure 2)
2. As shown in FIG. 2, the outer surface of the livestock gas tank is made of poron fiber reinforced plastic or foamed polyethylene. (The above-mentioned members are bullet-proof and are used for military weapons. The fired polyethylene is fixed on the outer surface of the water hoat for moving the water surface, and when it is sniped with a rifle, etc., the bullet has a bullet-proof property so that a hole cannot be made in the rubber hoat)) A tank separation means is provided that separates from the car body when it is impacted by falling or severely damaging the car. It has a structure that does not explode even if it bounces off. (It is preferable to provide a locking structure that does not jump too far.)
3. As an example of the separation structure of the tank inlet / outlet pipe from the vehicle body, the solenoid valve contact configuration is ON when energized. When the solenoid valve sequence circuit is turned off when not energized, and the synthetic gas tank is subjected to an impact force flying from the body of the car, the gas inlet / outlet pipe of the tank may come off (or be damaged). The gas pipeline from the tank is closed. (See Figure 2.H)
4). As for the problem of compression pressure of livestock gas, if the configuration of Mazda (Company Name) Premasi Hydrogen RE hybrid vehicle, which uses auxiliary fuel, the eco-driving method and the internal combustion engine of the last year's application only generate electricity, is the first of the present application. Combining the sixth and seventh inventions with the detailed explanation part of the invention in addition to the reforming technology of the invention from the third invention, the synthesis gas alone or only the hydrogen or synthesis without using auxiliary fuel An embodiment which may be used by switching between gas and hydrogen, and the stored gas pressure can be handled with a low compression pressure as described in the next paragraph.

ガソリンで500Km走行に必要な燃料を水素(合成ガス)で賄うには、水素5Kgで
(水素56,000Lに相当)、(10g/Km=水素11.2Lで)ある。
従って10Km走行程度に必要な燃料(水素・合成ガス・二酸化炭素)の畜ガスタンクの容量は燃料切換えロスを無視すれば11.2L*10=112L(常圧)のガスを畜ガス出来る畜ガスタンクであれば良いことに成る。
従ってタンク製造コストと設置スペースの関係と設定したい切換え周期と前記法律の範囲内で有れば自在に設計できる。
In order to cover the fuel necessary for running 500 km with gasoline with hydrogen (synthetic gas), 5 kg of hydrogen (equivalent to 56,000 L of hydrogen) and (10 g / Km = hydrogen of 11.2 L).
Therefore, the capacity of a livestock gas tank for fuel (hydrogen, synthesis gas, carbon dioxide) required for about 10km travel is a livestock gas tank capable of livestock gas of 11.2L * 10 = 112L (normal pressure) if the fuel switching loss is ignored. It will be good if there is.
Therefore, it can be designed freely as long as it is within the scope of the law and the relationship between the tank manufacturing cost and the installation space and the switching cycle to be set.

第一の発明乃至第三の発明に記載の内燃機関から生成した合成ガスの貯ガスタンクを車の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。 A synthetic gas storage gas tank produced from the internal combustion engine according to the first to third aspects of the invention is provided in the upper part of the vehicle, and an impact buffer (fired polyethylene, boron fiber reinforced plastic, etc.) is fixed to the gas storage tank. A storage tank that protects against explosion or explosion in the event of a car wrecking by fixing either a coating or a multi-layered structure to the storage tank.

図1を説明すると、1図に記載の車は商用車フロントエンジンタイプ商用車に本願の構造を設置した概略構成図であり、フロントエンジンルームに設置した水素ロータリーピストンエンジン(内燃機関)から排気管部に設けた吸熱反応合成ガス生成部でガスを生成して、取り出した合成ガスを上部に設けた貯ガスタンクMTに貯ガスして当該水素ロータリーピストンエンジンの燃料として使用し、ガス生成過程のエネルギーロス分をサブタンクSTの燃料に切り替えて使用している、概略構成図で、
図1Bはレシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成フロー図であって、4気筒のレシプロエンジンのエンジンブロック内に水HO2を水蒸気Jにする通水路Kをもうけて、水HO(または水と二酸化炭素)を供給口より供給して水蒸気生成手段(または/及び二酸化炭素の吸熱手段)としおり、吸気口Aへ空気0を供給する管路3を設けて空気0を吸気口Aへ供給しており、排気口Eから管路4にて合成ガス生成部の排気管に連結しており、前記排気管MS内には排気管内に合成ガス生成吸熱反応部の吸熱反応管をコイル状にして設けており、前記コイル状にしている吸熱反応管内に前記レシプロエンジンのエンジンブロック内で生成された水蒸気Jを導入するとともに炭素を新たに投入しており、合成ガス生成部の排気管にMSを流れる、エンジン燃焼行程で発生する排気ガスEの排熱でCO+Hの合成ガスを生成して、生成された合成ガスは合成ガス貯蔵タンク(畜ガスタンク)MTに畜ガスしており、前記生成燃料の不足分を補う為にサブタンクSTを設けてサブ燃料を貯油しており、サブタンク燃料と畜ガスタンクに畜ガスしておる合成ガスを切換え弁CBで切り替えて燃料供給管路5でインジエクターE2に供給しており、更に強制着火のプラグPをもうけた構成にしておる内燃機関の概略構成図である。
Referring to FIG. 1, the vehicle shown in FIG. 1 is a schematic configuration diagram in which the structure of the present application is installed in a commercial vehicle front engine type commercial vehicle, and an exhaust pipe from a hydrogen rotary piston engine (internal combustion engine) installed in the front engine room. The endothermic reaction synthesis gas generation section provided in the section generates gas, and the extracted synthesis gas is stored in the storage tank MT provided in the upper section and used as fuel for the hydrogen rotary piston engine. In the schematic configuration diagram, switching the loss to the fuel of the sub tank ST,
FIG. 1B is a schematic configuration of an engine block, a synthesis gas generation endothermic reaction flow path section, a fuel supply / injection system, and a spark plug of a reciprocating engine. a schematic configuration flow diagram parts and the fuel supply and injection system ignition plug, the water HO 2 into the engine block of a four cylinder reciprocating engine provided with a water passage K of the steam J, water H 2 O (or water and carbon dioxide) is supplied from the supply port steam generating unit (or / and carbon dioxide heat absorbing means) and bookmarks, intake air 0 2 is provided for supplying duct 3 air 0 2 to the inlet port a P are supplied to the mouth a P, the exhaust port from E P at the conduit 4 is connected to the exhaust pipe of the synthesis gas production unit, endothermic of said exhaust pipe MS syngas product endothermic reaction portion in the exhaust pipe Reaction tube It is provided in a coil shape, and the steam J generated in the engine block of the reciprocating engine is introduced into the coiled endothermic reaction tube and carbon is newly introduced, and the exhaust gas of the synthesis gas generation unit flowing MS to the tube, to produce the exhaust gas E X of the exhaust heat in the synthesis gas CO + H 2 generated in the engine combustion stroke, produced synthesis gas by livestock gas in the synthesis gas storage tank (slaughtering gas tank) MT In order to make up for the shortage of the generated fuel, a sub tank ST is provided to store the sub fuel. The sub tank fuel and the synthetic gas stored in the live gas tank are switched by the switching valve CB, and the fuel supply line 5 FIG. 2 is a schematic configuration diagram of an internal combustion engine that is supplied to the injector E C H 2 and has a configuration in which a plug P for forced ignition is provided.

上記エンジンブロック内に水HO2を水蒸気Jにする通水路Kを設けて、水HOを供給口より供給して水蒸気生成手段としおる通水路Kに加えて、CO2を加熱する通気K‘とCO2供給口を設けて、複数設けた排気管路の内少なくとも何れかの一方以上のCO2を改質する管路に供給しており、CO2を改質する管路の他のいずれかを水蒸気改質する管路にするか第三の発明の合成ガス改質路にするかして、水蒸気Jは全てか複数かの管路に供給して必要に応じて前記管路K、K’の両方からの供給をいずれかに切り替える供給路にする構成を付加して設けた構成にも出来る。 A water passage K for converting water HO 2 into water vapor J is provided in the engine block, water H 2 O is supplied from the supply port, and in addition to the water passage K serving as water vapor generating means, air passage K for heating CO 2. 'And a CO2 supply port are provided, and at least one of the plurality of exhaust pipes is supplied to a pipe for reforming CO2, and one of the other pipes for reforming CO2 is supplied. Whether it is a pipe for steam reforming or a syngas reforming path of the third invention, the steam J is supplied to all or a plurality of pipes, and the pipes K, K ′ as required. It is also possible to add a configuration in which a supply path for switching the supply from both is switched to either.

図2A.は図1のA−A断面図であり、本図は一例として合成ガスタンクを円筒形状の物MTB4本を、発泡ポリエチレン、ボロン繊維強化プラスチック、等HPEの衝撃緩衝材で1個の包括体にして車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着している状態図で、前記固定具MT5は車が大破する様な衝撃が掛かると前記V字状の切り掛けMT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(一例としてタンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く糸体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)。 FIG. 2A. 1 is a cross-sectional view taken along the line AA in FIG. 1. As an example, this figure shows a synthetic gas tank having four cylindrical MTBs, and a single package made of a shock absorbing material such as foamed polyethylene, boron fiber reinforced plastic, or the like. In the state where the vehicle is fixedly held on the upper part of the vehicle, and is fixed to the fixture MT5 that is fixedly fixed to the upper part of the vehicle with the fixed holding fixture MT1. The V-shaped notch MT6 breaks due to concentrated stress, and the shock absorbing material inclusion MT3 (for example, the tank support MT2 is integrated) is detached from the fixture MT5 (completely disengages). (It is a preferable form to take a structure in which it is locked to the fixing device MT5 or the like with a thread body or the like, because this is a measure for avoiding the secondary damage in which the inclusion body MT3 of the shock absorbing material completely comes off))

上記衝突及び転落時の力が上記タンクに掛った時、1例として、事故時の保持構造を設けて、車から外れ飛ぶ構造(一部は車と繋がっているのが望ましい)を設けており、車から外れ飛んだタンクは、前記タンク外面にコートあるいは全面に固着して設けている、発泡ポリエチレン・ボロン繊維強化プラスチック・衝撃緩衝材等(HTP)であり、衝撃力を吸収あるいは拡散されるので爆発しない構造である。
前記コーティングあるいは全面に固着する、発泡ポリエチレン、ボロン繊維強化プラスチック、衝撃緩衝材等は現時点では高価かも判らないが、2000万台/年・(日本自動車メーカー全体で)近く生産されているので、量産効果によりコストは低くなる。
As an example, when a collision or falling force is applied to the tank, a holding structure in the event of an accident is provided, and a structure (part of which is preferably connected to the car) is provided. The tank that flies off from the vehicle is made of foamed polyethylene, boron fiber reinforced plastic, impact buffering material (HTP), etc., which is provided on the outer surface of the tank and fixed to the entire surface, and absorbs or diffuses impact force. So it does not explode.
The foamed polyethylene, boron fiber reinforced plastic, and shock-absorbing materials that are fixed to the entire surface of the coating or the entire surface may not be expensive at this time, but they are produced almost 20 million units / year (by the entire Japanese automaker). The cost is reduced due to the effect.

図2Bは.リヤーエンジン車に上記衝撃緩衝材の包括体MT3を進行方行に対して直交する形にタンクを搭載した例図であり、D.E.図は搭載タンクの数及び形状には拘らない事を図示したもの、E,は車のルーフ部に前記タンクを前後方向の凹部に格納搭載しており、横面からの美観を良くした物、F.はキャビンの下にエンジンを搭載するタイプにE.と同様にタンクを設置している図、であり、搭載するガスタンクMTB及びタンク包括体MT3の形状設置方向は、設置するタンク容量とガス圧力の関係での設計上の問題である。 FIG. FIG. 6 is an example of a tank mounted on a rear engine vehicle in which the shock-absorbing material MT3 is mounted perpendicularly to the traveling direction; E. The figure shows that there are no restrictions on the number and shape of the tanks. E, the tank is housed in the front and rear recesses on the roof of the car, and the aesthetics from the side are improved. F. Is a type with an engine mounted under the cabin. The shape installation direction of the gas tank MTB and the tank package MT3 to be mounted is a design problem in the relationship between the tank capacity to be installed and the gas pressure.

図2Hは.上記ガスタンクMTB1個のみの場合のガス出入り口部の構造の部分断面図であり合成ガス生成部Sから取り出されたガスはタンク開閉バルブGTbsec (一例として電磁バルブを通電時ON・非通電時OFFとなる接点回路としている)を経由してタンクに貯ガスされ、更にエンジンの燃料切換えバルブCbに導入する構造にしている概略図であり、この非通電時OFFとなる構造にすれば上記衝突及び転落時の力が上記タンクに掛り貯ガスタンクが外れ飛ぶ事態になれば電気配線もはずれ飛ぶので電磁バルブはOFFとなりタンク内のガスは漏れ出ない構造である。
図2,Iは.車上部に固着固定している固定具MT5の両端部に弾性性状を有する逆J状の係止固定構造KRsecを設け、(下部図)車か大破する様な衝撃が掛かると、前記逆J状の係止固定構造KRsecの逆J状の係止機能部が伸びてHPE体が上部に離脱する構造(上部図)にした1例図であり、前記車か大破する様な衝撃力が掛かるとHPE体が上部に離脱する機能を有する構造であれば、金属・合成樹脂・その他・材質および形状にはこだわらない。
上記畜ガスタンクの構造で二酸化炭素畜ガスタンク・水素畜ガスタンクを設ける事が好ましい。
FIG. FIG. 5 is a partial cross-sectional view of the structure of the gas inlet / outlet portion when there is only one gas tank MTB, and the gas taken out from the synthesis gas generator S is a tank open / close valve GTbsec (for example, the electromagnetic valve is turned on when energized and turned off when deenergized. It is a schematic diagram of a structure in which gas is stored in a tank via a contact circuit) and introduced into the fuel switching valve Cb of the engine. If the force is applied to the tank and the gas storage tank comes off, the electrical wiring will be disconnected and the electromagnetic valve will be turned off so that the gas in the tank will not leak.
2 and I are. A reverse J-shaped locking and fixing structure KRsec having elasticity is provided at both ends of the fixing device MT5 fixedly fixed to the upper part of the vehicle. (Lower view) When the car is severely damaged, the reverse J-shaped This is an example of a structure (upper view) in which the reverse J-shaped locking function part of the locking structure KRsec extends and the HPE body is detached from the upper part. As long as the HPE body has a function of separating to the upper part, it does not stick to metal, synthetic resin, other, material and shape.
It is preferable to provide a carbon dioxide livestock gas tank and a hydrogen livestock gas tank in the structure of the livestock gas tank.

上記補足記載であるが、前記水蒸気改質で生成した合成ガスはCOとHの概略物質量1:1の混合物である。気体体積は物質量に比例するので、一酸化炭素量=水素量で気体は標準状態で22.4L/molの体積である。(液体水素:高圧 水素=6:1の運搬効率)水素は1Lあたり39g(700気圧のタンク内重量)である。
前記CO改質で生成したガスは上記第2の発明の段落に記載しているが、一例として改質物質をジメジエーテルとした場合は、ジメジエーテルに水蒸気か二酸化炭素の何れか一方か両方かを加えて反応させると、
A.CHOCH+HO→2CO+4H−48.9Kal/mol 水蒸気の場合
B.CHOCH++CO→3CO+3H−58・8Kal/mol二酸化炭素の場合
C.2CH3OCH3+H2O+CO2−107.7Kal/mol両方の場合 のようになる。
*水素の性質・拡散が早く漏れやすい・高い反応性・特に鉄鋼を含む金属を脆くする。
Although the above-mentioned supplemental described, the synthesis gas produced by the steam reforming is a schematic substance amount 1 of CO and H 2: a mixture of 1. Since the gas volume is proportional to the amount of the substance, the amount of carbon monoxide = the amount of hydrogen and the gas has a volume of 22.4 L / mol in the standard state. (Transfer efficiency of liquid hydrogen: high pressure hydrogen = 6: 1) Hydrogen is 39 g per liter (weight in tank of 700 atm).
The gas generated by the CO 2 reforming is described in the paragraph of the second invention, but when the reforming substance is dimethyl ether as an example, the dimethyl ether is either water vapor or carbon dioxide, or both. In addition, if you react,
A. In the case of CH 3 OCH 3 + H 2 O → 2CO + 4H 2 −48.9 Kal / mol water vapor
B. In the case of CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol carbon dioxide
C. In the case of both 2CH3OCH3 + H2O + CO2-107.7 Kal / mol become that way.
* Hydrogen properties, diffusion is quick and easy to leak, high reactivity, and especially brittle metals including steel.

図3A.は図1Aの前後方向断面図で、ロータリーピストンエンジンの水素対応構造部の説明は図6に記載しており後述する。
ロータリーピストンエンジン ロータリーハウジングの内壁と外壁間に少なくとも1/2周する通水路Kを設けており、1方の、水の導入管からは水を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み、前記水が燃料の燃焼熱で吸気→圧縮→爆発→排気工程部に当接する通水路を通る過程で水蒸気Jとなり吸熱反応流路部Sへ送り込まれ、炭素C挿入管より炭素が挿入される、
他方のロータリーピストンエンジン内に空気Oが送り込まれ、次に燃料の合成ガスMTCかサブタンクST燃料(ブタン・バイオ燃料・合成ガス等の何れか)がエンジン内に送り込まれ、→圧縮→爆発→排気Eとなり、吸熱反応流路部Sへ送り込まれる、3図の記載では前記排気Eは吸熱反応流路部Sの管中央部を流れ、水蒸気Jと挿入された炭素は熱反応流路管MSの管壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造の1例概略図である。
CO2改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図1B・図3、の説明構成を適用する。
FIG. 3A. FIG. 1A is a cross-sectional view in the front-rear direction of FIG. 1A, and a description of the hydrogen-compatible structure of the rotary piston engine is shown in FIG.
Rotary piston engine A water passage K that makes at least a half turn between the inner wall and the outer wall of the rotary housing is provided, and water is supplied from one water introduction pipe to the water passage K between the inner wall and the outer wall of the rotary housing. The water is sent to the endothermic reaction channel S through the carbon C insertion tube, and the water becomes steam J in the process of passing through the water passage that contacts the intake → compression → explosion → exhaust process part with the combustion heat of the fuel. The
Air O 2 is sent into the other rotary piston engine, and then the fuel synthesis gas MTC or subtank ST fuel (any of butane, biofuel, synthesis gas, etc.) is sent into the engine, → compression → explosion → exhaust E X next to be fed to the endothermic reaction flow path portion S, the exhaust E X flows through the tube center portion of the endothermic reaction channel section S, carbon inserted with steam J thermal reaction channel is in the description of FIG. 3 flow synthesis gas generator tube provided in a coil shape in contact with the tube wall of the tube MS, the tube in the heat of the exhaust E X flowing a central portion is generated in the synthesis gas is withdrawn from the take-out tube is transferred to savings gas tank MT FIG.
The explanation structure of FIG. 1B and FIG. 3 is applied to the structure of the water passage / ventilation path of the rotary housing corresponding to CO2 reforming and synthesis gas reforming.

図3B.は図3A.の水(HO)の導入管部に水蒸気Jと炭素Cの混合体を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み前記熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造概略図である。
CO改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図3A,B,図4にも図1Bの説明構成を適用する。
FIG. 3B. FIG. A mixture of water vapor J and carbon C is fed into a water passage K between the inner wall and the outer wall of the rotary housing into the water (H 2 O) introduction pipe portion of the water and comes into contact with the inner wall surface of the thermal reaction channel pipe MS in a coil shape the synthesis gas production tube provided in the flow, which is the tube structure schematic diagram central portion is generated heat in the synthesis gas in the exhaust E X flowing retrieved from the take-out tube is transferred to savings gas tank MT.
The structure of the water passage / ventilation path of the rotary housing corresponding to CO 2 reforming and synthesis gas reforming also applies the explanation structure of FIG. 1B to FIGS.

図4は図3の熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管路をストレートの細い管にして設け、前記細い管と細い管の間を排気Eが流れる構成にしたものであり、又吸熱反応流路の設計は排気ガス処理システムで触媒を対峙させて排気を無害化させるシステムで多種実用化されているので、その構造構想を適用しても良い。 Figure 4 is provided to the synthesis gas production pipeline provided in a coil shape in contact with the tube inner wall surface of the thermal reaction flow pipe MS of FIG. 3 in a thin tube of a straight, exhaust between the thin tube and the thin tube E X The design of the endothermic reaction flow path has been put to practical use in a system that makes the exhaust gas harmless by confronting the catalyst in the exhaust gas treatment system. good.

図5は特開2007−211608の水素ロータリーピストンエンジンを示す概略図である。 FIG. 5 is a schematic view showing a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-2111608.

図6は水素ロータリーピストンエンジンの電子制御噴射構造部の主構成を示した図であり前記電子制御噴射弁は、例えば100KWの出力を得る為には2300NL/minの大容量を噴射する必要がある、上図の2個の噴射弁40,42を設けて大容量を噴射している。
さらにローターハウジング側面に大容量の吸気ポート16と排気ポート18を設け、更に爆発室を爆発寸前時に2分する構造にしており2個の点火プラグ14,15を設けている図。
FIG. 6 is a diagram showing a main configuration of an electronically controlled injection structure of a hydrogen rotary piston engine. The electronically controlled injection valve needs to inject a large capacity of 2300 NL / min in order to obtain an output of 100 KW, for example. The two injection valves 40 and 42 in the above figure are provided to inject a large volume.
Further, a large-capacity intake port 16 and an exhaust port 18 are provided on the side of the rotor housing, and the explosion chamber is divided into two when it is about to explode, and two spark plugs 14 and 15 are provided.

近年ハイブリッド車・100%電気の電気自動車が脚光を浴びている。
しかし自動車の殆どを電気エネルギーとすると、家電を始めとする電化のスピードに追従させるのが一杯の電力供給事情に追い打ちを掛ける「福島原発」の問題もあり、電力供給設備の拡充は早急に解決すべき課題と成っている。しかしながら国民は原子力発電所の建設または再稼働問題については、原発を廃止すれば電力料金の負担が増える事もあり賛成方向に理解していても原発廃棄物の処理方法が判らない現状では反対意見が多いと私は理解している、更に世論は脱ダム方向に向いている、従って電力供給設備の拡充は火力発電及び自然エネルギーによる物のウエートが非常に高くなるのは、必死の情勢である。 従ってCO2排出を抑えた電力発電設備を拡充することが早急に解決すべき問題である。
In recent years, hybrid vehicles and 100% electric vehicles have attracted attention.
However, if most of the automobiles are used as electric energy, there is a problem of the “Fukushima nuclear power plant” that overwhelms the power supply situation to follow the speed of electrification including home appliances, and the expansion of the power supply facilities is solved quickly It is an issue that should be done. However, the public disagrees with the current situation regarding the construction or restart of nuclear power plants, as the burden of electricity charges will increase if the nuclear power plant is abolished. I understand that there are many, and further public opinion is toward the direction of damming. Therefore, expansion of power supply facilities is a desperate situation that the weight of things by thermal power generation and natural energy becomes very high . Therefore, expanding the power generation facilities that suppress CO 2 emissions is a problem that should be solved immediately.

ここ数十年外国から安価な木材が輸入され、林業従事者は極端に減少し山林は間伐されず、又松枯れ等害虫に蝕まれた枯木は放置されたままである。
更に農業の活性化であるが、「田んぼ」の殆どは農業用水路が整備されており、更に長年施肥をしていて、肥沃な農地となっている、これを遊ばしておくのは、あまりにも「無駄」である、この「田んぼ」に例えばパルプ材料となる「ケナフ」、養蚕の「桑」を植えるとか、あるいは水の補給が十分に出来る所は、南米のウルグアイが行っている「ユウカリ」をうえるとかするのも1つの案であり、前記農産廃棄物を含めた炭化出来るものを、農家が片手間で出来る小規模な炭化装置(図10参照)を複数軒に1個貸与使用(リース方式にして前記炭化装置で炭化した物の代金で割安にした炭化装置を、例えば5年分割とかで買い取らす方式にすれば、買い取らしたお金をさら多くの林業従事者や農家が片手間で出来る「小規模な炭化装置」を貸与させる予算の一部にする事が出来る)するとか、更に里芋の様に水の供給が十分に出来る場所ではよく育つ「バイオエタノール」に成り得るものを植えるとかするのも一策である。
In recent decades, cheap timber has been imported from foreign countries, the number of forestry workers has decreased dramatically, the forest has not been thinned, and dead trees devoured by pests such as pine wilt have been left unattended.
Furthermore, it is the vitalization of agriculture, but most of the “rice fields” have agricultural waterways, which have been fertilized for many years and have become fertile farmland. For example, “Kenaf”, which is a pulp material, and “Mulberry” in sericulture can be planted in this “rice field”, or “Yukari” from Uruguay in South America can be used. One plan is to use a small-scale carbonization device (see Fig. 10) that can be carbonized by a farmer with a single hand for lending use (lease method). For example, if the carbonization equipment that is cheaper with the price of the carbonized equipment is purchased in a five-year split, for example, a small scale that allows more forestry workers and farmers to use the purchased money with one hand. ”Carbonizing equipment” It is also possible to plant a thing that can become “bioethanol” that grows well in places where water supply is sufficient, such as taro.

2020年迄に温室効果ガス(CO)の排出を 25%削減しようと言う目標も囁かれている中で、世界中がこの目標にどうやって到達するか凌ぎを削っている、日本のCO排出の主役は内燃機関からの排出と発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出である、これらのCOは、石炭・石油・天然ガスを始とする化石燃料の使用による物であり、石炭・石油・天然ガスを始とする化石燃料は限りある資源であり、言うまでも無く再生産不可能な資源である。 The goal of reducing greenhouse gas (CO 2 ) emissions by 25% by 2020 is being asked, and Japan's CO 2 emissions are struggling to see how the world can reach this goal. The main players in this project are emissions from internal combustion engines and emissions from thermal power boilers, which account for about 82% of electricity generation (2012 Electricity Federation statistics). These CO 2 starts with coal, oil and natural gas. Fossil fuels such as coal, oil, and natural gas are limited resources, and of course, resources that cannot be reproduced.

京都議定書によれば、植物の炭素Cの燃焼等により生成される炭酸ガスCO2は植物の炭素同化作用で消費される為 プラス マイナス ゼロでありCO排出量としてカウントされない約束に成っている、従って化石燃料の炭素の消費を、植物の炭素にシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、上記合成ガス生成サイクルの案を実現するのが最良と思う。(環境省2010年資料によると、温室効果ガスCOは全世界で303億tを排出しており日本はその3.8%である) According to the Kyoto Protocol, carbon dioxide CO 2 produced by the combustion of plant carbon C is consumed by plant carbon assimilation, so it is a plus or minus zero and is not counted as CO 2 emissions. Therefore, in order to shift the carbon consumption of fossil fuels to plant carbon and achieve a 25% reduction in greenhouse gas CO 2 emissions at an early stage, it is best to realize the above-mentioned synthesis gas generation cycle plan. think. (According to 2010 data from the Ministry of the Environment, greenhouse gas CO 2 emits 30.3 billion tons worldwide, Japan is 3.8%)

太陽光発電(ソーラー発電パネル使用システム・太陽光集光し、熱で蒸気発生→発電)が今後の発電の主流になる日はそう遠くない。しかしながら太陽光発電は夜・雨・曇りと24Hフルタイム発電出来ないのと、大規模に設置する場所となると電力使用地からかなり遠隔地になるので変電・送電設備を新たに設置する事に成るのが欠点で、太陽光発電のみで賄うには大容量の蓄電設備が必要で、又日照率の良い場所(例えば年間降雨量の少ない砂漠が筆頭候補)となると厖大な送電・受電設備が必要である(前記大容量の蓄電設備・厖大な送電・受電設備には、日本が発明した超伝導があり、すでに実験プラントが試稼動中であり、2008年に1,100, 000Vの国際規格も国際承認を得たところであるが、想定コストとの格差が問題とされている)。
そこで本願発明の燃料製造機構を併用し、太陽光発電可能時間以外は短時間稼動可能な本願発明の内燃機関発電とすれば、温室効果ガスCOの排出削減は、より早期に達成出来ると言える。
The day when solar power generation (system using solar power generation panels, condensing sunlight, generating steam with heat → power generation) will become the mainstream of future power generation is not far away. However, solar power generation is not possible 24 hours full-time power generation at night, rain, and cloudy, and if it is installed on a large scale, it will be quite remote from the power usage area, so it will install new substation and transmission equipment The disadvantage is that large-capacity power storage equipment is necessary to cover only with solar power generation, and if it is a place with a good sunshine rate (for example, a desert with low annual rainfall is the leading candidate), a large amount of power transmission / reception equipment is required. (There is superconductivity invented by Japan in the above-mentioned large-capacity power storage equipment, large-scale power transmission / reception equipment, the experimental plant is already in trial operation, and the international standard of 1,100,000V was also established in 2008. Although it has just gained international approval, the gap with the estimated cost is a problem).
Therefore, if the internal combustion engine power generation of the present invention that can be operated for a short time other than the solar power generation time is used in combination with the fuel production mechanism of the present invention, it can be said that the reduction of greenhouse gas CO 2 emission can be achieved earlier. .

燃料とする炭素Cの調達コスト削減の可否が、本願の実用の成否を握っている。炭素製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
「昔の炭焼き窯の効率を良くした物」炭化装置であり、この炭焼き窯規模のものを山林に多数点在設置して、間伐、枝打ち、下刈りといった作業をしながら、燃料とする炭素Cの調達作業を掛け持ちで出来る構造にした炭素製造装置を順次貸与する形態(補助金に代えて出すことに対しての案)にする事が本願実現の近道となる具体的提案である。
Whether or not the procurement cost of carbon C as a fuel can be reduced holds the success or failure of practical use of the present application. In carbon production, when carbonized organic substances are heated with the air and oxygen flow cut off, they turn into black carbon-rich substances. The resulting product is an aggregate mainly composed of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.
Carbon charcoal used as a fuel while performing many operations such as thinning, pruning and undercutting. It is a concrete proposal that is a shortcut for realizing the present application to sequentially lend carbon production equipment that has a structure that can be handled in a procurement manner (subject to substituting for subsidies).

図10は前述の小規模炭化装置の想定概略図であり、炭素生成室CSに本願の炭素材に適した炭化植物を入れ釜戸の役割をする燃焼室FCに本願の炭素材の概略半分の炭化材植物を燃焼させ、出来た炭素Cの形で集積場に集積する方式にすれば、枝付木材での運搬よりはるかに運搬コストを下げる事が出来る物であり、
酸素が入らない環境で植物原料(木材等)を加熱して炭化させる炭化室CSに木材等を投入して酸素が入らない環境にして、前記炭化室を加熱する加熱用燃料(木材等の植物原料又はその他の燃焼材)を燃焼させる燃焼室FCに投入して燃焼させ、前記炭化室での炭化過程で発生するガスC4と炭化室の内壁に燃焼室FCの排ガス排出管路と水タンクから導入した水H2Oを水蒸気にする水蒸気生成手段の管路を設けて、前記炭化過程で発生するガスC4とともに導入管C4で燃焼室に導入して炭化室を加熱する燃料とする構成構造にする、
FIG. 10 is an assumed schematic diagram of the above-described small-scale carbonization apparatus. Carbonization plants suitable for the carbon material of the present application are placed in the carbon production chamber CS, and the combustion chamber FC serving as a pot door is approximately half carbonized of the carbon material of the present application. By burning the timber plant and collecting it in the collection area in the form of carbon C, it is possible to reduce the transportation cost much more than transportation with branch wood,
Fuel for heating (plants such as wood, etc.) that heats the carbonization chamber by introducing wood into the carbonization chamber CS that heats and carbonizes plant raw materials (wood, etc.) in an environment that does not contain oxygen The raw material or other combustible material) is introduced into the combustion chamber FC where it is combusted and combusted. From the gas C4 generated in the carbonization process in the carbonization chamber and the inner wall of the carbonization chamber, the exhaust gas exhaust line of the combustion chamber FC and the water tank A structure is provided in which a pipe for steam generation means for converting the introduced water H 2 O into steam is provided as a fuel for heating the carbonization chamber by introducing it into the combustion chamber through the introduction pipe C4 together with the gas C4 generated in the carbonization process. To

上記第2の発明の段落に記載している構造の改質部(COの改質)を、上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かを、前記反応させ小規模炭化装置の燃料とする構成にすると、更に炭化に消費する燃料の節減となり、温室効果ガスの排出削減となる。
更に改質部(COの改質)の使用により、石炭等の化石燃料を使用する事が出来、燃料としていた木材等を植物原料のCに改質する出発改質材に出来る。
前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物である。
The reforming part (CO 2 reforming) having the structure described in the paragraph of the second invention is provided in the discharge part (chimney) of the exhaust gas pipe, and as an example, the reforming substance is dimethyl ether, and the catalyst If the reforming section is made to react with either dimethyl ether or one of water vapor or carbon dioxide to make the fuel of the small-scale carbonization device, the fuel consumed for carbonization is further reduced. Reduction of effect gas emissions.
Furthermore, by using a reforming section (CO 2 reforming), it is possible to use fossil fuels such as coal, and it is possible to use it as a starting reforming material that reforms wood, etc., used as fuel into plant raw material C.
As an example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum, and the like. These compounds, other metals or compounds.

前記記載の合成ガスは水素と一酸化炭素のみとは限らない、前記合成ガスは主構成を表し、例えば、未燃焼炭素、二酸化炭素、水分、その他大気中に存在する気体及び不純物等を含有している場合も含む。 The synthesis gas described above is not limited to hydrogen and carbon monoxide. The synthesis gas represents a main component, and includes, for example, unburned carbon, carbon dioxide, moisture, and other gases and impurities present in the atmosphere. This includes cases where

炭素(植物原料のC)の調達コストが現在では天然ガス(メタン・ブタン等)、石炭、石油の化石燃料に比べ高く、前記炭素の調達コストが、同等に成るか、行政の補助金等が得られるか、若しくは温室効果ガスCOの排出規制の強化の法律を作るか、する迄は炭素の調達は天然ガス(メタン等)で行うか直接天然ガス(メタン等)を燃料とし、社会全体の欲求が高くなり炭素の調達コストがペイ出来る時点で切り替える方法もある、
しかしながら化学技術の進歩の速度は「ニーズ」に比例する形で進歩していると私は思っている、
従って本願の主原料となる再生可能な炭素Cの調達ニーズが高く成れば、前記調達技術は加速度を付けた状態で進化すると確信している。
本願の内燃機関サイクルに使用する炭素は当面「石炭」を粉末にして使用するのが一番安価であるので、再生可能な炭素Cの調達システムが完備するまでは、前記化石燃料を使用して順次再生可能な炭素Cの調達システムに移行する形態をとることになる。
The procurement cost of carbon (plant raw material C) is currently higher than that of natural gas (methane, butane, etc.), coal, and petroleum fossil fuels. Until it is obtained, or the law of strengthening the emission control of greenhouse gas CO 2 is made, the procurement of carbon will be done with natural gas (methane etc.) or directly with natural gas (methane etc.) as fuel and the whole society There is also a way to switch when the desire for carbon increases and the cost of carbon procurement can be paid,
However, I think that the speed of progress in chemical technology is progressing in proportion to "needs",
Therefore, if the need for procurement of renewable carbon C, which is the main raw material of the present application, becomes high, we are confident that the procurement technology will evolve with acceleration.
The carbon used in the internal combustion engine cycle of the present application is the cheapest to use “coal” as powder for the time being, so the fossil fuel will be used until the renewable carbon C procurement system is complete. It will take the form of shifting to a carbon C procurement system that can be sequentially regenerated.

温室効果ガスCOの排出枠の日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を前記炭素の調達コストの一部として使用すれば、本願発明の実現時期は早くなる。
*、化学工場・製鉄工場・アルミ工場・塵焼却場からパイプラインで水素と一酸化炭素の混合気体・二酸化炭素・水素等の輸送手段とすれば運輸機器での輸送よりはるかに輸送コストを下げる事が出来る。
アメリカや欧州各国ではそれぞれ数千Kmの水素輸送パイプラインを敷設しており、世界を競争相手として勝ち残るためにも政府の後押しで早期に実現するべきである。
The amount of purchase of greenhouse gas CO 2 emission allowances in Japan is estimated to be about 1 trillions of billions of yen. If this purchase amount is used as part of the carbon procurement cost, the time of realization of the present invention will be explained. Will be faster.
* If transportation from a chemical factory, steel factory, aluminum factory, dust incineration plant, etc., is carried out using a mixed gas of hydrogen and carbon monoxide, carbon dioxide, hydrogen, etc., the transportation cost will be much lower than transportation using transportation equipment. I can do it.
Each US and European country has a hydrogen transport pipeline of thousands of kilometers, and should be realized early with the support of the government in order to survive the world as a competitor.

本願の内燃機関を動力とした動力発電設備は、比較的小規模の動力発電設備(前記動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来るので、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
The power generation facility powered by the internal combustion engine of the present application is a relatively small-scale power generation facility. Because it can be a decentralized power generation system with self-sufficiency in units of mass such as remote islands, mountainous remote areas, industrial parks, submarine transmission cables and power demand It is possible to drastically reduce power transmission facilities, power transformation facilities, and power reception facilities that respond to changes in power consumption.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

メタノールを内燃機関の燃料とする場合、もともとメタノールは化学平衡から有利な高圧にして水素と一酸化炭素から合成されたものである。従って水素に転換して使用するよりは、水素と一酸化炭素の合成ガスの形で使用するのがエネルギー的には最も効率が高い。 When methanol is used as a fuel for an internal combustion engine, methanol is originally synthesized from hydrogen and carbon monoxide at a high pressure advantageous from chemical equilibrium. Therefore, it is most efficient in terms of energy to use it in the form of synthesis gas of hydrogen and carbon monoxide, rather than converting it to hydrogen.

圧縮水素と液体水素の輸送であるが、水素の陸上輸送では、水素ガスの体積貯蔵密度が小さい問題を補うために、14.7〜19.6MPaに加圧し圧縮水素として輸送するが、Cr−Mo鋼の水素容器は重量が重く、一例をあげれば100Kgの水素を輸送するトレイラー車は水素容器の重量だけで7tになる、圧縮水素の輸送コスト低減には、アルミ合金ライナーや高密度ポリエチレンライナーにガラス繊維や炭素繊維で強化したタンクにする必要がある、
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準}
Although transportation of compressed hydrogen and liquid hydrogen is carried out, in order to compensate for the problem that the volume storage density of hydrogen gas is small, hydrogen is pressurized to 14.7 to 19.6 MPa and transported as compressed hydrogen. Mo steel hydrogen container is heavy. For example, a trailer vehicle that transports 100 kg of hydrogen requires 7 tons of hydrogen container. To reduce the cost of transporting compressed hydrogen, aluminum alloy liners and high-density polyethylene liners are used. It is necessary to make a tank reinforced with glass fiber or carbon fiber,
Under current regulations (in Japan, registration of JIS B 8265 has been completed and internationally there is ISO 16528) CFRP for transportation (tank with high-density polyethylene liner reinforced with glass fiber or carbon fiber on the entire surface) ) Since the container has a pressure of up to a capacity of 35 MPa, it is necessary to relax regulations in order to utilize the container. (Japan Industrial Gas Association, hydrogen gas container standards)

一方液体水素は体積貯蔵密度が水素ガスの800倍強でタンクローリ―とか断熱コンテナーが使用されているが、液体水素は液化にエネルギーを必要とすることや、沸点が−253°Cで蒸発ロスが発生する欠点がある。 On the other hand, liquid hydrogen has a volume storage density 800 times higher than that of hydrogen gas, and tank trucks or insulated containers are used. However, liquid hydrogen requires energy for liquefaction and has a boiling point of −253 ° C. and evaporation loss. There are disadvantages that occur.

本願発明の内燃機関は合成ガスを燃料としているが、該合成ガスは自動車内でのパイプ配管供給であり、該内燃機関で生成された合成ガスを畜ガスする畜ガスタンクの蓄圧は前述現存の水素エンジン車に搭載されている圧縮ガスの35MPaの畜ガスタンクにする必要は無く1/40程度の蓄圧であっても良く、その蓄圧を低く出来る分加圧ポンプに使用するエネルギーを使わなくて済むし、蓄ガスタンク構造も現行法規内での多くて数MPa程度の構造にする事も出来る。 The internal combustion engine of the present invention uses synthesis gas as fuel, and the synthesis gas is a pipe supply in an automobile, and the accumulation pressure of the livestock gas tank for livestock synthesis gas produced by the internal combustion engine is the above-mentioned existing hydrogen There is no need to use a 35MPa livestock gas tank of compressed gas installed in the engine car, and it may be about 1/40 of the accumulated pressure, and the energy used for the pressurizing pump can be saved as much as the accumulated pressure can be reduced. The gas storage tank structure can also be a structure of at most several MPa within the current regulations.

水素の定常的大量輸送にはパイプラインによる輸送が最適であり欧州と米国各地ではおのおの千数百Km布設されている、本願の合成ガスも性状は水素と類似性状であり前記パイプラインによる輸送をするのが最適手段である。
前記水素パイプラインのパイプ材としては、現在の先端技術では、通常のラインパイプ鋼材に比し、バナジュウムを減らしニッケルやクロムを少量加えた耐サワー材であれば、通常の輸送環境下での使用材と出来るとしており、それによるコストUP分も10%以下とされておる。
Pipeline transportation is optimal for steady mass transportation of hydrogen, and the synthesis gas of this application is similar to hydrogen in Europe and the United States. It is the best way to do it.
As the pipe material of the hydrogen pipeline, in the current advanced technology, if it is a sour-resistant material with a reduced amount of vanadium and a small amount of nickel or chromium, compared with ordinary line pipe steel, it can be used in a normal transportation environment. It is said that the cost can be increased to 10% or less.

水素を燃料としたロータリ−エンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素(又はガソリン)ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、
この車の特徴は燃費の良い条件でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としておる所であり、
短所としては高圧水素燃料タンク満タンでの走行距離が100Kmと短く、又水素の運搬手段も(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造&輸送コストが高い点等である。
The rotary engine vehicle powered by hydrogen is a Mazda Premacy Hydrogen RE hybrid vehicle that has a structure that can be selected to travel using either hydrogen as fuel or gasoline as fuel. A high-pressure hydrogen fuel tank (35MPa, 74L) And a gasoline tank is mounted on the vehicle, electricity is generated by rotating a hydrogen (or gasoline) rotary engine and stored in a lithium ion battery, and driving of the wheel is electricity stored in the battery,
The feature of this car is that the engine is operated with good fuel economy, and the control of the vehicle speed fluctuations depending on the running state of the car is electric control.
Disadvantages include a short mileage of 100 km in a high-pressure hydrogen fuel tank, and the hydrogen transportation means (assuming transportation by car) has a poor ratio of hydrogen loading weight to the tank weight, leading to the development of infrastructure such as hydrogen stations. There are no points and high hydrogen production & transportation cost.

水素を燃料とした東京都市大学が開発している水素エンジンバスは35MPaに圧縮したタンクを6本屋根の上に積んでおり、該タンクを満タンにした状態で200Km走行できるバスでエンジンはディーゼルエンジンを改良した物で主な改良部位はインテークマニホールドと水素の噴射弁と点火プラグを追加したぐらいで有る。 The hydrogen engine bus developed by Tokyo City University, which uses hydrogen as fuel, is loaded with six tanks compressed to 35MPa on the roof. The main improvements in the engine are the addition of an intake manifold, hydrogen injection valve and spark plug.

水素を燃料とした東京都市大学が開発して作った、水素レシプロエンジンでワゴンタイプの武蔵10は水素冷却インタークーラー付水素エンジンで、液体水素100Lのタンクを搭載しており1充填で300Kmの連続走行を可能にした車である。
上記水素を燃料とする現存車の短所は、水素の運搬手段の(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造コストが高い点等である。
A hydrogen reciprocating engine and a wagon type Musashi 10 developed and developed by Tokyo City University using hydrogen as a fuel, is a hydrogen engine with a hydrogen cooling intercooler, equipped with a tank of 100 L of liquid hydrogen and continuously running at 300 Km per charge. It is a car that made it possible.
Disadvantages of the above-mentioned existing vehicles that use hydrogen as a fuel are that the ratio of hydrogen loading to the tank weight of the hydrogen transport means (assuming transport by car) is poor, the infrastructure development such as the hydrogen station does not progress, and the hydrogen production cost It is a high point.

マツダ(企業名)の水素ロータリーピストンエンジンでは、水素Hを燃料として発電し、その電気でモーターを回転させているのでその発電構成部分を動力発電機として使用出来、その動力発電機としておる発電構成部分を、本願内燃機関に適用している。 The hydrogen rotary piston engine Mazda (company name), and generating the hydrogen H 2 as a fuel, since by rotating the motor in the electric can use the power component as power generators, dwell as a power generator generating The components are applied to the internal combustion engine of the present application.

前段落の動力発電設備とする場合、合成ガス・水素を副産物としているか、あるいは大量に熱を廃棄している製鋼所・化学工場・アルミ製造工場・鋳造工場・鍛造工場・ごみ焼却所・石油精製所とかに、隣接若しくは近接して動力発電所を設置すればさらにランニングコストは低減される。 In the case of the power generation equipment in the previous paragraph, steelworks, chemical factories, aluminum manufacturing factories, foundry factories, forging factories, garbage incinerators, and oil refineries that use synthesis gas and hydrogen as by-products or dispose of a large amount of heat. in Toka place, further running costs by installing the power plant adjacent or close to is reduced.

本願の内燃機関動力発電設備とする場合、比較的小規模の動力発電設備(前記内燃機関動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来る、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
In the case of the internal combustion engine power generation equipment of the present application, a relatively small scale power generation equipment (if the internal combustion engine power generator is assumed to have an output machine of 1000 KW / H as 1 unit / unit, 1 unit to several hundred units The number of units can be set as a decentralized power generation system with self-sufficiency in units of mass, such as remote islands, mountainous areas, and industrial parks. It is possible to greatly reduce the power transmission facilities and power transformation / reception facilities corresponding to the changes.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

前述炭素の供給源には
間伐及び松枯れ等害虫に蝕まれた枯れ木、更に日本の稲作で発生する籾殻・藁等は廃棄されている、この再利用されていない木材と籾殻・藁だけでもかなりの割合で混合気体製造の植物の炭素(C)に成り得る、更に休耕地等の空き地にケナフ(Hibiscuscannabinus L)を栽培し(種には20%の油がある)前記植物の炭素(C)にすることも、更に休耕地等の空き地にトウモロコシ、サトウキビ等の栽培をすれば、植物のバイオ燃料にも出来る、述べるまでもないと思うが、「田んぼ」の多くは農業用水路が確保されており、かつ、長年肥料を施した物であるので、例えば里芋とか、麦を栽培して実は食用として廃棄部分を前記植物のバイオ燃料か植物の炭素(C)にして麦藁を前記植物の炭素(C)にする等、それらから得られる収入と稲作で得られる収入の差額を補填する政策にすると言う方法もある、
The carbon sources mentioned above are dead trees that have been eaten by pests such as thinning and pine wilt, and rice husks and husks generated in Japanese rice farming are discarded. Cultivated kenaf (Hibiscus cannabinus L) in vacant land such as fallow land, which can be mixed gas production plant carbon (C) at a rate of carbon (C) of said plant It goes without saying that cultivating corn, sugarcane, etc. in vacant land such as fallow land can be used as biofuel for plants, but many rice fields have agricultural waterways. In addition, since it has been fertilized for many years, for example, cultivated taro, wheat, and actually edible, the waste part is made into the biofuel of the plant or the carbon of the plant (C) and the wheat straw is converted into the carbon of the plant ( There is also a method to make up for the difference between the income obtained from them and the income obtained from rice cultivation, etc.

今まで国で考えられていた農業(稲作農家)に対する米価(ウルグアイランド)対策として20数年前から実施されている農業規模拡大策で、小さい田んぼ2〜3枚を一枚の田にして農作業効率を上げる事や、数個の農家を一つの企業として大規模化する策や、農業所得補償制度,米の需要減少に対応する、減反助成金政策(2.5兆円)など稲作農家を支援する政策がとられているがいずれの政策も日本の稲作農家を魅力ある職業として次の世代にバトンタッチできる施策とするには程遠いものであり、本願の植物の炭素(C)を燃料源とする政策を実現させる事が「地球温暖化に対処する「CO」の排出削減」と「農・林業を魅力ある職業に出来る事」と、さらに日本の「自動車産業を活性化」と言う「1石数鳥」の効果が期待できる。 Agricultural work with 2 to 3 small rice fields as a single rice field as a measure to expand the scale of agriculture, which has been implemented in the past 20 years as a measure against rice prices (Urg Island) for agriculture (rice farmers) that has been considered in the country. Measures to increase efficiency, measures to increase the size of several farmers as one company, agricultural income compensation system, a subsidy subsidy policy (2.5 trillion yen) to cope with a decrease in rice demand There is a policy to support, but none of these policies are far enough to make Japanese rice farmers an attractive profession for the next generation, using the carbon (C) of the plant as a fuel source. To achieve this policy, “Reducing CO 2 emissions in response to global warming” and “Making agriculture and forestry an attractive occupation” and further revitalizing the Japanese automobile industry. We can expect effect of "one stone several birds" .

本願明細書に記載及び特許請求の範囲に記載されている事象から容易に想到出来る種々の実施形態も、前記特許請求の範囲を逸脱しない範囲であれば本願発明に含まれる。 Various embodiments that can be easily conceived from the events described in the present specification and claims are included in the present invention as long as they do not depart from the scope of the claims.

この案件は1部未開発の部分もあるが、本願の内燃機関は実施可能であり、これらの方法、構成機器の製造に携わる人々が、次にそれらの方法、内燃機関を利用する人々が、更らにそれらに関連する業種の人々に波及する、それらの産業に利用できる。
何より自国の資源を最大限活用するサイクルを作ることが、日本の100年の計を作る土作りとなり、それらの産業の育成につながる。
Although this project is partly undeveloped, the internal combustion engine of the present application can be implemented. Furthermore, it can be used for those industries that spread to people in industries related to them.
Above all, creating a cycle that maximizes the use of your country's resources will create a foundation for Japan's 100-year total, leading to the development of those industries.

A.内燃機関(ロータリーピストンエンジン)で水と炭素を前記エンジン内にてHとCOの合成ガスとする概略構造図。B.レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成図。A. FIG. 3 is a schematic structural diagram of water and carbon as synthesis gas of H 2 and CO in the engine in an internal combustion engine (rotary piston engine). B. The schematic block diagram of the engine block of a water vapor | steam production | generation part of a reciprocating engine, a synthetic gas production | generation endothermic reaction flow path part, a fuel supply / injection system | strain, and a spark plug. A〜F 図1A.の貯ガスタンク設置要領の数種の貯ガスタンク設置例図。 H.貯ガスタンクの1単位のボンベの部分断面・及び当該ボンベのガス出し入れ管路部分図と部分断面図。i.タンク包括体保持・離脱要領図。A-F FIG. The example of several types of storage gas tank installation of the storage gas tank installation procedure. H. The partial cross section of the cylinder of 1 unit of a gas storage tank, and the gas inlet / outlet pipe | tube partial view and partial sectional drawing of the said cylinder. i. Tank comprehensive body holding / removal diagram. A.図1AのEAsecのロータリーエンジンから吸熱反応流路部に至る概略断面図。B.図1.A.のHO供給管に蒸気と炭素を加圧挿入するタイプの断面図。A. FIG. 1B is a schematic cross-sectional view from the EAsec rotary engine of FIG. 1A to the endothermic reaction flow path portion. B. FIG. A. Type cross-sectional view of pressure inserting the vapor and carbon in H 2 O supply pipe. エンジン排気管部に設けた吸熱反応流路部とガス生成管の構造を複数の細管で構成した概略構造例図。The schematic structural example figure which comprised the structure of the endothermic reaction flow-path part provided in the engine exhaust pipe part and the gas production | generation pipe | tube with several thin tubes. 特開2007−211608水素エンジンの制御装置のロータリーエンジンを示す概略図。Schematic which shows the rotary engine of the control apparatus of Unexamined-Japanese-Patent No. 2007-2111608. 特開2007−064169の水素ロータリーピストンエンジンの燃料噴射装置の、A,同上ローターの電子制御、水素噴射構造概略横断面図。 B,A,図の縦方向断面図。A, electronic control of a rotor same as above, and hydrogen injection structure schematic cross-sectional view of a fuel injection device of a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-064169. B, A, the longitudinal cross-sectional view of a figure. 特開2002−039022記載の燃料改質ガスエンジンの実施形態の構成図。The block diagram of embodiment of the fuel reformed gas engine of Unexamined-Japanese-Patent No. 2002-039022. レシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点火栓の概略構成図。1 is a schematic configuration diagram of an electronically controlled hydrogen injection system, intake / exhaust ports, and spark plugs for reciprocating (diesel engine) fuel supply. FIG. 特開2002-256849のカルマン渦を発生させて排気ガスのCOを水に吸集させる、排気管路に設けている排気ガス処理器の概略構造図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural diagram of an exhaust gas treatment device provided in an exhaust pipe that generates Karman vortices of Japanese Patent Application Laid-Open No. 2002-256849 and sucks CO 2 of exhaust gas into water. 小型炭素生成器の1例図。An example figure of a small carbon generator. 世界の化石燃料による,2酸化炭素放出量統計の過時年を捉えた年単位の棒グラフ。Annual bar graph that captures past years of carbon dioxide emissions statistics from fossil fuels around the world.

温室効果ガス排出削減に寄与する内燃機関であって、特に植物を主とする炭素Cと水HOを内燃機関内で合成ガス(H+CO)に生成し、生成した合成ガスを当該内燃機関の燃料とし、更に前記合成ガスの燃焼により排出される二酸化炭素をも分離し内燃機関内で合成ガスH+CO及び水素に改質し該合成ガス及び水素を当該内燃機関の燃料とするものである。 An internal combustion engine that contributes to the reduction of greenhouse gas emissions, particularly producing carbon C and water H 2 O, mainly plant, into synthesis gas (H 2 + CO) in the internal combustion engine, Further, carbon dioxide discharged from the combustion of the synthesis gas is separated as fuel for the internal combustion engine and reformed into synthesis gas H 2 + CO and hydrogen in the internal combustion engine, and the synthesis gas and hydrogen are used as fuel for the internal combustion engine. To do.

温室効果ガスが地球温暖化の大きな要因であり、「温室効果ガスを削減すべきである」と考えるのは世界共通の認識であるが、「具体的数値目標を・・」と言う段階に成ると、国際価格競争時代の今、温室効果ガス削減コストを掛ける事となるので話が進展していないのが現状である。
2014年現在の温室効果ガス排出削減策の自動車(内燃機関)の動力源としては、電気自動車,水素とのハイブリット,あるいは水素のみを燃料したものや「バイオエタノール」を燃料としたエンジンシステム特開2008−298030や「バイオエタノール」の燃料を水素と一酸化炭素とを含む燃料に改質して該改質ガスを燃料とする、温室効果ガスを排出削減する技術もあるが、しかし前記先行技術で製品化するにはそれぞれ解決しなければならない問題点が残っており、それぞれの問題は解決途上で決め手を欠いている部分を残しているのが現状と認識している。
又前記技術の内、電気を動力源とする技術では電気の製造は2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり該火力発電は石炭を始めとする化石燃料を使用しており「CO」を排出しているのでこの発電設備からの「CO」を排出しない策が実現しなければ、電気を動力源としても地球温暖化の温室効果ガス削減に寄与する内燃機関の動力源とは言えない。
又前記技術の動力源を電気をとして温室効果ガスを削減する「CO」を排出しない電力供給源には原子力発電がある、しかし「福島原発」の問題もあり、新たに新設するのは困難であり廃炉の方向に向かうとの見方が大勢を占めていると思っている。
Greenhouse gases are a major cause of global warming, and it is a common recognition in the world to think that “greenhouse gases should be reduced.” However, it is at the stage of “specific numerical targets…” In the era of international price competition, the current situation is that the story has not progressed because it will incur greenhouse gas reduction costs.
As a power source of an automobile (internal combustion engine) of a greenhouse gas emission reduction measure as of 2014, an electric vehicle, a hybrid with hydrogen, or an engine system using only hydrogen or "bioethanol" as fuel There is also a technology for reducing greenhouse gas emissions by reforming a fuel of 2008-298030 or “bioethanol” into a fuel containing hydrogen and carbon monoxide and using the reformed gas as a fuel. There are still problems that must be solved in order to commercialize products, and it is recognized that there is a part that each problem is lacking in the process of solving.
Of the technologies mentioned above, in the technology using electricity as the power source, according to the statistics of the Electricity Federation of 2011, about 82% of Japan's total power generation is thermal power generation. since the discharging "CO 2" and using the fossil fuels, including unless realized measures that do not emit "CO 2" from the power plant, a greenhouse global warming electricity as a power source It cannot be said that it is a power source of the internal combustion engine that contributes to the reduction of the effect gas.
Moreover, nuclear power generation is a power source that does not emit “CO 2 ”, which uses electricity as the power source of the above technology to reduce greenhouse gases. However, there is a problem of “Fukushima nuclear power plant”, so it is difficult to establish a new one. And I think that the view that it goes to the direction of decommissioning occupies a lot.

前記「CO」を低減させる設備は既に存在している、その方法は排出された二酸化炭素を地底層深く(A)もしくは海底層に隔離(Sequestiern)(B)する提案である。2014年にアメリカで世界一の規模の石炭火力発電所が完成しているが、この発電で排出される「CO」の処理は1500mの地底層に封じ込める構造(前記A)であり、この発電所の建設費用は通常の2倍かかつており、更に1500mの地底層に封じ込めるためのエネルギー費用がかかり、その費用は電気料金に上乗せされ消費者負担と成ると言う問題がある。 Equipment for reducing the “CO 2 ” already exists, and the method is a proposal to sequester the discharged carbon dioxide deeply (A) or sequestered (B). The world's largest coal-fired power plant in the United States was completed in 2014, but the treatment of “CO 2 ” emitted by this power generation is a structure (A) that can be contained in a 1500 m underground layer. However, there is a problem that the construction cost of the plant is twice as high as usual, and there is an additional energy cost for containment in the 1,500m underground layer, which is added to the electricity bill and becomes a consumer burden.

前記「CO」を改質して合成ガスまたは水素ガスを得る技術は製鋼所の高炉ガス・転炉ガスの排ガスのエネルー化技術として色々な技術が次々と提案されており現業部門ですでに実用化されておる技術も多くある、又火力発電所の発電工程で排出されるガスについても同様にエネルギーの効率UPに活用されておるが、その殆どが大規模装置産業の定地形態物であり、移動形態物に搭載可能な内燃機関内で該内燃機関から排出する「CO」を改質して該内燃機関の燃料としておる実現可能技術は提案されておらない(見つからない)。 Various technologies have been proposed one after another for the technology to obtain synthesis gas or hydrogen gas by reforming the above-mentioned “CO 2 ”, and have already been proposed in the in-service sector as an energy generation technology for blast furnace gas and converter gas in steelworks. There are many technologies that have been put to practical use, and the gas emitted in the power generation process of thermal power plants is also used to increase energy efficiency, but most of them are fixed-form features in the large-scale equipment industry. In addition, no feasible technology has been proposed (not found) for reforming “CO 2 ” discharged from the internal combustion engine in the internal combustion engine that can be mounted on the moving form and using it as a fuel for the internal combustion engine.

特許5647364.ロータリーピストンエンジン車のエンジン機構。Patent 5647364. Engine mechanism of rotary piston engine car. 特開平11−106770.ジメチルエーテル改質ガスを使用する発電方法および装置JP-A-11-106770. Power generation method and apparatus using dimethyl ether reformed gas 特許4231735.二酸化炭素の分離回収方法および装置Patent 4231735. Method and apparatus for separating and recovering carbon dioxide 特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両。JP 2007-177684 A, a carbon dioxide recovery device for a vehicle, and a vehicle including the same. 特開昭57−150439炭化水素と水蒸気又は二酸化炭素との反応。Reaction of hydrocarbons with water vapor or carbon dioxide. 特許4609718 水素ロータリーピストンエンジンの燃料噴射装置Patent 4,609,718 Hydrogen rotary piston engine fuel injection device 特願平10−543729(特許3345782)合成ガス製造方法。Japanese Patent Application No. 10-543729 (patent 33455782) synthesis gas production method.

補助燃料によって燃焼されるロータリーピストンエンジンと、該ロータリーピストンエンジンのローターハウシングに水を導入管から供給する水供給手段と、供給された水が、ローターハウシングの熱で水蒸気化され、この水蒸気に炭素を供給するとともに、ロータリーピストンエンジンの燃焼工程後の排熱を利用して、吸熱反応化させて、燃料を生成し、前記補助燃料使用中に生成し続けるガスを溜める畜ガス手段を備え、この畜ガス手段の畜ガスと前記補助燃料とを切り替えて、ロータリーピストンエンジンに供給する、切換え手段を備えている構造を特徴とする技術(例えば特許文献1)があり、本願はこの技術をベース技術として、燃料の燃焼による排気ガス中の二酸化炭素(CO)も燃料に改質する技術を取り入れる事で、更なる温室効果ガス排出削減策と成る技術にしている。 A rotary piston engine combusted by auxiliary fuel, a water supply means for supplying water to the rotor housing of the rotary piston engine from the introduction pipe, and the supplied water is steamed by the heat of the rotor housing, And a livestock gas means for storing the gas that is generated by the endothermic reaction using the exhaust heat after the combustion process of the rotary piston engine and generating the fuel while the auxiliary fuel is used. There is a technique (for example, Patent Document 1) characterized by a structure including a switching means for switching the livestock gas of the livestock gas means and the auxiliary fuel to be supplied to the rotary piston engine, and this application is based on this technique. as carbon dioxide in the exhaust gas from the combustion of the fuel (CO 2) also to adopt a technique of reforming a fuel, further We are in a technology that is a greenhouse gas emission reduction measures that.

ジメチルエーテルに水蒸気または二酸化炭素を加えて触媒反応させることによりジメチルエーテルを改質して合成ガスまたは水素ガスを得、このガスを原動機用燃料として使用することを特徴とする、ジメチルエーテル改質ガスを使用する発電方法、ジメチルエーテルの改質を200°Cから500℃の中低温廃熱を利用して行うことを特徴とする上記の発電方法(例えば特許文献2)があり、
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
Using dimethyl ether reformed gas, which is characterized in that dimethyl ether is reformed by adding water vapor or carbon dioxide to dimethyl ether to cause a catalytic reaction to obtain synthesis gas or hydrogen gas, and this gas is used as a fuel for a prime mover. There is a power generation method, and the above power generation method (for example, Patent Document 2), characterized in that the reforming of dimethyl ether is performed using medium to low temperature waste heat from 200 ° C to 500 ° C.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

製鉄所で発生する副生ガスから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する500℃以下の低品位排熱を利用または活用することを特徴とする二酸化炭素の分離回収方法。(例えば特許文献3)があり、
本願の二酸化炭素を分離回収する技術とするには排ガスを数種の透過膜を透過させる膜型透過機器の設置や真空ポンプ等を設置する必要と言う問題が有る。
A method of separating and recovering carbon dioxide from a by-product gas generated at a steel works by chemical absorption method, which absorbs carbon dioxide from the gas with chemical absorption liquid and then heats the chemical absorption liquid to separate carbon dioxide A method for separating and recovering carbon dioxide, characterized by utilizing or utilizing low-grade exhaust heat of 500 ° C. or less generated at a steelworks. (For example, Patent Document 3)
In order to separate and recover the carbon dioxide of the present application, there is a problem that it is necessary to install a membrane type permeation device that allows several kinds of permeable membranes to pass through the exhaust gas, or to install a vacuum pump or the like.

車両二酸化炭素装置を自動車の排気系に於ける消音機と排気管との間に取り付けており、二酸化炭素を吸収材と三方性の電磁弁を介して接続されているC0吸収部を設けて、二酸化炭素を吸収したアルカノン化合物水溶液から電磁弁を介してエンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であり、分離した二酸化炭素は使用済みのアルカノールアミン化合物の再生に使用される技術(例えば特許文献4)がある。この技術は自動車の排気ガス中の二酸化炭素を分離する技術で分離した二酸化炭素の用途として二酸化炭素を吸収したアルカノン化合物水溶液の再生に使用している技術であるが、本願の排気ガス中の二酸化炭素を分離する技術として使用可能である。
エンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であるが、本願はエンジンブロックから直接該エンジンブロックから吸熱しており、該熱は水を水蒸気にする水蒸気生成手段に使用しておる点が異なるが、この技術は自動車の排気ガス中の二酸化炭素を分離する技術として本願にも採用できる。
And in silencers vehicle carbon dioxide device in an exhaust system of an automobile is mounted between the exhaust pipe, provided with a C0 2 absorption portion which is connected via an absorbent material and the three-way of the solenoid valve carbon dioxide , A structure in which carbon dioxide is released from the aqueous solution of alkanone compound that has absorbed carbon dioxide by absorbing heat from the engine cooling heat through a solenoid valve, and the separated carbon dioxide is used to regenerate used alkanolamine compounds. (For example, Patent Document 4). This technology is used to regenerate the aqueous solution of alkanone compound that has absorbed carbon dioxide as an application of carbon dioxide separated by the technology that separates carbon dioxide in automobile exhaust gas. It can be used as a technique for separating carbon.
* This is a structure that releases carbon dioxide by absorbing the cooling heat of the engine. In this application, heat is absorbed directly from the engine block from the engine block, and the heat is used for water vapor generating means that turns water into water vapor. Although this point is different, this technique can also be adopted in the present application as a technique for separating carbon dioxide in the exhaust gas of an automobile.

炭化水素と水蒸気若しくは二酸化炭素又はそれらの混合物とを正味吸熱条件に於いて反応させて、炭素化合物及び水素を含む気体とする方法であってニッケル及びコバルトの化合物及びアルカリ金属酸化物と酸性若しくは両性酸化物または混合酸化物との不水溶性化合物からなる触媒を使用する事を特徴とする上記方法に関する技術(例えば特許文献5)がある。
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
A method of reacting a hydrocarbon with water vapor or carbon dioxide or a mixture thereof under a net endothermic condition to form a gas containing a carbon compound and hydrogen, which is acidic or amphoteric with nickel and cobalt compounds and alkali metal oxides. There is a technique (for example, Patent Document 5) relating to the above method characterized by using a catalyst comprising a water-insoluble compound with an oxide or mixed oxide.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

水素ロータリーピストンエンジンの燃料噴射装置であって、水素ロータリーピストンエンジンの作動室を形成するローターハウジングに取り付けられ、水素ロータリーピストンエンジンの作動室に水素を直接噴射する水素インジェクタと、この水素インジェクタが作動室内に圧縮行程中の所定のタイミングで水素を噴射するように噴射タイミングを制御する水素噴射タイミング制御手段と、水素インジェクタからの水素が、水素ロータリーピストンエンジンの低回転域では圧縮行程の作動室のリーディング領域に向かって流出し、高回転域では圧縮行程の作動室の中央領域に向かって流出するように、水素の噴射方向を設定する水素流出方向設定手段と、を有することを特徴としている技術(例えば特許文献6)がある。
*本願の合成ガスの水素ガスと一酸化炭素は、エネルギー的には殆ど等価でありつまり(高位)発熱量はほぼ同じであるので、内燃機関の中で本願の合成ガスを燃料とする構造にはロータリーピストンエンジンで水素を燃料とする構造の説明する先行文献が最適であるので取り上げている。
A fuel injection device for a hydrogen rotary piston engine, which is attached to a rotor housing that forms a working chamber of the hydrogen rotary piston engine and directly injects hydrogen into the working chamber of the hydrogen rotary piston engine, and the hydrogen injector is operated Hydrogen injection timing control means for controlling injection timing so that hydrogen is injected into the chamber at a predetermined timing during the compression stroke, and hydrogen from the hydrogen injector is in the low rotation range of the hydrogen rotary piston engine. And a hydrogen outflow direction setting means for setting the hydrogen injection direction so as to flow out toward the leading region and out toward the central region of the working chamber in the compression stroke in the high rotation region. (For example, Patent Document 6).
* The hydrogen gas and carbon monoxide in the synthesis gas of the present application are almost equivalent in terms of energy, that is, the (higher) calorific value is almost the same. Has taken up the prior literature describing the structure of a rotary piston engine that uses hydrogen as fuel because it is optimal.

含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法であって、該触媒として金属酸化物からなる担体にロジュウム、ルテニュウム、イリジウム、パラジウム、及び白金の中から選ばれる少なくとも一種の触媒金属を担持させた触媒を使用したものに関する技術(例えば特許文献7)がある。 A method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst, wherein the catalyst is composed of a metal oxide as a support, comprising rhodium, ruthenium, iridium, palladium, and platinum. There exists a technique (for example, patent document 7) regarding what uses the catalyst which carry | supported at least 1 type of catalyst metal chosen from these.

本願の技術は前記先行技術文献1,2,3,4,7いずれかの決め手を欠いている部分技術を組み合わせて実施可能新技術にしており、排ガス中の「CO」をも内燃機関の合成ガスに改質して燃料として燃費(Km/L)の向上を図り、「COの排出削減をして、地球温暖化を阻止する新たな効果を生む新技術と成った。 The present technique has the prior art document 1,2,3,4,7 feasible by combining portions technology lacking either decisive new technologies, in the exhaust gas of an internal combustion engine also "CO 2" It was reformed into synthesis gas to improve fuel efficiency (Km / L) as a fuel. “It has become a new technology that produces a new effect of reducing global warming by reducing CO 2 emissions.

最大の課題は地球温暖化に対処する「CO」の(排出)削減であり、
その為の施策の1つの方法と、その方法を構成する機構を発明する事である。
The biggest challenge is the reduction of “CO 2 ” (emissions) to cope with global warming.
Inventing one method of measures for that purpose and the mechanism constituting the method.

最大の課題を解決する為の、
第一の発明は、
水(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備(例えば吸熱反応流路に設けた水蒸気改質の吸熱反応設備)と、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクとを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスタンク経由で当該内燃機関の燃料とする物であり、前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水で水を水蒸気にするために吸熱した排熱と排ガス管路にて排ガス中の熱を吸熱反応に使用した排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所を吸熱源とした排熱であることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。
更にエヤコンの管路から動力を使って捨てていた冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
第二の発明は
第一の発明に記載の内燃機関燃焼排ガス中の二酸化炭素(CO)を水に吸収させる吸収手段か分離する分離手段かの何れか一方か両方かを設けており、分離した二酸化炭素を畜ガスする畜ガスタンクと、水に吸収させた含二酸化炭素水を畜水する畜水タンクの何れか一方か両方かを設けて畜ガス・畜水しており、畜ガスした二酸化炭素を、前記内燃機関のエンジンブロックに水を供給する導入管路に水とともに導入するかあるいは、前記水に吸収させた含二酸化炭素水を水導入管路に導入するかのいずれかにしており、該内燃機関内の燃焼熱で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にして、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別する為名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物等が有る)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテル)を導入し、排ガス熱を吸熱しておる該水蒸気と吸熱気体の二酸化炭素とともに該改質路中の触媒に接触させる事で、水素と一酸化炭素の合成ガスを生成して(改質温度は200°C〜500°C)合成ガスを畜ガスする別の畜ガスタンクを設けて該畜ガスタンク経由で該エンジンの燃料とする構造構成にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第三の発明は
第一の発明乃至第二の発明記載の取り出設備か改質路かのいずれか一方か両方かで取り出した水素(H)と一酸化炭素(CO)の混合気体(合成ガス)を改質する合成ガ改質路(例えばプロトン導電セラミックス管改質路)を排ガス流路に設けて、前記該合成ガス改質路に水素(H)と一酸化炭素(CO)の混合気体を導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、取り出した水素(H)と二酸化炭素はそれぞれ畜ガスタンクを設けて、畜ガスしており、水素は該内燃機関の燃料としており、該二酸化炭素は上記改質路で改質する出発原料の二酸化炭素としておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第四の発明は
第一の発明乃至第三の発明に記載の水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)かの内少なくともいずれか一方以上を設けた内燃機関を運輸機器に搭載し運輸機器の載内機関とすることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第五の発明は
第一の発明乃至第四の発明に記載の内燃機関であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしていることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第六の発明は
第五の発明に記載の蓄電器の蓄電量が上限設定値になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が下限設定値になると内燃機関エンジンで駆動する構造にした事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第七の発明は
第五の発明に記載の内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる構成構造にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第八の発明は
第一の発明乃至第四の発明に記載の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方以上を設けて、該内燃機関の燃料(ガス)を生成する構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にして設けた事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第九の発明は
熱又は水蒸気又は二酸化炭素又は水素の内いずれか一以上を廃棄している製造業に於いて、前記廃棄されている熱又は水蒸気の内いずれか一以上を改質熱源とするかあるいは炭化水素化合物・水素・合成ガスの内いずれか一方以上を燃焼してその燃焼熱を改質熱源とするかの何れかにして、水素(H)と一酸化炭素(CO)の取り出設備(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方以上を設けて該内燃機関の燃料(ガス)を生成する構成にして当該内燃機関の燃料として内燃機関を運転して,その回転力をそのまま動力発電機の発電動力とする事を特徴とする、第一の発明乃至第三の発明に記載の温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十の発明は
第一の発明乃至第四の発明に記載の畜ガス手段は、該畜ガスタンク{吸熱反応の合成ガスタンクか、あるいは水素ガスタンクか、二酸化炭素ガスタンクか、改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)から取り出した合成ガスタンクかの内少なくともいずれかの一方以上のタンク}を車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十一の発明は
第十の発明に記載の畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の設置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かの、いずれかの手段を設けておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十二の発明は
第一の発明乃至第四の発明に記載の内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物(例えば炭酸水素ナトリュウム、NaHCO)の一方かあるいは両方かの何れかを加工して熱分解若しくは改質して水素Hか、炭素Cか、二酸化炭素化CO、の内少なくともいずれかの一種以上の物質を取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物(例えば炭酸ナトリュウム、NaCO)を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とする出発原料とするかのいずれかにする事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十三の発明は
第一の発明乃至第四の発明に記載の内燃機関の主燃料を水素(H)とするも出来る事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十四の発明は
第一の発明乃至第三の発明に記載の内燃機関の燃料及び第十三の発明に記載の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。

第十五の発明は
第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするかあるいは上記第2の発明技術を上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、反応させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器を提供する。
To solve the biggest problem,
The first invention is
Water (H 2 O) and carbon (C) react with the exhaust heat of the internal combustion engine to extract a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) (for example, in an endothermic reaction channel) An endothermic reaction facility for steam reforming) and a livestock gas tank for stocking the mixed gas of hydrogen and carbon monoxide taken out, and the mixed gas of hydrogen and carbon monoxide taken out via the livestock gas tank the are those as fuel for an internal combustion engine, in the exhaust gas in the exhaust heat of the internal combustion engine is mainly waste heat that absorbs water in the water flow path in the engine block of an internal combustion engine in order to steam and the exhaust gas conduit Exhaust heat using heat in an endothermic reaction. Exhaust heat in the engine block and exhaust heat obtained by endothermically reacting heat in the exhaust gas in the exhaust gas pipe. Greenhouse gas reduction and emissions characterized by An internal combustion engine that contributes to reduction is provided.
Furthermore, further heat can be used for the endothermic reaction by providing means for absorbing the refrigerant compression heat that has been discarded from the air-conduit line using power.
The second invention is provided with either one or both of an absorption means for absorbing carbon dioxide (CO 2 ) in combustion exhaust gas of the internal combustion engine described in the first invention by water and a separation means for separating the carbon dioxide. A livestock gas tank for livestock gas, and a livestock water tank for stocking carbon dioxide-containing water absorbed in water are installed in one or both of livestock gas and livestock water. Carbon is introduced either together with water into an introduction line for supplying water to the engine block of the internal combustion engine or carbon dioxide-containing water absorbed in the water is introduced into the water introduction line. In the internal combustion engine, water is converted into water vapor by the combustion heat, and carbon dioxide is converted into carbon dioxide as an endothermic gas. The name has been changed to distinguish it from reformation. ) In the reforming channel of the catalyst (for example, other metals or compounds can be used in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese , Tin, cerium, lanthanum and their compounds, other metals or compounds, etc.), and a hydrocarbon compound (for example, dimethyl ether) is introduced upstream of the reforming path to absorb the exhaust gas heat. with carbon dioxide water vapor and endothermic gas is brought into contact with the catalyst of the reforming path, to generate a synthesis gas of hydrogen and carbon monoxide (reforming temperature is 200 ° C~500 ° C) the synthesis gas An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that a separate livestock gas tank is provided for livestock gas, and the engine is configured as fuel for the engine via the livestock gas tank. To provide the relationship.

The third invention is a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) taken out by any one or both of the take-out equipment and the reforming path according to the first to second inventions ( modifying the synthesis gas) synthesis gas Aratameshitsuro (e.g. proton conductive ceramic tube reforming passage) provided in the exhaust gas line, wherein the synthetic gas reforming passage into hydrogen (H 2) and carbon monoxide (CO ) And the reaction gas again reacts with the exhaust heat of the internal combustion engine in the synthesis gas reforming path to separately extract hydrogen (H 2 ) and carbon dioxide (CO 2 ), and the extracted hydrogen (H 2 ) and Carbon dioxide is provided as a livestock gas tank by providing a livestock gas tank, hydrogen is used as fuel for the internal combustion engine, and the carbon dioxide is used as carbon dioxide as a starting material to be reformed in the reforming path. Provides internal combustion engines that contribute to reducing greenhouse gas emissions and emissions To do.

The fourth invention is a hydrogen (H 2 ) and carbon monoxide (CO) take-out facility (for example, an endothermic reaction facility provided in an endothermic reaction channel) or reforming according to the first to third inventions. At least one of a flow path (reforming path for catalytic contact between hydrocarbon compound, water vapor, and endothermic carbon dioxide) or a synthetic gas reforming path (for example, proton conductive ceramic pipe reforming path) is provided. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the internal combustion engine is mounted on a transportation device and used as an onboard engine of the transportation device.

A fifth invention is the internal combustion engine according to any one of the first to fourth inventions, wherein the internal combustion engine is operated under a certain condition, is generated with the rotational force, is stored in a capacitor, and the electricity is powered. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it has a structure in which an automobile is driven as a source.

The sixth aspect of the invention stops driving the internal combustion engine when the amount of electricity stored in the capacitor according to the fifth aspect of the invention reaches the upper limit set value and runs with electric power, and drives with the internal combustion engine when the amount of charge reaches the lower limit set value. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by its structure.

The seventh invention is characterized in that a charging power receiving plug is provided in the internal combustion engine described in the fifth invention, and as a charging means for accumulating electricity in the livestock generator, the electric vehicle is used as a power source to drive the vehicle. To provide an internal combustion engine that contributes to greenhouse gas reduction and emission reduction.

The eighth invention is a means for using the rotational force of the internal combustion engine as described in the first to fourth inventions as it is as the power generation power of the power generator, or reforming the steam that has finished the role of turning the turbine of the thermal power generation. As a heat source, hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment (for example, endothermic reaction equipment provided in the endothermic reaction flow path) or reforming flow path (hydrocarbon compound, water vapor, and endothermic gas dioxide) or reforming path) to catalyst contact with carbon, or synthesis gas reforming channel (e.g. a proton conducting ceramic tube reforming path), is provided at least one of one or more of, of the internal combustion engine fuel (gas) An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is configured as a means to be combined with the existing thermal power generation facility, or is provided as any means provide.

Ninth invention in the manufacturing industry has discarded any one or more of the heat or steam or carbon dioxide or hydrogen, reforming heat source of any one or more of heat or steam are the discarded Or hydrogen (H 2 ) and carbon monoxide (CO) by burning any one or more of hydrocarbon compounds, hydrogen, and synthesis gas and using the combustion heat as a reforming heat source Equipment (for example, an endothermic reaction facility provided in an endothermic reaction channel) or a reforming channel (a reforming channel in which a hydrocarbon compound, water vapor, and carbon dioxide of an endothermic gas are in catalytic contact) or quality channel (e.g. a proton conducting ceramic tube reforming channel), the internal combustion engine is operated as a fuel of the internal combustion engine in the configuration for generating the fuel of at least one of the one or more provided the internal combustion engine (gas) of The rotational force is moved as it is That the generation power of the generator, characterized in, providing that contribute the internal combustion engine to reduce greenhouse gas emissions and emissions according to the first invention to third invention.

According to a tenth aspect of the present invention, the livestock gas means according to the first to fourth aspects of the present invention is the livestock gas tank {synthetic gas tank for endothermic reaction, hydrogen gas tank, carbon dioxide gas tank, reforming channel (hydrocarbon compound and carbon dioxide steam and endothermic gas mounting at least one of the one or more tanks} of either synthetic gas tank taken out from the reforming passage) to catalyst contact with the upper body of the car or, alternatively car chassis portion The present invention provides an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is mounted on a vehicle.

The eleventh aspect of the invention is that the livestock gas means described in the tenth aspect of the invention is either a damage prevention means that prevents damage to the tank or a tank separation means that separates the tank from the vehicle installation part in the event of a collision. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by providing either means.

The twelfth invention is one of or both of a carbon-containing compound and a hydrogen-containing compound (for example, sodium hydrogen carbonate, NaHCO 3 ) using the exhaust heat of the internal combustion engine according to the first to fourth inventions as a reforming heat source. any processed pyrolysis or reforming to whether hydrogen of H 2, or the carbon C, carbon dioxide reduction CO 2, is taken out at least one of one or more substances of, and slaughter gas to the slaughtering gas tank The compound from which the gas is taken out (for example, sodium carbonate, Na 2 CO 3 ) is sold as a product, and the taken out gas is used as a fuel for the internal combustion engine, or is reformed and used as a fuel. Provided is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is used as a raw material.

The thirteenth invention is characterized in that the main fuel of the internal combustion engine according to any one of the first to fourth inventions can be hydrogen (H 2 ), and the internal combustion that contributes to greenhouse gas reduction and emission reduction Provide institutions.

According to a fourteenth aspect of the present invention, there is provided a water storage tank comprising water absorption means for absorbing heat into water from the fuel of the internal combustion engine according to the first to third aspects and the exhaust gas obtained by burning the fuel according to the thirteenth aspect of the invention. The greenhouse effect is characterized in that the water in the water storage tank is warmed by the water endothermic means, and the water vapor in the endothermic exhaust gas becomes liquid water and is separated and recovered by the water recovery means. An internal combustion engine that contributes to gas reduction and emission reduction is provided.

A fifteenth aspect of the invention is a small-scale carbon production apparatus for producing the carbon of the plant described in the first to fourth aspects of the invention, wherein the wood, etc. (plant raw material) is heated and carbonized in an oxygen-free environment. Carbonization chamber CS to be fired, combustion chamber FC for burning plant raw materials such as wood for heating the carbonization chamber, exhaust gas vent of combustion chamber FC, and pipe J of water vapor generating means for converting water H 2 O into water vapor J Is provided along the inner wall of the carbonization chamber, and the structure is such that the steam generated by the steam generation means and the gas C4 generated in the carbonization process in the carbonization chamber are introduced into the combustion chamber to serve as fuel for heating the carbonization chamber. Or the said 2nd invention technique is provided in the discharge part (chimney) of the said exhaust gas pipe line, the reforming substance is made into dimethyl ether as an example, the steam or carbon dioxide is added to the reforming part which makes the catalyst confront Reacting either one or both Providing small carbon maker provided in the either a configuration in which the fuel small carbonization apparatus.

発明の詳細な説明Detailed Description of the Invention

発明の具体的事例説明
第一の発明、
水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出し設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOを水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、
前記内燃機関の燃焼行程後の排気管路MS内に吸熱反応流路Sを設けており、前記吸熱反応流路に炭素(主として植物からの炭素C)を導入して、前記水蒸気か加熱水蒸気と、炭素を、吸熱反応流路にて反応させて、水素Hと一酸化炭素CO(合成ガス)を取り出しており、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクMTを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスするかあるいは畜ガスタンク経由で該混合気体を生成しておる当該内燃機関の燃料とするかの何れかにしておる事を特徴としたものであり、
前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所からの排熱であることを特徴とする物で、強調すべきはエンジンのオーバーヒ−ト防止のためにラジエターで冷却していた(動力を使って捨てていた)熱を水蒸気生成手段として活用しておることである。
更にエヤコンの管路から動力を使って捨てている冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
Specific examples of the invention Description of the first invention,
Although it is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine, for example, an internal combustion engine A water passage K is provided in the engine block 1, and either water H 2 O is converted into steam J or steam is converted into heated steam as steam generating means,
An endothermic reaction channel S is provided in the exhaust pipe MS after the combustion stroke of the internal combustion engine, carbon (mainly carbon C from plants) is introduced into the endothermic reaction channel, and the steam or heated steam , Carbon is reacted in an endothermic reaction channel, hydrogen H 2 and carbon monoxide CO (synthetic gas) are taken out, and a livestock gas tank MT for stocking the mixed gas of the taken out hydrogen and carbon monoxide is provided. The extracted hydrogen and carbon monoxide mixed gas is used as livestock gas or as the fuel for the internal combustion engine that generates the mixed gas via the livestock gas tank. And
The exhaust heat and the exhaust heat of the internal combustion engine mainly absorbs heat water flow path in the engine block of an internal combustion engine water and heat used for steam, the heat of the exhaust gas by the endothermic reaction in the exhaust gas line The exhaust heat in the engine block and the exhaust heat obtained by endothermic reaction of the heat in the exhaust gas in the exhaust gas pipe are mainly exhaust heat from two places and should be emphasized. Is to use the heat (discarded using power) that has been cooled by a radiator to prevent engine overheat as a means for generating water vapor.
Further, by providing a means for absorbing the refrigerant compression heat that is discarded from the air-conduit line using power, further heat can be used for the endothermic reaction.

水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOと炭素を加圧注入し水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、{この時の加圧圧力は概略5Kg/cm程度である。(図3B参照)}
本願は水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、前記吸熱反応流路に触媒(Niが主流)を対峙させ200°〜300°程度の熱で前記吸熱反応させる燃料生成手段や、乾燥改質法や部分酸化方法や、オートサーマル改質方法もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
This is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine. A water passage K is provided in the engine block 1 of the engine, and either water H 2 O and carbon are injected under pressure to form water vapor J or water vapor to be heated water vapor as a water vapor generating means. {The pressurizing pressure at this time is about 5 kg / cm 2 . (See FIG. 3B)}
Although the present application has a configuration exemplifying steam reforming, the known synthesis gas generation method includes the steam reforming method, and a catalyst (Ni is the mainstream) facing the endothermic reaction channel, which is approximately 200 ° to 300 °. of and the fuel generation unit operable by the heat to the endothermic reaction, drying and reforming and partial oxidation process, there is also autothermal reforming method or the like, adopting a production method of the synthesis gas in place of the steam reforming process of the present You can also.

内燃機関のエネルギー効率{ロータリーエンジンの場合およそ30%強で、合成ガス反応に利用可能な廃(排)熱は60%程度}から見て、必要量の100%の燃料を生産するに足りない場合は補助的に他所から補足する補足手段を設けており、前記補足手段の1例として本願は補助タンクSTを設けており、該補助タンクの燃料(主に植物の炭素を原料としたバイオエタノールもしくは合成ガス若しくは水素)を必要量の100%の燃料を生産するに足りない場合の補足燃料としている。
最終的には前記炭素は稙物からの炭素100%使用に近づける事で温室効果ガス排出削減策とている。
In view of the energy efficiency of internal combustion engines (about 30% for rotary engines and about 60% of waste (waste) heat available for syngas reaction), it is not enough to produce 100% of the required amount of fuel. In this case, supplementary means for supplementing from other places are provided as supplementary, and as an example of the supplementary means, the present application is provided with an auxiliary tank ST, and fuel in the auxiliary tank (bioethanol mainly made from plant carbon) Or, synthesis gas or hydrogen) is used as a supplementary fuel when it is not enough to produce 100% of the required amount of fuel.
Ultimately, the carbon is used as a measure to reduce greenhouse gas emissions by bringing the carbon closer to 100% use from the waste.

本願は1例としてサブタンク燃料と前記内燃機関で生成した混合気体とを切換えて使用する複合燃料方式をとっている、
しかし前記サブタンク燃料を使用している間に主燃料である水素Hと一酸化炭素CO(合成ガス)を生成していると、生成した生成ガスを畜ガスする所が無く畜ガスする畜ガス手段を設ける必要があり、本願は畜ガス手段の畜ガスタンクを設けており、サブタンク燃料を使用している間でも主燃料である水素Hと一酸化炭素CO(合成ガス)は生成され続けており畜ガスタンクに充填し続けている、
従って畜ガスタンクの設定上限まで充填されると燃料切換えバルブで合成ガスを畜ガスタンク経由での使用に切り替え該畜ガスタンクの設定下限に成るとサブタンク燃料を使用する燃料切換え手段を設けたエンジン構造としている、
前記内燃機関で生成した混合気体を畜ガスタンク経由での使用にしているのは、混合気体も原材料や生成場所の温度によって生成されたガス成分構成が変わるので一端畜ガスタンクに取り込む事で生成ガスの均一化を図っている。
As an example, the present application adopts a composite fuel system in which a sub-tank fuel and a mixed gas generated in the internal combustion engine are switched and used.
However, if hydrogen H 2 and carbon monoxide CO (synthetic gas), which are the main fuels, are produced while using the sub-tank fuel, there is no place where the produced gas is livestock gas and livestock gas that is livestock gas. It is necessary to provide means, and the present application is provided with a livestock gas tank for livestock gas means, and hydrogen H 2 and carbon monoxide CO (synthetic gas) as main fuels continue to be generated even when sub tank fuel is used. We continue to fill the animal gas tank,
Accordingly, when the livestock gas tank is filled up to the set upper limit, the fuel switching valve switches the synthesis gas to use via the livestock gas tank, and when it reaches the set lower limit of the livestock gas tank, the engine structure is provided with fuel switching means that uses the subtank fuel. ,
The reason why the mixed gas generated by the internal combustion engine is used via the livestock gas tank is that the mixed gas also changes the composition of the gas component generated depending on the raw materials and the temperature of the production site. Uniformity is intended.

第二の発明
内燃機関燃焼ガス中の二酸化炭素を、水に吸収させる二酸化炭素吸収手段(A)を設けるかあるいは、排気ガス中の二酸化炭素を分離する分離手段(B)を設けて、前記(A)、(B)をそれぞれ畜水手段&該畜ガス手段を設けてそれぞれ畜水,畜ガスして、前記(A)、(B)の何れか1方か両方かを、前記内燃機関のエンジンブロックに水を供給する導入口(1図B、HO入り口)に水とともに導入し、該内燃機関内の燃焼熱{前記内燃機関の燃焼熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で水を水蒸気にした排熱である}で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にしており、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別するため名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記内燃機関に設けている改質流路(二酸化炭素の改質であるので名前を変更している)の改質流路に触媒を対峙させており、該触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事で、水素と一酸化炭素の合成ガスを生成して、畜ガスタンク経由で該エンジンの燃料とする構造構成にしたものであり、{本願の解説では(B)で解説しており、(A)の詳細解説は省略している。}
Second invention The carbon dioxide absorption means (A) for absorbing carbon dioxide in the combustion gas of the internal combustion engine by water or the separation means (B) for separating carbon dioxide in the exhaust gas are provided, A) and (B) are respectively provided with livestock water means and the livestock gas means to feed livestock water and livestock gas, respectively, and either one or both of (A) and (B) above It is introduced together with water into an inlet for supplying water to the engine block (FIG. 1B, H 2 O inlet) and combustion heat in the internal combustion engine {the combustion heat of the internal combustion engine is a water passage (in the engine block of the internal combustion engine ( It corresponds to the cooling water channel of the engine block cooling water), and water is converted into water vapor.} The water is converted into water vapor, the carbon dioxide is converted into carbon dioxide as an endothermic gas, Reforming channel (carbon dioxide reforming In the reforming flow path of the reforming flow path of the steam reforming in order to distinguish from the steam reforming, as an example, other metals or compounds can be used in combination with iron-based metal and / or compound, Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum and their compounds, other metals or compounds, and a hydrocarbon compound (eg, dimethyl ether) upstream of the reforming path. CH 3 OCH 3 ) and the reforming channel of the reforming channel (name changed because of reforming of carbon dioxide) provided in the internal combustion engine together with the water vapor and endothermic carbon dioxide The catalyst is opposed to the gas {hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) and either water vapor or endothermic carbon dioxide]. It is a structure that generates hydrogen and carbon monoxide syngas by contacting them, and uses it as a fuel for the engine via a livestock gas tank. The detailed explanation of (A) is omitted. }

前記炭化水素化合物をジメジエーテルとした場合の反応式は、
A.CHOCH+HO→2CO+4H−48.9Kal/mol
B.CHOCH++CO→3CO+3H−58・8Kal/mol
その反応温度は200〜500℃、好ましくは250〜450℃であり、
その反応圧力は常圧〜10kg/cm2が好ましい。
炭化水素化合物をジメジエーテルの他にメタンを用いた技術も多く公開されている。
The reaction formula when the hydrocarbon compound is dimethyl ether is
A. CH 3 OCH 3 + H 2 O → 2CO + 4H 2 -48.9Kal / mol
B. CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol
The reaction temperature is 200 to 500 ° C., preferably 250 to 450 ° C.
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 .
Many technologies using methane in addition to dimethyl ether as a hydrocarbon compound have been disclosed.

公知技術の二酸化炭素を吸収材に吸収させる二酸化炭素吸収手段(A)及び二酸化炭素分離取り出し手段(B)であるが、
前記(A)には、特表2010−526759,特許3345782,特開2009−77457,特開2001―213545,特開2007−177684,等に開示されており、
前記(B)には特願2001−48591(カルマン渦),特開2007−177684,等に開示されており、
二酸化炭素改質反応による水素及び一酸化炭素の製造法の先行技術には特開平08−231204や特表2010−526759合成ガスの製造方法(CO2の改質を含む)特許文献2の特開平11−106770等々数多く有る、
この技術を本願に取り入れて、排ガス中の二酸化炭素を「本願の内燃機関内発性エネルギーのみで該内燃関の燃料に改質しておる事」が大きな温室効果ガス排出削減策であり、さらに前記廃棄されていたエネルギー(概略70%で、改質に使用出来るのは概略60%)で燃料を生成しており、該燃料生成分程燃費を向上させた事が本願の特徴点である。
The carbon dioxide absorption means (A) and carbon dioxide separation and extraction means (B) for absorbing carbon dioxide by a known technique,
(A) is disclosed in JP 2010-526759, JP 33455782, JP 2009-77457, JP 2001-213545, JP 2007-177684, and the like.
(B) is disclosed in Japanese Patent Application No. 2001-48591 (Karman vortex), Japanese Patent Application Laid-Open No. 2007-177684, etc.
Prior art of the method for producing hydrogen and carbon monoxide by the carbon dioxide reforming reaction includes Japanese Patent Application Laid-Open No. 08-231204 and Japanese Patent Application Laid-Open No. Hei 11 of Japanese Patent Application Laid-Open No. H11-296275. -106770 etc.
Incorporating this technology into this application, the carbon dioxide in the exhaust gas is “a reforming of the internal combustion engine fuel only into the fuel of the internal combustion engine of this application” is a great greenhouse gas emission reduction measure, A feature of the present invention is that fuel is generated with the discarded energy (approximately 70%, and approximately 60% can be used for reforming), and fuel efficiency is improved by the amount of fuel generation.

前記本願発明の内で、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは、化石燃料使用の炭素Cであっても良く前記二酸化炭素を合成ガスに改質しておるので少なくとも数十%のCO排出を削減は可能で、温室効果ガス排出削減策である。 Among the inventions of the present application, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be carbon C using fossil fuel, and the carbon dioxide is reformed into synthesis gas. Therefore, it is possible to reduce CO 2 emissions of at least several tens of percent, and this is a measure for reducing greenhouse gas emissions.

第三の発明
第三の発明に記載した合成ガス改質路は、第一の発明乃至第二の発明で生成した水素(H)と、一酸化炭素(CO)の混合気体と、内燃機関の排熱{前記内燃機関の排熱は内燃機関のエンジンブロック内の通水にて水を水蒸気にした排熱である}にて水蒸気にしたものとを、例えばプロトン導電セラミックス管内で再度内燃機関の排熱(300°C〜800°C)(前記内燃機関の排熱は排ガス管路にて排ガス中の熱を吸熱させた排熱である)にて反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、前記水素と二酸化炭素を別々に畜ガスする水素畜ガスタンクと二酸化炭素畜ガスタンクを設けて、それぞれに畜ガスして、二酸化炭素は、前記水素を取り出す出発原料として、前記取り出した水素は水素畜ガスタンク経由で当該内燃機関の燃料とする構成構造である。
3rd invention The synthesis gas reforming path described in the 3rd invention includes a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) produced in the first to second inventions, and an internal combustion engine. heat and those in steam at {the exhaust heat of the internal combustion engine from which exhaust heat of the water vapor in the water flow path in the engine block of an internal combustion engine}, for example, again an internal combustion proton conductive ceramic tube of Hydrogen (H 2 ) reacts with the exhaust heat of the engine (300 ° C. to 800 ° C.) (the exhaust heat of the internal combustion engine is exhaust heat obtained by absorbing the heat in the exhaust gas in the exhaust gas pipe). Carbon dioxide (CO 2 ) is taken out separately, and a hydrogen livestock gas tank and a carbon dioxide livestock gas tank for separately stocking the hydrogen and carbon dioxide are provided. As a raw material, the extracted hydrogen is hydrogen This is a configuration structure that uses the internal combustion engine as fuel via a tank.

前記排気管路内の排ガス温度が不足する場合には前記合成ガス改質路の上流に排ガス燃焼部を設けて、
排ガス中の未燃焼燃料ガス又は未燃焼炭素粒に不足温度を補う程度分の畜ガスしている燃料と酸素(空気)を導入して再加熱しても良い。
When exhaust gas temperature in the exhaust pipe is insufficient, an exhaust gas combustion section is provided upstream of the synthesis gas reforming path,
You may introduce and reheat the fuel and oxygen (air) which are the livestock gas of the extent which supplements the shortage temperature to the unburned fuel gas or unburned carbon particle in exhaust gas.

前記二酸化炭素改質は、二酸化炭素と水蒸気の改質材とともに触媒と接触させて水素(H)と一酸化炭素(CO)の混合気体を取り出す技術(特許先行文献2特願特開平11−106770)を本願に組み込んで二酸化炭素をも該内燃機関の燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。 The carbon dioxide reforming is a technique in which a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) is taken out by contacting with a catalyst together with a carbon dioxide and steam reforming material (Japanese Patent Application Laid-Open No. H11-11). 106770) is incorporated into the present application, and carbon dioxide is also used as a fuel for the internal combustion engine, thereby improving fuel efficiency and further reducing greenhouse gas emissions.

本願は上記二酸化炭素改質を前記エンジンのエンジンブロック(ロータリーハウジング)に水を導入する導入口(図1BのHO導入口)に二酸化炭と水を導入して、前記二酸化炭素と水はエンジンブロック(ロータリーハウジング)の内外壁間に設けている通水路Kにて吸熱して水は水蒸気に、二酸化炭は吸熱してガスを高温とするとともに混合して、エンジン排気口下流に触媒を対峙させた改質路(二酸化炭素の改質であるので名前を変更している)を設けており、改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事ことで水素(H)と一酸化炭素(CO)の混合気体を取り出すかあるいは、前記エンジンのエンジンブロック(ロータリーハウジング)の通水路Kで水を水蒸気にする管路に加えて該前記エンジンのエンジンブロック(ロータリーハウジング)の通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかのいずれかにしており、(エンジン燃焼工程後の排気口近傍で合流さる事も含む)排気管路に対峙させておる触媒に接触させる構成にするかの何れかにして 水素(H)と一酸化炭素(CO)の混合気体を取り出す構成構造にしており、前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズセリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物がある。 The present application introduces carbon dioxide and water into an inlet (H 2 O inlet in FIG. 1B) for introducing water into the engine block (rotary housing) of the engine for the carbon dioxide reforming. Heat is absorbed in a water passage K provided between the inner and outer walls of the engine block (rotary housing), water is absorbed into water vapor, and carbon dioxide is absorbed to raise the gas to a high temperature and mixed, and a catalyst is placed downstream of the engine exhaust port. There is an opposite reforming path (the name is changed because it is carbon dioxide reforming), and a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is introduced upstream of the reforming path and the steam and The gas {hydrocarbon compound (eg, dimethyl ether CH 3 OCH 3 ) and water vapor or endothermic carbon dioxide, or both} is added to the catalyst together with endothermic carbon dioxide} To remove the mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), or add the water to steam in the water passage K of the engine block (rotary housing) of the engine. A water passage K ′ of the engine block (rotary housing) of the engine is further provided to be a two-line pipe line for heating carbon dioxide, and (exhaust gas after engine combustion process) It is configured to take out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), either by contacting with the catalyst that is confronting the exhaust pipe (including joining near the mouth). For example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, and the like. Kell, chromium manganese, tin, Seryuumu, lanthanum and compounds thereof, there is another metal or compound.

第一の発明に記載の水蒸気改質の改質温度は700°C〜I000°Cで好ましくは800〜900°Cであり炭化水素化合物(例えばジメジエーテルCHOCH)の改質温度は200〜500℃、好ましくは250〜450℃であるので排気管路上流に水蒸気改質部を設け、その下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設けるか、あるいは前記水蒸気改質の下流に合成ガス改質路(改質温度は300°C〜800°C・第三の発明)を設けるかあるいは、水蒸気改質の下流に前記合成ガス改質路を設け更に下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設ける形態のいずれかの形態を取るのが好ましい。 The reforming temperature of the steam reforming described in the first invention is 700 ° C. to 1000 ° C., preferably 800 to 900 ° C., and the reforming temperature of the hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) is 200 to 200 ° C. Since the temperature is 500 ° C., preferably 250 to 450 ° C., a steam reforming section is provided upstream of the exhaust pipe, and a reforming section of a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is provided downstream of the steam reforming section. A synthesis gas reforming path (reforming temperature is 300 ° C. to 800 ° C., the third invention) is provided downstream of the quality, or the synthesis gas reforming path is provided downstream of the steam reforming and further carbonized downstream. It is preferable to take any form of providing a reforming portion of a hydrogen compound (for example, dimethyl ether CH 3 OCH 3 ).

水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路に於いて、更に反応時間を長く取りたい場合か、もしくは同時進行で水蒸気改質又はCO2改質又は合成ガス改質のうち少なくとも何れか1方以上を取りたい場合、前記エンジンのエンジンブロック(又はロータリーハウジング)の内外壁間に設けている通水路Kを、エンジンブロック1内に複数本設ける構造にするかあるいは、エンジンブロックからの排気管路を複数設けるか(例えばシリンダーの数と同じにするか、シリンダーの数の半分にするか、あるいはローターの数と同数の管路にするか、あるいはエンジンブロックから1本乃至複数本出た排気管路を更に複数に分岐させて順次切り替えて排気を送る等の構造にすることでも良い)あるいは前記通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかの内少なくとも何れか一方以上のいずれかにして、エンジン燃焼工程後の排気口下流の管路に3種の改質路の内少なくとも何れか1種以上を設ける構成にして、水素(H)と一酸化炭素(CO)の混合気体または水素ガス・二酸化炭素を取り出す構成構造にしても良い。 In the hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, the reforming channel, and the syngas reforming channel, if it is desired to take a longer reaction time, or steam reforming or CO 2 is performed simultaneously. When at least one of reforming and syngas reforming is desired, a plurality of water passages K provided between the inner and outer walls of the engine block (or rotary housing) of the engine are provided in the engine block 1. Whether to provide a structure or multiple exhaust pipes from the engine block (for example, the same number of cylinders, half the number of cylinders, or the same number of pipes as the number of rotors) Alternatively, one or a plurality of exhaust pipes extending from the engine block may be further branched into a plurality of branches and sequentially switched to send exhaust gas) or the water flow At least one of the two systems of pipes for heating carbon dioxide by further providing K ′, and three kinds of pipes downstream of the exhaust port after the engine combustion process A structure in which at least one of the reforming paths is provided and a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) or hydrogen gas / carbon dioxide may be taken out.

プロトン導電セラミックは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミック等の、プロトン導電セラミックは水素、酸素を活性化させる作用を有する点で、特に有利である。 Proton conductive ceramics have heat resistance according to the combustion temperature and are provided with continuous vents through which combustion gas can pass. Proton conductive ceramics such as strontium serate-based and zirconate-based belogskite oxide ceramics are hydrogen conductive ceramics. This is particularly advantageous in that it has an action of activating oxygen.

二酸化炭素又は炭素を原材料として使用する、製造業等の設備産業における再生可能エネルギー源としての使用は公知技術である。 The use of carbon dioxide or carbon as a raw material as a renewable energy source in equipment industries such as the manufacturing industry is a known technique.

第四の発明
水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路とのいずれか一種か複数種かを設けている内燃機関を運輸機器に搭載し運輸機器の載内機関とする形態を取っており、前記運輸機器には二輪車・軍需兵器の車両・軍需兵器の船舶等々を含んでいる。
Fourth invention An internal combustion engine provided with one or more of hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, reforming flow path, and synthesis gas reforming path as a transportation device It is in the form of an on-board engine for transportation equipment, which includes motorcycles, munitions weapons vehicles, munitions weapons ships, and the like.

第五の発明、
上記内燃機関に既存の水素ロータリーピストンエンジン車が採用している「エンジンを燃費の良い条件(一定の条件)で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させている、」の形態を、該内燃機関に適用する事で安定した燃焼熱が得られ、更に吸熱反応条件も安定するので、本願を「上記エンジンを燃費の良い条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として運転させる構造」にした事で、更なる燃費の向上と温室効果ガス排出削減をすると言う大きな効果を生んでいる。
Fifth invention,
The existing hydrogen rotary piston engine car is used for the internal combustion engine described above. “The engine is operated under good fuel economy conditions (constant conditions) and is generated by the rotational force and stored in the capacitor. The electricity is used as the power source. By applying the form of “driving an automobile” to the internal combustion engine, stable combustion heat can be obtained, and the endothermic reaction conditions are also stabilized. However, it has a great effect of further improving fuel consumption and reducing greenhouse gas emissions by adopting a structure that generates electricity with the rotational force, stores it in a capacitor, and operates the electricity as a power source.

*走行状態(例えば信号待ち・右折対向車通過待ち・交差点右左折時横断歩行者通過待ち・渋態状態時のチョコチョコ駆動・平胆路での惰力運転走行時・追い越し&追い抜き急加速運転時・下り坂運転時等々)の変化に追従させて内燃機関エンジンの出力の制御機構や制御構造がシンプルで良くなる。
更に一定の条件(燃費の良い条件)で運転するので燃費(Km/L)を向上させる効果がある。
* Driving conditions (for example, waiting for traffic lights, waiting for an oncoming vehicle on the right, waiting for crossing pedestrians when turning right or left at the intersection, choco-choco driving in a traffic condition, driving on a flat road, overtaking & overtaking rapid acceleration・ The control mechanism and control structure of the output of the internal combustion engine are simplified and improved by following the changes in the downhill driving, etc.
Furthermore, since driving is performed under a certain condition (good fuel efficiency), there is an effect of improving the fuel efficiency (Km / L).

第六の発明
蓄電器の蓄電量が設定値以上になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が設定値以下になると内燃機関エンジンで駆動する構造にした事で、
動力が不要な走行状態が続く場合その間はエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、エンジンをOFFにして蓄電電力で走行し、燃費の向上を図る事が出来る。
According to the sixth aspect of the invention, when the storage amount of the capacitor is equal to or greater than the set value, the driving of the internal combustion engine is stopped and the vehicle is driven with electric power.
When the driving state that does not require power continues, the engine is continuously operated under certain conditions (good fuel economy conditions), so depending on the driving state, the electricity generated to drive the car becomes overcharged and is generated by the internal combustion engine. Since the electricity is discarded, the engine can be turned off and the vehicle can run with the stored electric power to improve the fuel consumption.

第七の発明
前記内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段としており、その電気を動力源として車を走行させる構成構造にする事で必要動力を全て電池で賄う為に高価な電池を多数設けなくて済み、前記内燃機関の蓄電設備容量を数十%大きくする程度で充電設備を有する場所で受電充電出来、畜電器の設置費用及び燃費向上が図れ、温室効果ガス排出削減策となる。
7th invention The internal combustion engine is provided with a charging / receiving plug and is used as a charging means for storing electricity in a livestock battery. It is expensive to cover all necessary power with a battery by using a structure that allows the vehicle to run using the electricity as a power source. It is not necessary to install a large number of batteries, and the power storage capacity of the internal combustion engine can be increased by several tens of percent. It will be a measure.

動力が不要な走行状態(信号待ち・右折時対向車通過待ち・右左折時横断歩行者通過待ち・渋滞時のチョコチョコ運転時・下り坂走行時・惰力走行運転時等)が発生して、その間の前記運転条件ではエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、該畜電気の蓄電容量が上限設定値になると該エンジンをOFFにして蓄電電力で走行し、蓄電器の蓄電容量が下限設定値になると該エンジンをONにして該エンジンで走行して燃費の向上を図る事が出来る。 Driving conditions that do not require power (waiting for traffic lights, waiting for oncoming vehicles when turning right, waiting for crossing pedestrians when turning left or right, choco chocolate driving during traffic jams, downhill driving, coasting driving, etc.) During this period, the engine is continuously operated under certain conditions (good fuel efficiency). Depending on the driving condition, the electricity generated for driving the car becomes overcharged and the electricity generated by the internal combustion engine is discarded. Therefore, when the storage capacity of the livestock electricity reaches the upper limit set value, the engine is turned off and the vehicle runs with the stored power. When the storage capacity of the battery reaches the lower limit set value, the engine is turned on and the vehicle runs with the engine. The fuel consumption can be improved.

前記下り坂運転時でエンジンブレーキ状態走行時に走行動力を電動モーター使用としている場合はモーターを発電機として使用できるので、エンジンブレーキ状態走行時にはモーターを発電機として使用し蓄電器に充電する形態にすれば更なる燃費の向上と温室効果ガス排出削減となる。 If the electric power is used as the driving power when running in the engine braking state during downhill driving, the motor can be used as a generator.Therefore, when running in the engine braking state, the motor is used as a generator to charge the battery. This will further improve fuel efficiency and reduce greenhouse gas emissions.

前記平胆路での惰力運転走行であるが、惰力運転走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(該略2200回転)で数分運転をして例えば走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す運転方法であり、50年前には運送業では常識の運転方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。 This is a repulsive driving run on the flat road, but a repulsive driving run is a speed at which a driver wants to drive for several minutes with an accelerator operation (approximately 2200 revolutions) that is about 10% higher than the speed at which the driver wants to drive. If it is 60Km / H, turning to 70Km / H will turn off the rotational drive power of the engine (this will be about 1000 revolutions, the number of revolutions when idling). Is a driving method that repeats the operation of turning on the rotational driving force connection of the engine when the speed reaches 60 km / H, which is a common driving method in the transportation industry 50 years ago. Automatic control of this travel mode can further improve fuel consumption and reduce greenhouse gas emissions.

第八の発明
内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気と新たに投入する主として植物の炭素を、前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を補助燃料の代替とする構成にして、現有の火力発電設備に併合する形態にする手段とするか、あるいは前記火力発電設備のボイラーの排ガス管路に吸熱反応設備を設けて吸熱反応化させて、生成した燃料(ガス)を畜ガスタンク経由で前記動力発電の燃料とする構成かの何れかの手段にするかにしても良い。
Eighth Invention The internal combustion engine endowed by the internal combustion engine is the means for directly using the rotational force of the internal combustion engine as the power generation power of the power generator, or the steam that has finished the role of turning the turbine of the thermal power generation and the newly added mainly plant carbon. Introduced into the reaction channel and converted to endothermic reaction, the generated fuel (gas) can be used as a substitute for auxiliary fuel, and can be combined with the existing thermal power generation facility, or the thermal power generation An endothermic reaction facility is provided in the exhaust gas pipeline of the boiler of the facility to make the endothermic reaction, and the generated fuel (gas) is used as a fuel for the power generation via the livestock gas tank. Also good.

水素と一酸化炭素の混合気体又は二酸化炭素又は水素の内何れか1以上は他所の設備で製した物を使用(又はパイピングで圧縮ガスの状態で輸送)することでも対応出来るし、発電の場合及び船及び大型自動車は内燃機関に近接して、水素(H)と一酸化炭素(CO)の混合気体の製造設備を設置することも出来る。 It also can be any one or more of the mixed gas or carbon dioxide or hydrogen in the hydrogen and carbon monoxide using a material obtained by manufacturing elsewhere equipment (or transported in a state of compressed gas in the piping) can correspond, for generating Cases and ships and large vehicles can also be equipped with hydrogen (H 2 ) and carbon monoxide (CO) mixed gas production equipment in close proximity to the internal combustion engine.

第九の発明
熱又は水蒸気又は二酸化炭素又は水素を廃棄している製造業(例えば製鋼・鉄の鍛造・鉄の鋳造・アルミ精錬&製造・塵焼却場・石油精製業等)に於いて、前記廃棄されている熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを、第一の発明乃至第三の発明に記載の改質技術の内何れか1以上の改質技術で改質して、生成した燃料(ガス)を当該内燃機関の燃料として内燃機関を運転して、更に前記内燃機関の排ガス中の「CO2」を第二の発明に記載しておる手段で水素と一酸化炭素の合成ガスに生成して該内燃機関の燃料として運転し,その回転力をそのまま動力発電機の発電動力とする内燃機関である。
例えば製鋼所の圧延工程では脱炭された真赤な鋼隗を多数の圧延機を通過させて10mm前後の鋼板ロールにするのであるが、最終圧延後に多量の水を掛けて赤色の圧延板を黒っぽい板に冷却しており、このときの掛ける多量の水は水蒸気となり一部は廃棄されており、更に最終圧延された鋼板ロールは鋼板ロール自然放冷置き場にて天井クレンが吊り降ろし作業するために必要なクランプ具作動幅を持たせて敷設してある複数列のローラーコンベアーに順送りで並べられている。この時の鋼板ロールの温度は700°〜900°であり、このローラーコンベアー間に吸熱反応部を設けて吸熱反応化させて生成した燃料(ガス)を当該内燃機関の燃料として動力発電機の発電動力とすることが電力の削減策であり、温室効果ガス排出削減策となる。
Ninth Invention In a manufacturing industry (for example, steelmaking, iron forging, iron casting, aluminum refining and manufacturing, dust incineration plant, oil refining industry, etc.) that disposes heat, steam, carbon dioxide or hydrogen, Any one or more of discarded heat, steam, carbon dioxide or hydrogen is modified by any one or more of the reforming techniques described in the first to third inventions. The generated fuel (gas) is used as the fuel for the internal combustion engine to operate the internal combustion engine, and the CO2 in the exhaust gas of the internal combustion engine is combined with hydrogen by the means described in the second invention. This is an internal combustion engine that is generated in a synthesis gas of carbon oxide and is operated as a fuel for the internal combustion engine, and its rotational force is directly used as the power generation power of the power generator.
For example, in the rolling process of a steel mill, the decarburized crimson steel plate is passed through a number of rolling mills to form a steel plate roll of about 10 mm. The plate is cooled, and the large amount of water applied at this time becomes steam, and a part of it is discarded, and the final rolled steel sheet roll is used for the ceiling crane to hang down in the steel sheet roll natural cooling place. They are lined up in order on a plurality of rows of roller conveyors that have been installed with the required clamping tool operating width. The temperature of the steel sheet roll at this time is 700 ° to 900 °, and the power generation of the motive power generator is performed using the fuel (gas) generated by providing the endothermic reaction section between the roller conveyors to effect the endothermic reaction as the fuel of the internal combustion engine. Using power as a means of reducing electric power will reduce greenhouse gas emissions.

第十の発明、&第十一の発明
前記畜ガスタンク{前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該内燃機関で生成されたガスで少なくとも10分程度運転するのに必要な燃料を畜ガス出来るタンクであれば当該内燃機関を運転(切り替えロスを無視すれば)することは出来る}のタンク損傷を防止する損傷防止手段であるが、例えば1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材HPEを固着して車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着した物であり、タンク分離手段は前記固定具MT5に衝撃が掛かるとV字状の切り欠け部MT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(タンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)例示構造にしており、
前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはガスを溜めると言う機能は同じであっても構造(規格)は全く違うものである。
Tenth Invention & Eleventh Invention The livestock gas tank {the tank does not require a high-pressure hydrogen gas storage tank of 35 MPa, and is a fuel necessary for operating at least about 10 minutes with the gas generated by the internal combustion engine. Is a damage prevention means for preventing damage to the tank of the internal combustion engine (if the switching loss can be ignored). A shock absorber HPE such as foamed polyethylene and boron fiber reinforced plastic is fixed as a package and fixed and held on the upper part of the vehicle. The tank separating means is fixed to MT5. When the impact is applied to the fixture MT5, the V-shaped notch MT6 breaks due to concentrated stress, and the shock absorbing material inclusion MT (The tank support MT2 is integrated) is disengaged from the fixture MT5 (not completely disengaged but is locked to the fixture MT5 or the like with a wire body or the like). (It is a preferable form because it is a measure to avoid secondary damage in which the body MT3 completely comes off)
One or both of the damage prevention means for preventing damage to the tank or the tank separation means for separating the tank from the tank installation portion of the vehicle in the event of a collision are provided. Further, it is composed of a non-stationary facility (for example, an automobile) livestock gas tank of the livestock gas means, and the livestock gas tank is mounted on the upper body of a car or mounted on a chassis part of a truck. It is preferable to use one of the forms attached to the stationary equipment, but in the case of stationary equipment (for example, a power plant), the safety standard (in Japan, the registration of JIS B 8265 has been completed. Is ISO 16528), and the non-stationary livestock gas tank and the stationary livestock gas tank (eg chemical factory) It must be composed of those that are within the safety standards or at least have elements that can change the safety standards, so non-stationary equipment (eg automobile) livestock gas tanks and stationary equipment (eg chemical factories) livestock gas tanks Even if the function of storing gas is the same, the structure (standard) is completely different.

第十二の発明
例えば炭酸水素ナトリュウム(NaHCO)を内燃機関の排熱で加工して熱分解して水素(H)と炭酸ナトリュウム(NaCO)を作り、炭酸ナトリュウム(NaCO)は取り出して製品として販売し、水素(H)を畜ガスタンク経由で内燃機関の燃料とする構成にしているもので有るが、内燃機関の排熱で加工して燃料を取り出す取り出し手段を使用して付加価値を付加する物で有れば前記炭酸水素ナトリュウム(NaHCO)は1例とした物で炭酸水素ナトリュウム(NaHCO)に限定するものではない。
A twelfth invention for example to make a bicarbonate Natoryuumu (NaHCO 3) and by processing and thermally decomposed in the exhaust heat of an internal combustion engine hydrogen (H 2) and carbon dioxide Natoryuumu (Na 2 CO 3), carbonate Natoryuumu (Na 2 CO 3 ) is taken out and sold as a product, and hydrogen (H 2 ) is used as a fuel for the internal combustion engine via the livestock gas tank. The sodium hydrogen carbonate (NaHCO 3 ) is an example as long as it is a product that adds value by use, and is not limited to sodium hydrogen carbonate (NaHCO 3 ).

第十三の発明&第十四の発明は
第四の発明に記載の内燃機関の主燃料を水素(H)とする構成にしたものであり、
(第十三の発明の)水素を主燃料とすれば水と窒素を主構成とする排気であり
(第一の発明乃至第二の発明の)燃料は、水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、排気中の二酸化炭素を改質した水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、
いずれの燃料を使用しても水が水蒸気の形で排出されておる、この水蒸気から更なる吸熱手段で改質出発原料の水を温める構造構成にするとともに排ガス中の水蒸気から水を取り出しろ過するろ過手段経由で改質出発原料の水として貯水タンクに戻し入れる物で、
前記水蒸気からの吸熱手段は例えば排気管路の下流部に水貯水タンクを設けて該貯水タンクの水の中に排気管路を通す事で水タンクの水が吸熱して水タンクの水は温水となり排気管路内の水蒸気は水と成り回収する事を特徴とする、水を回収する回収手段、
上記各種の改質手段は水を燃料に改質しておるので相当量の水が必要と成るが水の車載量を大きくすれば車載量の水(重量)を運搬する為のエネルギーが必要と成るので水を回収して循環使用すれば水の車載量を少なく出来更に水タンク中の水は温水とする事が出来るこのことは温室効果ガス削減及び排出削減に寄与する事になる。
The thirteenth invention and the fourteenth invention are configured such that the main fuel of the internal combustion engine described in the fourth invention is hydrogen (H 2 ),
If hydrogen is the main fuel (of the thirteenth invention), it is an exhaust mainly composed of water and nitrogen (the first invention to the second invention) and the fuel burns hydrogen and carbon monoxide. It is an exhaust mainly composed of water, carbon dioxide and nitrogen, and is an exhaust mainly composed of water, carbon dioxide and nitrogen when hydrogen and carbon monoxide are reformed from carbon dioxide in the exhaust.
Regardless of which fuel is used, the water is discharged in the form of water vapor, and the structure is such that the water of the reforming starting material is warmed from this water vapor by further heat absorption means, and the water is removed from the water vapor in the exhaust gas and filtered. It is returned to the storage tank as water for reforming starting material via filtration means,
The heat absorption means from the water vapor is provided, for example, by providing a water storage tank downstream of the exhaust pipe and passing the exhaust pipe through the water in the storage tank so that the water in the water tank absorbs heat and the water in the water tank is heated. Recovery means for recovering water, characterized in that water vapor in the exhaust pipe becomes water and recovers
The above-mentioned various reforming means reform water into fuel, so a considerable amount of water is required. However, if the on-board amount of water is increased, energy for transporting the on-board amount of water (weight) is required. Therefore, if water is collected and recycled, the amount of on-vehicle water can be reduced, and the water in the water tank can be warm water. This contributes to greenhouse gas reduction and emission reduction.

第十五の発明は
第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするかあるいは上記第2の発明技術を上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、反応させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器を提供する。
上記小規模炭素製造器の構成で炭化室CSと燃焼室FCの隔壁を取り除き上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部を設けた構成にする事で、石炭等の化石燃料を使用している暖房器(例えば石炭スト−ブ)にする事も出来る。
此のことは寒冷地の多くは石炭スト−ブを使用しており、石炭の燃焼による二酸化炭素の排出も無視出来ないものであり、本願の第一の発明と第二の発明の構成構造を適用する事で本願の最大の課題の地球温暖化に対処する「CO」の(排出)削減となる施策の1つの方法である。
A fifteenth aspect of the invention is a small-scale carbon production apparatus for producing the carbon of the plant described in the first to fourth aspects of the invention, wherein the wood, etc. (plant raw material) is heated and carbonized in an oxygen-free environment. Carbonization chamber CS to be fired, combustion chamber FC for burning plant raw materials such as wood for heating the carbonization chamber, exhaust gas vent of combustion chamber FC, and pipe J of water vapor generating means for converting water H 2 O into water vapor J Is provided along the inner wall of the carbonization chamber, and the structure is such that the steam generated by the steam generation means and the gas C4 generated in the carbonization process in the carbonization chamber are introduced into the combustion chamber to serve as fuel for heating the carbonization chamber. Or the said 2nd invention technique is provided in the discharge part (chimney) of the said exhaust gas pipe line, the reforming substance is made into dimethyl ether as an example, the steam or carbon dioxide is added to the reforming part which makes the catalyst confront Reacting either one or both Providing small carbon maker provided in the either a configuration in which the fuel small carbonization apparatus.
In the configuration of the small-scale carbon production device, the carbonization chamber CS and the combustion chamber FC are separated from each other, and the carbonization chamber CS section is provided with a generation section for steam J and a separation section for separating carbon dioxide from the exhaust gas. Thus, a heater using a fossil fuel such as coal (for example, a coal stove) can be used.
This means that many cold districts use coal stoves, and carbon dioxide emissions due to coal combustion cannot be ignored. The construction of the first and second inventions of this application Applying this is one of the measures to reduce (emission) “CO 2 ” to cope with global warming, which is the biggest problem of the present application.

前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭)であっても良く温室効果ガス排出削減策である。 In the combination of the present invention, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be fossil fuel use (for example, coal), which is a greenhouse gas emission reduction measure. is there.

最大の課題は地球温暖化に対処する「CO」の排出削減であり、
燃料を主に植物の炭素Cを使用する事で、本願の課題である、温室効果ガス削減施策課題の1つを構成する温室効果ガス削減策の内燃機関とする事が出来た、更に前記主に植物の炭素Cの燃焼により発生するCOをも燃料に改質しており、該COをも燃料に改質した事が、更なる温室効果ガス削減と燃費を驚愕するほど向上させる効果を生んでおる、この事が最大の効果である。
The biggest challenge is the reduction of CO 2 emissions to combat global warming.
By using mainly plant carbon C as a fuel, it was possible to make an internal combustion engine for a greenhouse gas reduction measure that constitutes one of the challenges of the greenhouse gas reduction measure that is the subject of the present application. In addition, CO 2 generated by the combustion of plant carbon C is also reformed to fuel, and reforming this CO 2 to fuel also has the effect of further increasing greenhouse gas reduction and fuel efficiency. This is the biggest effect.

この合成ガスを生成し、生成した合成ガスを燃料として使用する内燃機関を火力発電機の代替として使用する事が、今(2014年)のエネルギー問題解決策の筆頭にあげうる案件であり(2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり、真夏電力需要ピーク時の節電要請が各電力会社から出ている現状であり)この案件を実施する事は電力供給に大きな効果がある。 The use of an internal combustion engine that generates this synthesis gas and uses the generated synthesis gas as a fuel as an alternative to a thermal power generator is a project that can be mentioned as the first solution to the current energy problem solution (2011) (2011). According to the statistics of the Federation of Electric Power Companies of the year, about 82% of Japan's total power generation is thermal power generation, and there is a request for power saving at the peak of midsummer power demand from each power company) Doing so has a great effect on power supply.

内燃機関の捨てられていた熱エネルギーを活用して燃料を生成している事が大きな効果である。 The great effect is that fuel is generated by utilizing the thermal energy that was discarded by the internal combustion engine.

本願は内燃機関の回転力をそのまま動力発電設備とした発電用内燃機関に供給する補助燃料の代替に、又製造工程で廃棄されている熱と水蒸気若しくは温水と新たに投入する炭素を吸熱反応流路に導入して上記内燃機関に供給していた補助燃料の石油液化ガス(天然ガス含む)、ガソリン(含む炭化水素系化石燃料)、バイオエタノール等、あるいは合成ガスかの何れかの補助燃料を本願の合成ガスか水素ガスに替えて、畜ガスタンクに畜ガスするのでサブタンクとサブ燃料使用制御構造と、補助燃料の合成ガスを切り替えて使用する切換え弁を含む燃料切換え制御構造が不要となる構成も可能と成る。 The present application is an alternative to the auxiliary fuel supplied to the internal combustion engine for power generation using the rotational force of the internal combustion engine as it is as a power generation facility, and the endothermic reaction flow of heat, steam or hot water discarded in the manufacturing process, and newly input carbon. Auxiliary fuel, either petroleum liquefied gas (including natural gas), gasoline (including hydrocarbon-based fossil fuel), bioethanol, or synthetic gas, that was introduced into the road and supplied to the internal combustion engine A structure that eliminates the need for a fuel switching control structure including a sub-tank, a sub fuel use control structure, and a switching valve that switches and uses the synthesis gas of the auxiliary fuel, because the livestock gas tank is replaced with the synthetic gas or hydrogen gas of the present application. Is also possible.

上記植物の炭素を燃焼させ生成されるCOをも前記合成ガスに生成して更なる温室効果ガスCOの削減策としている事が前記植物の炭素使用の京都議定書のカーボンニゥートラルから更にCOを削減する事が出来、現存公知技術では実施出来なかった温室効果ガス削減策とな最大の効果を生む、
更に本願の内燃機関の炭素を化石燃料の炭素使用としてもCOを100%排出カットは出来ないまでも少なくとも数十%は削減できる大きな効果がある。
The CO 2 produced by burning the carbon of the plant is also generated in the synthesis gas to further reduce the greenhouse gas CO 2 from the carbon neutral of the Kyoto Protocol on the use of carbon of the plant. it is possible to reduce the CO 2, produce the maximum effect that Do greenhouse gas reduction measures that could not be carried out in the existing prior art,
Furthermore, even if carbon of the internal combustion engine of the present application is used for fossil fuel, CO 2 can be reduced by at least several tens of percent even if 100% emission cut cannot be achieved.

温室効果ガスCOの排出枠の買い取りビジネスが活性化する中、日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を数十%削減出来る。 While the purchase of greenhouse gas CO 2 allowances is revitalizing, Japan's purchase amount is estimated to be about 1 trillions of billions, but this purchase amount can be reduced by several tens of percent.

第5の発明に記載したエンジンの負荷変動に関係ない「エンジンを一定した燃費の良い条件」(始動時は別条件)で運転して一定した吸熱反応条件で運転する事で、前記吸熱反応効率も上がり、かつ、燃費の良い条件にする事で燃費(Km/L)を向上させた事が大きな効果である、 The endothermic reaction efficiency can be obtained by operating the engine under the constant endothermic reaction condition by operating the engine under the “constant and fuel-efficient conditions” (different conditions at start-up) that are not related to the engine load fluctuation described in the fifth invention. The improvement of fuel efficiency (Km / L) is achieved by making the fuel efficiency good and the fuel efficiency is good.

上記内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素Cを再生可能な植物を主原料とし、さらに、汚水や食品製造時に出る、産業廃棄物に近い物から作る物質(例えばメタンガスやバイオエタノール)をサブ燃料とするのが好ましいとしており、 The raw materials for generating the fuel for the internal combustion engine are water H 2 O and carbon C. The plant that can regenerate the carbon C is used as a main raw material, and further, it is made from materials close to industrial waste that are produced during the production of sewage and food. Substances (e.g. methane gas or bioethanol) are preferred as sub-fuels,

前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて(カーボンニュ−トラル)、地球温暖化防止に大なる貢献が出来る大きな効果である。 Using the plant as the main raw material means that the plant absorbs carbon dioxide CO 2 and produces oxygen O 2 , so in the Kyoto Protocol it is defined as plus or minus “0” (carbon neutral), and global warming This is a great effect that can greatly contribute to prevention.

排気ガス中の二酸化炭素を合成ガスに生成するサイクル(第二の発明)を設けた事で、第一の発明の内燃機関から排出された「CO」を燃料に改質しており、更なる「CO」の排出削減が出来るとともに、燃費を向上させる効果がある。(例えば20Km/Lを25Km/Lにした程度ではなく2倍の40Km/L以上に向上させる驚愕する様な効果を得る事が出来た。
*水HOとCOを燃料に改質した手段を設けた事で前記効果を得る事が出来た。
By providing a cycle for generating carbon dioxide in the exhaust gas into the synthesis gas (second invention), the “CO 2 ” discharged from the internal combustion engine of the first invention is reformed into fuel. It is possible to reduce emissions of “CO 2 ” and to improve fuel efficiency. (For example, it was possible to obtain an astonishing effect of improving 20 Km / L to 40 Km / L or more, not about 20 Km / L to 25 Km / L.
* The above effect could be obtained by providing means for reforming water H 2 O and CO 2 into fuel.

内燃機関のエンジンブロック冷却水路及び冷却水配管を含むラジエターが不要になる。 A radiator including the engine block cooling water passage and the cooling water piping of the internal combustion engine is not necessary.

第一の発明に記載の内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素を再生可能な植物を主原料とし、前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて、地球温暖化防止に大なる貢献が出来る。 The raw materials for generating the fuel for the internal combustion engine according to the first invention are water H 2 O and carbon C. The plant that can regenerate the carbon is the main raw material, and the plant is the main raw material. sucking carbon dioxide CO 2, since out of oxygen O 2 in the Kyoto Protocol plus, have been negative "0", a large becomes contribution possible to prevent global warming.

前記植物を主原料とする事は放置されていた山林や「田んぼ」を価値ある物(植物からの炭素)を作る「稼働率」のよい工場に出来る、此のことは、農業、林業に活力を与える。 The use of the plant as the main raw material makes it possible to turn abandoned forests and “rice fields” into factories with good “operation rate” to produce valuable things (carbon from plants). This is vital for agriculture and forestry. give.

火力発電はボイラーを火力で熱して蒸気を発生させてその蒸気を更に加熱してタ−ビンを廻して発電しているのでエネルギー効率は50%弱で火力発電のボイラーは加熱し始めに必要な初期エネルギーが大きいので一度ONすると長期間火を落とせないので時間帯による消費電力量変動に追従して稼働のON・OFFする事が出来難いので、季節(春・秋)あるいは時間帯に依っては消費されない余剰電力が発生し、その過剰生産分は廃棄されているが、本願の内燃機関による発電システムにすれば、前記時間消費電力量の変動に追従して稼働のON・OFFする事が自在に出来るので、過剰生産電力は限りなくゼロに近づける事ができるので、太陽光発電のみで補う場合の大容量の蓄電設備と膨大な送電設備・受電設備が不要と成る。 In thermal power generation, the boiler is heated with thermal power to generate steam, and the steam is further heated to generate electricity by rotating the turbine. Since the initial energy is large, it is difficult to turn on / off following the power consumption fluctuations according to the time zone because it is difficult to turn off the fire for a long time once it is turned on, so depending on the season (spring / autumn) or time zone Surplus power that is not consumed is generated, and the excess production is discarded. However, if the power generation system using the internal combustion engine of the present application is used, the operation may be turned ON / OFF following the fluctuation of the time power consumption. Since it can be made freely, excess production power can be brought to zero as much as possible, so there is no need for a large-capacity power storage facility and a vast amount of power transmission / reception facilities when supplemented only by solar power generation.

現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るので送電・受電設備を非常に少なくする事が出来る。 Current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of this application do not need to be adjacent to the water source and can be installed as close to the power demand area as possible, so there are very few transmission / reception facilities I can do it.

化石エネルギーの価格変動(及び為替レート変動)に日本の経済が影響される割合が少なくなる。 The proportion of the Japanese economy affected by fossil energy price fluctuations (and exchange rate fluctuations) will be reduced.

上記第一の発明乃至第三の発明の内燃機関を自動車(2サイクル2輪車・4サイクル2輪車を含む)・船舶・鉄道のディーゼルエンジン車・建設機械・軍需兵器の車両・軍需兵器の船舶等々の運搬機器に搭載する形態での実施であり、前記動力発電機を火力発電設備の代替として使用する形態か、あるいは現存火力発電設備でタービンを回す役目を終えた水蒸気と、新たに投入する炭素を内燃機関の吸熱反応流路に導入して前記燃料不足分に充当する構成にして現有の火力発電設備に併合する形態かあるいは第9の発明内の何れか1種類以上の実施形態である。 The internal combustion engine according to any one of the first to third aspects of the present invention is used for automobiles (including two-cycle two-wheeled vehicles and four-cycle two-wheeled vehicles), marine and railway diesel engine vehicles, construction machinery, munitions weapon vehicles, and munitions weapons. It is implemented in the form of being mounted on a transportation device such as a ship, and the form in which the power generator is used as an alternative to the thermal power generation facility, or steam that has finished the role of turning the turbine in the existing thermal power generation facility, is newly input In an embodiment in which carbon to be introduced is introduced into an endothermic reaction flow path of an internal combustion engine and used for the fuel shortage and merged with an existing thermal power generation facility, or in any one or more embodiments within the ninth invention is there.

図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
Each dimensional relationship in the drawings is enlarged for important portions, exaggerated where details are difficult to understand, and reduced when describing wide portions or portions that are less important in the present invention. Thus, the dimensions between and within the drawings are not proportional, and are not actual or scaled.
If the distance between the lines is narrow, it is likely to become a single line that is black and thick at the scanning stage. Therefore, the distance between the lines is widened or described with a single line.

更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。 Furthermore, parts other than the basic (main) mechanism of the present invention are omitted between the drawings.

水素と一酸化炭素はエネルギー的には殆ど等価であるつまり(高位)発熱量はほぼ同じである、従って本願の明細書に於ける詳細説明は水素を燃料とする公知技術を引用している部分が多々ある。さらに「CO」を合成ガスに改質する技術についても公知技術を引用している部分が多々ある。
本願の主構成は多種の公知技術(中には特許登録されており権利が生きている物も一部含んでいる)を引用しているが、個々の公知技術のみでは得ることが出来ない物を本願で効果を得るべく多様に組み合わせた構成構造にしたことで、前記温室効果ガス排出削減と燃費の向上の面に於いて驚愕する様な効果を得る事が出来た。
Hydrogen and carbon monoxide are almost energetically equivalent, that is, the (higher) calorific value is almost the same. Therefore, the detailed description in the specification of the present application refers to a known technique using hydrogen as a fuel. There are many. Furthermore, there are many parts that cite known techniques for the technique of reforming “CO 2 ” into synthesis gas.
The main structure of this application refers to a variety of known technologies (including some that are patent-registered and alive), but cannot be obtained by individual known technologies alone. In order to obtain the effect in the present application, it was possible to obtain a surprising effect in terms of reducing greenhouse gas emissions and improving fuel consumption.

内燃機関のエンジンブロックに吸熱反応流路を設け、水HOと炭素Cとを内燃機関の排廃熱にて反応させて水素Hと一酸化炭素COの混合気体を取り出し、それらの水素と一酸化炭素の混合気体を燃料とする内燃機関であるが、合成ガスをガソリンあるいは軽油、重油の代替燃料に・・・と考えたことは、どのメーカーでもあると思っている、しかし水素も一酸化炭素も非常に危険(爆発、毒性を有している)従って、液化しての運搬手段(可搬性)安全規格をクリアーする液化ガスの容器の重量に対する内容量の割合が悪い、更に車が大破する様な事故による爆発の問題があり、手がだせなかったと推測する。 An endothermic reaction flow path is provided in the engine block of the internal combustion engine, and water H 2 O and carbon C are reacted with the exhaust heat of the internal combustion engine to take out a mixed gas of hydrogen H 2 and carbon monoxide CO. It is an internal combustion engine that uses a mixed gas of carbon monoxide and fuel, but any manufacturer thinks that synthetic gas can be used as an alternative fuel to gasoline, light oil, heavy oil, etc., but hydrogen also Carbon monoxide is also very dangerous (explosive and toxic). Therefore, liquefied transport means (portability). The ratio of the volume of the liquefied gas to the weight of the container that satisfies safety standards is poor. I suspect that there was an explosion problem caused by the wreck, and I couldn't get it.

この問題を解決する本願の手段は、
*消費燃料をタンクに満タンにして走行に必要な燃料全部を賄うのではなく、燃料生成過程でのエネルギーロス分の補充にサブタンクを設けて、前記サブタンクの燃料を石油液化ガス(天然ガス含む)、ガソリン、含む炭化水素系化石燃料バイオエタノール等、あるいは合成ガスかの何れかを、エネルギーロス分の補充用サブ燃料として使用する、複合燃料補給構造を採用している事(この蓄ガス圧力を考慮した畜ガスタンクの設置位置と車が大破する様な事故時に対応出来る構造部の手段として設けた事)が、本願を「実施可能案」にした大きなポイントである。(図1,図2参照)
The means of the present application to solve this problem are:
* Instead of filling the tank with fuel consumption and supplying all the fuel required for driving, a subtank is provided to replenish the energy loss during the fuel generation process, and the subtank fuel is oil liquefied gas (including natural gas) ) Adoption of a composite fuel supply structure that uses gasoline, hydrocarbon-containing fossil fuel bioethanol, etc., or synthetic gas as a supplementary sub-fuel for the energy loss (this stored gas pressure) The installation position of the livestock gas tank in consideration of the above and the provision of structural means that can cope with an accident such as a car being severely damaged) are the main points that made this application an “practicable plan”. (See Figures 1 and 2)

前記貯ガス、畜ガスタンクに生成された合成ガスを(圧縮ガスの状態で)一定量ためる、一定量ためる間は、ブタンガス、ガソリン、(含む炭化水素系化石燃料)メタンガス、バイオエタノール等、あるいは、水素、合成ガス、植物からの改質ガス、植物からのメタンガス、のバイオエタノール等かの何れかを補助燃料タンクの貯ガスを使用し、生成された合成ガスの貯ガス量が一定量に成ると合成ガスに切り替えて、合成ガスを生成しながら畜ガスタンクの合成ガスを使用し、前記タンク容量が「0」に近くなると、補助燃料タンク使用に切り替える、複合燃料方式をとり、合成ガスの車載量(タンク重量も含む)を少なくしている手段を設けている、 The storage gas, the synthesis gas generated in the livestock gas tank is stored in a certain amount (in the state of compressed gas), while the certain amount is accumulated, butane gas, gasoline, (including hydrocarbon-based fossil fuel) methane gas, bioethanol, etc., or Any of hydrogen, synthesis gas, reformed gas from plants, methane gas from plants, bioethanol of bioethanol, etc. is used as the storage gas in the auxiliary fuel tank, and the amount of generated synthesis gas is constant. And switch to synthetic gas, use synthetic gas in livestock gas tank while generating synthetic gas, and switch to using auxiliary fuel tank when the tank capacity is close to "0". Means to reduce the amount (including tank weight),

公知技術であるが二酸化炭素を触媒存在下で、水素、一酸化炭素等に転換する技術には1例をあげると本願特許文献2、特開平11−106770.の記載では、含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法とその方法に適した触媒の発明もしており、この技術を本願の二酸化炭素をも燃料に改質する技術として使用している。
また特許文献4の特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両の記載では二酸化炭素吸収材に二酸化炭素を吸収させて二酸化炭素を回収している
An example of a known technique for converting carbon dioxide to hydrogen, carbon monoxide, etc. in the presence of a catalyst is described in Japanese Patent Application Laid-Open No. 11-106770. In the description, a method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst and a catalyst suitable for the method are also disclosed. Is also used as a technology for reforming fuel.
Japanese Patent Application Laid-Open No. 2007-177684, a carbon dioxide recovery device for a vehicle, and a vehicle equipped with the same discloses that carbon dioxide is absorbed by a carbon dioxide absorber and carbon dioxide is recovered.

温室効果ガス排出の主役は内燃機関からの排出と、日本の発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出であり、世界の内燃機関からの排出と火力発電のボイラーからの排出で世界の排出量の1/4をしめており、
1ガロンのガソリンを燃やしたときのCOの放出量は車のエンジンからの排出とガソリン生成工程での放出を合わせて約9Kgである。
従って化石燃料の炭素Cの消費を、植物の炭素Cにシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、
本願の温室効果ガス排出削減策の内燃機関を実現する事及び、燃料と成る植物を主とする炭素Cの調達コストを化石燃料からの調達コストと同じくらいにする施策が必要である。
燃料とする炭素Cの製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
The main sources of greenhouse gas emissions are emissions from internal combustion engines and thermal power generation boilers, which account for about 82% of Japan's power generation (2012 Electricity Federation statistics). And 1/4 of the world ’s emissions from thermal power boilers,
The amount of CO 2 released when 1 gallon of gasoline is burned is about 9 Kg combined with emissions from the car engine and emissions from the gasoline production process.
Therefore, in order to shift the consumption of carbon C from fossil fuels to carbon C from plants and achieve a 25% reduction in greenhouse gas CO 2 emissions early,
It is necessary to implement an internal combustion engine for the greenhouse gas emission reduction measures of the present application and to make the procurement cost of carbon C, which mainly consists of fuel, the same as the procurement cost from fossil fuel.
The production of carbon C as fuel changes when carbonized organic material is heated while shutting off the flow of air and oxygen, and changes to a material rich in black carbon. This process is called carbonization, and charcoal produces this carbonization. This is a good example of a product, and what is produced is an aggregate composed mainly of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.

木材からの固体炭素C(植物原料のC)をナノ粒子化する技術はすでにテレビ等で放映されているので新技術とは言えないがナノ粒子迄細粒化しなくてもミクロ細粒化(100ミクロン程度)でも本願発明の請求項1の炭素Cとして対応可能である。
固体炭素Cは粉砕して微粒状にすれば、反応が起きる表面積を増やすことになるので、細粒化するほど合成ガス生成の効率はよくなる。
前記炭素Cに水を加えてエマルジョン燃料化あるいはゲル状化する事でも対応出来る。
更に酸素が入らない環境で前記木材等(植物原料のC)を加熱→炭化工程の中で炭素Cガスを得る事も出来る。
The technology to make solid carbon C from wood (nano-plant raw material) into nanoparticles is not yet a new technology because it has already been broadcast on TV, etc., but micronization (100 (About a micron) can be dealt with as the carbon C of claim 1 of the present invention.
If the solid carbon C is pulverized into fine particles, the surface area where the reaction takes place is increased. Therefore, the finer the particles, the more efficient the synthesis gas generation.
It can also be handled by adding water to the carbon C to form an emulsion fuel or gel.
Furthermore, the above-mentioned wood and the like (plant raw material C) is heated in an environment where oxygen does not enter, and carbon C gas can be obtained in the carbonization step.

エンジン内で水蒸気→排気管路で吸熱反応→一酸化炭素と水素の合成ガスまたは水素を生成し当該エンジンの燃料として使用するサイクルであるが、
*この案の件案事項としては
畜ガスタンク内容積を広く、蓄圧を低く、出来るタンクにして、車載場所を何処にして、どの様な構造にすれば、車が大破する事故でも畜ガスタンクが破裂しない構造にする事が出来るかであった。
*前記件案事項を下記の構造構成にして解決した。
1、合成ガスタンクの設置場所を車の車体上部に設けるか車のシャーシー部に設けている事であり、車体上部に設ける事は車が崖から転落しても、また乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故でも畜ガスタンクは爆発しない構造のタンクが要求されるが車載可能なボンベで業者が目標としている500Km走行できる目安の水素は水素4Kgで20MPaの圧力では容器内容積が300L必要となり、
マツダ(企業名)プレマシイハイドロジェンREハイブリッド車で搭載の水素74L/35MPaでは満タン充填で計算上123Kmしか走行出来ないので水素のみでは走行出来ないので、500Km走行するには約4倍の300L/35MPaの水素タンクが必要と成るが300Lの水素を74L/35MPの容器で賄うには、約150MPa圧縮で充填出来る容器が必要となり現在の技術では困難である。
そこで載内燃機関で合成ガスを生成することを立案したが載内構造の加圧ポンプでは圧縮圧を上げれば多くの動力を加圧ポンプのために消費する事になるので。スタート時点では油圧機器のアキュウムレーターに相当する機器で畜ガスする事であったが、その畜ガス器を何処に設置すれば良いか、又高速道路の事故で、前記車が崖から転落して上下が逆転するか、乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故をテレビで見て、この様な事故が発生した時爆発を回避出来る構造構成でないと車載は無理とあきらめていた。
合成樹脂を使った他の案件の立案のために先行文献検索やインターネットで前記合成樹脂関係を調べていたら下記発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、見つける事が出来これを使えば前記事故があっても爆発しない所まで解決出来た。しかし最後に残されたタンクの設置場所の問題で頓挫していた。
昨年出願のエコドライブ方法の実験を繰り返す中で車の軽量化するのに何処を樹脂化すれば良いかと考えていた時に乗用車のルーフの考察時、頓挫していた本願の畜ガスタンクを乗用車のルーフに搭載して前記事故時には離れ飛ぶ構成を思いつき、何とか実施可能案となり出願するに至ったので、この畜ガスタンクの構造構成が本願のキーポイントである。(図1A,図2参照)
2,上記畜ガスタンクの外面を図2に記載しているように、ポロン繊維強化プラスチック若しくは発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、前記タンク部を覆う形に固着成形するとか、あるいは、塗布、あるいは、他の合成樹脂材と、多層コーティングして、車が転落、大破する衝撃が掛った時に、車の車体から分離するタンク分離手段を設け、跳ね飛んでも爆発しない構造にしている。(遠くに飛び過ぎない係止構造を設けるのが好ましい。)
3.前記タンクの出し入れ管の車ボディとの分離構造の一例として、電磁バルブの接点構成で通電時はON.非通電時はOFFと成る電磁バルブシーケンス回路を使用し、合成ガスタンクが車のボディから飛ぶ衝撃力が掛かると前記タンクのガス出し入れ管が抜けて(あるいは破損して)も、電磁バルブの作動によりタンクからのガス管路は閉じる構造にしている。(図2.H参照)
4.畜ガスの圧縮圧の問題も補助燃料使用と前記昨年出願のエコドライブ方と内燃機関は発電のみにしているマツダ(企業名)プレマシイハイドロジェンREハイブリッド車の構成を使用すれば
本願第一の発明から第三の発明の改質技術に加えて第六の発明と第七の発明と該発明の詳細説明部を組み合わせれば補助燃料を使用しなくても、合成ガスのみ又は水素のみあるいは合成ガスと水素との切換え使用でも良い実施例と成リ蓄ガス圧も次段落で説明しておる様に低い圧縮圧で対応出来る。
It is a cycle in which steam in the engine → endothermic reaction in the exhaust line → synthesis gas or hydrogen of carbon monoxide and hydrogen or hydrogen is used as fuel for the engine.
* The proposed matter is that the livestock gas tank has a large internal volume, low pressure accumulation, a tank that can be built, where the vehicle is located, and what structure is used. It was possible to make a structure that does not.
* The above-mentioned proposed matter was solved with the following structure.
1. The place where the synthesis gas tank is installed is located in the upper part of the car body or in the chassis part of the car, which is provided in the upper part of the car body even if the car falls from the cliff, Even in an accident that is sandwiched between and crushed, the livestock gas tank is required to have a tank that does not explode, but the target hydrogen that can run 500Km in a cylinder that can be mounted on the vehicle is 4MPg of hydrogen and 20MPa. The pressure requires 300L of container volume,
Mazda (Company name) Premasi Hydrogen RE hybrid vehicle equipped with 74L / 35MP of hydrogen can run only 123Km with full tank filling, so it can not run only with hydrogen, so to run 500Km, about 4 times 300L A / 35 MPa hydrogen tank is required, but in order to cover 300 L of hydrogen with a 74 L / 35 MP container, a container that can be filled with about 150 MPa compression is required, which is difficult with the current technology.
Therefore, it was planned to generate synthesis gas in a mounted internal combustion engine. However, in a pressurized pump with a mounted structure, if the compression pressure is increased, more power is consumed for the pressurized pump. At the start, the gas was accumulated with equipment equivalent to an accumulator of hydraulic equipment, but the car fell from the cliff due to an accident on the highway where the livestock gas equipment should be installed. If the accident is such that the car is flipped upside down or the passenger car is sandwiched between large trucks and crushed in a sandwich, the structure must be such that an explosion can be avoided when such an accident occurs. I gave up on board.
If you are searching for related documents on the Internet and searching for prior literature for planning other projects using synthetic resin, the following foamed polyethylene, (the above-mentioned member has anti-bullet properties and is used for military weapons, (As an example, polyethylene fired polyethylene is fixed to the outer surface of an army water hoat for army movement, and when it is sniped with a rifle etc., the bullet has a bullet-proof property that does not allow a hole to be made in the rubber hote) Can be found, and if this was used, it was able to solve even the place where it did not explode even if the accident occurred. However, the problem was the location of the last remaining tank.
While considering the eco-driving method filed last year and thinking about what to do with resin to reduce the weight of the car, when considering the roof of a passenger car, the livestock gas tank of the present application that had been neglected was used for the roof of the car The structure of this livestock gas tank is the key point of the present application. (See Figure 1A and Figure 2)
2. As shown in FIG. 2, the outer surface of the livestock gas tank is made of poron fiber reinforced plastic or foamed polyethylene. (The above-mentioned members are bullet-proof and are used for military weapons. The fired polyethylene is fixed on the outer surface of the water hoat for moving the water surface, and when it is sniped with a rifle, etc., the bullet has a bullet-proof property so that a hole cannot be made in the rubber hoat)) A tank separation means is provided that separates from the car body when it is impacted by falling or severely damaging the car. It has a structure that does not explode even if it bounces off. (It is preferable to provide a locking structure that does not jump too far.)
3. As an example of the separation structure of the tank inlet / outlet pipe from the vehicle body, the solenoid valve contact configuration is ON when energized. When the solenoid valve sequence circuit is turned off when not energized, and the synthetic gas tank is subjected to an impact force flying from the body of the car, the gas inlet / outlet pipe of the tank may come off (or be damaged). The gas pipeline from the tank is closed. (See Figure 2.H)
4). As for the problem of compression pressure of livestock gas, if the configuration of Mazda (Company Name) Premasi Hydrogen RE hybrid vehicle, which uses auxiliary fuel, the eco-driving method and the internal combustion engine of the last year's application only generate electricity, is the first of the present application. Combining the sixth and seventh inventions with the detailed explanation part of the invention in addition to the reforming technology of the invention from the third invention, the synthesis gas alone or only the hydrogen or synthesis without using auxiliary fuel An embodiment which may be used by switching between gas and hydrogen, and the stored gas pressure can be handled with a low compression pressure as described in the next paragraph.

ガソリンで500Km走行に必要な燃料を水素(合成ガス)で賄うには、水素5Kgで
(水素56,000Lに相当)、(10g/Km=水素11.2Lで)ある。
従って10Km走行程度に必要な燃料(水素・合成ガス・二酸化炭素)の畜ガスタンクの容量は燃料切換えロスを無視すれば11.2L*10=112L(常圧)のガスを畜ガス出来る畜ガスタンクであれば良いことに成る。
従ってタンク製造コストと設置スペースの関係と設定したい切換え周期と前記法律の範囲内で有れば自在に設計できる。
In order to cover the fuel necessary for running 500 km with gasoline with hydrogen (synthetic gas), 5 kg of hydrogen (equivalent to 56,000 L of hydrogen) and (10 g / Km = hydrogen of 11.2 L).
Therefore, the capacity of a livestock gas tank for fuel (hydrogen, synthesis gas, carbon dioxide) required for about 10km travel is a livestock gas tank capable of livestock gas of 11.2L * 10 = 112L (normal pressure) if the fuel switching loss is ignored. It will be good if there is.
Therefore, it can be designed freely as long as it is within the scope of the law and the relationship between the tank manufacturing cost and the installation space and the switching cycle to be set.

第一の発明乃至第三の発明に記載の内燃機関から生成した合成ガスの貯ガスタンクを車の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。 A synthetic gas storage gas tank produced from the internal combustion engine according to the first to third aspects of the invention is provided in the upper part of the vehicle, and an impact buffer (fired polyethylene, boron fiber reinforced plastic, etc.) is fixed to the gas storage tank. A storage tank that protects against explosion or explosion in the event of a car wrecking by fixing either a coating or a multi-layered structure to the storage tank.

図1を説明すると、1図に記載の車は商用車フロントエンジンタイプ商用車に本願の構造を設置した概略構成図であり、フロントエンジンルームに設置した水素ロータリーピストンエンジン(内燃機関)から排気管部に設けた吸熱反応合成ガス生成部でガスを生成して、取り出した合成ガスを上部に設けた貯ガスタンクMTに貯ガスして当該水素ロータリーピストンエンジンの燃料として使用し、ガス生成過程のエネルギーロス分をサブタンクSTの燃料に切り替えて使用している、概略構成図で、
図1Bはレシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成フロー図であって、4気筒のレシプロエンジンのエンジンブロック内に水HO2を水蒸気Jにする通水路Kをもうけて、水HO(または水と二酸化炭素)を供給口より供給して水蒸気生成手段(または/及び二酸化炭素の吸熱手段)としおり、吸気口Aへ空気0を供給する管路3を設けて空気0を吸気口Aへ供給しており、排気口Eから管路4にて合成ガス生成部の排気管に連結しており、前記排気管MS内には排気管内に合成ガス生成吸熱反応部の吸熱反応管をコイル状にして設けており、前記コイル状にしている吸熱反応管内に前記レシプロエンジンのエンジンブロック内で生成された水蒸気Jを導入するとともに炭素を新たに投入しており、合成ガス生成部の排気管にMSを流れる、エンジン燃焼行程で発生する排気ガスEの排熱でCO+Hの合成ガスを生成して、生成された合成ガスは合成ガス貯蔵タンク(畜ガスタンク)MTに畜ガスしており、前記生成燃料の不足分を補う為にサブタンクSTを設けてサブ燃料を貯油しており、サブタンク燃料と畜ガスタンクに畜ガスしておる合成ガスを切換え弁CBで切り替えて燃料供給管路5でインジエクターE2に供給しており、更に強制着火のプラグPをもうけた構成にしておる内燃機関の概略構成図である。
Referring to FIG. 1, the vehicle shown in FIG. 1 is a schematic configuration diagram in which the structure of the present application is installed in a commercial vehicle front engine type commercial vehicle, and an exhaust pipe from a hydrogen rotary piston engine (internal combustion engine) installed in the front engine room. The endothermic reaction synthesis gas generation section provided in the section generates gas, and the extracted synthesis gas is stored in the storage tank MT provided in the upper section and used as fuel for the hydrogen rotary piston engine. In the schematic configuration diagram, switching the loss to the fuel of the sub tank ST,
FIG. 1B is a schematic configuration of an engine block, a synthesis gas generation endothermic reaction flow path section, a fuel supply / injection system, and a spark plug of a reciprocating engine. a schematic configuration flow diagram parts and the fuel supply and injection system ignition plug, the water HO 2 into the engine block of a four cylinder reciprocating engine provided with a water passage K of the steam J, water H 2 O (or water and carbon dioxide) is supplied from the supply port steam generating unit (or / and carbon dioxide heat absorbing means) and bookmarks, intake air 0 2 is provided for supplying duct 3 air 0 2 to the inlet port a P are supplied to the mouth a P, the exhaust port from E P at the conduit 4 is connected to the exhaust pipe of the synthesis gas production unit, endothermic of said exhaust pipe MS syngas product endothermic reaction portion in the exhaust pipe Reaction tube It is provided in a coil shape, and the steam J generated in the engine block of the reciprocating engine is introduced into the coiled endothermic reaction tube and carbon is newly introduced, and the exhaust gas of the synthesis gas generation unit flowing MS to the tube, to produce the exhaust gas E X of the exhaust heat in the synthesis gas CO + H 2 generated in the engine combustion stroke, produced synthesis gas by livestock gas in the synthesis gas storage tank (slaughtering gas tank) MT In order to make up for the shortage of the generated fuel, a sub tank ST is provided to store the sub fuel. The sub tank fuel and the synthetic gas stored in the live gas tank are switched by the switching valve CB, and the fuel supply line 5 FIG. 2 is a schematic configuration diagram of an internal combustion engine that is supplied to the injector E C H 2 and has a configuration in which a plug P for forced ignition is provided.

上記エンジンブロック内に水HO2を水蒸気Jにする通水路Kを設けて、水HOを供給口より供給して水蒸気生成手段としおる通水路Kに加えて、CO2を加熱する通気K‘とCO2供給口を設けて、複数設けた排気管路の内少なくとも何れかの一方以上のCO2を改質する管路に供給しており、CO2を改質する管路の他のいずれかを水蒸気改質する管路にするか第三の発明の合成ガス改質路にするかして、水蒸気Jは全てか複数かの管路に供給して必要に応じて前記管路K、K’の両方からの供給をいずれかに切り替える供給路にする構成を付加して設けた構成にも出来る。 A water passage K for converting water HO 2 into water vapor J is provided in the engine block, water H 2 O is supplied from the supply port, and in addition to the water passage K serving as water vapor generating means, air passage K for heating CO 2. 'And a CO2 supply port are provided, and at least one of the plurality of exhaust pipes is supplied to a pipe for reforming CO2, and one of the other pipes for reforming CO2 is supplied. Whether it is a pipe for steam reforming or a syngas reforming path of the third invention, the steam J is supplied to all or a plurality of pipes, and the pipes K, K ′ as required. It is also possible to add a configuration in which a supply path for switching the supply from both is switched to either.

図2A.は図1のA−A断面図であり、本図は一例として合成ガスタンクを円筒形状の物MTB4本を、発泡ポリエチレン、ボロン繊維強化プラスチック、等HPEの衝撃緩衝材で1個の包括体にして車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着している状態図で、前記固定具MT5は車が大破する様な衝撃が掛かると前記V字状の切り掛けMT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(一例としてタンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く糸体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)。 FIG. 2A. 1 is a cross-sectional view taken along the line AA in FIG. 1. As an example, this figure shows a synthetic gas tank having four cylindrical MTBs, and a single package made of a shock absorbing material such as foamed polyethylene, boron fiber reinforced plastic, or the like. In the state where the vehicle is fixedly held on the upper part of the vehicle, and is fixed to the fixture MT5 that is fixedly fixed to the upper part of the vehicle with the fixed holding fixture MT1. The V-shaped notch MT6 breaks due to concentrated stress, and the shock absorbing material inclusion MT3 (for example, the tank support MT2 is integrated) is detached from the fixture MT5 (completely disengages). (It is a preferable form to take a structure in which it is locked to the fixing device MT5 or the like with a thread body or the like, because this is a measure for avoiding the secondary damage in which the inclusion body MT3 of the shock absorbing material completely comes off))

上記衝突及び転落時の力が上記タンクに掛った時、1例として、事故時の保持構造を設けて、車から外れ飛ぶ構造(一部は車と繋がっているのが望ましい)を設けており、車から外れ飛んだタンクは、前記タンク外面にコートあるいは全面に固着して設けている、発泡ポリエチレン・ボロン繊維強化プラスチック・衝撃緩衝材等(HTP)であり、衝撃力を吸収あるいは拡散されるので爆発しない構造である。
前記コーティングあるいは全面に固着する、発泡ポリエチレン、ボロン繊維強化プラスチック、衝撃緩衝材等は現時点では高価かも判らないが、2000万台/年・(日本自動車メーカー全体で)近く生産されているので、量産効果によりコストは低くなる。
As an example, when a collision or falling force is applied to the tank, a holding structure in the event of an accident is provided, and a structure (part of which is preferably connected to the car) is provided. The tank that flies off from the vehicle is made of foamed polyethylene, boron fiber reinforced plastic, impact buffering material (HTP), etc., which is provided on the outer surface of the tank and fixed to the entire surface, and absorbs or diffuses impact force. So it does not explode.
The foamed polyethylene, boron fiber reinforced plastic, and shock-absorbing materials that are fixed to the entire surface of the coating or the entire surface may not be expensive at this time, but they are produced almost 20 million units / year (by the entire Japanese automaker). The cost is reduced due to the effect.

図2Bは.リヤーエンジン車に上記衝撃緩衝材の包括体MT3を進行方行に対して直交する形にタンクを搭載した例図であり、D.E.図は搭載タンクの数及び形状には拘らない事を図示したもの、E,は車のルーフ部に前記タンクを前後方向の凹部に格納搭載しており、横面からの美観を良くした物、F.はキャビンの下にエンジンを搭載するタイプにE.と同様にタンクを設置している図、であり、搭載するガスタンクMTB及びタンク包括体MT3の形状設置方向は、設置するタンク容量とガス圧力の関係での設計上の問題である。 FIG. FIG. 6 is an example of a tank mounted on a rear engine vehicle in which the shock-absorbing material MT3 is mounted perpendicularly to the traveling direction; E. The figure shows that there are no restrictions on the number and shape of the tanks. E, the tank is housed in the front and rear recesses on the roof of the car, and the aesthetics from the side are improved. F. Is a type with an engine mounted under the cabin. The shape installation direction of the gas tank MTB and the tank package MT3 to be mounted is a design problem in the relationship between the tank capacity to be installed and the gas pressure.

図2Hは.上記ガスタンクMTB1個のみの場合のガス出入り口部の構造の部分断面図であり合成ガス生成部Sから取り出されたガスはタンク開閉バルブGTbsec (一例として電磁バルブを通電時ON・非通電時OFFとなる接点回路としている)を経由してタンクに貯ガスされ、更にエンジンの燃料切換えバルブCbに導入する構造にしている概略図であり、この非通電時OFFとなる構造にすれば上記衝突及び転落時の力が上記タンクに掛り貯ガスタンクが外れ飛ぶ事態になれば電気配線もはずれ飛ぶので電磁バルブはOFFとなりタンク内のガスは漏れ出ない構造である。
図2,Iは.車上部に固着固定している固定具MT5の両端部に弾性性状を有する逆J状の係止固定構造KRsecを設け、(下部図)車か大破する様な衝撃が掛かると、前記逆J状の係止固定構造KRsecの逆J状の係止機能部が伸びてHPE体が上部に離脱する構造(上部図)にした1例図であり、前記車か大破する様な衝撃力が掛かるとHPE体が上部に離脱する機能を有する構造であれば、金属・合成樹脂・その他・材質および形状にはこだわらない。
上記畜ガスタンクの構造で二酸化炭素畜ガスタンク・水素畜ガスタンクを設ける事が好ましい。
FIG. FIG. 5 is a partial cross-sectional view of the structure of the gas inlet / outlet portion when there is only one gas tank MTB, and the gas taken out from the synthesis gas generator S is a tank open / close valve GTbsec (for example, the electromagnetic valve is turned on when energized and turned off when deenergized. It is a schematic diagram of a structure in which gas is stored in a tank via a contact circuit) and introduced into the fuel switching valve Cb of the engine. If the force is applied to the tank and the gas storage tank comes off, the electrical wiring will be disconnected and the electromagnetic valve will be turned off so that the gas in the tank will not leak.
2 and I are. A reverse J-shaped locking and fixing structure KRsec having elasticity is provided at both ends of the fixing device MT5 fixedly fixed to the upper part of the vehicle. (Lower view) When the car is severely damaged, the reverse J-shaped This is an example of a structure (upper view) in which the reverse J-shaped locking function part of the locking structure KRsec extends and the HPE body is detached from the upper part. As long as the HPE body has a function of separating to the upper part, it does not stick to metal, synthetic resin, other, material and shape.
It is preferable to provide a carbon dioxide livestock gas tank and a hydrogen livestock gas tank in the structure of the livestock gas tank.

上記補足記載であるが、前記水蒸気改質で生成した合成ガスはCOとHの概略物質量1:1の混合物である。気体体積は物質量に比例するので、一酸化炭素量=水素量で気体は標準状態で22.4L/molの体積である。(液体水素:高圧 水素=6:1の運搬効率)水素は1Lあたり39g(700気圧のタンク内重量)である。
前記CO改質で生成したガスは上記第2の発明の段落に記載しているが、一例として改質物質をジメジエーテルとした場合は、ジメジエーテルに水蒸気か二酸化炭素の何れか一方か両方かを加えて反応させると、
A.CHOCH+HO→2CO+4H−48.9Kal/mol 水蒸気の場合
B.CHOCH++CO→3CO+3H−58・8Kal/mol二酸化炭素の場合
C.2CH3OCH3+H2O+CO2−107.7Kal/mol両方の場合 のようになる。
*水素の性質・拡散が早く漏れやすい・高い反応性・特に鉄鋼を含む金属を脆くする。
Although the above-mentioned supplemental described, the synthesis gas produced by the steam reforming is a schematic substance amount 1 of CO and H 2: a mixture of 1. Since the gas volume is proportional to the amount of the substance, the amount of carbon monoxide = the amount of hydrogen and the gas has a volume of 22.4 L / mol in the standard state. (Transfer efficiency of liquid hydrogen: high pressure hydrogen = 6: 1) Hydrogen is 39 g per liter (weight in tank of 700 atm).
The gas generated by the CO 2 reforming is described in the paragraph of the second invention, but when the reforming substance is dimethyl ether as an example, the dimethyl ether is either water vapor or carbon dioxide, or both. In addition, if you react,
A. In the case of CH 3 OCH 3 + H 2 O → 2CO + 4H 2 −48.9 Kal / mol water vapor
B. In the case of CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol carbon dioxide
C. In the case of both 2CH3OCH3 + H2O + CO2-107.7 Kal / mol become that way.
* Hydrogen properties, diffusion is quick and easy to leak, high reactivity, and especially brittle metals including steel.

図3A.は図1Aの前後方向断面図で、ロータリーピストンエンジンの水素対応構造部の説明は図6に記載しており後述する。
ロータリーピストンエンジン ロータリーハウジングの内壁と外壁間に少なくとも1/2周する通水路Kを設けており、1方の、水の導入管からは水を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み、前記水が燃料の燃焼熱で吸気→圧縮→爆発→排気工程部に当接する通水路を通る過程で水蒸気Jとなり吸熱反応流路部Sへ送り込まれ、炭素C挿入管より炭素が挿入される、
他方のロータリーピストンエンジン内に空気Oが送り込まれ、次に燃料の合成ガスMTCかサブタンクST燃料(ブタン・バイオ燃料・合成ガス等の何れか)がエンジン内に送り込まれ、→圧縮→爆発→排気Eとなり、吸熱反応流路部Sへ送り込まれる、3図の記載では前記排気Eは吸熱反応流路部Sの管中央部を流れ、水蒸気Jと挿入された炭素は熱反応流路管MSの管壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造の1例概略図である。
CO2改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図1B・図3、の説明構成を適用する。
FIG. 3A. FIG. 1A is a cross-sectional view in the front-rear direction of FIG. 1A, and a description of the hydrogen-compatible structure of the rotary piston engine is shown in FIG.
Rotary piston engine A water passage K that makes at least a half turn between the inner wall and the outer wall of the rotary housing is provided, and water is supplied from one water introduction pipe to the water passage K between the inner wall and the outer wall of the rotary housing. The water is sent to the endothermic reaction channel S through the carbon C insertion tube, and the water becomes steam J in the process of passing through the water passage that contacts the intake → compression → explosion → exhaust process part with the combustion heat of the fuel. The
Air O 2 is sent into the other rotary piston engine, and then the fuel synthesis gas MTC or subtank ST fuel (any of butane, biofuel, synthesis gas, etc.) is sent into the engine, → compression → explosion → exhaust E X next to be fed to the endothermic reaction flow path portion S, the exhaust E X flows through the tube center portion of the endothermic reaction channel section S, carbon inserted with steam J thermal reaction channel is in the description of FIG. 3 flow synthesis gas generator tube provided in a coil shape in contact with the tube wall of the tube MS, the tube in the heat of the exhaust E X flowing a central portion is generated in the synthesis gas is withdrawn from the take-out tube is transferred to savings gas tank MT FIG.
The explanation structure of FIG. 1B and FIG. 3 is applied to the structure of the water passage / ventilation path of the rotary housing corresponding to CO2 reforming and synthesis gas reforming.

図3B.は図3A.の水(HO)の導入管部に水蒸気Jと炭素Cの混合体を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み前記熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造概略図である。
CO改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図3A,B,図4にも図1Bの説明構成を適用する。
FIG. 3B. FIG. A mixture of water vapor J and carbon C is fed into a water passage K between the inner wall and the outer wall of the rotary housing into the water (H 2 O) introduction pipe portion of the water and comes into contact with the inner wall surface of the thermal reaction channel pipe MS in a coil shape the synthesis gas production tube provided in the flow, which is the tube structure schematic diagram central portion is generated heat in the synthesis gas in the exhaust E X flowing retrieved from the take-out tube is transferred to savings gas tank MT.
The structure of the water passage / ventilation path of the rotary housing corresponding to CO 2 reforming and synthesis gas reforming also applies the explanation structure of FIG. 1B to FIGS.

図4は図3の熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管路をストレートの細い管にして設け、前記細い管と細い管の間を排気Eが流れる構成にしたものであり、又吸熱反応流路の設計は排気ガス処理システムで触媒を対峙させて排気を無害化させるシステムで多種実用化されているので、その構造構想を適用しても良い。 Figure 4 is provided to the synthesis gas production pipeline provided in a coil shape in contact with the tube inner wall surface of the thermal reaction flow pipe MS of FIG. 3 in a thin tube of a straight, exhaust between the thin tube and the thin tube E X The design of the endothermic reaction flow path has been put to practical use in a system that makes the exhaust gas harmless by confronting the catalyst in the exhaust gas treatment system. good.

図5は特開2007−211608の水素ロータリーピストンエンジンを示す概略図である。 FIG. 5 is a schematic view showing a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-2111608.

図6は水素ロータリーピストンエンジンの電子制御噴射構造部の主構成を示した図であり前記電子制御噴射弁は、例えば100KWの出力を得る為には2300NL/minの大容量を噴射する必要がある、上図の2個の噴射弁40,42を設けて大容量を噴射している。
さらにローターハウジング側面に大容量の吸気ポート16と排気ポート18を設け、更に爆発室を爆発寸前時に2分する構造にしており2個の点火プラグ14,15を設けている図。
FIG. 6 is a diagram showing a main configuration of an electronically controlled injection structure of a hydrogen rotary piston engine. The electronically controlled injection valve needs to inject a large capacity of 2300 NL / min in order to obtain an output of 100 KW, for example. The two injection valves 40 and 42 in the above figure are provided to inject a large volume.
Further, a large-capacity intake port 16 and an exhaust port 18 are provided on the side of the rotor housing, and the explosion chamber is divided into two when it is about to explode, and two spark plugs 14 and 15 are provided.

近年ハイブリッド車・100%電気の電気自動車が脚光を浴びている。
しかし自動車の殆どを電気エネルギーとすると、家電を始めとする電化のスピードに追従させるのが一杯の電力供給事情に追い打ちを掛ける「福島原発」の問題もあり、電力供給設備の拡充は早急に解決すべき課題と成っている。しかしながら国民は原子力発電所の建設または再稼働問題については、原発を廃止すれば電力料金の負担が増える事もあり賛成方向に理解していても原発廃棄物の処理方法が判らない現状では反対意見が多いと私は理解している、更に世論は脱ダム方向に向いている、従って電力供給設備の拡充は火力発電及び自然エネルギーによる物のウエートが非常に高くなるのは、必死の情勢である。 従ってCO2排出を抑えた電力発電設備を拡充することが早急に解決すべき問題である。
In recent years, hybrid vehicles and 100% electric vehicles have attracted attention.
However, if most of the automobiles are used as electric energy, there is a problem of the “Fukushima nuclear power plant” that overwhelms the power supply situation to follow the speed of electrification including home appliances, and the expansion of the power supply facilities is solved quickly It is an issue that should be done. However, the public disagrees with the current situation regarding the construction or restart of nuclear power plants, as the burden of electricity charges will increase if the nuclear power plant is abolished. I understand that there are many, and further public opinion is toward the direction of damming. Therefore, expansion of power supply facilities is a desperate situation that the weight of things by thermal power generation and natural energy becomes very high . Therefore, expanding the power generation facilities that suppress CO 2 emissions is a problem that should be solved immediately.

ここ数十年外国から安価な木材が輸入され、林業従事者は極端に減少し山林は間伐されず、又松枯れ等害虫に蝕まれた枯木は放置されたままである。
更に農業の活性化であるが、「田んぼ」の殆どは農業用水路が整備されており、更に長年施肥をしていて、肥沃な農地となっている、これを遊ばしておくのは、あまりにも「無駄」である、この「田んぼ」に例えばパルプ材料となる「ケナフ」、養蚕の「桑」を植えるとか、あるいは水の補給が十分に出来る所は、南米のウルグアイが行っている「ユウカリ」をうえるとかするのも1つの案であり、前記農産廃棄物を含めた炭化出来るものを、農家が片手間で出来る小規模な炭化装置(図10参照)を複数軒に1個貸与使用(リース方式にして前記炭化装置で炭化した物の代金で割安にした炭化装置を、例えば5年分割とかで買い取らす方式にすれば、買い取らしたお金をさら多くの林業従事者や農家が片手間で出来る「小規模な炭化装置」を貸与させる予算の一部にする事が出来る)するとか、更に里芋の様に水の供給が十分に出来る場所ではよく育つ「バイオエタノール」に成り得るものを植えるとかするのも一策である。
In recent decades, cheap timber has been imported from foreign countries, the number of forestry workers has decreased dramatically, the forest has not been thinned, and dead trees devoured by pests such as pine wilt have been left unattended.
Furthermore, it is the vitalization of agriculture, but most of the “rice fields” have agricultural waterways, which have been fertilized for many years and have become fertile farmland. For example, “Kenaf”, which is a pulp material, and “Mulberry” in sericulture can be planted in this “rice field”, or “Yukari” from Uruguay in South America can be used. One plan is to use a small-scale carbonization device (see Fig. 10) that can be carbonized by a farmer with a single hand for lending use (lease method). For example, if the carbonization equipment that is cheaper with the price of the carbonized equipment is purchased in a five-year split, for example, a small scale that allows more forestry workers and farmers to use the purchased money with one hand. ”Carbonizing equipment” It is also possible to plant a thing that can become “bioethanol” that grows well in places where water supply is sufficient, such as taro.

2020年迄に温室効果ガス(CO)の排出を 25%削減しようと言う目標も囁かれている中で、世界中がこの目標にどうやって到達するか凌ぎを削っている、日本のCO排出の主役は内燃機関からの排出と発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出である、これらのCOは、石炭・石油・天然ガスを始とする化石燃料の使用による物であり、石炭・石油・天然ガスを始とする化石燃料は限りある資源であり、言うまでも無く再生産不可能な資源である。 The goal of reducing greenhouse gas (CO 2 ) emissions by 25% by 2020 is being asked, and Japan's CO 2 emissions are struggling to see how the world can reach this goal. The main players in this project are emissions from internal combustion engines and emissions from thermal power boilers, which account for about 82% of electricity generation (2012 Electricity Federation statistics). These CO 2 starts with coal, oil and natural gas. Fossil fuels such as coal, oil, and natural gas are limited resources, and of course, resources that cannot be reproduced.

京都議定書によれば、植物の炭素Cの燃焼等により生成される炭酸ガスCO2は植物の炭素同化作用で消費される為 プラス マイナス ゼロでありCO排出量としてカウントされない約束に成っている、従って化石燃料の炭素の消費を、植物の炭素にシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、上記合成ガス生成サイクルの案を実現するのが最良と思う。(環境省2010年資料によると、温室効果ガスCOは全世界で303億tを排出しており日本はその3.8%である) According to the Kyoto Protocol, carbon dioxide CO 2 produced by the combustion of plant carbon C is consumed by plant carbon assimilation, so it is a plus or minus zero and is not counted as CO 2 emissions. Therefore, in order to shift the carbon consumption of fossil fuels to plant carbon and achieve a 25% reduction in greenhouse gas CO 2 emissions at an early stage, it is best to realize the above-mentioned synthesis gas generation cycle plan. think. (According to 2010 data from the Ministry of the Environment, greenhouse gas CO 2 emits 30.3 billion tons worldwide, Japan is 3.8%)

太陽光発電(ソーラー発電パネル使用システム・太陽光集光し、熱で蒸気発生→発電)が今後の発電の主流になる日はそう遠くない。しかしながら太陽光発電は夜・雨・曇りと24Hフルタイム発電出来ないのと、大規模に設置する場所となると電力使用地からかなり遠隔地になるので変電・送電設備を新たに設置する事に成るのが欠点で、太陽光発電のみで賄うには大容量の蓄電設備が必要で、又日照率の良い場所(例えば年間降雨量の少ない砂漠が筆頭候補)となると厖大な送電・受電設備が必要である(前記大容量の蓄電設備・厖大な送電・受電設備には、日本が発明した超伝導があり、すでに実験プラントが試稼動中であり、2008年に1,100, 000Vの国際規格も国際承認を得たところであるが、想定コストとの格差が問題とされている)。
そこで本願発明の燃料製造機構を併用し、太陽光発電可能時間以外は短時間稼動可能な本願発明の内燃機関発電とすれば、温室効果ガスCOの排出削減は、より早期に達成出来ると言える。
The day when solar power generation (system using solar power generation panels, condensing sunlight, generating steam with heat → power generation) will become the mainstream of future power generation is not far away. However, solar power generation is not possible 24 hours full-time power generation at night, rain, and cloudy, and if it is installed on a large scale, it will be quite remote from the power usage area, so it will install new substation and transmission equipment The disadvantage is that large-capacity power storage equipment is necessary to cover only with solar power generation, and if it is a place with a good sunshine rate (for example, a desert with low annual rainfall is the leading candidate), a large amount of power transmission / reception equipment is required. (There is superconductivity invented by Japan in the above-mentioned large-capacity power storage equipment, large-scale power transmission / reception equipment, the experimental plant is already in trial operation, and the international standard of 1,100,000V was also established in 2008. Although it has just gained international approval, the gap with the estimated cost is a problem).
Therefore, if the internal combustion engine power generation of the present invention that can be operated for a short time other than the solar power generation time is used in combination with the fuel production mechanism of the present invention, it can be said that the reduction of greenhouse gas CO 2 emission can be achieved earlier. .

燃料とする炭素Cの調達コスト削減の可否が、本願の実用の成否を握っている。炭素製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
「昔の炭焼き窯の効率を良くした物」炭化装置であり、この炭焼き窯規模のものを山林に多数点在設置して、間伐、枝打ち、下刈りといった作業をしながら、燃料とする炭素Cの調達作業を掛け持ちで出来る構造にした炭素製造装置を順次貸与する形態(補助金に代えて出すことに対しての案)にする事が本願実現の近道となる具体的提案である。
Whether or not the procurement cost of carbon C as a fuel can be reduced holds the success or failure of practical use of the present application. In carbon production, when carbonized organic substances are heated with the air and oxygen flow cut off, they turn into black carbon-rich substances. The resulting product is an aggregate mainly composed of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.
Carbon charcoal used as a fuel while performing many operations such as thinning, pruning and undercutting. It is a concrete proposal that is a shortcut for realizing the present application to sequentially lend carbon production equipment that has a structure that can be handled in a procurement manner (subject to substituting for subsidies).

図10は前述の小規模炭化装置の想定概略図であり、炭素生成室CSに本願の炭素材に適した炭化植物を入れ釜戸の役割をする燃焼室FCに本願の炭素材の概略半分の炭化材植物を燃焼させ、出来た炭素Cの形で集積場に集積する方式にすれば、枝付木材での運搬よりはるかに運搬コストを下げる事が出来る物であり、
酸素が入らない環境で植物原料(木材等)を加熱して炭化させる炭化室CSに木材等を投入し、前記炭化室を加熱する加熱用燃料(木材等の植物原料又はその他の燃焼材)を燃焼させる燃焼室FCに投入して燃焼させ、炭化室の内壁に燃焼室FCの排ガス排出管路Exと水タンクから導入した水H2Oを水蒸気にする水蒸気生成手段の管路Jを設けており、前記炭化過程で発生するガスC4を水蒸気とともに導入管C4で燃焼室に導入して炭化室を加熱する燃料とする構成構造であり、
FIG. 10 is an assumed schematic diagram of the above-described small-scale carbonization apparatus. Carbonization plants suitable for the carbon material of the present application are placed in the carbon production chamber CS, and the combustion chamber FC serving as a pot door is approximately half carbonized of the carbon material of the present application. By burning the timber plant and collecting it in the collection area in the form of carbon C, it is possible to reduce the transportation cost much more than transportation with branch wood,
Plant material in an environment where oxygen from entering by introducing a timber or the like coking chamber CS to carbonized by heating (wood, etc.), heating fuel for heating the carbonizing chamber (plant material such as wood or other burnable material) The combustion chamber FC is made to burn and combusted, and the exhaust gas exhaust pipe Ex of the combustion chamber FC and the pipe J of the steam generating means for converting the water H 2 O introduced from the water tank into water vapor are provided on the inner wall of the carbonization chamber. The gas C4 generated in the carbonization process is introduced into the combustion chamber together with water vapor through the introduction pipe C4, and is used as a fuel for heating the carbonization chamber,

上記第2の発明の段落に記載している構造の改質部(COの改質)を、上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かを、前記反応させ小規模炭化装置の燃料とする構成にすると、更に炭化に消費する燃料の節減となり、温室効果ガスの排出削減となる。
更に改質部(COの改質)の使用により、石炭等の化石燃料を使用する事が出来、燃料としていた木材等を植物原料のCに改質する出発改質材に出来る。
前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物である。
The reforming part (CO 2 reforming) having the structure described in the paragraph of the second invention is provided in the discharge part (chimney) of the exhaust gas pipe, and as an example, the reforming substance is dimethyl ether, and the catalyst If the reforming section is made to react with either dimethyl ether or one of water vapor or carbon dioxide to make the fuel of the small-scale carbonization device, the fuel consumed for carbonization is further reduced. Reduction of effect gas emissions.
Furthermore, by using a reforming section (CO 2 reforming), it is possible to use fossil fuels such as coal, and it is possible to use it as a starting reforming material that reforms wood, etc., used as fuel into plant raw material C.
As an example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum, and the like. These compounds, other metals or compounds.

前記記載の合成ガスは水素と一酸化炭素のみとは限らない、前記合成ガスは主構成を表し、例えば、未燃焼炭素、二酸化炭素、水分、その他大気中に存在する気体及び不純物等を含有している場合も含む。 The synthesis gas described above is not limited to hydrogen and carbon monoxide. The synthesis gas represents a main component, and includes, for example, unburned carbon, carbon dioxide, moisture, and other gases and impurities present in the atmosphere. This includes cases where

炭素(植物原料のC)の調達コストが現在では天然ガス(メタン・ブタン等)、石炭、石油の化石燃料に比べ高く、前記炭素の調達コストが、同等に成るか、行政の補助金等が得られるか、若しくは温室効果ガスCOの排出規制の強化の法律を作るか、する迄は炭素の調達は天然ガス(メタン等)で行うか直接天然ガス(メタン等)を燃料とし、社会全体の欲求が高くなり炭素の調達コストがペイ出来る時点で切り替える方法もある、
しかしながら化学技術の進歩の速度は「ニーズ」に比例する形で進歩していると私は思っている、
従って本願の主原料となる再生可能な炭素Cの調達ニーズが高く成れば、前記調達技術は加速度を付けた状態で進化すると確信している。
本願の内燃機関サイクルに使用する炭素は当面「石炭」を粉末にして使用するのが一番安価であるので、再生可能な炭素Cの調達システムが完備するまでは、前記化石燃料を使用して順次再生可能な炭素Cの調達システムに移行する形態をとることになる。
The procurement cost of carbon (plant raw material C) is currently higher than that of natural gas (methane, butane, etc.), coal, and petroleum fossil fuels. Until it is obtained, or the law of strengthening the emission control of greenhouse gas CO 2 is made, the procurement of carbon will be done with natural gas (methane etc.) or directly with natural gas (methane etc.) as fuel and the whole society There is also a way to switch when the desire for carbon increases and the cost of carbon procurement can be paid,
However, I think that the speed of progress in chemical technology is progressing in proportion to "needs",
Therefore, if the need for procurement of renewable carbon C, which is the main raw material of the present application, becomes high, we are confident that the procurement technology will evolve with acceleration.
The carbon used in the internal combustion engine cycle of the present application is the cheapest to use “coal” as powder for the time being, so the fossil fuel will be used until the renewable carbon C procurement system is complete. It will take the form of shifting to a carbon C procurement system that can be sequentially regenerated.

温室効果ガスCOの排出枠の日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を前記炭素の調達コストの一部として使用すれば、本願発明の実現時期は早くなる。
*、化学工場・製鉄工場・アルミ工場・塵焼却場・石油精製から工場等からパイプラインで水素と一酸化炭素の混合気体・二酸化炭素・水素等の輸送手段とすれば運輸機器での輸送よりはるかに輸送コストを下げる事が出来る。
アメリカや欧州各国ではそれぞれ数千Kmの水素輸送パイプラインを敷設しており、世界を競争相手として勝ち残るためにも政府の後押しで早期に実現するべきである。
The amount of purchase of greenhouse gas CO 2 emission allowances in Japan is estimated to be about 1 trillions of billions of yen. If this purchase amount is used as part of the carbon procurement cost, the time of realization of the present invention will be explained. Will be faster.
* From transportation by transportation equipment if it is used as a transportation means of mixed gas of hydrogen and carbon monoxide, carbon dioxide, hydrogen, etc. in pipelines from chemical factories, steel factories, aluminum factories, dust incinerators, oil refining and factories, etc. The transportation cost can be greatly reduced.
Each US and European country has a hydrogen transport pipeline of thousands of kilometers, and should be realized early with the support of the government in order to survive the world as a competitor.

本願の内燃機関を動力とした動力発電設備は、比較的小規模の動力発電設備(前記動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来るので、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
The power generation facility powered by the internal combustion engine of the present application is a relatively small-scale power generation facility. Because it can be a decentralized power generation system with self-sufficiency in units of mass such as remote islands, mountainous remote areas, industrial parks, submarine transmission cables and power demand It is possible to drastically reduce power transmission facilities, power transformation facilities, and power reception facilities that respond to changes in power consumption.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

メタノールを内燃機関の燃料とする場合、もともとメタノールは化学平衡から有利な高圧にして水素と一酸化炭素から合成されたものである。従って水素に転換して使用するよりは、水素と一酸化炭素の合成ガスの形で使用するのがエネルギー的には最も効率が高い。 When methanol is used as a fuel for an internal combustion engine, methanol is originally synthesized from hydrogen and carbon monoxide at a high pressure advantageous from chemical equilibrium. Therefore, it is most efficient in terms of energy to use it in the form of synthesis gas of hydrogen and carbon monoxide, rather than converting it to hydrogen.

圧縮水素と液体水素の輸送であるが、水素の陸上輸送では、水素ガスの体積貯蔵密度が小さい問題を補うために、14.7〜19.6MPaに加圧し圧縮水素として輸送するが、Cr−Mo鋼の水素容器は重量が重く、一例をあげれば100Kgの水素を輸送するトレイラー車は水素容器の重量だけで7tになる、圧縮水素の輸送コスト低減には、アルミ合金ライナーや高密度ポリエチレンライナーにガラス繊維や炭素繊維で強化したタンクにする必要がある、
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準}
Although transportation of compressed hydrogen and liquid hydrogen is carried out, in order to compensate for the problem that the volume storage density of hydrogen gas is small, hydrogen is pressurized to 14.7 to 19.6 MPa and transported as compressed hydrogen. Mo steel hydrogen container is heavy. For example, a trailer vehicle that transports 100 kg of hydrogen requires 7 tons of hydrogen container. To reduce the cost of transporting compressed hydrogen, aluminum alloy liners and high-density polyethylene liners are used. It is necessary to make a tank reinforced with glass fiber or carbon fiber,
Under current regulations (in Japan, registration of JIS B 8265 has been completed and internationally there is ISO 16528) CFRP for transportation (tank with high-density polyethylene liner reinforced with glass fiber or carbon fiber on the entire surface) ) Since the container has a pressure of up to a capacity of 35 MPa, it is necessary to relax regulations in order to utilize the container. (Japan Industrial Gas Association, hydrogen gas container standards)

一方液体水素は体積貯蔵密度が水素ガスの800倍強でタンクローリ―とか断熱コンテナーが使用されているが、液体水素は液化にエネルギーを必要とすることや、沸点が−253°Cで蒸発ロスが発生する欠点がある。 On the other hand, liquid hydrogen has a volume storage density 800 times higher than that of hydrogen gas, and tank trucks or insulated containers are used. However, liquid hydrogen requires energy for liquefaction and has a boiling point of −253 ° C. and evaporation loss. There are disadvantages that occur.

本願発明の内燃機関は合成ガスを燃料としているが、該合成ガスは運輸機器載内機関内でのパイプ配管供給であり、該内燃機関で生成された合成ガスを畜ガスする畜ガスタンクの蓄圧は前述現存の水素エンジン車に搭載されている圧縮ガスの35MPaの畜ガスタンクにする必要は無く1/40程度の蓄圧であっても良く、その蓄圧を低く出来る分加圧ポンプに使用するエネルギーを使わなくて済むし、蓄ガスタンク構造も現行法規内での多くて数MPa程度の構造にする事も出来る。 The internal combustion engine of the present invention uses synthesis gas as fuel, but the synthesis gas is a pipe piping supply in a transport equipment on-board engine , and the accumulation pressure of a livestock gas tank for livestock synthesis gas generated by the internal combustion engine is There is no need to use a 35 MPa livestock gas tank of compressed gas mounted on the existing hydrogen engine vehicle mentioned above, and it may be about 1/40 of the accumulated pressure, and the energy used for the pressurizing pump can be used to reduce the accumulated pressure. There is no need, and the structure of the gas storage tank can be made to be at most several MPa within the current regulations.

水素の定常的大量輸送にはパイプラインによる輸送が最適であり欧州と米国各地ではおのおの千数百Km布設されている、本願の合成ガスも性状は水素と類似性状であり前記パイプラインによる輸送をするのが最適手段である。
前記水素パイプラインのパイプ材としては、現在の先端技術では、通常のラインパイプ鋼材に比し、バナジュウムを減らしニッケルやクロムを少量加えた耐サワー材であれば、通常の輸送環境下での使用材と出来るとしており、それによるコストUP分も10%以下とされておる。
Pipeline transportation is optimal for steady mass transportation of hydrogen, and the synthesis gas of this application is similar to hydrogen in Europe and the United States. It is the best way to do it.
As the pipe material of the hydrogen pipeline, in the current advanced technology, if it is a sour-resistant material with a reduced amount of vanadium and a small amount of nickel or chromium, compared with ordinary line pipe steel, it can be used in a normal transportation environment. It is said that the cost can be increased to 10% or less.

水素を燃料としたロータリ−エンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素(又はガソリン)ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、
この車の特徴は燃費の良い条件でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としておる所であり、
短所としては高圧水素燃料タンク満タンでの走行距離が100Kmと短く、又水素の運搬手段も(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造&輸送コストが高い点等である。
The rotary engine vehicle powered by hydrogen is a Mazda Premacy Hydrogen RE hybrid vehicle that has a structure that can be selected to travel using either hydrogen as fuel or gasoline as fuel. A high-pressure hydrogen fuel tank (35MPa, 74L) And a gasoline tank is mounted on the vehicle, electricity is generated by rotating a hydrogen (or gasoline) rotary engine and stored in a lithium ion battery, and driving of the wheel is electricity stored in the battery,
The feature of this car is that the engine is operated with good fuel economy, and the control of the vehicle speed fluctuations depending on the running state of the car is electric control.
Disadvantages include a short mileage of 100 km in a high-pressure hydrogen fuel tank, and the hydrogen transportation means (assuming transportation by car) has a poor ratio of hydrogen loading weight to the tank weight, leading to the development of infrastructure such as hydrogen stations. There are no points and high hydrogen production & transportation cost.

水素を燃料とした東京都市大学が開発している水素エンジンバスは35MPaに圧縮したタンクを6本屋根の上に積んでおり、該タンクを満タンにした状態で200Km走行できるバスでエンジンはディーゼルエンジンを改良した物で主な改良部位はインテークマニホールドと水素の噴射弁と点火プラグを追加したぐらいで有る。 The hydrogen engine bus developed by Tokyo City University, which uses hydrogen as fuel, is loaded with six tanks compressed to 35MPa on the roof. The main improvements in the engine are the addition of an intake manifold, hydrogen injection valve and spark plug.

水素を燃料とした東京都市大学が開発して作った、水素レシプロエンジンでワゴンタイプの武蔵10は水素冷却インタークーラー付水素エンジンで、液体水素100Lのタンクを搭載しており1充填で300Kmの連続走行を可能にした車である。
上記水素を燃料とする現存車の短所は、水素の運搬手段の(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造コストが高い点等である。
A hydrogen reciprocating engine and a wagon type Musashi 10 developed and developed by Tokyo City University using hydrogen as a fuel, is a hydrogen engine with a hydrogen cooling intercooler, equipped with a tank of 100 L of liquid hydrogen and continuously running at 300 Km per charge. It is a car that made it possible.
Disadvantages of the above-mentioned existing vehicles that use hydrogen as a fuel are that the ratio of hydrogen loading to the tank weight of the hydrogen transport means (assuming transport by car) is poor, the infrastructure development such as the hydrogen station does not progress, and the hydrogen production cost It is a high point.

マツダ(企業名)の水素ロータリーピストンエンジンでは、水素Hを燃料として発電し、その電気でモーターを回転させているのでその発電構成部分を動力発電機として使用出来、その動力発電機としておる発電構成部分を、本願内燃機関に適用している。 The hydrogen rotary piston engine Mazda (company name), and generating the hydrogen H 2 as a fuel, since by rotating the motor in the electric can use the power component as power generators, dwell as a power generator generating The components are applied to the internal combustion engine of the present application.

前段落の動力発電設備とする場合、合成ガス・水素を副産物としているか、あるいは大量に熱を廃棄している製鋼所・化学工場・アルミ製造工場・鋳造工場・鍛造工場・ごみ焼却所・石油精製所とかに、隣接若しくは近接して動力発電所を設置すればさらにランニングコストは低減される。 In the case of the power generation equipment in the previous paragraph, steelworks, chemical factories, aluminum manufacturing factories, foundry factories, forging factories, garbage incinerators, and oil refineries that use synthesis gas and hydrogen as by-products or dispose of a large amount of heat. If a power plant is installed adjacent to or close to a place, the running cost can be further reduced.

本願の内燃機関動力発電設備とする場合、比較的小規模の動力発電設備(前記内燃機関動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来る、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
In the case of the internal combustion engine power generation equipment of the present application, a relatively small scale power generation equipment (if the internal combustion engine power generator is assumed to have an output machine of 1000 KW / H as 1 unit / unit, 1 unit to several hundred units The number of units can be set as a decentralized power generation system with self-sufficiency in units of mass, such as remote islands, mountainous areas, and industrial parks. It is possible to greatly reduce the power transmission facilities and power transformation / reception facilities corresponding to the changes.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

前述炭素の供給源には
間伐及び松枯れ等害虫に蝕まれた枯れ木、更に日本の稲作で発生する籾殻・藁等は廃棄されている、この再利用されていない木材と籾殻・藁だけでもかなりの割合で混合気体製造の植物の炭素(C)に成り得る、更に休耕地等の空き地にケナフ(Hibiscuscannabinus L)を栽培し(種には20%の油がある)前記植物の炭素(C)にすることも、更に休耕地等の空き地にトウモロコシ、サトウキビ等の栽培をすれば、植物のバイオ燃料にも出来る、述べるまでもないと思うが、「田んぼ」の多くは農業用水路が確保されており、かつ、長年肥料を施した物であるので、例えば里芋とか、麦を栽培して実は食用として廃棄部分を前記植物のバイオ燃料か植物の炭素(C)にして麦藁を前記植物の炭素(C)にする等、それらから得られる収入と稲作で得られる収入の差額を補填する政策にすると言う方法もある、
The carbon sources mentioned above are dead trees that have been eaten by pests such as thinning and pine wilt, and rice husks and husks generated in Japanese rice farming are discarded. Cultivated kenaf (Hibiscus cannabinus L) in vacant land such as fallow land, which can be mixed gas production plant carbon (C) at a rate of carbon (C) of said plant It goes without saying that cultivating corn, sugarcane, etc. in vacant land such as fallow land can be used as biofuel for plants, but many rice fields have agricultural waterways. In addition, since it has been fertilized for many years, for example, cultivated taro, wheat, and actually edible, the waste part is made into the biofuel of the plant or the carbon of the plant (C) and the wheat straw is converted into the carbon of the plant ( There is also a method to make up for the difference between the income obtained from them and the income obtained from rice cultivation, etc.

今まで国で考えられていた農業(稲作農家)に対する米価(ウルグアイランド)対策として20数年前から実施されている農業規模拡大策で、小さい田んぼ2〜3枚を一枚の田にして農作業効率を上げる事や、数個の農家を一つの企業として大規模化する策や、農業所得補償制度,米の需要減少に対応する、減反助成金政策(2.5兆円)など稲作農家を支援する政策がとられているがいずれの政策も日本の稲作農家を魅力ある職業として次の世代にバトンタッチできる施策とするには程遠いものであり、本願の植物の炭素(C)を燃料源とする政策を実現させる事が「地球温暖化に対処する「CO」の排出削減」と「農・林業を魅力ある職業に出来る事」と、さらに日本の「自動車産業を活性化」と言う「1石数鳥」の効果が期待できる。 Agricultural work with 2 to 3 small rice fields as a single rice field as a measure to expand the scale of agriculture, which has been implemented in the past 20 years as a measure against rice prices (Urg Island) for agriculture (rice farmers) that has been considered in the country. Measures to increase efficiency, measures to increase the size of several farmers as one company, agricultural income compensation system, a subsidy subsidy policy (2.5 trillion yen) to cope with a decrease in rice demand There is a policy to support, but none of these policies are far enough to make Japanese rice farmers an attractive profession for the next generation, using the carbon (C) of the plant as a fuel source. To achieve this policy, “Reducing CO 2 emissions in response to global warming” and “Making agriculture and forestry an attractive occupation” and further revitalizing the Japanese automobile industry. We can expect effect of "one stone several birds" .

本願明細書に記載及び特許請求の範囲に記載されている事象から容易に想到出来る種々の実施形態も、前記特許請求の範囲を逸脱しない範囲であれば本願発明に含まれる。 Various embodiments that can be easily conceived from the events described in the present specification and claims are included in the present invention as long as they do not depart from the scope of the claims.

この案件は1部未開発の部分もあるが、本願の内燃機関は実施可能であり、これらの方法、構成機器の製造に携わる人々が、次にそれらの方法、内燃機関を利用する人々が、更らにそれらに関連する業種の人々に波及する、それらの産業に利用できる。
何より自国の資源を最大限活用するサイクルを作ることが、日本の100年の計を作る土作りとなり、それらの産業の育成につながる。
Although this project is partly undeveloped, the internal combustion engine of the present application can be implemented. Furthermore, it can be used for those industries that spread to people in industries related to them.
Above all, creating a cycle that maximizes the use of your country's resources will create a foundation for Japan's 100-year total, leading to the development of those industries.

A.内燃機関(ロータリーピストンエンジン)で水と炭素を前記エンジン内にてHとCOの合成ガスとする概略構造図。B.レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成図。A. FIG. 3 is a schematic structural diagram of water and carbon as synthesis gas of H 2 and CO in the engine in an internal combustion engine (rotary piston engine). B. The schematic block diagram of the engine block of a water vapor | steam production | generation part of a reciprocating engine, a synthetic gas production | generation endothermic reaction flow path part, a fuel supply / injection system | strain, and a spark plug. A〜F 図1A.の貯ガスタンク設置要領の数種の貯ガスタンク設置例図。 H.貯ガスタンクの1単位のボンベの部分断面・及び当該ボンベのガス出し入れ管路部分図と部分断面図。i.タンク包括体保持・離脱要領図。A-F FIG. The example of several types of storage gas tank installation of the storage gas tank installation procedure. H. The partial cross section of the cylinder of 1 unit of a gas storage tank, and the gas inlet / outlet pipe | tube partial view and partial sectional drawing of the said cylinder. i. Tank comprehensive body holding / removal diagram. A.図1AのEAsecのロータリーエンジンから吸熱反応流路部に至る概略断面図。B.図1.A.のHO供給管に蒸気と炭素を加圧挿入するタイプの断面図。A. FIG. 1B is a schematic cross-sectional view from the EAsec rotary engine of FIG. 1A to the endothermic reaction flow path portion. B. FIG. A. Type cross-sectional view of pressure inserting the vapor and carbon in H 2 O supply pipe. エンジン排気管部に設けた吸熱反応流路部とガス生成管の構造を複数の細管で構成した概略構造例図。The schematic structural example figure which comprised the structure of the endothermic reaction flow-path part provided in the engine exhaust pipe part and the gas production | generation pipe | tube with several thin tubes. 特開2007−211608水素エンジンの制御装置のロータリーエンジンを示す概略図。Schematic which shows the rotary engine of the control apparatus of Unexamined-Japanese-Patent No. 2007-2111608. 特開2007−064169の水素ロータリーピストンエンジンの燃料噴射装置の、A,同上ローターの電子制御、水素噴射構造概略横断面図。 B,A,図の縦方向断面図。A, electronic control of a rotor same as above, and hydrogen injection structure schematic cross-sectional view of a fuel injection device of a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-064169. B, A, the longitudinal cross-sectional view of a figure. 特開2002−039022記載の燃料改質ガスエンジンの実施形態の構成図。The block diagram of embodiment of the fuel reformed gas engine of Unexamined-Japanese-Patent No. 2002-039022. レシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点火栓の概略構成図。1 is a schematic configuration diagram of an electronically controlled hydrogen injection system, intake / exhaust ports, and spark plugs for reciprocating (diesel engine) fuel supply. FIG. 特開2002-256849のカルマン渦を発生させて排気ガスのCOを水に吸集させる、排気管路に設けている排気ガス処理器の概略構造図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural diagram of an exhaust gas treatment device provided in an exhaust pipe that generates Karman vortices of Japanese Patent Application Laid-Open No. 2002-256849 and sucks CO 2 of exhaust gas into water. 小型炭素生成器の1例図。An example figure of a small carbon generator. 世界の化石燃料による,2酸化炭素放出量統計の過時年を捉えた年単位の棒グラフ。Annual bar graph that captures past years of carbon dioxide emissions statistics from fossil fuels around the world.

温室効果ガス排出削減に寄与する内燃機関であって、特に植物を主とする炭素Cと水HOを内燃機関内で合成ガス(H+CO)に生成し、生成した合成ガスを当該内燃機関の燃料とし、更に前記合成ガスの燃焼により排出される二酸化炭素をも分離し内燃機関内で合成ガスH+CO及び水素に改質し該合成ガス及び水素を当該内燃機関の燃料とするものである。 An internal combustion engine that contributes to the reduction of greenhouse gas emissions, particularly producing carbon C and water H 2 O, mainly plant, into synthesis gas (H 2 + CO) in the internal combustion engine, Further, carbon dioxide discharged from the combustion of the synthesis gas is separated as fuel for the internal combustion engine and reformed into synthesis gas H 2 + CO and hydrogen in the internal combustion engine, and the synthesis gas and hydrogen are used as fuel for the internal combustion engine. To do.

温室効果ガスが地球温暖化の大きな要因であり、「温室効果ガスを削減すべきである」と考えるのは世界共通の認識であるが、「具体的数値目標を・・」と言う段階に成ると、国際価格競争時代の今、温室効果ガス削減コストを掛ける事となるので話が進展していないのが現状である。
2014年現在の温室効果ガス排出削減策の自動車(内燃機関)の動力源としては、電気自動車,水素とのハイブリット,あるいは水素のみを燃料したものや「バイオエタノール」を燃料としたエンジンシステム特開2008−298030や「バイオエタノール」の燃料を水素と一酸化炭素とを含む燃料に改質して該改質ガスを燃料とする、温室効果ガスを排出削減する技術もあるが、しかし前記先行技術で製品化するにはそれぞれ解決しなければならない問題点が残っており、それぞれの問題は解決途上で決め手を欠いている部分を残しているのが現状と認識している。
又前記技術の内、電気を動力源とする技術では電気の製造は2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり該火力発電は石炭を始めとする化石燃料を使用しており「CO」を排出しているのでこの発電設備からの「CO」を排出しない策が実現しなければ、電気を動力源としても地球温暖化の温室効果ガスの削減に寄与する内燃機関の動力源とは言えない。
又前記技術の動力源を電気をとして温室効果ガスを削減する「CO」を排出しない電力供給源には原子力発電がある、しかし「福島原発」の問題もあり、新たに新設するのは困難であり廃炉の方向に向かうとの見方が大勢を占めていると思っている。
Greenhouse gases are a major cause of global warming, and it is a common recognition in the world to think that “greenhouse gases should be reduced.” However, it is at the stage of “specific numerical targets…” In the era of international price competition, the current situation is that the story has not progressed because it will incur greenhouse gas reduction costs.
As a power source of an automobile (internal combustion engine) of a greenhouse gas emission reduction measure as of 2014, an electric vehicle, a hybrid with hydrogen, or an engine system using only hydrogen or "bioethanol" as fuel There is also a technology for reducing greenhouse gas emissions by reforming a fuel of 2008-298030 or “bioethanol” into a fuel containing hydrogen and carbon monoxide and using the reformed gas as a fuel. There are still problems that must be solved in order to commercialize products, and it is recognized that there is a part that each problem is lacking in the process of solving.
Of the technologies mentioned above, in the technology using electricity as the power source, according to the statistics of the Electricity Federation of 2011, about 82% of Japan's total power generation is thermal power generation. since the discharging "CO 2" and using the fossil fuels, including unless realized measures that do not emit "CO 2" from the power plant, a greenhouse global warming electricity as a power source It cannot be said that it is a power source of the internal combustion engine that contributes to the reduction of the effect gas.
Moreover, nuclear power generation is a power source that does not emit “CO 2 ”, which uses electricity as the power source of the above technology to reduce greenhouse gases. However, there is a problem of “Fukushima nuclear power plant”, so it is difficult to establish a new one. And I think that the view that it goes to the direction of decommissioning occupies a lot.

前記「CO」を低減させる設備は既に存在している、その方法は排出された二酸化炭素を地底層深く(A)もしくは海底層に隔離(Sequestiern)(B)する提案である。2014年にアメリカで世界一の規模の石炭火力発電所が完成しているが、この発電で排出される「CO」の処理は1500mの地底層に封じ込める構造(前記A)であり、この発電所の建設費用は通常の2倍かかつており、更に1500mの地底層に封じ込めるためのエネルギー費用がかかり、その費用は電気料金に上乗せされ消費者負担と成ると言う問題がある。 Equipment for reducing the “CO 2 ” already exists, and the method is a proposal to sequester the discharged carbon dioxide deeply (A) or sequestered (B). The world's largest coal-fired power plant in the United States was completed in 2014, but the treatment of “CO 2 ” emitted by this power generation is a structure (A) that can be contained in a 1500 m underground layer. However, there is a problem that the construction cost of the plant is twice as high as usual, and there is an additional energy cost for containment in the 1,500m underground layer, which is added to the electricity bill and becomes a consumer burden.

前記「CO」を改質して合成ガスまたは水素ガスを得る技術は製鋼所の高炉ガス・転炉ガスの排ガスのエネルー化技術として色々な技術が次々と提案されており現業部門ですでに実用化されておる技術も多くある、又火力発電所の発電工程で排出されるガスについても同様にエネルギーの効率UPに活用されておるが、その殆どが大規模装置産業の定地形態物であり、移動形態物に搭載可能な内燃機関内で該内燃機関から排出する「CO」を改質して該内燃機関の燃料としておる実現可能技術は提案されておらない(見つからない)。 Various technologies have been proposed one after another for the technology to obtain synthesis gas or hydrogen gas by reforming the above-mentioned “CO 2 ”, and have already been proposed in the in-service sector as an energy generation technology for blast furnace gas and converter gas in steelworks. There are many technologies that have been put to practical use, and the gas emitted in the power generation process of thermal power plants is also used to increase energy efficiency, but most of them are fixed-form features in the large-scale equipment industry. In addition, no feasible technology has been proposed (not found) for reforming “CO 2 ” discharged from the internal combustion engine in the internal combustion engine that can be mounted on the moving form and using it as a fuel for the internal combustion engine.

特許5647364.ロータリーピストンエンジン車のエンジン機構。Patent 5647364. Engine mechanism of rotary piston engine car. 特開平11−106770.ジメチルエーテル改質ガスを使用する発電方法および装置JP-A-11-106770. Power generation method and apparatus using dimethyl ether reformed gas 特許4231735.二酸化炭素の分離回収方法および装置Patent 4231735. Method and apparatus for separating and recovering carbon dioxide 特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両。JP 2007-177684 A, a carbon dioxide recovery device for a vehicle, and a vehicle including the same. 特開昭57−150439炭化水素と水蒸気又は二酸化炭素との反応。Reaction of hydrocarbons with water vapor or carbon dioxide. 特許4609718 水素ロータリーピストンエンジンの燃料噴射装置Patent 4,609,718 Hydrogen rotary piston engine fuel injection device 特願平10−543729(特許3345782)合成ガス製造方法。Japanese Patent Application No. 10-543729 (patent 33455782) synthesis gas production method.

補助燃料によって燃焼されるロータリーピストンエンジンと、該ロータリーピストンエンジンのローターハウシングに水を導入管から供給する水供給手段と、供給された水が、ローターハウシングの熱で水蒸気化され、この水蒸気に炭素を供給するとともに、ロータリーピストンエンジンの燃焼工程後の排熱を利用して、吸熱反応化させて、燃料を生成し、前記補助燃料使用中に生成し続けるガスを溜める畜ガス手段を備え、この畜ガス手段の畜ガスと前記補助燃料とを切り替えて、ロータリーピストンエンジンに供給する、切換え手段を備えている構造を特徴とする技術(例えば特許文献1)があり、本願はこの技術をベース技術として、燃料の燃焼による排気ガス中の二酸化炭素(CO)も燃料に改質する技術を取り入れる事で、更なる温室効果ガス排出削減策と成る技術にしている。 A rotary piston engine combusted by auxiliary fuel, a water supply means for supplying water to the rotor housing of the rotary piston engine from the introduction pipe, and the supplied water is steamed by the heat of the rotor housing, And a livestock gas means for storing the gas that is generated by the endothermic reaction using the exhaust heat after the combustion process of the rotary piston engine and generating the fuel while the auxiliary fuel is used. There is a technique (for example, Patent Document 1) characterized by a structure including a switching means for switching the livestock gas of the livestock gas means and the auxiliary fuel to be supplied to the rotary piston engine, and this application is based on this technique. as carbon dioxide in the exhaust gas from the combustion of the fuel (CO 2) also to adopt a technique of reforming a fuel, further We are in a technology that is a greenhouse gas emission reduction measures that.

ジメチルエーテルに水蒸気または二酸化炭素を加えて触媒反応させることによりジメチルエーテルを改質して合成ガスまたは水素ガスを得、このガスを原動機用燃料として使用することを特徴とする、ジメチルエーテル改質ガスを使用する発電方法、ジメチルエーテルの改質を200°Cから500℃の中低温廃熱を利用して行うことを特徴とする上記の発電方法(例えば特許文献2)があり、
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
Using dimethyl ether reformed gas, characterized in that dimethyl ether is reformed by adding water vapor or carbon dioxide to dimethyl ether to cause a catalytic reaction to obtain synthesis gas or hydrogen gas, and this gas is used as a fuel for a prime mover There is a power generation method, and the above power generation method (for example, Patent Document 2), characterized in that the reforming of dimethyl ether is performed using medium to low temperature waste heat from 200 ° C to 500 ° C.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

製鉄所で発生する副生ガスから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する500℃以下の低品位排熱を利用または活用することを特徴とする二酸化炭素の分離回収方法。(例えば特許文献3)があり、
本願の二酸化炭素を分離回収する技術とするには排ガスを数種の透過膜を透過させる膜型透過機器の設置や真空ポンプ等を設置する必要と言う問題が有る。
A method of separating and recovering carbon dioxide from a by-product gas generated at a steel works by chemical absorption method, which absorbs carbon dioxide from the gas with chemical absorption liquid and then heats the chemical absorption liquid to separate carbon dioxide A method for separating and recovering carbon dioxide, characterized by utilizing or utilizing low-grade exhaust heat of 500 ° C. or less generated at a steelworks. (For example, Patent Document 3)
In order to separate and recover the carbon dioxide of the present application, there is a problem that it is necessary to install a membrane type permeation device that allows several kinds of permeable membranes to pass through the exhaust gas, or to install a vacuum pump or the like.

車両二酸化炭素装置を自動車の排気系に於ける消音機と排気管との間に取り付けており、二酸化炭素を吸収材と三方性の電磁弁を介して接続されているC0吸収部を設けて、二酸化炭素を吸収したアルカノン化合物水溶液から電磁弁を介してエンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であり、分離した二酸化炭素は使用済みのアルカノールアミン化合物の再生に使用される技術(例えば特許文献4)がある。この技術は自動車の排気ガス中の二酸化炭素を分離する技術で分離した二酸化炭素の用途として二酸化炭素を吸収したアルカノン化合物水溶液の再生に使用している技術であるが、本願の排気ガス中の二酸化炭素を分離する技術として使用可能である。
*エンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であるが、本願はエンジンブロックから直接該エンジンブロックから吸熱しており、該熱は水を水蒸気にする水蒸気生成手段に使用しておる点が異なるが、この技術は自動車の排気ガス中の二酸化炭素を分離する技術として本願にも採用できる。
And in silencers vehicle carbon dioxide device in an exhaust system of an automobile is mounted between the exhaust pipe, provided with a C0 2 absorption portion which is connected via an absorbent material and the three-way of the solenoid valve carbon dioxide , A structure in which carbon dioxide is released from the aqueous solution of alkanone compound that has absorbed carbon dioxide by absorbing heat from the engine cooling heat through a solenoid valve, and the separated carbon dioxide is used to regenerate used alkanolamine compounds. (For example, Patent Document 4). This technology is used to regenerate the aqueous solution of alkanone compound that has absorbed carbon dioxide as an application of carbon dioxide separated by the technology that separates carbon dioxide in automobile exhaust gas. It can be used as a technique for separating carbon.
* This is a structure that releases carbon dioxide by absorbing the cooling heat of the engine. In this application, heat is absorbed directly from the engine block from the engine block, and the heat is used for water vapor generating means that turns water into water vapor. Although this point is different, this technique can be adopted in the present application as a technique for separating carbon dioxide in the exhaust gas of an automobile.

炭化水素と水蒸気若しくは二酸化炭素又はそれらの混合物とを正味吸熱条件に於いて反応させて、炭素化合物及び水素を含む気体とする方法であってニッケル及びコバルトの化合物及びアルカリ金属酸化物と酸性若しくは両性酸化物または混合酸化物との不水溶性化合物からなる触媒を使用する事を特徴とする上記方法に関する技術(例えば特許文献5)がある。
本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする事で燃費の向上を図り、該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
A method of reacting a hydrocarbon with water vapor or carbon dioxide or a mixture thereof under a net endothermic condition to form a gas containing a carbon compound and hydrogen, which is acidic or amphoteric with nickel and cobalt compounds and alkali metal oxides. There is a technique (for example, Patent Document 5) relating to the above method characterized by using a catalyst comprising a water-insoluble compound with an oxide or mixed oxide.
In this application, by incorporating a part of this technique into the technique of Patent Document 1 above, the carbon dioxide exhausted by the technique of Patent Document 1 is also used as the fuel of the internal combustion engine, thereby improving the fuel consumption. Greenhouse gas (CO 2 ) emissions from the institution are approaching “zero”, and the technology has become a greenhouse gas reduction measure by carbon assimilation of plants.

水素ロータリーピストンエンジンの燃料噴射装置であって、水素ロータリーピストンエンジンの作動室を形成するローターハウジングに取り付けられ、水素ロータリーピストンエンジンの作動室に水素を直接噴射する水素インジェクタと、この水素インジェクタが作動室内に圧縮行程中の所定のタイミングで水素を噴射するように噴射タイミングを制御する水素噴射タイミング制御手段と、水素インジェクタからの水素が、水素ロータリーピストンエンジンの低回転域では圧縮行程の作動室のリーディング領域に向かって流出し、高回転域では圧縮行程の作動室の中央領域に向かって流出するように、水素の噴射方向を設定する水素流出方向設定手段と、を有することを特徴としている技術(例えば特許文献6)がある。
合成ガスの水素ガスと一酸化炭素は、エネルギー的には殆ど等価でありつまり(高位)発熱量はほぼ同じであるので、内燃機関の中で本願の合成ガスを燃料とする構造にはロータリーピストンエンジンで水素を燃料とする構造の説明する先行文献が最適であるので取り上げている。
A fuel injection device for a hydrogen rotary piston engine, which is attached to a rotor housing that forms a working chamber of the hydrogen rotary piston engine and directly injects hydrogen into the working chamber of the hydrogen rotary piston engine, and the hydrogen injector is operated Hydrogen injection timing control means for controlling injection timing so that hydrogen is injected into the chamber at a predetermined timing during the compression stroke, and hydrogen from the hydrogen injector is in the low rotation range of the hydrogen rotary piston engine. And a hydrogen outflow direction setting means for setting the hydrogen injection direction so as to flow out toward the leading region and out toward the central region of the working chamber in the compression stroke in the high rotation region. (For example, Patent Document 6).
* Since hydrogen gas and carbon monoxide, which are syngas, are almost equivalent in terms of energy, that is, the (higher) calorific value is almost the same, the structure that uses the syngas of the present application as a fuel in an internal combustion engine is rotary. Prior literature describing a structure using hydrogen as fuel in a piston engine is the most appropriate, and is therefore taken up.

含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法であって、該触媒として金属酸化物からなる担体にロジュウム、ルテニュウム、イリジウム、パラジウム、及び白金の中から選ばれる少なくとも一種の触媒金属を担持させた触媒を使用したものに関する技術(例えば特許文献7)がある。 A method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst, wherein the catalyst is composed of a metal oxide as a support, comprising rhodium, ruthenium, iridium, palladium, and platinum. There exists a technique (for example, patent document 7) regarding what uses the catalyst which carry | supported at least 1 type of catalyst metal chosen from these.

本願の技術は前記先行技術文献1,2,3,4,7いずれかの決め手を欠いている部分技術を組み合わせて実施可能新技術にしており、排ガス中の「CO」をも内燃機関の合成ガスに改質して燃料として燃費(Km/L)の向上を図り、「COの排出削減をして、地球温暖化を阻止する新たな効果を生む新技術と成った。
The technology of the present application is a new technology that can be implemented by combining partial technologies lacking the decisive factor of any one of the above-mentioned prior art documents 1, 2, 3, 4, and 7, and the “CO 2 ” in the exhaust gas is also converted into the internal combustion engine. It was reformed into synthesis gas to improve fuel efficiency (Km / L) as a fuel. “It has become a new technology that produces a new effect of reducing global warming by reducing CO 2 emissions.

最大の課題は地球温暖化に対処する「CO」の(排出)削減であり、
その為の施策の1つの方法と、その方法を構成する機構を発明する事である。
The biggest challenge is the reduction of “CO 2 ” (emissions) to cope with global warming.
Inventing one method of measures for that purpose and the mechanism constituting the method.

最大の課題を解決する為の、第一の発明は、
水素を燃料とした内燃機関であって、該内燃機関のエンジンブロック内に通水路を設けて水を導入する導入口から通水路に水と二酸化炭素(畜ガスタンクに畜ガスしておる)を導入しており、エンジンの燃焼による該内燃機関のエンジンブロックの熱を吸熱して該水は水蒸気となり該二酸化炭素は吸熱気体の二酸化炭素にして該水の通水路から排気管路に排出されており、一方燃料の燃焼で水素ガスは水蒸気と窒素を主成分とする高温の排ガスとなりエンジンブロックの排気口から上記排気管路に排出されており、該排気管路に触媒(Ni系が主流)を対峙させて炭化水素化合物(例えばジメチルエーテル)と水蒸気を合成ガスに改質する水蒸気改質路を設けており該水蒸気改質路に炭化水素化合物と上記排気管路内を流れておるガスを該水蒸気改質路に導入してガスの中の水蒸気と炭化水素化合物とを反応させて水素と一酸化炭素の合成ガスを生成しており生成した該合成ガスは合成ガス畜ガスタンクに畜ガスしており、
さらに上記排気管路に二酸化炭素を合成ガスに改質する二酸化炭素水蒸気改質部を設けて、該二酸化炭素水蒸気改質部には二酸化炭素を合成ガスに改質する触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロム、マンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、上記炭化水素化応物を導入して該排気管路内を流れておるガス中の水蒸気と吸熱気体の二酸化炭素とを触媒に接触させ反応させて、水素と一酸化炭素の合成ガスを生成して取り出し、取り出した該水素と一酸化炭素の合成ガスを畜ガスする上記合成ガス畜ガスタンクに畜ガスしており、
上記水蒸気改質路と二酸化炭素水蒸気改質部で生成された水素と一酸化炭素の合成ガスを改質して水素と二酸化炭素を別々に取り出す水素分離改質部(例えばプロトン導電セラミックス管改質路)を上記排気管路に設けており、該水素分離改質部に、上記合成ガス畜ガスタンクに畜ガスしておる水素と一酸化炭素の合成ガスを導入して水素分離改質部内で再度内燃機関の排熱に反応させて水素と二酸化炭素を別々に取り出し取り出した水素と二酸化炭素は別々の畜ガスタンクを設けて畜ガスしており、該水素を当該内燃機関の燃料としておる事を特徴とする温室効果ガス排出削減方法を提供する。

(取り出した二酸化炭素は第一の発明に記載の水を導入する導入口から通水路に導入する二酸化炭素としておる。)
第二の発明は
上記内燃機関を運輸機器に搭載し運輸機器の載内機関とすることを特徴とする、第一の発明に記載の温室効果ガス排出削減方法を提供する。
第三の発明は
上記内燃機関を自動車に搭載しており該自動車に搭載しておる該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させる様にしていることを特徴とする、第一の発明に記載の温室効果ガス排出削減方法を提供する。
第四の発明は
上記蓄電器の蓄電量が上限設定値になると上記内燃機運転を停止して電力で走行し、蓄電量が下限設定値になると上記内燃機関で走行する様にしておる事を特徴とする、第四の発明に記載の温室効果ガス排出削減方法を提供する。
第五の発明は
上記自動車に蓄電する充電手段を設けており、該充電手段で充電した電気を動力源として自動車を走行させる様にしておることを特徴とする、第三の発明乃至第四の発明に記載の温室効果ガス排出削減方法を提供する。
第六の発明は
上記内燃機関の回転力をそのまま動力発電機の発電動力しておることを特徴とする、第一の発明に記載の温室効果ガス排出削減方法を提供する。
第七の発明は
廃棄されている水素を上記内燃機関の燃料として使用し、廃棄されている熱又は水蒸気又は二酸化炭素の内の何れかを上記内燃機関の水蒸気改質の改質材として使用する事を特徴とする、第一の発明に記載の温室効果ガス削減方法を提供する。
第八の発明は
上記内燃機関の畜ガス手段は、該畜ガスタンク(合成ガスタンクか、水素ガスタンクか、二酸化炭素ガスタンクかの内いずれかの一方以上のタンク)を車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する事を特徴とする、第一の発明に記載の温室効果ガス削減方法を提供する。
第九の発明は
記畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の設置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かの、手段を設けておる事を特徴とする、第八の発明に記載の温室効果ガス削減方法を提供する。

第十の発明は
上記内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物(例えば炭酸水素ナトリュウム、NaHCO)の一方かあるいは両方かの何れかを加工して熱分解若しくは改質して水素Hか、炭素Cか、二酸化炭素化CO、の内少なくともいずれかの一種以上の物質を取り出し、前記畜ガスタンクに畜ガスしておる事を特徴とする、第一の発明に記載の温室効果ガス削減方法を提供する。

The first invention to solve the biggest problem is
An internal combustion engine using hydrogen as fuel, and water and carbon dioxide (stock gas is stored in a livestock gas tank) are introduced into the water passage from the introduction port for introducing water by providing a water passage in the engine block of the internal combustion engine. And the heat of the engine block of the internal combustion engine due to the combustion of the engine is absorbed to turn the water into water vapor, and the carbon dioxide is converted into carbon dioxide as an endothermic gas and discharged from the water passage to the exhaust pipe. , whereas the hydrogen gas in the combustion of the fuel is discharged into the exhaust passage from the exhaust port of the engine block becomes a gas of high temperature mainly water vapor and nitrogen, the catalyst (Ni-based mainstream) the exhaust duct hydrocarbon compound with opposed (e.g. dimethyl ether) and water gas to water vapor reforming passage is provided with a steam reforming path to modify the water vapor to synthesis gas Nikki flowing hydrocarbon compound and the exhaust conduit Was introduced into Kiaratame matter tracts is reacted with steam and hydrocarbon compounds in the gas to the synthesis gas produced and to generate a synthesis gas of hydrogen and carbon monoxide to livestock gas in the synthesis gas slaughtering tank And
Further, a carbon dioxide steam reforming section for reforming carbon dioxide into synthesis gas is provided in the exhaust pipe, and a catalyst for reforming carbon dioxide into synthesis gas (for example, an iron-based metal) is provided in the carbon dioxide steam reforming section. Examples of other metals or compounds that can be used in combination with other metals or compounds in addition to compounds include zinc, nickel, chromium, manganese, tin, cerium, lanthanum and their compounds, other metals Alternatively, the hydrocarbon compound is introduced and the water vapor in the gas flowing in the exhaust pipe and the carbon dioxide of the endothermic gas are brought into contact with the catalyst to react with each other, so Carbon dioxide synthesis gas is generated and taken out, and the hydrogen and carbon monoxide synthesis gas taken out are fed into the synthetic gas livestock gas tank for livestock gas,
Hydrogen separation reforming unit (for example, proton conductive ceramic tube reforming) that reforms the synthesis gas of hydrogen and carbon monoxide generated in the steam reforming path and carbon dioxide steam reforming unit to extract hydrogen and carbon dioxide separately ) Is provided in the exhaust pipe, and hydrogen and carbon monoxide synthesis gas that has been stored in the synthesis gas animal gas tank is introduced into the hydrogen separation and reforming unit, and again in the hydrogen separation and reforming unit. Hydrogen and carbon dioxide taken out separately by reacting with the exhaust heat of the internal combustion engine and taking out the hydrogen and carbon dioxide are provided with separate livestock gas tanks, and the hydrogen is used as fuel for the internal combustion engine To provide a method for reducing greenhouse gas emissions.

(The carbon dioxide taken out is carbon dioxide introduced into the water passage from the inlet for introducing water described in the first invention.)
The second invention is
A method for reducing greenhouse gas emissions according to the first aspect of the present invention is provided , wherein the internal combustion engine is mounted on a transport device to be an onboard engine of the transport device .
According to a third aspect of the present invention, the internal combustion engine is mounted on an automobile, the internal combustion engine mounted on the automobile is operated under a certain condition, is generated with the rotational force, and is stored in a capacitor. characterized in that in the manner to run the motor vehicle as a source, to provide a greenhouse gas emission reduction method according to the first aspect of the present invention.
A fourth aspect of the present invention travels in the power to stop the operation of the internal combustion institutions when the storage amount of the storage battery becomes the upper limit set value, it Nikki the manner travels with the internal combustion institution when the storage amount becomes the lower limit set value The method for reducing greenhouse gas emissions according to the fourth invention is provided.
The fifth invention is
And providing a charging means for energy storage in the automobile, characterized in that the electricity charged by the charging means Nikki in the manner to run the motor vehicle as a power source, according to the third invention or the fourth invention Provide a method for reducing greenhouse gas emissions.
The sixth invention is
Characterized in that Nikki the generation power of the intact power generator rotational force of the internal combustion engine, to provide a greenhouse gas emission reduction method according to the first aspect of the present invention.
The seventh invention is
Waste hydrogen is used as a fuel for the internal combustion engine, and either waste heat or steam or carbon dioxide is used as a reforming material for steam reforming of the internal combustion engine. The greenhouse gas reduction method according to the first invention is provided.
The eighth invention is
The livestock gas means of the internal combustion engine includes the livestock gas tank (one or more of a synthetic gas tank, a hydrogen gas tank, and a carbon dioxide gas tank) mounted on the upper part of the vehicle body, or a chassis portion of the car. The method for reducing a greenhouse gas according to the first invention is provided , characterized in that the method is mounted on a vehicle or on a vehicle .
The ninth invention is
Above Ki畜gas means any damage preventing means for preventing the tank damage, to separate the tank from the installation portion of the vehicle in a collision, if the tank separating means, both of either one or, that Nikki a means A feature of the greenhouse gas reduction method according to the eighth invention is provided.

The tenth invention is
Using the exhaust heat of the internal combustion engine as a reforming heat source, either or both of a carbon-containing compound and a hydrogen-containing compound (for example, sodium hydrogen carbonate, NaHCO 3 ) are processed and thermally decomposed or reformed to produce hydrogen H 2. The greenhouse gas according to the first invention , wherein at least one of at least one of carbon C and carbon dioxide CO 2 is taken out and stored in the livestock gas tank. Provide reduction methods.

発明の詳細な説明Detailed Description of the Invention

発明の具体的事例説明
第一の発明、
水と(HO)と炭化水素化合物とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す水蒸気改質設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOを水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、
前記内燃機関の燃焼行程後の排気管路MS内に吸熱反応流路Sを設けており、前記吸熱反応流路に炭素(主として植物からの炭素C)を導入して、前記水蒸気か加熱水蒸気と、炭素を、吸熱反応流路にて反応させて、水素Hと一酸化炭素CO(合成ガス)を取り出しており、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクMTを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスするかあるいは畜ガスタンク経由で該混合気体を生成しておる当該内燃機関の燃料とするかの何れかにしておる事を特徴としたものであり、
前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所からの排熱であることを特徴とする物で、強調すべきはエンジンのオーバーヒ−ト防止のためにラジエターで冷却していた(動力を使って捨てていた)熱を水蒸気生成手段として活用しておることである。
更にエヤコンの管路から動力を使って捨てている冷媒圧縮熱を吸熱する手段を設ける事で更なる熱を吸熱反応に使用することができる。
Specific examples of the invention Description of the first invention,
A steam reforming facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and a hydrocarbon compound with exhaust heat of the internal combustion engine. A water passage K is provided in the engine block 1 of the engine, and either water H 2 O is converted into steam J or steam is converted into heated steam as steam generating means,
An endothermic reaction channel S is provided in the exhaust pipe MS after the combustion stroke of the internal combustion engine, carbon (mainly carbon C from plants) is introduced into the endothermic reaction channel, and the steam or heated steam , Carbon is reacted in an endothermic reaction channel, hydrogen H 2 and carbon monoxide CO (synthetic gas) are taken out, and a livestock gas tank MT for stocking the mixed gas of the taken out hydrogen and carbon monoxide is provided. The extracted hydrogen and carbon monoxide mixed gas is used as livestock gas or as the fuel for the internal combustion engine that generates the mixed gas via the livestock gas tank. And
The exhaust heat of the internal combustion engine is mainly exhaust heat used to absorb heat in a water passage in the engine block of the internal combustion engine and turn water into steam, and exhaust heat obtained by endothermic reaction of heat in the exhaust gas in the exhaust gas pipe. The exhaust heat in the engine block and the exhaust heat obtained by endothermic reaction of the heat in the exhaust gas in the exhaust gas pipe are mainly exhaust heat from two places, and should be emphasized. In order to prevent engine overheat, the heat that has been cooled by the radiator (discarded using power) is utilized as a means for generating water vapor.
Further, by providing a means for absorbing the refrigerant compression heat that is discarded from the air-conduit line using power, further heat can be used for the endothermic reaction.

水と(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出設備であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOと炭素を加圧注入し水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、{この時の加圧圧力は概略5Kg/cm程度である。(図3B参照)}
本願は水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、前記吸熱反応流路に触を対峙させ200°〜300°程度の熱で前記吸熱反応させる燃料生成手段や、乾燥改質法や部分酸化方法や、オートサーマル改質方法もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
This is a take-out facility that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by reacting water, (H 2 O), and carbon (C) with exhaust heat of the internal combustion engine. A water passage K is provided in the engine block 1 of the engine, and either water H 2 O and carbon are injected under pressure to form water vapor J or water vapor to be heated water vapor as a water vapor generating means. {The pressurizing pressure at this time is about 5 kg / cm 2 . (See FIG. 3B)}
This application ways to generate a synthesis gas of the known art is a configuration illustrated steam reforming, the steam reforming process, the endothermic reaction flow path catalyst the medium at about 200 ° to 300 ° is facing thermal There are also fuel generating means for endothermic reaction, dry reforming method, partial oxidation method, autothermal reforming method, and the like, and the above-mentioned synthesis gas generating method can be adopted instead of the steam reforming method of the present application.

内燃機関のエネルギー効率{ロータリーエンジンの場合およそ30%強で、合成ガス反応に利用可能な廃(排)熱は60%程度}から見て、必要量の100%の燃料を生産するに足りない場合は補助的に他所から補足する補足手段を設けており、前記補足手段の1例として本願は補助タンクSTを設けており、該補助タンクの燃料(主に植物の炭素を原料としたバイオエタノールもしくは合成ガス若しくは水素)を必要量の100%の燃料を生産するに足りない場合の補足燃料としている。
最終的には前記炭素は稙物からの炭素100%使用に近づける事で温室効果ガス排出削減策とている。
In view of the energy efficiency of internal combustion engines (about 30% for rotary engines and about 60% of waste (waste) heat available for syngas reaction), it is not enough to produce 100% of the required amount of fuel. In this case, supplementary means for supplementing from other places are provided as supplementary, and as an example of the supplementary means, the present application is provided with an auxiliary tank ST, and fuel in the auxiliary tank (bioethanol mainly made from plant carbon) Or, synthesis gas or hydrogen) is used as a supplementary fuel when it is not enough to produce 100% of the required amount of fuel.
Ultimately, the carbon is used as a measure to reduce greenhouse gas emissions by bringing the carbon closer to 100% use from the waste.

本願は1例としてサブタンク燃料と前記内燃機関で生成した混合気体とを切換えて使用する複合燃料方式をとっている、
しかし前記サブタンク燃料を使用している間に主燃料である水素Hと一酸化炭素CO(合成ガス)を生成していると、生成した生成ガスを畜ガスする所が無く畜ガスする畜ガス手段を設ける必要があり、本願は畜ガス手段の畜ガスタンクを設けており、サブタンク燃料を使用している間でも主燃料である水素Hと一酸化炭素CO(合成ガス)は生成され続けており畜ガスタンクに充填し続けている、
従って畜ガスタンクの設定上限まで充填されると燃料切換えバルブで合成ガスを畜ガスタンク経由での使用に切り替え該畜ガスタンクの設定下限に成るとサブタンク燃料を使用する燃料切換え手段を設けたエンジン構造としている、
前記内燃機関で生成した混合気体を畜ガスタンク経由での使用にしているのは、混合気体も原材料や生成場所の温度によって生成されたガス成分構成が変わるので一端畜ガスタンクに取り込む事で生成ガスの均一化を図っている。
As an example, the present application adopts a composite fuel system in which a sub-tank fuel and a mixed gas generated in the internal combustion engine are switched and used.
However, if hydrogen H 2 and carbon monoxide CO (synthetic gas), which are the main fuels, are produced while using the sub-tank fuel, there is no place where the produced gas is livestock gas and livestock gas that is livestock gas. It is necessary to provide means, and the present application is provided with a livestock gas tank for livestock gas means, and hydrogen H 2 and carbon monoxide CO (synthetic gas) as main fuels continue to be generated even when sub tank fuel is used. We continue to fill the animal gas tank,
Accordingly, when the livestock gas tank is filled up to the set upper limit, the fuel switching valve switches the synthesis gas to use via the livestock gas tank, and when it reaches the set lower limit of the livestock gas tank, the engine structure is provided with fuel switching means that uses the subtank fuel. ,
The reason why the mixed gas generated by the internal combustion engine is used via the livestock gas tank is that the mixed gas also changes the composition of the gas component generated depending on the raw materials and the temperature of the production site. Uniformity is intended.

の発明
内燃機関燃焼ガス中の二酸化炭素を、水に吸収させる二酸化炭素吸収手段(A)を設けるかあるいは、排気ガス中の二酸化炭素を分離する分離手段(B)を設けて、前記(A)、(B)をそれぞれ畜水手段&該畜ガス手段を設けてそれぞれ畜水,畜ガスして、前記(A)、(B)の何れか1方か両方かを、前記内燃機関のエンジンブロックに水を供給する導入口(1図B、HO入り口)に水とともに導入し、該内燃機関内の燃焼熱{前記内燃機関の燃焼熱は内燃機関のエンジンブロック内の通水路(エンジンブロック冷却水の冷却クーラント水路に相当する)で水を水蒸気にした排熱である}で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にしており、燃焼工程後の排ガス流路に設けた改質流路(二酸化炭素の改質であるので前記水蒸気改質と区別するため名前を変更している)の改質流路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記内燃機関に設けている改質流路(二酸化炭素の改質であるので名前を変更している)の改質流路に触媒を対峙させており、該触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事で、水素と一酸化炭素の合成ガスを生成して、畜ガスタンク経由で該エンジンの燃料とす構成にしたものであり、{本願の解説では(B)で解説しており、(A)の詳細解説は省略している。}
1st invention The carbon dioxide absorption means (A) which makes water absorb the carbon dioxide in combustion gas of an internal combustion engine is provided, or the separation means (B) which isolate | separates the carbon dioxide in exhaust gas is provided, and the said ( A) and (B) are respectively provided with livestock water means and the livestock gas means to feed livestock water and livestock gas, respectively, and either one or both of (A) and (B) above It is introduced together with water into an inlet for supplying water to the engine block (FIG. 1B, H 2 O inlet) and combustion heat in the internal combustion engine {the combustion heat of the internal combustion engine is a water passage (in the engine block of the internal combustion engine ( Is equivalent to the cooling water channel of the engine block cooling water), water is converted into water vapor, water is converted into water vapor, and carbon dioxide is converted into endothermic carbon dioxide. Reforming channel (carbon dioxide reforming In the reforming flow path of the reforming flow path of the steam reforming in order to distinguish from the steam reforming, as an example, other metals or compounds can be used in combination with iron-based metal and / or compound, Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum and their compounds, other metals or compounds, and a hydrocarbon compound (eg, dimethyl ether) upstream of the reforming path. CH 3 OCH 3 ) and the reforming channel of the reforming channel (name changed because of reforming of carbon dioxide) provided in the internal combustion engine together with the water vapor and endothermic carbon dioxide The catalyst is opposed to the gas {hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) and either water vapor or endothermic carbon dioxide]. By contacting both or}, to generate a synthesis gas of hydrogen and carbon monoxide, which has a configuration shall be the fuel of the engine via livestock gas tank, described in {in this application Remarks (B) The detailed explanation of (A) is omitted. }

前記炭化水素化合物をジメジエーテルとした場合の反応式は、
A.CHOCH+HO→2CO+4H−48.9Kal/mol
B.CHOCH++CO→3CO+3H−58・8Kal/mol
その反応温度は200〜500℃、好ましくは250〜450℃であり、
その反応圧力は常圧〜10kg/cm2が好ましい。
炭化水素化合物をジメジエーテルの他にメタンを用いた技術も多く公開されている。
The reaction formula when the hydrocarbon compound is dimethyl ether is
A. CH 3 OCH 3 + H 2 O → 2CO + 4H 2 -48.9Kal / mol
B. CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol
The reaction temperature is 200 to 500 ° C., preferably 250 to 450 ° C.
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 .
Many technologies using methane in addition to dimethyl ether as a hydrocarbon compound have been disclosed.

公知技術の二酸化炭素を吸収材に吸収させる二酸化炭素吸収手段(A)及び二酸化炭素分離取り出し手段(B)であるが、
前記(A)には、特表2010−526759,特許3345782,特開2009−77457,特開2001―213545,特開2007−177684,等に開示されており、
前記(B)には特願2001−48591(カルマン渦),特開2007−177684,等に開示されており、
二酸化炭素改質反応による水素及び一酸化炭素の製造法の先行技術には特開平08−231204や特表2010−526759合成ガスの製造方法(CO2の改質を含む)特許文献2の特開平11−106770等々数多く有る、
この技術を本願に取り入れて、排ガス中の二酸化炭素を「本願の内燃機関内発性エネルギーのみで該内燃関の燃料に改質しておる事」が大きな温室効果ガス排出削減策であり、さらに前記廃棄されていたエネルギー(概略70%で、改質に使用出来るのは概略60%)で燃料を生成しており、該燃料生成分程燃費を向上させた事が本願の特徴点である。
The carbon dioxide absorption means (A) and carbon dioxide separation and extraction means (B) for absorbing carbon dioxide by a known technique,
(A) is disclosed in JP 2010-526759, JP 33455782, JP 2009-77457, JP 2001-213545, JP 2007-177684, and the like.
(B) is disclosed in Japanese Patent Application No. 2001-48591 (Karman vortex), Japanese Patent Application Laid-Open No. 2007-177684, etc.
Prior art of the method for producing hydrogen and carbon monoxide by the carbon dioxide reforming reaction includes Japanese Patent Application Laid-Open No. 08-231204 and Japanese Patent Application Laid-Open No. Hei 11 of Japanese Patent Application Laid-Open No. H11-296275. -106770 etc.
Incorporating this technology into this application, the carbon dioxide in the exhaust gas is “a reforming of the internal combustion engine fuel only into the fuel of the internal combustion engine of this application” is a great greenhouse gas emission reduction measure, A feature of the present invention is that fuel is generated with the discarded energy (approximately 70%, and approximately 60% can be used for reforming), and fuel efficiency is improved by the amount of fuel generation.

前記本願発明の内で、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは、化石燃料使用の炭素Cであっても良く前記二酸化炭素を合成ガスに改質しておるので少なくとも数十%のCO排出を削減は可能で、温室効果ガス排出削減策である。 Among the inventions of the present application, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be carbon C using fossil fuel, and the carbon dioxide is reformed into synthesis gas. Therefore, it is possible to reduce CO 2 emissions of at least several tens of percent, and this is a measure for reducing greenhouse gas emissions.

の発明に記載した合成ガス改質路は、第一の発で生成した水素(H)と、一酸化炭素(CO)の混合気体と、内燃機関の排熱{前記内燃機関の排熱は内燃機関のエンジンブロック内の通水にて水を水蒸気にした排熱である}にて水蒸気にしたものとを、例えばプロトン導電セラミックス管内で再度内燃機関の排熱(300°C〜800°C)(前記内燃機関の排熱は排ガス管路にて排ガス中の熱を吸熱させた排熱である)にて反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、前記水素と二酸化炭素を別々に畜ガスする水素畜ガスタンクと二酸化炭素畜ガスタンクを設けて、それぞれに畜ガスして、二酸化炭素は、前記水素を取り出す出発原料として、前記取り出した水素は水素畜ガスタンク経由で当該内燃機関の燃料とする構成構造である。 Syngas reforming path described in the first invention, the hydrogen produced by the first inventions (H 2), a mixed gas of carbon monoxide (CO), the exhaust heat {the internal combustion engine of the internal combustion engine the exhaust heat is to that water vapor with water to a waste heat of the steam} in the water flow path in the engine block of an internal combustion engine, for example, again an internal combustion engine with a proton conductive ceramic tube heat (300 ° C ˜800 ° C.) (The exhaust heat of the internal combustion engine is exhaust heat obtained by absorbing the heat in the exhaust gas in the exhaust gas pipe) to separate hydrogen (H 2 ) and carbon dioxide (CO 2 ) The hydrogen hydrogen gas tank and the carbon dioxide livestock gas tank for separately gasifying the hydrogen and carbon dioxide are provided, respectively, and the carbon dioxide is used as a starting material from which the hydrogen is extracted. The internal combustion machine via the hydrogen livestock gas tank It is a structural structure used as a fuel for Seki.

前記排気管路内の排ガス温度が不足する場合には前記合成ガス改質路の上流に排ガス燃焼部を設けて、
排ガス中の未燃焼燃料ガス又は未燃焼炭素粒に不足温度を補う程度分の畜ガスしている燃料と酸素(空気)を導入して再加熱しても良い。
When exhaust gas temperature in the exhaust pipe is insufficient, an exhaust gas combustion section is provided upstream of the synthesis gas reforming path,
You may introduce and reheat the fuel and oxygen (air) which are the livestock gas of the extent which supplements the shortage temperature to the unburned fuel gas or unburned carbon particle in exhaust gas.

前記二酸化炭素改質は、二酸化炭素と水蒸気の改質材とともに触媒と接触させて水素(H)と一酸化炭素(CO)の混合気体を取り出す技術(特許先行文献2特願特開平11−106770)を本願に組み込んで二酸化炭素をも該内燃機関の燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。 The carbon dioxide reforming is a technique in which a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) is taken out by contacting with a catalyst together with a carbon dioxide and steam reforming material (Japanese Patent Application Laid-Open No. H11-11). 106770) is incorporated into the present application, and carbon dioxide is also used as a fuel for the internal combustion engine, thereby improving fuel efficiency and further reducing greenhouse gas emissions.

本願は上記二酸化炭素改質を前記エンジンのエンジンブロック(ロータリーハウジング)に水を導入する導入口(図1BのHO導入口)に二酸化炭と水を導入して、前記二酸化炭素と水はエンジンブロック(ロータリーハウジング)の内外壁間に設けている通水路Kにて吸熱して水は水蒸気に、二酸化炭は吸熱してガスを高温とするとともに混合して、エンジン排気口下流に触媒を対峙させた改質路(二酸化炭素の改質であるので名前を変更している)を設けており、改質路上流に炭化水素化合物(例えばジメジエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに前記触媒に前記ガス{炭化水素化合物(例えばジメジエーテルCHOCH)と水蒸気か吸熱気体の二酸化炭素のいずれか一方か両方か}を接触させる事ことで水素(H)と一酸化炭素(CO)の混合気体を取り出すかあるいは、前記エンジンのエンジンブロック(ロータリーハウジング)の通水路Kで水を水蒸気にする管路に加えて該前記エンジンのエンジンブロック(ロータリーハウジング)の通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかのいずれかにしており、(エンジン燃焼工程後の排気口近傍で合流さる事も含む)排気管路に対峙させておる触媒に接触させる構成にするかの何れかにして 水素(H)と一酸化炭素(CO)の混合気体を取り出す構にしており、前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズセリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物がある。 The present application introduces carbon dioxide and water into an inlet (H 2 O inlet in FIG. 1B) for introducing water into the engine block (rotary housing) of the engine for the carbon dioxide reforming. Heat is absorbed in a water passage K provided between the inner and outer walls of the engine block (rotary housing), water is absorbed into water vapor, and carbon dioxide is absorbed to raise the gas to a high temperature and mixed, and a catalyst is placed downstream of the engine exhaust port. There is an opposite reforming path (the name is changed because it is carbon dioxide reforming), and a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is introduced upstream of the reforming path and the steam and The gas {hydrocarbon compound (eg, dimethyl ether CH 3 OCH 3 ) and water vapor or endothermic carbon dioxide, or both} is added to the catalyst together with endothermic carbon dioxide} To remove the mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), or add the water to steam in the water passage K of the engine block (rotary housing) of the engine. A water passage K ′ of the engine block (rotary housing) of the engine is further provided to be a two-line pipe line for heating carbon dioxide, and (exhaust gas after engine combustion process) and on whether one of a configuration is brought into contact with a catalyst Nikki is facing the including) the exhaust pipe that monkey merging mouth near hydrogen (H 2) and the configuration for taking out a mixed gas of carbon monoxide (CO) For example, the catalyst may be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel There chromium manganese, tin, Seryuumu, lanthanum and their compounds, other metal or compound.

第一の発明に記載の水蒸気改質の改質温度は700°C〜I000°Cで好ましくは800〜900°Cであり炭化水素化合物(例えばジメジエーテルCHOCH)の改質温度は200〜500℃、好ましくは250〜450℃であるので排気管路上流に水蒸気改質部を設け、その下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設けるか、あるいは前記水蒸気改質の下流に合成ガス改質路(改質温度は300°C〜800°)を設けるかあるいは、水蒸気改質の下流に前記合成ガス改質路を設け更に下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設ける形態のいずれかの形態を取るのが好ましい。 The reforming temperature of the steam reforming described in the first invention is 700 ° C. to 1000 ° C., preferably 800 to 900 ° C., and the reforming temperature of the hydrocarbon compound (eg dimethyl ether CH 3 OCH 3 ) is 200 to 200 ° C. Since the temperature is 500 ° C., preferably 250 to 450 ° C., a steam reforming section is provided upstream of the exhaust pipe, and a reforming section of a hydrocarbon compound (for example, dimethyl ether CH 3 OCH 3 ) is provided downstream of the steam reforming section. A synthesis gas reforming path (reforming temperature is 300 ° C. to 800 ° C. ) is provided downstream of the quality, or the synthesis gas reforming path is provided downstream of steam reforming and further a hydrocarbon compound (for example, dimethyl ether) It is preferable to take one of the forms in which a reforming portion of CH 3 OCH 3 ) is provided.

水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路に於いて、更に反応時間を長く取りたい場合か、もしくは同時進行で水蒸気改質又はCO2改質又は合成ガス改質のうち少なくとも何れか1方以上を取りたい場合、前記エンジンのエンジンブロック(又はロータリーハウジング)の内外壁間に設けている通水路Kを、エンジンブロック1内に複数本設ける構造にするかあるいは、エンジンブロックからの排気管路を複数設けるか(例えばシリンダーの数と同じにするか、シリンダーの数の半分にするか、あるいはローターの数と同数の管路にするか、あるいはエンジンブロックから1本乃至複数本出た排気管路を更に複数に分岐させて順次切り替えて排気を送る等の構造にすることでも良い)あるいは前記通水路K‘を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかの内少なくとも何れか一方以上のいずれかにして、エンジン燃焼工程後の排気口下流の管路に3種の改質路の内少なくとも何れか1種以上を設ける構成にして、水素(H)と一酸化炭素(CO)の混合気体または水素ガス・二酸化炭素を取り出す構成構造にしても良い。 In the hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, the reforming channel, and the syngas reforming channel, if it is desired to take a longer reaction time, or steam reforming or CO 2 is performed simultaneously. When at least one of reforming and syngas reforming is desired, a plurality of water passages K provided between the inner and outer walls of the engine block (or rotary housing) of the engine are provided in the engine block 1. Whether to provide a structure or multiple exhaust pipes from the engine block (for example, the same number of cylinders, half the number of cylinders, or the same number of pipes as the number of rotors) Alternatively, one or a plurality of exhaust pipes extending from the engine block may be further branched into a plurality of branches and sequentially switched to send exhaust gas) or the water flow At least one of the two systems of pipes for heating carbon dioxide by further providing K ′, and three kinds of pipes downstream of the exhaust port after the engine combustion process A structure in which at least one of the reforming paths is provided and a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) or hydrogen gas / carbon dioxide may be taken out.

プロトン導電セラミックは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミック等の、プロトン導電セラミックは水素、酸素を活性化させる作用を有する点で、特に有利である。 With proton conductive ceramics has a heat resistance in accordance with the combustion temperature, which was equipped with communicating pores capable of passing the combustion gases, strontium cerate-based and the like Berogusukaito oxide ceramic zirconate-based proton conductive ceramics Is particularly advantageous in that it has an action of activating hydrogen and oxygen.

二酸化炭素又は炭素を原材料として使用する、製造業等の設備産業における再生可能エネルギー源としての使用は公知技術である。 The use of carbon dioxide or carbon as a raw material as a renewable energy source in equipment industries such as the manufacturing industry is a known technique.

の発明
水素(H)と一酸化炭素(CO)の取り出設備と改質流路と合成ガス改質路とのいずれか一種か複数種かを設けている内燃機関を運輸機器に搭載し運輸機器の載内機関とする形態を取っており、前記運輸機器には二輪車・軍需兵器の車両・軍需兵器の船舶等々を含んでいる。
Second invention The internal combustion engine provided with one or more of hydrogen (H 2 ) and carbon monoxide (CO) extraction equipment, reforming flow path, and synthesis gas reforming path as a transport device It is in the form of an on-board engine for transportation equipment, which includes motorcycles, munitions weapons vehicles, munitions weapons ships, and the like.

の発明、
上記内燃機関に既存の水素ロータリーピストンエンジン車が採用している「エンジンを燃費の良い条件(一定の条件)で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させている、」の形態を、該内燃機関に適用する事で安定した燃焼熱が得られ、更に吸熱反応条件も安定するので、本願を「上記エンジンを燃費の良い条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として運転させる構造」にした事で、更なる燃費の向上と温室効果ガス排出削減をすると言う大きな効果を生んでいる。
The third invention,
The existing hydrogen rotary piston engine car is used for the internal combustion engine described above. “The engine is operated under good fuel economy conditions (constant conditions) and is generated by the rotational force and stored in the capacitor. The electricity is used as the power source. By applying the form of “driving an automobile” to the internal combustion engine, stable combustion heat can be obtained, and the endothermic reaction conditions are also stabilized. However, it has a great effect of further improving fuel consumption and reducing greenhouse gas emissions by adopting a structure that generates electricity with the rotational force, stores it in a capacitor, and operates the electricity as a power source.

*走行状態(例えば信号待ち・右折対向車通過待ち・交差点右左折時横断歩行者通過待ち・渋態状態時のチョコチョコ駆動・平胆路での惰力運転走行時・追い越し&追い抜き急加速運転時・下り坂運転時等々)の変化に追従させて内燃機関エンジンの出力の制御機構や制御構造がシンプルで良くなる。
更に一定の条件(燃費の良い条件)で運転するので燃費(Km/L)を向上させる効果がある。
* Driving conditions (for example, waiting for traffic lights, waiting for an oncoming vehicle on the right, waiting for crossing pedestrians when turning right or left at the intersection, choco-choco driving in a traffic condition, driving on a flat road, overtaking & overtaking rapid acceleration・ The control mechanism and control structure of the output of the internal combustion engine are simplified and improved by following the changes in the downhill driving, etc.
Furthermore, since driving is performed under a certain condition (good fuel efficiency), there is an effect of improving the fuel efficiency (Km / L).

の発明
蓄電器の蓄電量が設定値以上になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が設定値以下になると内燃機関エンジンで駆動する構造にした事で、
動力が不要な走行状態が続く場合その間はエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、エンジンをOFFにして蓄電電力で走行し、燃費の向上を図る事が出来る。
When the amount of electricity stored in the capacitor of the fourth invention is equal to or greater than the set value, the driving of the internal combustion engine is stopped and the vehicle is driven by electric power.
When the driving state that does not require power continues, the engine is continuously operated under certain conditions (good fuel economy conditions), so depending on the driving state, the electricity generated to drive the car becomes overcharged and is generated by the internal combustion engine. Since the electricity is discarded, the engine can be turned off and the vehicle can run with the stored electric power to improve the fuel consumption.

の発明
前記内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段としており、その電気を動力源として車を走行させる構成構造にする事で必要動力を全て電池で賄う為に高価な電池を多数設けなくて済み、前記内燃機関の蓄電設備容量を数十%大きくする程度で充電設備を有する場所で受電充電出来、畜電器の設置費用及び燃費向上が図れ、温室効果ガス排出削減策となる。
Fifth invention A charging / receiving plug is provided in the internal combustion engine, and charging means for storing electricity in the livestock battery, and it is expensive to cover all necessary power with a battery by using a structure in which the vehicle is driven using the electricity as a power source. It is not necessary to install a large number of batteries, and the power storage capacity of the internal combustion engine can be increased by several tens of percent. It will be a measure.

動力が不要な走行状態(信号待ち・右折時対向車通過待ち・右左折時横断歩行者通過待ち・渋滞時のチョコチョコ運転時・下り坂走行時・惰力走行運転時等)が発生して、その間の前記運転条件ではエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、該畜電気の蓄電容量が上限設定値になると該エンジンをOFFにして蓄電電力で走行し、蓄電器の蓄電容量が下限設定値になると該エンジンをONにして該エンジンで走行して燃費の向上を図る事が出来る。 Driving conditions that do not require power (waiting for traffic lights, waiting for oncoming vehicles when turning right, waiting for crossing pedestrians when turning left or right, choco chocolate driving during traffic jams, downhill driving, coasting driving, etc.) During this period, the engine is continuously operated under certain conditions (good fuel efficiency). Depending on the driving condition, the electricity generated for driving the car becomes overcharged and the electricity generated by the internal combustion engine is discarded. Therefore, when the storage capacity of the livestock electricity reaches the upper limit set value, the engine is turned off and the vehicle runs with the stored power. When the storage capacity of the battery reaches the lower limit set value, the engine is turned on and the vehicle runs with the engine. The fuel consumption can be improved.

前記下り坂運転時でエンジンブレーキ状態走行時に走行動力を電動モーター使用としている場合はモーターを発電機として使用できるので、エンジンブレーキ状態走行時にはモーターを発電機として使用し蓄電器に充電する形態にすれば更なる燃費の向上と温室効果ガス排出削減となる。 If the electric power is used as the driving power when running in the engine braking state during downhill driving, the motor can be used as a generator.Therefore, when running in the engine braking state, the motor is used as a generator to charge the battery. This will further improve fuel efficiency and reduce greenhouse gas emissions.

前記平胆路での惰力運転走行であるが、惰力運転走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(該略2200回転)で数分運転をして例えば走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す運転方法であり、50年前には運送業では常識の運転方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。 This is a repulsive driving run on the flat road, but a repulsive driving run is a speed at which a driver wants to drive for several minutes with an accelerator operation (approximately 2200 revolutions) that is about 10% higher than the speed at which the driver wants to drive. If it is 60Km / H, turning to 70Km / H will turn off the rotational drive power of the engine (this will be about 1000 revolutions, the number of revolutions when idling). Is a driving method that repeats the operation of turning on the rotational driving force connection of the engine when the speed reaches 60 km / H, which is a common driving method in the transportation industry 50 years ago. Automatic control of this travel mode can further improve fuel consumption and reduce greenhouse gas emissions.

の発明
内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気と新たに投入する主として植物の炭素を、前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を補助燃料の代替とする構成にして、現有の火力発電設備に併合する形態にする手段とするか、あるいは前記火力発電設備のボイラーの排ガス管路に吸熱反応設備を設けて吸熱反応化させて、生成した燃料(ガス)を畜ガスタンク経由で前記動力発電の燃料とする構成かの何れかの手段にするかにしても良い。
6th invention Means for directly using the rotational force of the internal combustion engine as power generation power of the power generator, or steam that has finished its role of turning the turbine of thermal power generation and newly introduced mainly plant carbon, endothermic of the internal combustion engine Introduced into the reaction channel and converted to endothermic reaction, the generated fuel (gas) can be used as a substitute for auxiliary fuel, and can be combined with the existing thermal power generation facility, or the thermal power generation An endothermic reaction facility is provided in the exhaust gas pipeline of the boiler of the facility to make the endothermic reaction, and the generated fuel (gas) is used as a fuel for the power generation via the livestock gas tank. Also good.

水素と一酸化炭素の混合気体又は二酸化炭素又は水素の内何れか1以上は他所の設備で製した物を使用(又はパイピングで圧縮ガスの状態で輸送)することでも対応出来るし、発電の場合及び船及び大型自動車は内燃機関に近接して、水素(H)と一酸化炭素(CO)の混合気体の製造設備を設置することも出来る。 It also can be any one or more of the mixed gas or carbon dioxide or hydrogen in the hydrogen and carbon monoxide using a material obtained by manufacturing elsewhere equipment (or transported in a state of compressed gas in the piping) can correspond, for generating Cases and ships and large vehicles can also be equipped with hydrogen (H 2 ) and carbon monoxide (CO) mixed gas production equipment in close proximity to the internal combustion engine.

の発明
熱又は水蒸気又は二酸化炭素又は水素を廃棄している製造業(例えば製鋼・鉄の鍛造・鉄の鋳造・アルミ精錬&製造・塵焼却場・石油精製業等)に於いて、前記廃棄されている熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを、第一の発明乃至第三の発明に記載の改質技術の内何れか1以上の改質技術で改質して、生成した燃料(ガス)を当該内燃機関の燃料として内燃機関を運転して、更に前記内燃機関の排ガス中の「CO2」を第二の発明に記載しておる手段で水素と一酸化炭素の合成ガスに生成して該内燃機関の燃料として運転し,その回転力をそのまま動力発電機の発電動力とする内燃機関である。
例えば製鋼所の圧延工程では脱炭された真赤な鋼隗を多数の圧延機を通過させて10mm前後の鋼板ロールにするのであるが、最終圧延後に多量の水を掛けて赤色の圧延板を黒っぽい板に冷却しており、このときの掛ける多量の水は水蒸気となり一部は廃棄されており、更に最終圧延された鋼板ロールは鋼板ロール自然放冷置き場にて天井クレンが吊り降ろし作業するために必要なクランプ具作動幅を持たせて敷設してある複数列のローラーコンベアーに順送りで並べられている。この時の鋼板ロールの温度は700°〜900°であり、このローラーコンベアー間に吸熱反応部を設けて吸熱反応化させて生成した燃料(ガス)を当該内燃機関の燃料として動力発電機の発電動力とすることが電力の削減策であり、温室効果ガス排出削減策となる。
Seventh invention In the manufacturing industry (for example, steelmaking, iron forging, iron casting, aluminum refining and manufacturing, dust incineration plant, oil refining industry, etc.) that disposes heat, steam, carbon dioxide or hydrogen, Any one or more of discarded heat, steam, carbon dioxide or hydrogen is modified by any one or more of the reforming techniques described in the first to third inventions. The generated fuel (gas) is used as the fuel for the internal combustion engine to operate the internal combustion engine, and the CO2 in the exhaust gas of the internal combustion engine is combined with hydrogen by the means described in the second invention. This is an internal combustion engine that is generated in a synthesis gas of carbon oxide and is operated as a fuel for the internal combustion engine, and its rotational force is directly used as the power generation power of the power generator.
For example, in the rolling process of a steel mill, the decarburized crimson steel plate is passed through a number of rolling mills to form a steel plate roll of about 10 mm. The plate is cooled, and the large amount of water applied at this time becomes steam, and a part of it is discarded, and the final rolled steel sheet roll is used for the ceiling crane to hang down in the steel sheet roll natural cooling place. They are lined up in order on a plurality of rows of roller conveyors that have been installed with the required clamping tool operating width. The temperature of the steel sheet roll at this time is 700 ° to 900 °, and the power generation of the motive power generator is performed using the fuel (gas) generated by providing the endothermic reaction section between the roller conveyors to effect the endothermic reaction as the fuel of the internal combustion engine. Using power as a means of reducing electric power will reduce greenhouse gas emissions.

八の発明、&第の発明
前記畜ガスタンク{前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該内燃機関で生成されたガスで少なくとも10分程度運転するのに必要な燃料を畜ガス出来るタンクであれば当該内燃機関を運転(切り替えロスを無視すれば)することは出来る}のタンク損傷を防止する損傷防止手段であるが、例えば1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材HPEを固着して車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着した物であり、タンク分離手段は前記固定具MT5に衝撃が掛かるとV字状の切り欠け部MT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(タンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)例示構造にしており、
前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはガスを溜めると言う機能は同じであっても構造(規格)は全く違うものである。
Eighth invention, & ninth invention the slaughter gas tank {said tank, high-pressure hydrogen gas storage tank 35MPa is no need, the fuel required for the operation of at least about 10 minutes with a gas generated in the internal combustion engine It is a damage prevention means that prevents the tank damage of the internal combustion engine (if the switching loss can be ignored) if it is a tank that can store livestock gas. A shock absorbing material HPE such as foamed polyethylene and boron fiber reinforced plastic is fixed to the vehicle body and fixed and held on the upper part of the vehicle. When the impact is applied to the fixture MT5, the V-shaped cutout portion MT6 breaks due to concentrated stress, and the tank cushion means includes the shock absorbing material inclusion body MT3. The tank support MT2 is integrated, and the impact buffering material has a structure in which the tank support MT2 is detached from the fixture MT5 (not completely disengaged but is locked to the fixture MT5 or the like by a linear body or the like). (It is a preferred form because it is a measure to avoid secondary damage that MT3 completely misses)
One or both of the damage prevention means for preventing damage to the tank or the tank separation means for separating the tank from the tank installation portion of the vehicle in the event of a collision are provided. Further, it is composed of a non-stationary facility (for example, an automobile) livestock gas tank of the livestock gas means, and the livestock gas tank is mounted on the upper body of a car or mounted on a chassis part of a truck. It is preferable to use one of the forms attached to the stationary equipment, but in the case of stationary equipment (for example, a power plant), the safety standard (in Japan, the registration of JIS B 8265 has been completed. Is ISO 16528), and the non-stationary livestock gas tank and the stationary livestock gas tank (eg chemical factory) It must be composed of those that are within the safety standards or at least have elements that can change the safety standards, so non-stationary equipment (eg automobile) livestock gas tanks and stationary equipment (eg chemical factories) livestock gas tanks Even if the function of storing gas is the same, the structure (standard) is completely different.

の発明
例えば炭酸水素ナトリュウム(NaHCO)を内燃機関の排熱で加工して熱分解して水素(H)と炭酸ナトリュウム(NaCO)を作り、炭酸ナトリュウム(NaCO)は取り出して製品として販売し、水素(H)を畜ガスタンク経由で内燃機関の燃料とする構成にしているもので有るが、内燃機関の排熱で加工して燃料を取り出す取り出し手段を使用して付加価値を付加する物で有れば前記炭酸水素ナトリュウム(NaHCO)は1例とした物で炭酸水素ナトリュウム(NaHCO)に限定するものではない。
A tenth invention for example to make a bicarbonate Natoryuumu (NaHCO 3) and by processed by exhaust heat of the internal combustion engine is thermally decomposed hydrogen (H 2) and carbon dioxide Natoryuumu (Na 2 CO 3), carbonate Natoryuumu (Na 2 CO 3 ) Is taken out and sold as a product, and hydrogen (H 2 ) is used as a fuel for the internal combustion engine via the livestock gas tank. The sodium hydrogen carbonate (NaHCO 3 ) is an example and is not limited to sodium hydrogen carbonate (NaHCO 3 ).

素を主燃料とすれば水と窒素を主構成とする排気であり
料は、水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、排気中の二酸化炭素を改質した水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、
いずれの燃料を使用しても水が水蒸気の形で排出されておる、この水蒸気から更なる吸熱手段で改質出発原料の水を温める構造構成にするとともに排ガス中の水蒸気から水を取り出しろ過するろ過手段経由で改質出発原料の水として貯水タンクに戻し入れる物で、
前記水蒸気からの吸熱手段は例えば排気管路の下流部に水貯水タンクを設けて該貯水タンクの水の中に排気管路を通す事で水タンクの水が吸熱して水タンクの水は温水となり排気管路内の水蒸気は水と成り回収する事を特徴とする、水を回収する回収手段、
上記各種の改質手段は水を燃料に改質しておるので相当量の水が必要と成るが水の車載量を大きくすれば車載量の水(重量)を運搬する為のエネルギーが必要と成るので水を回収して循環使用すれば水の車載量を少なく出来更に水タンク中の水は温水とする事が出来るこのことは温室効果ガス削減及び排出削減に寄与する事になる。
If the hydrogen as a main fuel has a water and nitrogen in the exhaust gas as the main constituent
Fuel is hydrogen and the burning of carbon monoxide to water and carbon dioxide and nitrogen are exhausted to the main constituent, when the combustion of hydrogen and carbon monoxide modified carbon dioxide in the exhaust water and carbon dioxide And exhaust mainly composed of nitrogen,
Regardless of which fuel is used, the water is discharged in the form of water vapor, and the structure is such that the water of the reforming starting material is warmed from this water vapor by further heat absorption means, and the water is removed from the water vapor in the exhaust gas and filtered. It is returned to the storage tank as water for reforming starting material via filtration means,
The heat absorption means from the water vapor is provided, for example, by providing a water storage tank downstream of the exhaust pipe and passing the exhaust pipe through the water in the storage tank so that the water in the water tank absorbs heat and the water in the water tank is heated. Recovery means for recovering water, characterized in that water vapor in the exhaust pipe becomes water and recovers
The above-mentioned various reforming means reform water into fuel, so a considerable amount of water is required. However, if the on-board amount of water is increased, energy for transporting the on-board amount of water (weight) is required. Therefore, if water is collected and recycled, the amount of on-vehicle water can be reduced, and the water in the water tank can be warm water. This contributes to greenhouse gas reduction and emission reduction.

物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするかあるいは上記第2の発明技術を上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、反応させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器を提供する。
上記小規模炭素製造器の構成で炭化室CSと燃焼室FCの隔壁を取り除き上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部を設けた構成にする事で、石炭等の化石燃料を使用している暖房器(例えば石炭スト−ブ)にする事も出来る。
此のことは寒冷地の多くは石炭スト−ブを使用しており、石炭の燃焼による二酸化炭素の排出も無視出来ないものであり、本願の第一の発明と第二の発明の構成構造を適用する事で本願の最大の課題の地球温暖化に対処する「CO」の(排出)削減となる施策の1つの方法である。
A small carbon maker to produce the carbon of the plant, wood or the like in an environment where oxygen from entering the coking chamber CS to carbonized by heating (plant material), plant material of the timber or the like for heating the carbonizing chamber A combustion chamber FC for combusting the gas, a gas exhaust passage for the combustion chamber FC, and a pipe J for water vapor generation means for converting water H 2 O into water vapor J along the inner wall of the carbonization chamber. And the gas C4 generated in the carbonization process in the carbonization chamber is introduced into the combustion chamber and used as a fuel for heating the carbonization chamber, or the second invention is applied to the exhaust section (chimney of the exhaust gas pipe). As an example, the reforming material is dimethyl ether, and the reforming section facing the catalyst is reacted with either one or both of water vapor and carbon dioxide in the reforming section, and the fuel for the small-scale carbonization apparatus. Whether to make the configuration A manner to provide a small carbon maker provided either.
In the configuration of the small-scale carbon production device, the carbonization chamber CS and the combustion chamber FC are separated from each other, and the carbonization chamber CS section is provided with a generation section for steam J and a separation section for separating carbon dioxide from the exhaust gas. Thus, a heater using a fossil fuel such as coal (for example, a coal stove) can be used.
This means that many cold districts use coal stoves, and carbon dioxide emissions due to coal combustion cannot be ignored. The construction of the first and second inventions of this application Applying this is one of the measures to reduce (emission) “CO 2 ” to cope with global warming, which is the biggest problem of the present application.

前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭)であっても良く温室効果ガス排出削減策である。 In the combination of the present invention, the carbon C of the synthesis gas generating material when the reforming means for reforming carbon dioxide is used may be fossil fuel use (for example, coal), which is a greenhouse gas emission reduction measure. is there.

最大の課題は地球温暖化に対処する「CO」の排出削減であり、
燃料を主に植物の炭素Cを使用する事で、本願の課題である、温室効果ガス削減施策課題の1つを構成する温室効果ガス削減策の内燃機関とする事が出来た、更に前記主に植物の炭素Cの燃焼により発生するCOをも燃料に改質しており、該COをも燃料に改質した事が、更なる温室効果ガス削減と燃費を驚愕するほど向上させる効果を生んでおる、この事が最大の効果である。
The biggest challenge is the reduction of CO 2 emissions to combat global warming.
By using mainly plant carbon C as a fuel, it was possible to make an internal combustion engine for a greenhouse gas reduction measure that constitutes one of the challenges of the greenhouse gas reduction measure that is the subject of the present application. In addition, CO 2 generated by the combustion of plant carbon C is also reformed to fuel, and reforming this CO 2 to fuel also has the effect of further increasing greenhouse gas reduction and fuel efficiency. This is the biggest effect.

この合成ガスを生成し、生成した合成ガスを燃料として使用する内燃機関を火力発電機の代替として使用する事が、今(2014年)のエネルギー問題解決策の筆頭にあげうる案件であり(2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり、真夏電力需要ピーク時の節電要請が各電力会社から出ている現状であり)この案件を実施する事は電力供給に大きな効果がある。 The use of an internal combustion engine that generates this synthesis gas and uses the generated synthesis gas as a fuel as an alternative to a thermal power generator is a project that can be mentioned as the first solution to the current energy problem solution (2011) (2011). According to the statistics of the Federation of Electric Power Companies of the year, about 82% of Japan's total power generation is thermal power generation, and there is a request for power saving at the peak of midsummer power demand from each power company) Doing so has a great effect on power supply.

内燃機関の捨てられていた熱エネルギーを活用して燃料を生成している事が大きな効果である。 The great effect is that fuel is generated by utilizing the thermal energy that was discarded by the internal combustion engine.

本願は内燃機関の回転力をそのまま動力発電設備とした発電用内燃機関に供給する補助燃料の代替に、又製造工程で廃棄されている熱と水蒸気若しくは温水と新たに投入する炭素を吸熱反応流路に導入して上記内燃機関に供給していた補助燃料の石油液化ガス(天然ガス含む)、ガソリン(含む炭化水素系化石燃料)、バイオエタノール等、あるいは合成ガスかの何れかの補助燃料を本願の合成ガスか水素ガスに替えて、畜ガスタンクに畜ガスするのでサブタンクとサブ燃料使用制御構造と、補助燃料の合成ガスを切り替えて使用する切換え弁を含む燃料切換え制御構造が不要となる構成も可能と成る。 The present application is an alternative to the auxiliary fuel supplied to the internal combustion engine for power generation using the rotational force of the internal combustion engine as it is as a power generation facility, and the endothermic reaction flow of heat, steam or hot water discarded in the manufacturing process, and newly input carbon. Auxiliary fuel, either petroleum liquefied gas (including natural gas), gasoline (including hydrocarbon-based fossil fuel), bioethanol, or synthetic gas, that was introduced into the road and supplied to the internal combustion engine A structure that eliminates the need for a fuel switching control structure including a sub-tank, a sub fuel use control structure, and a switching valve that switches and uses the synthesis gas of the auxiliary fuel, because the livestock gas tank is replaced with the synthetic gas or hydrogen gas of the present application. Is also possible.

上記植物の炭素を燃焼させ生成されるCOをも前記合成ガスに生成して更なる温室効果ガスCOの削減策としている事が前記植物の炭素使用の京都議定書のカーボンニゥートラルから更にCOを削減する事が出来、現存公知技術では実施出来なかった温室効果ガス削減策となる最大の効果を生む、
更に本願の内燃機関の炭素を化石燃料の炭素使用としてもCOを100%排出カットは出来ないまでも少なくとも数十%は削減できる大きな効果がある。
The CO 2 produced by burning the carbon of the plant is also generated in the synthesis gas to further reduce the greenhouse gas CO 2 from the carbon neutral of the Kyoto Protocol on the use of carbon of the plant. CO 2 can be reduced, and the greatest effect is achieved as a greenhouse gas reduction measure that could not be implemented with existing technologies.
Furthermore, even if carbon of the internal combustion engine of the present application is used for fossil fuel, CO 2 can be reduced by at least several tens of percent even if 100% emission cut cannot be achieved.

温室効果ガスCOの排出枠の買い取りビジネスが活性化する中、日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を数十%削減出来る。 While the purchase of greenhouse gas CO 2 allowances is revitalizing, Japan's purchase amount is estimated to be about 1 trillions of billions, but this purchase amount can be reduced by several tens of percent.

第5の発明に記載したエンジンの負荷変動に関係ない「エンジンを一定した燃費の良い条件」(始動時は別条件)で運転して一定した吸熱反応条件で運転する事で、前記吸熱反応効率も上がり、かつ、燃費の良い条件にする事で燃費(Km/L)を向上させた事が大きな効果である、 The endothermic reaction efficiency can be obtained by operating the engine under the constant endothermic reaction condition by operating the engine under the “constant and fuel-efficient conditions” (different conditions at start-up) that are not related to the engine load fluctuation described in the fifth invention. The improvement of fuel efficiency (Km / L) is achieved by making the fuel efficiency good and the fuel efficiency is good.

上記内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素Cを再生可能な植物を主原料とし、さらに、汚水や食品製造時に出る、産業廃棄物に近い物から作る物質(例えばメタンガスやバイオエタノール)をサブ燃料とするのが好ましいとしており、 The raw materials for generating the fuel for the internal combustion engine are water H 2 O and carbon C. The plant that can regenerate the carbon C is used as a main raw material, and further, it is made from materials close to industrial waste that are produced during the production of sewage and food. Substances (e.g. methane gas or bioethanol) are preferred as sub-fuels,

前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて(カーボンニュ−トラル)、地球温暖化防止に大なる貢献が出来る大きな効果である。 Using the plant as the main raw material means that the plant absorbs carbon dioxide CO 2 and produces oxygen O 2 , so in the Kyoto Protocol it is defined as plus or minus “0” (carbon neutral), and global warming This is a great effect that can greatly contribute to prevention.

排気ガス中の二酸化炭素を合成ガスに生成するサイクル(第二の発明)を設けた事で、第一の発明の内燃機関から排出された「CO」を燃料に改質しており、更なる「CO」の排出削減が出来るとともに、燃費を向上させる効果がある。(例えば20Km/Lを25Km/Lにした程度ではなく2倍の40Km/L以上に向上させる驚愕する様な効果を得る事が出来た。
*水HOとCOを燃料に改質した手段を設けた事で前記効果を得る事が出来た。
By providing a cycle for generating carbon dioxide in the exhaust gas into the synthesis gas (second invention), the “CO 2 ” discharged from the internal combustion engine of the first invention is reformed into fuel. It is possible to reduce emissions of “CO 2 ” and to improve fuel efficiency. (For example, it was possible to obtain an astonishing effect of improving 20 Km / L to 40 Km / L or more, not about 20 Km / L to 25 Km / L.
* The above effect could be obtained by providing means for reforming water H 2 O and CO 2 into fuel.

内燃機関のエンジンブロック冷却水路及び冷却水配管を含むラジエターが不要になる。 A radiator including the engine block cooling water passage and the cooling water piping of the internal combustion engine is not necessary.

第一の発明に記載の内燃機関の燃料を生成する原料は水HOと炭素Cであり、前記炭素を再生可能な植物を主原料とし、前記植物を主原料とする事は、植物は炭酸ガスCOを吸って、酸素Oを出すので京都議定書では、プラス、マイナス「0」とされていて、地球温暖化防止に大なる貢献が出来る。 The raw materials for generating the fuel for the internal combustion engine according to the first invention are water H 2 O and carbon C. The plant that can regenerate the carbon is the main raw material, and the plant is the main raw material. sucking carbon dioxide CO 2, since out of oxygen O 2 in the Kyoto Protocol plus, have been negative "0", a large becomes contribution possible to prevent global warming.

前記植物を主原料とする事は放置されていた山林や「田んぼ」を価値ある物(植物からの炭素)を作る「稼働率」のよい工場に出来る、此のことは、農業、林業に活力を与える。 The use of the plant as the main raw material makes it possible to turn abandoned forests and “rice fields” into factories with good “operation rate” to produce valuable things (carbon from plants). This is vital for agriculture and forestry. give.

火力発電はボイラーを火力で熱して蒸気を発生させてその蒸気を更に加熱してタ−ビンを廻して発電しているのでエネルギー効率は50%弱で火力発電のボイラーは加熱し始めに必要な初期エネルギーが大きいので一度ONすると長期間火を落とせないので時間帯による消費電力量変動に追従して稼働のON・OFFする事が出来難いので、季節(春・秋)あるいは時間帯に依っては消費されない余剰電力が発生し、その過剰生産分は廃棄されているが、本願の内燃機関による発電システムにすれば、前記時間消費電力量の変動に追従して稼働のON・OFFする事が自在に出来るので、過剰生産電力は限りなくゼロに近づける事ができるので、太陽光発電のみで補う場合の大容量の蓄電設備と膨大な送電設備・受電設備が不要と成る。 In thermal power generation, the boiler is heated with thermal power to generate steam, and the steam is further heated to generate electricity by rotating the turbine. Therefore, the energy efficiency is less than 50% and the thermal power boiler is necessary to start heating. Since the initial energy is large, it is difficult to turn on / off following the power consumption fluctuations according to the time zone because it is difficult to turn off the fire for a long time once it is turned on, so depending on the season (spring / autumn) or time zone Surplus power that is not consumed is generated, and the excess production is discarded. However, if the power generation system using the internal combustion engine of the present application is used, the operation may be turned ON / OFF following the fluctuation of the time power consumption. Since it can be made freely, excess production power can be brought to zero as much as possible, so there is no need for a large-capacity power storage facility and a vast amount of power transmission / reception facilities when supplemented only by solar power generation.

現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るので送電・受電設備を非常に少なくする事が出来る。 Current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of this application do not need to be adjacent to the water source and can be installed as close to the power demand area as possible, so there are very few transmission / reception facilities I can do it.

化石エネルギーの価格変動(及び為替レート変動)に日本の経済が影響される割合が少なくなる。 The proportion of the Japanese economy affected by fossil energy price fluctuations (and exchange rate fluctuations) will be reduced.

上記第一の発の内燃機関を自動車(2サイクル2輪車・4サイクル2輪車を含む)・船舶・鉄道のディーゼルエンジン車・建設機械・軍需兵器の車両・軍需兵器の船舶等々の運搬機器に搭載する形態での実施であり、前記動力発電機を火力発電設備の代替として使用する形態か、あるいは現存火力発電設備でタービンを回す役目を終えた水蒸気と、新たに投入する炭素を内燃機関の吸熱反応流路に導入して前記燃料不足分に充当する構成にして現有の火力発電設備に併合する形態かあるいは第9の発明内の何れか1種類以上の実施形態である。 Transportation of the ship and so on of the vehicles and military weapons of the first of inventions (including the two-cycle two-wheel vehicles and four-stroke two-wheel vehicles) the internal combustion engine automobiles, ships and railroad diesel engine vehicles, construction machinery, military weapons It is implemented in the form of being mounted on equipment, either in the form of using the power generator as a substitute for thermal power generation equipment, or in the internal combustion of steam that has finished the role of turning the turbine in existing thermal power generation equipment and newly input carbon It is a form that is introduced into an endothermic reaction flow path of an engine and used for the fuel shortage and is combined with an existing thermal power generation facility, or one or more embodiments within the ninth invention.

図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
Each dimensional relationship in the drawings is enlarged for important portions, exaggerated where details are difficult to understand, and reduced when describing wide portions or portions that are less important in the present invention. Thus, the dimensions between and within the drawings are not proportional, and are not actual or scaled.
If the distance between the lines is narrow, it is likely to become a single line that is black and thick at the scanning stage. Therefore, the distance between the lines is widened or described with a single line.

更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。 Furthermore, parts other than the basic (main) mechanism of the present invention are omitted between the drawings.

水素と一酸化炭素はエネルギー的には殆ど等価であるつまり(高位)発熱量はほぼ同じである、従って本願の明細書に於ける詳細説明は水素を燃料とする公知技術を引用している部分が多々ある。さらに「CO」を合成ガスに改質する技術についても公知技術を引用している部分が多々ある。
本願の主構成は多種の公知技術(中には特許登録されており権利が生きている物も一部含んでいる)を引用しているが、個々の公知技術のみでは得ることが出来ない物を本願で効果を得るべく多様に組み合わせた構成構造にしたことで、前記温室効果ガス排出削減と燃費の向上の面に於いて驚愕する様な効果を得る事が出来た。
Hydrogen and carbon monoxide are almost energetically equivalent, that is, the (higher) calorific value is almost the same. Therefore, the detailed description in the specification of the present application refers to a known technique using hydrogen as a fuel. There are many. Furthermore, there are many parts that cite known techniques for the technique of reforming “CO 2 ” into synthesis gas.
The main structure of this application refers to a variety of known technologies (including some that are patent-registered and alive), but cannot be obtained by individual known technologies alone. In order to obtain the effect in the present application, it was possible to obtain a surprising effect in terms of reducing greenhouse gas emissions and improving fuel consumption.

内燃機関のエンジンブロックに吸熱反応流路を設け、水HOと炭素Cとを内燃機関の排廃熱にて反応させて水素Hと一酸化炭素COの混合気体を取り出し、それらの水素と一酸化炭素の混合気体を燃料とする内燃機関であるが、合成ガスをガソリンあるいは軽油、重油の代替燃料に・・・と考えたことは、どのメーカーでもあると思っている、しかし水素も一酸化炭素も非常に危険(爆発、毒性を有している)従って、液化しての運搬手段(可搬性)安全規格をクリアーする液化ガスの容器の重量に対する内容量の割合が悪い、更に車が大破する様な事故による爆発の問題があり、手がだせなかったと推測する。 An endothermic reaction flow path is provided in the engine block of the internal combustion engine, and water H 2 O and carbon C are reacted with the exhaust heat of the internal combustion engine to take out a mixed gas of hydrogen H 2 and carbon monoxide CO. It is an internal combustion engine that uses a mixed gas of carbon monoxide and fuel, but any manufacturer thinks that synthetic gas can be used as an alternative fuel to gasoline, light oil, heavy oil, etc., but hydrogen also Carbon monoxide is also very dangerous (explosive and toxic). Therefore, liquefied transport means (portability). The ratio of the volume of the liquefied gas to the weight of the container that satisfies safety standards is poor. I suspect that there was an explosion problem caused by the wreck, and I couldn't get it.

この問題を解決する本願の手段は、
*消費燃料をタンクに満タンにして走行に必要な燃料全部を賄うのではなく、燃料生成過程でのエネルギーロス分の補充にサブタンクを設けて、前記サブタンクの燃料を石油液化ガス(天然ガス含む)、ガソリン、含む炭化水素系化石燃料バイオエタノール等、あるいは合成ガスかの何れかを、エネルギーロス分の補充用サブ燃料として使用する、複合燃料補給構造を採用している事(この蓄ガス圧力を考慮した畜ガスタンクの設置位置と車が大破する様な事故時に対応出来る構造部の手段として設けた事)が、本願を「実施可能案」にした大きなポイントである。(図1,図2参照)
The means of the present application to solve this problem are:
* Instead of filling the tank with fuel consumption and supplying all the fuel required for driving, a subtank is provided to replenish the energy loss during the fuel generation process, and the subtank fuel is oil liquefied gas (including natural gas) ) Adoption of a composite fuel supply structure that uses gasoline, hydrocarbon-containing fossil fuel bioethanol, etc., or synthetic gas as a supplementary sub-fuel for the energy loss (this stored gas pressure) The installation position of the livestock gas tank in consideration of the above and the provision of structural means that can cope with an accident such as a car being severely damaged) are the main points that made this application an “practicable plan”. (See Figures 1 and 2)

前記貯ガス、畜ガスタンクに生成された合成ガスを(圧縮ガスの状態で)一定量ためる、一定量ためる間は、ブタンガス、ガソリン、(含む炭化水素系化石燃料)メタンガス、バイオエタノール等、あるいは、水素、合成ガス、植物からの改質ガス、植物からのメタンガス、のバイオエタノール等かの何れかを補助燃料タンクの貯ガスを使用し、生成された合成ガスの貯ガス量が一定量に成ると合成ガスに切り替えて、合成ガスを生成しながら畜ガスタンクの合成ガスを使用し、前記タンク容量が「0」に近くなると、補助燃料タンク使用に切り替える、複合燃料方式をとり、合成ガスの車載量(タンク重量も含む)を少なくしている手段を設けている、 The storage gas, the synthesis gas generated in the livestock gas tank is stored in a certain amount (in the state of compressed gas), while the certain amount is accumulated, butane gas, gasoline, (including hydrocarbon-based fossil fuel) methane gas, bioethanol, etc., or Any of hydrogen, synthesis gas, reformed gas from plants, methane gas from plants, bioethanol of bioethanol, etc. is used as the storage gas in the auxiliary fuel tank, and the amount of generated synthesis gas is constant. And switch to synthetic gas, use synthetic gas in livestock gas tank while generating synthetic gas, and switch to using auxiliary fuel tank when the tank capacity is close to "0". Means to reduce the amount (including tank weight),

公知技術であるが二酸化炭素を触媒存在下で、水素、一酸化炭素等に転換する技術には1例をあげると本願特許文献2、特開平11−106770.の記載では、含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法とその方法に適した触媒の発明もしており、この技術を本願の二酸化炭素をも燃料に改質する技術として使用している。
また特許文献4の特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両の記載では二酸化炭素吸収材に二酸化炭素を吸収させて二酸化炭素を回収している
An example of a known technique for converting carbon dioxide to hydrogen, carbon monoxide, etc. in the presence of a catalyst is described in Japanese Patent Application Laid-Open No. 11-106770. In the description, a method for producing a synthesis gas by reacting a carbon-containing organic compound with steam and / or carbon dioxide in the presence of a catalyst and a catalyst suitable for the method are also disclosed. Is also used as a technology for reforming fuel.
Japanese Patent Application Laid-Open No. 2007-177684, a carbon dioxide recovery device for a vehicle, and a vehicle equipped with the same discloses that carbon dioxide is absorbed by a carbon dioxide absorber and carbon dioxide is recovered.

温室効果ガス排出の主役は内燃機関からの排出と、日本の発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出であり、世界の内燃機関からの排出と火力発電のボイラーからの排出で世界の排出量の1/4をしめており、
1ガロンのガソリンを燃やしたときのCOの放出量は車のエンジンからの排出とガソリン生成工程での放出を合わせて約9Kgである。
従って化石燃料の炭素Cの消費を、植物の炭素Cにシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、
本願の温室効果ガス排出削減策の内燃機関を実現する事及び、燃料と成る植物を主とする炭素Cの調達コストを化石燃料からの調達コストと同じくらいにする施策が必要である。
燃料とする炭素Cの製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
The main sources of greenhouse gas emissions are emissions from internal combustion engines and thermal power generation boilers, which account for about 82% of Japan's power generation (2012 Electricity Federation statistics). And 1/4 of the world ’s emissions from thermal power boilers,
The amount of CO 2 released when 1 gallon of gasoline is burned is about 9 Kg combined with emissions from the car engine and emissions from the gasoline production process.
Therefore, in order to shift the consumption of carbon C from fossil fuels to carbon C from plants and achieve a 25% reduction in greenhouse gas CO 2 emissions early,
It is necessary to implement an internal combustion engine for the greenhouse gas emission reduction measures of the present application and to make the procurement cost of carbon C, which mainly consists of fuel, the same as the procurement cost from fossil fuel.
The production of carbon C as fuel changes when carbonized organic material is heated while shutting off the flow of air and oxygen, and changes to a material rich in black carbon. This process is called carbonization, and charcoal produces this carbonization. This is a good example of a product, and what is produced is an aggregate composed mainly of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.

木材からの固体炭素C(植物原料のC)をナノ粒子化する技術はすでにテレビ等で放映されているので新技術とは言えないがナノ粒子迄細粒化しなくてもミクロ細粒化(100ミクロン程度)でも本願発明の請求項1の炭素Cとして対応可能である。
固体炭素Cは粉砕して微粒状にすれば、反応が起きる表面積を増やすことになるので、細粒化するほど合成ガス生成の効率はよくなる。
前記炭素Cに水を加えてエマルジョン燃料化あるいはゲル状化する事でも対応出来る。
更に酸素が入らない環境で前記木材等(植物原料のC)を加熱→炭化工程の中で炭素Cガスを得る事も出来る。
The technology to make solid carbon C from wood (nano-plant raw material) into nanoparticles is not yet a new technology because it has already been broadcast on TV, etc., but micronization (100 (About a micron) can be dealt with as the carbon C of claim 1 of the present invention.
If the solid carbon C is pulverized into fine particles, the surface area where the reaction takes place is increased. Therefore, the finer the particles, the more efficient the synthesis gas generation.
It can also be handled by adding water to the carbon C to form an emulsion fuel or gel.
Furthermore, the above-mentioned wood and the like (plant raw material C) is heated in an environment where oxygen does not enter, and carbon C gas can be obtained in the carbonization step.

エンジン内で水蒸気→排気管路で吸熱反応→一酸化炭素と水素の合成ガスまたは水素を生成し当該エンジンの燃料として使用するサイクルであるが、
*この案の件案事項としては
畜ガスタンク内容積を広く、蓄圧を低く、出来るタンクにして、車載場所を何処にして、どの様な構造にすれば、車が大破する事故でも畜ガスタンクが破裂しない構造にする事が出来るかであった。
*前記件案事項を下記の構造構成にして解決した。
1、合成ガスタンクの設置場所を車の車体上部に設けるか車のシャーシー部に設けている事であり、車体上部に設ける事は車が崖から転落しても、また乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故でも畜ガスタンクは爆発しない構造のタンクが要求されるが車載可能なボンベで業者が目標としている500Km走行できる目安の水素は水素4Kgで20MPaの圧力では容器内容積が300L必要となり、
マツダ(企業名)プレマシイハイドロジェンREハイブリッド車で搭載の水素74L/35MPaでは満タン充填で計算上123Kmしか走行出来ないので水素のみでは走行出来ないので、500Km走行するには約4倍の300L/35MPaの水素タンクが必要と成るが300Lの水素を74L/35MPの容器で賄うには、約150MPa圧縮で充填出来る容器が必要となり現在の技術では困難である。
そこで載内燃機関で合成ガスを生成することを立案したが載内構造の加圧ポンプでは圧縮圧を上げれば多くの動力を加圧ポンプのために消費する事になるので。スタート時点では油圧機器のアキュウムレーターに相当する機器で畜ガスする事であったが、その畜ガス器を何処に設置すれば良いか、又高速道路の事故で、前記車が崖から転落して上下が逆転するか、乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故をテレビで見て、この様な事故が発生した時爆発を回避出来る構造構成でないと車載は無理とあきらめていた。
合成樹脂を使った他の案件の立案のために先行文献検索やインターネットで前記合成樹脂関係を調べていたら下記発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、見つける事が出来これを使えば前記事故があっても爆発しない所まで解決出来た。しかし最後に残されたタンクの設置場所の問題で頓挫していた。
昨年出願のエコドライブ方法の実験を繰り返す中で車の軽量化するのに何処を樹脂化すれば良いかと考えていた時に乗用車のルーフの考察時、頓挫していた本願の畜ガスタンクを乗用車のルーフに搭載して前記事故時には離れ飛ぶ構成を思いつき、何とか実施可能案となり出願するに至ったので、この畜ガスタンクの構造構成が本願のキーポイントである。(図1A,図2参照)
2,上記畜ガスタンクの外面を図2に記載しているように、ポロン繊維強化プラスチック若しくは発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、前記タンク部を覆う形に固着成形するとか、あるいは、塗布、あるいは、他の合成樹脂材と、多層コーティングして、車が転落、大破する衝撃が掛った時に、車の車体から分離するタンク分離手段を設け、跳ね飛んでも爆発しない構造にしている。(遠くに飛び過ぎない係止構造を設けるのが好ましい。)
3.前記タンクの出し入れ管の車ボディとの分離構造の一例として、電磁バルブの接点構成で通電時はON.非通電時はOFFと成る電磁バルブシーケンス回路を使用し、合成ガスタンクが車のボディから飛ぶ衝撃力が掛かると前記タンクのガス出し入れ管が抜けて(あるいは破損して)も、電磁バルブの作動によりタンクからのガス管路は閉じる構造にしている。(図2.H参照)
4.畜ガスの圧縮圧の問題も補助燃料使用と前記昨年出願のエコドライブ方と内燃機関は発電のみにしているマツダ(企業名)プレマシイハイドロジェンREハイブリッド車の構成を使用すれ補助燃料を使用しなくても、合成ガスのみ又は水素のみあるいは合成ガスと水素との切換え使用でも良い実施例と成リ蓄ガス圧も次段落で説明しておる様に低い圧縮圧で対応出来る。
It is a cycle in which steam in the engine → endothermic reaction in the exhaust line → synthesis gas or hydrogen of carbon monoxide and hydrogen or hydrogen is used as fuel for the engine.
* The proposed matter is that the livestock gas tank has a large internal volume, low pressure accumulation, a tank that can be built, where the vehicle is located, and what structure is used. It was possible to make a structure that does not.
* The above-mentioned proposed matter was solved with the following structure.
1. The place where the synthesis gas tank is installed is located in the upper part of the car body or in the chassis part of the car, which is provided in the upper part of the car body even if the car falls from the cliff, Even in an accident that is sandwiched between and crushed, the livestock gas tank is required to have a tank that does not explode, but the target hydrogen that can run 500Km in a cylinder that can be mounted on the vehicle is 4MPg of hydrogen and 20MPa. The pressure requires 300L of container volume,
Mazda (Company name) Premasi Hydrogen RE hybrid vehicle equipped with 74L / 35MP of hydrogen can run only 123Km with full tank filling, so it can not run only with hydrogen, so to run 500Km, about 4 times 300L A / 35 MPa hydrogen tank is required, but in order to cover 300 L of hydrogen with a 74 L / 35 MP container, a container that can be filled with about 150 MPa compression is required, which is difficult with the current technology.
Therefore, it was planned to generate synthesis gas in a mounted internal combustion engine. However, in a pressurized pump with a mounted structure, if the compression pressure is increased, more power is consumed for the pressurized pump. At the start, the gas was accumulated with equipment equivalent to an accumulator of hydraulic equipment, but the car fell from the cliff due to an accident on the highway where the livestock gas equipment should be installed. If the accident is such that the car is flipped upside down or the passenger car is sandwiched between large trucks and crushed in a sandwich, the structure must be such that an explosion can be avoided when such an accident occurs. I gave up on board.
If you are searching for related documents on the Internet and searching for prior literature for planning other projects using synthetic resin, the following foamed polyethylene, (the above-mentioned member has anti-bullet properties and is used for military weapons, (As an example, polyethylene fired polyethylene is fixed to the outer surface of an army water hoat for army movement, and when it is sniped with a rifle etc., the bullet has a bullet-proof property that does not allow a hole to be made in the rubber hote) Can be found, and if this was used, it was able to solve even the place where it did not explode even if the accident occurred. However, the problem was the location of the last remaining tank.
While considering the eco-driving method filed last year and thinking about what to do with resin to reduce the weight of the car, when considering the roof of a passenger car, the livestock gas tank of the present application that had been neglected was used for the roof of the car The structure of this livestock gas tank is the key point of the present application. (See Figure 1A and Figure 2)
2. As shown in FIG. 2, the outer surface of the livestock gas tank is made of poron fiber reinforced plastic or foamed polyethylene. (The above-mentioned members are bullet-proof and are used for military weapons. The fired polyethylene is fixed on the outer surface of the water hoat for moving the water surface, and when it is sniped with a rifle, etc., the bullet has a bullet-proof property so that a hole cannot be made in the rubber hoat)) A tank separation means is provided that separates from the car body when it is impacted by falling or severely damaging the car. It has a structure that does not explode even if it bounces off. (It is preferable to provide a locking structure that does not jump too far.)
3. As an example of the separation structure of the tank inlet / outlet pipe from the vehicle body, the solenoid valve contact configuration is ON when energized. When the solenoid valve sequence circuit is turned off when not energized, and the synthetic gas tank is subjected to an impact force flying from the body of the car, the gas inlet / outlet pipe of the tank may come off (or be damaged). The gas pipeline from the tank is closed. (See Figure 2.H)
4). The problem of compression pressure of livestock gas also uses auxiliary fuel, and if you use Mazda (Company Name) Premasi Hydrogen RE hybrid vehicle configuration where the eco-drive method and internal combustion engine of the previous application are only generating electricity, auxiliary fuel will be used However, an embodiment in which only synthesis gas or only hydrogen or switching between synthesis gas and hydrogen may be used, and the stored gas pressure can be handled with a low compression pressure as described in the next paragraph.

ガソリンで500Km走行に必要な燃料を水素(合成ガス)で賄うには、水素5Kgで
(水素56,000Lに相当)、(10g/Km=水素11.2Lで)ある。
従って10Km走行程度に必要な燃料(水素・合成ガス・二酸化炭素)の畜ガスタンクの容量は燃料切換えロスを無視すれば11.2L*10=112L(常圧)のガスを畜ガス出来る畜ガスタンクであれば良いことに成る。
従ってタンク製造コストと設置スペースの関係と設定したい切換え周期と前記法律の範囲内で有れば自在に設計できる。
In order to cover the fuel necessary for running 500 km with gasoline with hydrogen (synthetic gas), 5 kg of hydrogen (equivalent to 56,000 L of hydrogen) and (10 g / Km = hydrogen of 11.2 L).
Therefore, the capacity of a livestock gas tank for fuel (hydrogen, synthesis gas, carbon dioxide) required for about 10km travel is a livestock gas tank capable of livestock gas of 11.2L * 10 = 112L (normal pressure) if the fuel switching loss is ignored. It will be good if there is.
Therefore, it can be designed freely as long as it is within the scope of the law and the relationship between the tank manufacturing cost and the installation space and the switching cycle to be set.

第一の発に記載の内燃機関から生成しガスの貯ガスタンクを車の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。 Provided savings gas tank of a gas generated from an internal combustion engine according to the first inventions the car top, the savings gas tank, shock-absorbing material (foamed polyethylene, boron fiber reinforced plastic, etc.) on the fixed or coating or multilayers A storage tank that can be used as a countermeasure against rupture or explosion in the event of a car being severely damaged by fixing one of the stacked objects to the storage tank.

図1を説明すると、1図に記載の車は商用車フロントエンジンタイプ商用車に本願の構造を設置した概略構成図であり、フロントエンジンルームに設置した水素ロータリーピストンエンジン(内燃機関)から排気管部に設けた吸熱反応合成ガス生成部でガスを生成して、取り出した合成ガスを上部に設けた貯ガスタンクMTに貯ガスして当該水素ロータリーピストンエンジンの燃料として使用し、ガス生成過程のエネルギーロス分をサブタンクSTの燃料に切り替えて使用している、概略構成図で、
図1Bはレシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成フロー図であって、4気筒のレシプロエンジンのエンジンブロック内に水HO2を水蒸気Jにする通水路Kをもうけて、水HO(または水と二酸化炭素)を供給口より供給して水蒸気生成手段(または/及び二酸化炭素の吸熱手段)としおり、吸気口Aへ空気0を供給する管路3を設けて空気0を吸気口Aへ供給しており、排気口Eから管路4にて合成ガス生成部の排気管に連結しており、前記排気管MS内には排気管内に合成ガス生成吸熱反応部の吸熱反応管をコイル状にして設けており、前記コイル状にしている吸熱反応管内に前記レシプロエンジンのエンジンブロック内で生成された水蒸気Jを導入するとともに炭素を新たに投入しており、合成ガス生成部の排気管にMSを流れる、エンジン燃焼行程で発生する排気ガスEの排熱でCO+Hの合成ガスを生成して、生成された合成ガスは合成ガス貯蔵タンク(畜ガスタンク)MTに畜ガスしており、前記生成燃料の不足分を補う為にサブタンクSTを設けてサブ燃料を貯油しており、サブタンク燃料と畜ガスタンクに畜ガスしておる合成ガスを切換え弁CBで切り替えて燃料供給管路5でインジエクターE2に供給しており、更に強制着火のプラグPをもうけた構成にしておる内燃機関の概略構成図である。
Referring to FIG. 1, the vehicle shown in FIG. 1 is a schematic configuration diagram in which the structure of the present application is installed in a commercial vehicle front engine type commercial vehicle, and an exhaust pipe from a hydrogen rotary piston engine (internal combustion engine) installed in the front engine room. The endothermic reaction synthesis gas generation section provided in the section generates gas, and the extracted synthesis gas is stored in the storage tank MT provided in the upper section and used as fuel for the hydrogen rotary piston engine. In the schematic configuration diagram, switching the loss to the fuel of the sub tank ST,
FIG. 1B is a schematic configuration of an engine block, a synthesis gas generation endothermic reaction flow path section, a fuel supply / injection system, and a spark plug of a reciprocating engine. a schematic configuration flow diagram parts and the fuel supply and injection system ignition plug, the water HO 2 into the engine block of a four cylinder reciprocating engine provided with a water passage K of the steam J, water H 2 O (or water and carbon dioxide) is supplied from the supply port steam generating unit (or / and carbon dioxide heat absorbing means) and bookmarks, intake air 0 2 is provided for supplying duct 3 air 0 2 to the inlet port a P are supplied to the mouth a P, the exhaust port from E P at the conduit 4 is connected to the exhaust pipe of the synthesis gas production unit, endothermic of said exhaust pipe MS syngas product endothermic reaction portion in the exhaust pipe Reaction tube It is provided in a coil shape, and the steam J generated in the engine block of the reciprocating engine is introduced into the coiled endothermic reaction tube and carbon is newly introduced, and the exhaust gas of the synthesis gas generation unit flowing MS to the tube, to produce the exhaust gas E X of the exhaust heat in the synthesis gas CO + H 2 generated in the engine combustion stroke, produced synthesis gas by livestock gas in the synthesis gas storage tank (slaughtering gas tank) MT In order to make up for the shortage of the generated fuel, a sub tank ST is provided to store the sub fuel. The sub tank fuel and the synthetic gas stored in the live gas tank are switched by the switching valve CB, and the fuel supply line 5 FIG. 2 is a schematic configuration diagram of an internal combustion engine that is supplied to the injector E C H 2 and has a configuration in which a plug P for forced ignition is provided.

上記エンジンブロック内に水HO2を水蒸気Jにする通水路Kを設けて、水HOを供給口より供給して水蒸気生成手段としおる通水路Kに加えて、CO2を加熱する通気K‘とCO2供給口を設けて、複数設けた排気管路の内少なくとも何れかの一方以上のCO2を改質する管路に供給しており、CO2を改質する管路の他のいずれかを水蒸気改質する管路にする合成ガス改質路にするかして、水蒸気Jは全てか複数かの管路に供給して必要に応じて前記管路K、K’の両方からの供給をいずれかに切り替える供給路にする構成を付加して設けた構成にも出来る。 A water passage K for converting water HO 2 into water vapor J is provided in the engine block, water H 2 O is supplied from the supply port, and in addition to the water passage K serving as water vapor generating means, air passage K for heating CO 2. 'And a CO2 supply port are provided, and at least one of the plurality of exhaust pipes is supplied to a pipe for reforming CO2, and one of the other pipes for reforming CO2 is supplied. Whether it is a steam reforming line or a synthesis gas reforming path, the steam J is supplied to all or a plurality of pipes and supplied from both the pipes K and K ′ as necessary. It is also possible to add a configuration in which the supply path is switched to either of the above.

図2A.は図1のA−A断面図であり、本図は一例として合成ガスタンクを円筒形状の物MTB4本を、発泡ポリエチレン、ボロン繊維強化プラスチック、等HPEの衝撃緩衝材で1個の包括体にして車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着している状態図で、前記固定具MT5は車が大破する様な衝撃が掛かると前記V字状の切り掛けMT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(一例としてタンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く糸体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)。 FIG. 2A. 1 is a cross-sectional view taken along the line AA in FIG. 1. As an example, this figure shows a synthetic gas tank having four cylindrical MTBs, and a single package made of a shock absorbing material such as foamed polyethylene, boron fiber reinforced plastic, or the like. In the state where the vehicle is fixedly held on the upper part of the vehicle, and is fixed to the fixture MT5 that is fixedly fixed to the upper part of the vehicle with the fixed holding fixture MT1. The V-shaped notch MT6 breaks due to concentrated stress, and the shock absorbing material inclusion MT3 (for example, the tank support MT2 is integrated) is detached from the fixture MT5 (completely disengages). (It is a preferable form to take a structure in which it is locked to the fixing device MT5 or the like with a thread body or the like, because this is a measure for avoiding the secondary damage in which the inclusion body MT3 of the shock absorbing material completely comes off))

上記衝突及び転落時の力が上記タンクに掛った時、1例として、事故時の保持構造を設けて、車から外れ飛ぶ構造(一部は車と繋がっているのが望ましい)を設けており、車から外れ飛んだタンクは、前記タンク外面にコートあるいは全面に固着して設けている、発泡ポリエチレン・ボロン繊維強化プラスチック・衝撃緩衝材等(HTP)であり、衝撃力を吸収あるいは拡散されるので爆発しない構造である。
前記コーティングあるいは全面に固着する、発泡ポリエチレン、ボロン繊維強化プラスチック、衝撃緩衝材等は現時点では高価かも判らないが、2000万台/年・(日本自動車メーカー全体で)近く生産されているので、量産効果によりコストは低くなる。
As an example, when a collision or falling force is applied to the tank, a holding structure in the event of an accident is provided, and a structure (part of which is preferably connected to the car) is provided. The tank that flies off from the vehicle is made of foamed polyethylene, boron fiber reinforced plastic, impact buffering material (HTP), etc., which is provided on the outer surface of the tank and fixed to the entire surface, and absorbs or diffuses impact force. So it does not explode.
The foamed polyethylene, boron fiber reinforced plastic, and shock-absorbing materials that are fixed to the entire surface of the coating or the entire surface may not be expensive at this time, but they are produced almost 20 million units / year (by the entire Japanese automaker). The cost is reduced due to the effect.

図2Bは.リヤーエンジン車に上記衝撃緩衝材の包括体MT3を進行方行に対して直交する形にタンクを搭載した例図であり、D.E.図は搭載タンクの数及び形状には拘らない事を図示したもの、E,は車のルーフ部に前記タンクを前後方向の凹部に格納搭載しており、横面からの美観を良くした物、F.はキャビンの下にエンジンを搭載するタイプにE.と同様にタンクを設置している図、であり、搭載するガスタンクMTB及びタンク包括体MT3の形状設置方向は、設置するタンク容量とガス圧力の関係での設計上の問題である。 FIG. FIG. 6 is an example of a tank mounted on a rear engine vehicle in which the shock-absorbing material MT3 is mounted perpendicularly to the traveling direction; E. The figure shows that there are no restrictions on the number and shape of the tanks. E, the tank is housed in the front and rear recesses on the roof of the car, and the aesthetics from the side are improved. F. Is a type with an engine mounted under the cabin. The shape installation direction of the gas tank MTB and the tank package MT3 to be mounted is a design problem in the relationship between the tank capacity to be installed and the gas pressure.

図2Hは.上記ガスタンクMTB1個のみの場合のガス出入り口部の構造の部分断面図であり合成ガス生成部Sから取り出されたガスはタンク開閉バルブGTbsec (一例として電磁バルブを通電時ON・非通電時OFFとなる接点回路としている)を経由してタンクに貯ガスされ、更にエンジンの燃料切換えバルブCbに導入する構造にしている概略図であり、この非通電時OFFとなる構造にすれば上記衝突及び転落時の力が上記タンクに掛り貯ガスタンクが外れ飛ぶ事態になれば電気配線もはずれ飛ぶので電磁バルブはOFFとなりタンク内のガスは漏れ出ない構造である。
図2,Iは.車上部に固着固定している固定具MT5の両端部に弾性性状を有する逆J状の係止固定構造KRsecを設け、(下部図)車か大破する様な衝撃が掛かると、前記逆J状の係止固定構造KRsecの逆J状の係止機能部が伸びてHPE体が上部に離脱する構造(上部図)にした1例図であり、前記車か大破する様な衝撃力が掛かるとHPE体が上部に離脱する機能を有する構造であれば、金属・合成樹脂・その他・材質および形状にはこだわらない。
上記畜ガスタンクの構造で二酸化炭素畜ガスタンク・水素畜ガスタンクを設ける事が好ましい。
FIG. FIG. 5 is a partial cross-sectional view of the structure of the gas inlet / outlet portion when there is only one gas tank MTB, and the gas taken out from the synthesis gas generator S is a tank open / close valve GTbsec (for example, the electromagnetic valve is turned on when energized and turned off when deenergized. It is a schematic diagram of a structure in which gas is stored in a tank via a contact circuit) and introduced into the fuel switching valve Cb of the engine. If the force is applied to the tank and the gas storage tank comes off, the electrical wiring will be disconnected and the electromagnetic valve will be turned off so that the gas in the tank will not leak.
2 and I are. A reverse J-shaped locking and fixing structure KRsec having elasticity is provided at both ends of the fixing device MT5 fixedly fixed to the upper part of the vehicle. (Lower view) When the car is severely damaged, the reverse J-shaped This is an example of a structure (upper view) in which the reverse J-shaped locking function part of the locking structure KRsec extends and the HPE body is detached from the upper part. As long as the HPE body has a function of separating to the upper part, it does not stick to metal, synthetic resin, other, material and shape.
It is preferable to provide a carbon dioxide livestock gas tank and a hydrogen livestock gas tank in the structure of the livestock gas tank.

上記補足記載であるが、前記水蒸気改質で生成した合成ガスはCOとHの概略物質量1:1の混合物である。気体体積は物質量に比例するので、一酸化炭素量=水素量で気体は標準状態で22.4L/molの体積である。(液体水素:高圧 水素=6:1の運搬効率)水素は1Lあたり39g(700気圧のタンク内重量)である。
前記CO改質で生成したガスは上記第2の発明の段落に記載しているが、一例として改質物質をジメジエーテルとした場合は、ジメジエーテルに水蒸気か二酸化炭素の何れか一方か両方かを加えて反応させると、
A.CHOCH+HO→2CO+4H−48.9Kal/mol 水蒸気の場合
B.CHOCH++CO→3CO+3H−58・8Kal/mol二酸化炭素の場合
C.2CH3OCH3+H2O+CO2−107.7Kal/mol両方の場合 のようになる。
*水素の性質・拡散が早く漏れやすい・高い反応性・特に鉄鋼を含む金属を脆くする。
Although the above-mentioned supplemental described, the synthesis gas produced by the steam reforming is a schematic substance amount 1 of CO and H 2: a mixture of 1. Since the gas volume is proportional to the amount of the substance, the amount of carbon monoxide = the amount of hydrogen and the gas has a volume of 22.4 L / mol in the standard state. (Transfer efficiency of liquid hydrogen: high pressure hydrogen = 6: 1) Hydrogen is 39 g per liter (weight in tank of 700 atm).
The gas generated by the CO 2 reforming is described in the paragraph of the second invention, but when the reforming substance is dimethyl ether as an example, the dimethyl ether is either water vapor or carbon dioxide, or both. In addition, if you react,
A. In the case of CH 3 OCH 3 + H 2 O → 2CO + 4H 2 −48.9 Kal / mol water vapor
B. In the case of CH 3 OCH 3 ++ CO 2 → 3CO + 3H 2 −58 · 8 Kal / mol carbon dioxide
C. In the case of both 2CH3OCH3 + H2O + CO2-107.7 Kal / mol become that way.
* Hydrogen properties, diffusion is quick and easy to leak, high reactivity, and especially brittle metals including steel.

図3A.は図1Aの前後方向断面図で、ロータリーピストンエンジンの水素対応構造部の説明は図6に記載しており後述する。
ロータリーピストンエンジン ロータリーハウジングの内壁と外壁間に少なくとも1/2周する通水路Kを設けており、1方の、水の導入管からは水を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み、前記水が燃料の燃焼熱で吸気→圧縮→爆発→排気工程部に当接する通水路を通る過程で水蒸気Jとなり吸熱反応流路部Sへ送り込まれ、炭素C挿入管より炭素が挿入される、
他方のロータリーピストンエンジン内に空気Oが送り込まれ、次に燃料の合成ガスMTCかサブタンクST燃料(ブタン・バイオ燃料・合成ガス等の何れか)がエンジン内に送り込まれ、→圧縮→爆発→排気Eとなり、吸熱反応流路部Sへ送り込まれる、3図の記載では前記排気Eは吸熱反応流路部Sの管中央部を流れ、水蒸気Jと挿入された炭素は熱反応流路管MSの管壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造の1例概略図である。
CO2改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図1B・図3、の説明構成を適用する。
FIG. 3A. FIG. 1A is a cross-sectional view in the front-rear direction of FIG. 1A, and a description of the hydrogen-compatible structure of the rotary piston engine is shown in FIG.
Rotary piston engine A water passage K that makes at least a half turn between the inner wall and the outer wall of the rotary housing is provided, and water is supplied from one water introduction pipe to the water passage K between the inner wall and the outer wall of the rotary housing. The water is sent to the endothermic reaction channel S through the carbon C insertion tube, and the water becomes steam J in the process of passing through the water passage that contacts the intake → compression → explosion → exhaust process part with the combustion heat of the fuel. The
Air O 2 is sent into the other rotary piston engine, and then the fuel synthesis gas MTC or subtank ST fuel (any of butane, biofuel, synthesis gas, etc.) is sent into the engine, → compression → explosion → exhaust E X next to be fed to the endothermic reaction flow path portion S, the exhaust E X flows through the tube center portion of the endothermic reaction channel section S, carbon inserted with steam J thermal reaction channel is in the description of FIG. 3 flow synthesis gas generator tube provided in a coil shape in contact with the tube wall of the tube MS, the tube in the heat of the exhaust E X flowing a central portion is generated in the synthesis gas is withdrawn from the take-out tube is transferred to savings gas tank MT FIG.
The explanation structure of FIG. 1B and FIG. 3 is applied to the structure of the water passage / ventilation path of the rotary housing corresponding to CO2 reforming and synthesis gas reforming.

図3B.は図3A.の水(HO)の導入管部に水蒸気Jと炭素Cの混合体を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み前記熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造概略図である。
CO改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図3A,B,図4にも図1Bの説明構成を適用する。
FIG. 3B. FIG. A mixture of water vapor J and carbon C is fed into a water passage K between the inner wall and the outer wall of the rotary housing into the water (H 2 O) introduction pipe portion of the water and comes into contact with the inner wall surface of the thermal reaction channel pipe MS in a coil shape the synthesis gas production tube provided in the flow, which is the tube structure schematic diagram central portion is generated heat in the synthesis gas in the exhaust E X flowing retrieved from the take-out tube is transferred to savings gas tank MT.
The structure of the water passage / ventilation path of the rotary housing corresponding to CO 2 reforming and synthesis gas reforming also applies the explanation structure of FIG. 1B to FIGS.

図4は図3の熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管路をストレートの細い管にして設け、前記細い管と細い管の間を排気Eが流れる構成にしたものであり、又吸熱反応流路の設計は排気ガス処理システムで触媒を対峙させて排気を無害化させるシステムで多種実用化されているので、その構造構想を適用しても良い。 Figure 4 is provided to the synthesis gas production pipeline provided in a coil shape in contact with the tube inner wall surface of the thermal reaction flow pipe MS of FIG. 3 in a thin tube of a straight, exhaust between the thin tube and the thin tube E X The design of the endothermic reaction flow path has been put to practical use in a system that makes the exhaust gas harmless by confronting the catalyst in the exhaust gas treatment system. good.

図5は特開2007−211608の水素ロータリーピストンエンジンを示す概略図である。 FIG. 5 is a schematic view showing a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-2111608.

図6は水素ロータリーピストンエンジンの電子制御噴射構造部の主構成を示した図であり前記電子制御噴射弁は、例えば100KWの出力を得る為には2300NL/minの大容量を噴射する必要がある、上図の2個の噴射弁40,42を設けて大容量を噴射している。
さらにローターハウジング側面に大容量の吸気ポート16と排気ポート18を設け、更に爆発室を爆発寸前時に2分する構造にしており2個の点火プラグ14,15を設けている図。
FIG. 6 is a diagram showing a main configuration of an electronically controlled injection structure of a hydrogen rotary piston engine. The electronically controlled injection valve needs to inject a large capacity of 2300 NL / min in order to obtain an output of 100 KW, for example. The two injection valves 40 and 42 in the above figure are provided to inject a large volume.
Further, a large-capacity intake port 16 and an exhaust port 18 are provided on the side of the rotor housing, and the explosion chamber is divided into two when it is about to explode, and two spark plugs 14 and 15 are provided.

近年ハイブリッド車・100%電気の電気自動車が脚光を浴びている。
しかし自動車の殆どを電気エネルギーとすると、家電を始めとする電化のスピードに追従させるのが一杯の電力供給事情に追い打ちを掛ける「福島原発」の問題もあり、電力供給設備の拡充は早急に解決すべき課題と成っている。しかしながら国民は原子力発電所の建設または再稼働問題については、原発を廃止すれば電力料金の負担が増える事もあり賛成方向に理解していても原発廃棄物の処理方法が判らない現状では反対意見が多いと私は理解している、更に世論は脱ダム方向に向いている、従って電力供給設備の拡充は火力発電及び自然エネルギーによる物のウエートが非常に高くなるのは、必死の情勢である。 従ってCO2排出を抑えた電力発電設備を拡充することが早急に解決すべき問題である。
In recent years, hybrid vehicles and 100% electric vehicles have attracted attention.
However, if most of the automobiles are used as electric energy, there is a problem of the “Fukushima nuclear power plant” that overwhelms the power supply situation to follow the speed of electrification including home appliances, and the expansion of the power supply facilities is solved quickly It is an issue that should be done. However, the public disagrees with the current situation regarding the construction or restart of nuclear power plants, as the burden of electricity charges will increase if the nuclear power plant is abolished. I understand that there are many, and further public opinion is toward the direction of damming. Therefore, expansion of power supply facilities is a desperate situation that the weight of things by thermal power generation and natural energy becomes very high . Therefore, expanding the power generation facilities that suppress CO 2 emissions is a problem that should be solved immediately.

ここ数十年外国から安価な木材が輸入され、林業従事者は極端に減少し山林は間伐されず、又松枯れ等害虫に蝕まれた枯木は放置されたままである。
更に農業の活性化であるが、「田んぼ」の殆どは農業用水路が整備されており、更に長年施肥をしていて、肥沃な農地となっている、これを遊ばしておくのは、あまりにも「無駄」である、この「田んぼ」に例えばパルプ材料となる「ケナフ」、養蚕の「桑」を植えるとか、あるいは水の補給が十分に出来る所は、南米のウルグアイが行っている「ユウカリ」をうえるとかするのも1つの案であり、前記農産廃棄物を含めた炭化出来るものを、農家が片手間で出来る小規模な炭化装置(図10参照)を複数軒に1個貸与使用(リース方式にして前記炭化装置で炭化した物の代金で割安にした炭化装置を、例えば5年分割とかで買い取らす方式にすれば、買い取らしたお金をさら多くの林業従事者や農家が片手間で出来る「小規模な炭化装置」を貸与させる予算の一部にする事が出来る)するとか、更に里芋の様に水の供給が十分に出来る場所ではよく育つ「バイオエタノール」に成り得るものを植えるとかするのも一策である。
In recent decades, cheap timber has been imported from foreign countries, the number of forestry workers has decreased dramatically, the forest has not been thinned, and dead trees devoured by pests such as pine wilt have been left unattended.
Furthermore, it is the vitalization of agriculture, but most of the “rice fields” have agricultural waterways, which have been fertilized for many years and have become fertile farmland. For example, “Kenaf”, which is a pulp material, and “Mulberry” in sericulture can be planted in this “rice field”, or “Yukari” from Uruguay in South America can be used. One plan is to use a small-scale carbonization device (see Fig. 10) that can be carbonized by a farmer with a single hand for lending use (lease method). For example, if the carbonization equipment that is cheaper with the price of the carbonized equipment is purchased in a five-year split, for example, a small scale that allows more forestry workers and farmers to use the purchased money with one hand. ”Carbonizing equipment” It is also possible to plant a thing that can become “bioethanol” that grows well in places where water supply is sufficient, such as taro.

2020年迄に温室効果ガス(CO)の排出を 25%削減しようと言う目標も囁かれている中で、世界中がこの目標にどうやって到達するか凌ぎを削っている、日本のCO排出の主役は内燃機関からの排出と発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出である、これらのCOは、石炭・石油・天然ガスを始とする化石燃料の使用による物であり、石炭・石油・天然ガスを始とする化石燃料は限りある資源であり、言うまでも無く再生産不可能な資源である。 The goal of reducing greenhouse gas (CO 2 ) emissions by 25% by 2020 is being asked, and Japan's CO 2 emissions are struggling to see how the world can reach this goal. The main players in this project are emissions from internal combustion engines and emissions from thermal power boilers, which account for about 82% of electricity generation (2012 Electricity Federation statistics). These CO 2 starts with coal, oil and natural gas. Fossil fuels such as coal, oil, and natural gas are limited resources, and of course, resources that cannot be reproduced.

京都議定書によれば、植物の炭素Cの燃焼等により生成される炭酸ガスCO2は植物の炭素同化作用で消費される為 プラス マイナス ゼロでありCO排出量としてカウントされない約束に成っている、従って化石燃料の炭素の消費を、植物の炭素にシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、上記合成ガス生成サイクルの案を実現するのが最良と思う。(環境省2010年資料によると、温室効果ガスCOは全世界で303億tを排出しており日本はその3.8%である) According to the Kyoto Protocol, carbon dioxide CO 2 produced by the combustion of plant carbon C is consumed by plant carbon assimilation, so it is a plus or minus zero and is not counted as CO 2 emissions. Therefore, in order to shift the carbon consumption of fossil fuels to plant carbon and achieve a 25% reduction in greenhouse gas CO 2 emissions at an early stage, it is best to realize the above-mentioned synthesis gas generation cycle plan. think. (According to 2010 data from the Ministry of the Environment, greenhouse gas CO 2 emits 30.3 billion tons worldwide, Japan is 3.8%)

太陽光発電(ソーラー発電パネル使用システム・太陽光集光し、熱で蒸気発生→発電)が今後の発電の主流になる日はそう遠くない。しかしながら太陽光発電は夜・雨・曇りと24Hフルタイム発電出来ないのと、大規模に設置する場所となると電力使用地からかなり遠隔地になるので変電・送電設備を新たに設置する事に成るのが欠点で、太陽光発電のみで賄うには大容量の蓄電設備が必要で、又日照率の良い場所(例えば年間降雨量の少ない砂漠が筆頭候補)となると厖大な送電・受電設備が必要である(前記大容量の蓄電設備・厖大な送電・受電設備には、日本が発明した超伝導があり、すでに実験プラントが試稼動中であり、2008年に1,100, 000Vの国際規格も国際承認を得たところであるが、想定コストとの格差が問題とされている)。
そこで本願発明の燃料製造機構を併用し、太陽光発電可能時間以外は短時間稼動可能な本願発明の内燃機関発電とすれば、温室効果ガスCOの排出削減は、より早期に達成出来ると言える。
The day when solar power generation (system using solar power generation panels, condensing sunlight, generating steam with heat → power generation) will become the mainstream of future power generation is not far away. However, solar power generation is not possible 24 hours full-time power generation at night, rain, and cloudy, and if it is installed on a large scale, it will be quite remote from the power usage area, so it will install new substation and transmission equipment The disadvantage is that large-capacity power storage equipment is necessary to cover only with solar power generation, and if it is a place with a good sunshine rate (for example, a desert with low annual rainfall is the leading candidate), a large amount of power transmission / reception equipment is required. (There is superconductivity invented by Japan in the above-mentioned large-capacity power storage equipment, large-scale power transmission / reception equipment, the experimental plant is already in trial operation, and the international standard of 1,100,000V was also established in 2008. Although it has just gained international approval, the gap with the estimated cost is a problem).
Therefore, if the internal combustion engine power generation of the present invention that can be operated for a short time other than the solar power generation time is used in combination with the fuel production mechanism of the present invention, it can be said that the reduction of greenhouse gas CO 2 emission can be achieved earlier. .

燃料とする炭素Cの調達コスト削減の可否が、本願の実用の成否を握っている。炭素製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
「昔の炭焼き窯の効率を良くした物」炭化装置であり、この炭焼き窯規模のものを山林に多数点在設置して、間伐、枝打ち、下刈りといった作業をしながら、燃料とする炭素Cの調達作業を掛け持ちで出来る構造にした炭素製造装置を順次貸与する形態(補助金に代えて出すことに対しての案)にする事が本願実現の近道となる具体的提案である。
Whether or not the procurement cost of carbon C as a fuel can be reduced holds the success or failure of practical use of the present application. In carbon production, when carbonized organic substances are heated with the air and oxygen flow cut off, they turn into black carbon-rich substances. The resulting product is an aggregate mainly composed of amorphous oxygen and the like, and is mostly porous and has a very large surface area. Heating causes dehydration and dehydrogenation reaction to produce a condensed polycyclic aromatic compound, which further forms a network structure, which is called carbonization.
Carbon charcoal used as a fuel while performing many operations such as thinning, pruning and undercutting. It is a concrete proposal that is a shortcut for realizing the present application to sequentially lend carbon production equipment that has a structure that can be handled in a procurement manner (subject to substituting for subsidies).

図10は前述の小規模炭化装置の想定概略図であり、炭素生成室CSに本願の炭素材に適した炭化植物を入れ釜戸の役割をする燃焼室FCに本願の炭素材の概略半分の炭化材植物を燃焼させ、出来た炭素Cの形で集積場に集積する方式にすれば、枝付木材での運搬よりはるかに運搬コストを下げる事が出来る物であり、
酸素が入らない環境で植物原料(木材等)を加熱して炭化させる炭化室CSに木材等を投入し、前記炭化室を加熱する加熱用燃料(木材等の植物原料又はその他の燃焼材)を燃焼させる燃焼室FCに投入して燃焼させ、炭化室の内壁に燃焼室FCの排ガス排出管路Exと水タンクから導入した水H2Oを水蒸気にする水蒸気生成手段の管路Jを設けており、前記炭化過程で発生するガスC4を水蒸気とともに導入管C4で燃焼室に導入して炭化室を加熱する燃料とする構成構造であり、
FIG. 10 is an assumed schematic diagram of the above-described small-scale carbonization apparatus. Carbonization plants suitable for the carbon material of the present application are placed in the carbon production chamber CS, and the combustion chamber FC serving as a pot door is approximately half carbonized of the carbon material of the present application. By burning the timber plant and collecting it in the collection area in the form of carbon C, it is possible to reduce the transportation cost much more than transportation with branch wood,
Plant material in an environment where oxygen from entering by introducing a timber or the like coking chamber CS to carbonized by heating (wood, etc.), heating fuel for heating the carbonizing chamber (plant material such as wood or other burnable material) The combustion chamber FC is made to burn and combusted, and the exhaust gas exhaust pipe Ex of the combustion chamber FC and the pipe J of the steam generating means for converting the water H 2 O introduced from the water tank into water vapor are provided on the inner wall of the carbonization chamber. The gas C4 generated in the carbonization process is introduced into the combustion chamber together with water vapor through the introduction pipe C4, and is used as a fuel for heating the carbonization chamber,

上記第2の発明の段落に記載している構造の改質部(COの改質)を、上記排ガス管路の排出部(煙突)に設けて、一例として改質物質をジメジエーテルとして、触媒を対峙させておる該改質部に、ジメジエーテルに水蒸気か二酸化炭素の一方か両方かを、前記反応させ小規模炭化装置の燃料とする構成にすると、更に炭化に消費する燃料の節減となり、温室効果ガスの排出削減となる。
更に改質部(COの改質)の使用により、石炭等の化石燃料を使用する事が出来、燃料としていた木材等を植物原料のCに改質する出発改質材に出来る。
前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロムマンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物である。
The reforming part (CO 2 reforming) having the structure described in the paragraph of the second invention is provided in the discharge part (chimney) of the exhaust gas pipe, and as an example, the reforming substance is dimethyl ether, and the catalyst If the reforming section is made to react with either dimethyl ether or one of water vapor or carbon dioxide to make the fuel of the small-scale carbonization device, the fuel consumed for carbonization is further reduced. Reduction of effect gas emissions.
Furthermore, by using a reforming section (CO 2 reforming), it is possible to use fossil fuels such as coal, and it is possible to use it as a starting reforming material that reforms wood, etc., used as fuel into plant raw material C.
As an example, the catalyst can be used in combination with other metals or compounds in addition to iron-based metals and / or compounds. Examples of other metals or compounds include zinc, nickel, chromium manganese, tin, cerium, lanthanum, and the like. These compounds, other metals or compounds.

前記記載の合成ガスは水素と一酸化炭素のみとは限らない、前記合成ガスは主構成を表し、例えば、未燃焼炭素、二酸化炭素、水分、その他大気中に存在する気体及び不純物等を含有している場合も含む。 The synthesis gas described above is not limited to hydrogen and carbon monoxide. The synthesis gas represents a main component, and includes, for example, unburned carbon, carbon dioxide, moisture, and other gases and impurities present in the atmosphere. This includes cases where

炭素(植物原料のC)の調達コストが現在では天然ガス(メタン・ブタン等)、石炭、石油の化石燃料に比べ高く、前記炭素の調達コストが、同等に成るか、行政の補助金等が得られるか、若しくは温室効果ガスCOの排出規制の強化の法律を作るか、する迄は炭素の調達は天然ガス(メタン等)で行うか直接天然ガス(メタン等)を燃料とし、社会全体の欲求が高くなり炭素の調達コストがペイ出来る時点で切り替える方法もある、
しかしながら化学技術の進歩の速度は「ニーズ」に比例する形で進歩していると私は思っている、
従って本願の主原料となる再生可能な炭素Cの調達ニーズが高く成れば、前記調達技術は加速度を付けた状態で進化すると確信している。
本願の内燃機関サイクルに使用する炭素は当面「石炭」を粉末にして使用するのが一番安価であるので、再生可能な炭素Cの調達システムが完備するまでは、前記化石燃料を使用して順次再生可能な炭素Cの調達システムに移行する形態をとることになる。
The procurement cost of carbon (plant raw material C) is currently higher than that of natural gas (methane, butane, etc.), coal, and petroleum fossil fuels. Until it is obtained, or the law of strengthening the emission control of greenhouse gas CO 2 is made, the procurement of carbon will be done with natural gas (methane etc.) or directly with natural gas (methane etc.) as fuel and the whole society There is also a way to switch when the desire for carbon increases and the cost of carbon procurement can be paid,
However, I think that the speed of progress in chemical technology is progressing in proportion to "needs",
Therefore, if the need for procurement of renewable carbon C, which is the main raw material of the present application, becomes high, we are confident that the procurement technology will evolve with acceleration.
The carbon used in the internal combustion engine cycle of the present application is the cheapest to use “coal” as powder for the time being, so the fossil fuel will be used until the renewable carbon C procurement system is complete. It will take the form of shifting to a carbon C procurement system that can be sequentially regenerated.

温室効果ガスCOの排出枠の日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を前記炭素の調達コストの一部として使用すれば、本願発明の実現時期は早くなる。
*、化学工場・製鉄工場・アルミ工場・塵焼却場・石油精製から工場等からパイプラインで水素と一酸化炭素の混合気体・二酸化炭素・水素等の輸送手段とすれば運輸機器での輸送よりはるかに輸送コストを下げる事が出来る。
アメリカや欧州各国ではそれぞれ数千Kmの水素輸送パイプラインを敷設しており、世界を競争相手として勝ち残るためにも政府の後押しで早期に実現するべきである。
The amount of purchase of greenhouse gas CO 2 emission allowances in Japan is estimated to be about 1 trillions of billions of yen. If this purchase amount is used as part of the carbon procurement cost, the time of realization of the present invention will be explained. Will be faster.
* From transportation by transportation equipment if it is used as a transportation means of mixed gas of hydrogen and carbon monoxide, carbon dioxide, hydrogen, etc. in pipelines from chemical factories, steel factories, aluminum factories, dust incinerators, oil refining and factories, etc. The transportation cost can be greatly reduced.
Each US and European country has a hydrogen transport pipeline of thousands of kilometers, and should be realized early with the support of the government in order to survive the world as a competitor.

本願の内燃機関を動力とした動力発電設備は、比較的小規模の動力発電設備(前記動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来るので、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
The power generation facility powered by the internal combustion engine of the present application is a relatively small-scale power generation facility. Because it can be a decentralized power generation system with self-sufficiency in units of mass such as remote islands, mountainous remote areas, industrial parks, submarine transmission cables and power demand It is possible to drastically reduce power transmission facilities, power transformation facilities, and power reception facilities that respond to changes in power consumption.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

メタノールを内燃機関の燃料とする場合、もともとメタノールは化学平衡から有利な高圧にして水素と一酸化炭素から合成されたものである。従って水素に転換して使用するよりは、水素と一酸化炭素の合成ガスの形で使用するのがエネルギー的には最も効率が高い。 When methanol is used as a fuel for an internal combustion engine, methanol is originally synthesized from hydrogen and carbon monoxide at a high pressure advantageous from chemical equilibrium. Therefore, it is most efficient in terms of energy to use it in the form of synthesis gas of hydrogen and carbon monoxide, rather than converting it to hydrogen.

圧縮水素と液体水素の輸送であるが、水素の陸上輸送では、水素ガスの体積貯蔵密度が小さい問題を補うために、14.7〜19.6MPaに加圧し圧縮水素として輸送するが、Cr−Mo鋼の水素容器は重量が重く、一例をあげれば100Kgの水素を輸送するトレイラー車は水素容器の重量だけで7tになる、圧縮水素の輸送コスト低減には、アルミ合金ライナーや高密度ポリエチレンライナーにガラス繊維や炭素繊維で強化したタンクにする必要がある、
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準}
Although transportation of compressed hydrogen and liquid hydrogen is carried out, in order to compensate for the problem that the volume storage density of hydrogen gas is small, hydrogen is pressurized to 14.7 to 19.6 MPa and transported as compressed hydrogen. Mo steel hydrogen container is heavy. For example, a trailer vehicle that transports 100 kg of hydrogen requires 7 tons of hydrogen container. To reduce the cost of transporting compressed hydrogen, aluminum alloy liners and high-density polyethylene liners are used. It is necessary to make a tank reinforced with glass fiber or carbon fiber,
Under current regulations (in Japan, registration of JIS B 8265 has been completed and internationally there is ISO 16528) CFRP for transportation (tank with high-density polyethylene liner reinforced with glass fiber or carbon fiber on the entire surface) ) Since the container has a pressure of up to a capacity of 35 MPa, it is necessary to relax regulations in order to utilize the container. (Japan Industrial Gas Association, hydrogen gas container standards)

一方液体水素は体積貯蔵密度が水素ガスの800倍強でタンクローリ―とか断熱コンテナーが使用されているが、液体水素は液化にエネルギーを必要とすることや、沸点が−253°Cで蒸発ロスが発生する欠点がある。 On the other hand, liquid hydrogen has a volume storage density 800 times higher than that of hydrogen gas, and tank trucks or insulated containers are used. However, liquid hydrogen requires energy for liquefaction and has a boiling point of −253 ° C. and evaporation loss. There are disadvantages that occur.

本願発明の内燃機関は合成ガスを燃料としているが、該合成ガスは運輸機器載内機関内でのパイプ配管供給であり、該内燃機関で生成された合成ガスを畜ガスする畜ガスタンクの蓄圧は前述現存の水素エンジン車に搭載されている圧縮ガスの35MPaの畜ガスタンクにする必要は無く1/40程度の蓄圧であっても良く、その蓄圧を低く出来る分加圧ポンプに使用するエネルギーを使わなくて済むし、蓄ガスタンク構造も現行法規内での多くて数MPa程度の構造にする事も出来る。 The internal combustion engine of the present invention uses synthesis gas as fuel, but the synthesis gas is a pipe piping supply in a transport equipment on-board engine, and the accumulation pressure of a livestock gas tank for livestock synthesis gas generated by the internal combustion engine is There is no need to use a 35 MPa livestock gas tank of compressed gas mounted on the existing hydrogen engine vehicle mentioned above, and it may be about 1/40 of the accumulated pressure, and the energy used for the pressurizing pump can be used to reduce the accumulated pressure. There is no need, and the structure of the gas storage tank can be made as high as several MPa within the current regulations.

水素の定常的大量輸送にはパイプラインによる輸送が最適であり欧州と米国各地ではおのおの千数百Km布設されている、本願の合成ガスも性状は水素と類似性状であり前記パイプラインによる輸送をするのが最適手段である。
前記水素パイプラインのパイプ材としては、現在の先端技術では、通常のラインパイプ鋼材に比し、バナジュウムを減らしニッケルやクロムを少量加えた耐サワー材であれば、通常の輸送環境下での使用材と出来るとしており、それによるコストUP分も10%以下とされておる。
Pipeline transportation is optimal for steady mass transportation of hydrogen, and the synthesis gas of this application is similar to hydrogen in Europe and the United States. It is the best way to do it.
As the pipe material of the hydrogen pipeline, in the current advanced technology, if it is a sour-resistant material with a reduced amount of vanadium and a small amount of nickel or chromium, compared with ordinary line pipe steel, it can be used in a normal transportation environment. It is said that the cost can be increased to 10% or less.

水素を燃料としたロータリ−エンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素(又はガソリン)ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、
この車の特徴は燃費の良い条件でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としておる所であり、
短所としては高圧水素燃料タンク満タンでの走行距離が100Kmと短く、又水素の運搬手段も(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造&輸送コストが高い点等である。
The rotary engine vehicle powered by hydrogen is a Mazda Premacy Hydrogen RE hybrid vehicle that has a structure that can be selected to travel using either hydrogen as fuel or gasoline as fuel. A high-pressure hydrogen fuel tank (35MPa, 74L) And a gasoline tank is mounted on the vehicle, electricity is generated by rotating a hydrogen (or gasoline) rotary engine and stored in a lithium ion battery, and driving of the wheel is electricity stored in the battery,
The feature of this car is that the engine is operated with good fuel economy, and the control of the vehicle speed fluctuations depending on the running state of the car is electric control.
Disadvantages include a short mileage of 100 km in a high-pressure hydrogen fuel tank, and the hydrogen transportation means (assuming transportation by car) has a poor ratio of hydrogen loading weight to the tank weight, leading to the development of infrastructure such as hydrogen stations. There are no points and high hydrogen production & transportation cost.

水素を燃料とした東京都市大学が開発している水素エンジンバスは35MPaに圧縮したタンクを6本屋根の上に積んでおり、該タンクを満タンにした状態で200Km走行できるバスでエンジンはディーゼルエンジンを改良した物で主な改良部位はインテークマニホールドと水素の噴射弁と点火プラグを追加したぐらいで有る。 The hydrogen engine bus developed by Tokyo City University, which uses hydrogen as fuel, is loaded with six tanks compressed to 35MPa on the roof. The main improvements in the engine are the addition of an intake manifold, hydrogen injection valve and spark plug.

水素を燃料とした東京都市大学が開発して作った、水素レシプロエンジンでワゴンタイプの武蔵10は水素冷却インタークーラー付水素エンジンで、液体水素100Lのタンクを搭載しており1充填で300Kmの連続走行を可能にした車である。
上記水素を燃料とする現存車の短所は、水素の運搬手段の(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造コストが高い点等である。
A hydrogen reciprocating engine and a wagon type Musashi 10 developed and developed by Tokyo City University using hydrogen as a fuel, is a hydrogen engine with a hydrogen cooling intercooler, equipped with a tank of 100 L of liquid hydrogen and continuously running at 300 Km per charge. It is a car that made it possible.
Disadvantages of the above-mentioned existing vehicles that use hydrogen as a fuel are that the ratio of hydrogen loading to the tank weight of the hydrogen transport means (assuming transport by car) is poor, the infrastructure development such as the hydrogen station does not progress, and the hydrogen production cost It is a high point.

マツダ(企業名)の水素ロータリーピストンエンジンでは、水素Hを燃料として発電し、その電気でモーターを回転させているのでその発電構成部分を動力発電機として使用出来、その動力発電機としておる発電構成部分を、本願内燃機関に適用している。 The hydrogen rotary piston engine Mazda (company name), and generating the hydrogen H 2 as a fuel, since by rotating the motor in the electric can use the power component as power generators, dwell as a power generator generating The components are applied to the internal combustion engine of the present application.

前段落の動力発電設備とする場合、合成ガス・水素を副産物としているか、あるいは大量に熱を廃棄している製鋼所・化学工場・アルミ製造工場・鋳造工場・鍛造工場・ごみ焼却所・石油精製所とかに、隣接若しくは近接して動力発電所を設置すればさらにランニングコストは低減される。 In the case of the power generation equipment in the previous paragraph, steelworks, chemical factories, aluminum manufacturing factories, foundry factories, forging factories, garbage incinerators, and oil refineries that use synthesis gas and hydrogen as by-products or dispose of a large amount of heat. If a power plant is installed adjacent to or close to a place, the running cost can be further reduced.

本願の内燃機関動力発電設備とする場合、比較的小規模の動力発電設備(前記内燃機関動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来る、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。
更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
In the case of the internal combustion engine power generation equipment of the present application, a relatively small scale power generation equipment (if the internal combustion engine power generator is assumed to have an output machine of 1000 KW / H as 1 unit / unit, 1 unit to several hundred units The number of units can be set as a decentralized power generation system with self-sufficiency in units of mass, such as remote islands, mountainous areas, and industrial parks. It is possible to greatly reduce the power transmission facilities and power transformation / reception facilities corresponding to the changes.
Furthermore, the current thermal power and nuclear power plants need to be adjacent to the water source, but the location conditions of the power generation facility of the present application do not need to be adjacent to the water source, and have the advantage that they can be installed as close to the power demand area as possible.

前述炭素の供給源には
間伐及び松枯れ等害虫に蝕まれた枯れ木、更に日本の稲作で発生する籾殻・藁等は廃棄されている、この再利用されていない木材と籾殻・藁だけでもかなりの割合で混合気体製造の植物の炭素(C)に成り得る、更に休耕地等の空き地にケナフ(Hibiscuscannabinus L)を栽培し(種には20%の油がある)前記植物の炭素(C)にすることも、更に休耕地等の空き地にトウモロコシ、サトウキビ等の栽培をすれば、植物のバイオ燃料にも出来る、述べるまでもないと思うが、「田んぼ」の多くは農業用水路が確保されており、かつ、長年肥料を施した物であるので、例えば里芋とか、麦を栽培して実は食用として廃棄部分を前記植物のバイオ燃料か植物の炭素(C)にして麦藁を前記植物の炭素(C)にする等、それらから得られる収入と稲作で得られる収入の差額を補填する政策にすると言う方法もある、
The carbon sources mentioned above are dead trees that have been eaten by pests such as thinning and pine wilt, and rice husks and husks generated in Japanese rice farming are discarded. Cultivated kenaf (Hibiscus cannabinus L) in vacant land such as fallow land, which can be mixed gas production plant carbon (C) at a rate of carbon (C) of said plant It goes without saying that cultivating corn, sugarcane, etc. in vacant land such as fallow land can be used as biofuel for plants, but many rice fields have agricultural waterways. In addition, since it has been fertilized for many years, for example, cultivated taro, wheat, and actually edible, the waste part is made into the biofuel of the plant or the carbon of the plant (C) and the wheat straw is converted into the carbon of the plant ( There is also a method to make up for the difference between the income obtained from them and the income obtained from rice cultivation, etc.

今まで国で考えられていた農業(稲作農家)に対する米価(ウルグアイランド)対策として20数年前から実施されている農業規模拡大策で、小さい田んぼ2〜3枚を一枚の田にして農作業効率を上げる事や、数個の農家を一つの企業として大規模化する策や、農業所得補償制度,米の需要減少に対応する、減反助成金政策(2.5兆円)など稲作農家を支援する政策がとられているがいずれの政策も日本の稲作農家を魅力ある職業として次の世代にバトンタッチできる施策とするには程遠いものであり、本願の植物の炭素(C)を燃料源とする政策を実現させる事が「地球温暖化に対処する「CO」の排出削減」と「農・林業を魅力ある職業に出来る事」と、さらに日本の「自動車産業を活性化」と言う「1石数鳥」の効果が期待できる。 Agricultural work with 2 to 3 small rice fields as a single rice field as a measure to expand the scale of agriculture, which has been implemented in the past 20 years as a measure against rice prices (Urg Island) for agriculture (rice farmers) that has been considered in the country. Measures to increase efficiency, measures to increase the size of several farmers as one company, agricultural income compensation system, a subsidy subsidy policy (2.5 trillion yen) to cope with a decrease in rice demand There is a policy to support, but none of these policies are far enough to make Japanese rice farmers an attractive profession for the next generation, using the carbon (C) of the plant as a fuel source. To achieve this policy, “Reducing CO 2 emissions in response to global warming” and “Making agriculture and forestry an attractive occupation” and further revitalizing the Japanese automobile industry. We can expect effect of "one stone several birds" .

本願明細書に記載及び特許請求の範囲に記載されている事象から容易に想到出来る種々の実施形態も、前記特許請求の範囲を逸脱しない範囲であれば本願発明に含まれる。 Various embodiments that can be easily conceived from the events described in the present specification and claims are included in the present invention as long as they do not depart from the scope of the claims.

この案件は1部未開発の部分もあるが、本願の内燃機関は実施可能であり、これらの方法、構成機器の製造に携わる人々が、次にそれらの方法、内燃機関を利用する人々が、更らにそれらに関連する業種の人々に波及する、それらの産業に利用できる。
何より自国の資源を最大限活用するサイクルを作ることが、日本の100年の計を作る土作りとなり、それらの産業の育成につながる。
Although this project is partly undeveloped, the internal combustion engine of the present application can be implemented. Furthermore, it can be used for those industries that spread to people in industries related to them.
Above all, creating a cycle that maximizes the use of your country's resources will create a foundation for Japan's 100-year total, leading to the development of those industries.

A.内燃機関(ロータリーピストンエンジン)で水と炭素を前記エンジン内にてHとCOの合成ガスとする概略構造図。B.レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成図。A. FIG. 3 is a schematic structural diagram of water and carbon as synthesis gas of H 2 and CO in the engine in an internal combustion engine (rotary piston engine). B. The schematic block diagram of the engine block of a water vapor | steam production | generation part of a reciprocating engine, a synthetic gas production | generation endothermic reaction flow path part, a fuel supply / injection system | strain, and a spark plug. A〜F 図1A.の貯ガスタンク設置要領の数種の貯ガスタンク設置例図。 H.貯ガスタンクの1単位のボンベの部分断面・及び当該ボンベのガス出し入れ管路部分図と部分断面図。i.タンク包括体保持・離脱要領図。A-F FIG. The example of several types of storage gas tank installation of the storage gas tank installation procedure. H. The partial cross section of the cylinder of 1 unit of a gas storage tank, and the gas inlet / outlet pipe | tube partial view and partial sectional drawing of the said cylinder. i. Tank comprehensive body holding / removal diagram. A.図1AのEAsecのロータリーエンジンから吸熱反応流路部に至る概略断面図。B.図1.A.のHO供給管に蒸気と炭素を加圧挿入するタイプの断面図。A. FIG. 1B is a schematic cross-sectional view from the EAsec rotary engine of FIG. 1A to the endothermic reaction flow path portion. B. FIG. A. Type cross-sectional view of pressure inserting the vapor and carbon in H 2 O supply pipe. エンジン排気管部に設けた吸熱反応流路部とガス生成管の構造を複数の細管で構成した概略構造例図。The schematic structural example figure which comprised the structure of the endothermic reaction flow-path part provided in the engine exhaust pipe part and the gas production | generation pipe | tube with several thin tubes. 特開2007−211608水素エンジンの制御装置のロータリーエンジンを示す概略図。Schematic which shows the rotary engine of the control apparatus of Unexamined-Japanese-Patent No. 2007-2111608. 特開2007−064169の水素ロータリーピストンエンジンの燃料噴射装置の、A,同上ローターの電子制御、水素噴射構造概略横断面図。 B,A,図の縦方向断面図。A, electronic control of a rotor same as above, and hydrogen injection structure schematic cross-sectional view of a fuel injection device of a hydrogen rotary piston engine disclosed in Japanese Patent Application Laid-Open No. 2007-064169. B, A, the longitudinal cross-sectional view of a figure. 特開2002−039022記載の燃料改質ガスエンジンの実施形態の構成図。The block diagram of embodiment of the fuel reformed gas engine of Unexamined-Japanese-Patent No. 2002-039022. レシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点火栓の概略構成図。1 is a schematic configuration diagram of an electronically controlled hydrogen injection system, intake / exhaust ports, and spark plugs for reciprocating (diesel engine) fuel supply. FIG. 特開2002-256849のカルマン渦を発生させて排気ガスのCOを水に吸集させる、排気管路に設けている排気ガス処理器の概略構造図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural diagram of an exhaust gas treatment device provided in an exhaust pipe that generates Karman vortices of Japanese Patent Application Laid-Open No. 2002-256849 and sucks CO 2 of exhaust gas into water. 小型炭素生成器の1例図。An example figure of a small carbon generator. 世界の化石燃料による,2酸化炭素放出量統計の過時年を捉えた年単位の棒グラフ。Annual bar graph that captures past years of carbon dioxide emissions statistics from fossil fuels around the world.

Claims (15)

水と炭素とを内燃機関の排熱にて反応させて水素と一酸化炭素の混合気体を取り出す取り出設備と、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクとを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスタンク経由で当該内燃機関の燃料とする物であり、前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路で水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
A facility for taking out a mixed gas of hydrogen and carbon monoxide by reacting water and carbon with exhaust heat of the internal combustion engine, and a livestock gas tank for stocking the taken out mixed gas of hydrogen and carbon monoxide are provided. The extracted hydrogen and carbon monoxide mixed gas is used as a fuel for the internal combustion engine via a livestock gas tank, and the exhaust heat of the internal combustion engine is mainly used to convert water into steam in a water passage in the engine block of the internal combustion engine. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is exhaust heat used to make the exhaust heat and exhaust heat obtained by endothermic reaction of the heat in the exhaust gas in the exhaust gas pipe.
請求項1に記載の内燃機関燃焼排ガス中の二酸化炭素を水に吸収させる吸収手段か、二酸化炭素を分離する分離手段かの一方か両方かを設けており、分離した二酸化炭素を畜ガスする畜ガスタンクと、水に吸収させた含二酸化炭素水を畜水する畜水タンクをそれぞれ設けて畜ガス・畜水しており、前記畜ガスした二酸化炭素を、前記内燃機関のエンジンブロックに水を供給する導入管路に水とともに導入するかあるいは、前記水に吸収させた含二酸化炭素水を水導入管路に導入するかのいずれかにしており、該内燃機関内の燃焼熱で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にして、燃焼工程後の排ガス流路に設けた改質流路中に触媒を対峙させており、該改質路上流に炭化水素化合物を導入し、該水蒸気と吸熱気体の二酸化炭素とともに該改質路中の触媒に接触させる事で水素と一酸化炭素の合成ガスを生成して、生成した合成ガスを畜ガスする別の畜ガスタンクを設けて畜ガスし、該畜ガスタンク経由で該エンジンの燃料とする構造構成にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
A livestock gas comprising the absorption means for absorbing carbon dioxide in the combustion exhaust gas of claim 1 in water or the separation means for separating carbon dioxide, wherein the separated carbon dioxide is gasified. A gas tank and a livestock water tank for stocking carbon-containing water absorbed in water are provided to feed livestock gas and livestock water, and the livestock gas is supplied to the engine block of the internal combustion engine. The carbon dioxide-containing water absorbed in the water is introduced into the water introduction pipe, and the water is converted into water vapor by the heat of combustion in the internal combustion engine. The carbon dioxide is converted to carbon dioxide as an endothermic gas, and a catalyst is opposed to the reforming passage provided in the exhaust gas passage after the combustion process, and a hydrocarbon compound is introduced upstream of the reforming passage, And the endothermic gas carbon dioxide In addition, by contacting the catalyst in the reforming path, a synthesis gas of hydrogen and carbon monoxide is produced, and another livestock gas tank is provided for livestock gas production, and the livestock gas tank is passed through. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the engine is structured to be a fuel for the engine.
請求項1乃至請求項2記載の排ガス流路に合成ガス改質路を設けて、該合成ガス改質路に水素と一酸化炭素の混合気体を導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素と二酸化炭素を別々に取り出し、取り出した水素と二酸化炭素はそれぞれ畜ガスタンクを設けて、畜ガスしており、水素は該内燃機関の燃料としており、該二酸化炭素は上記改質路で改質する出発原料の二酸化炭素としておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
3. A synthesis gas reforming path is provided in the exhaust gas passage according to claim 1, and a mixed gas of hydrogen and carbon monoxide is introduced into the synthesis gas reforming path, and the internal combustion is again performed in the synthesis gas reforming path. Hydrogen and carbon dioxide are separately taken out by reacting with the exhaust heat of the engine, and the extracted hydrogen and carbon dioxide are each provided with a livestock gas tank to produce livestock gas, and hydrogen is used as fuel for the internal combustion engine. Is an internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is carbon dioxide as a starting material to be reformed in the reforming path.
請求項1乃至請求項3に記載の水素と一酸化炭素の取り出設備か、改質流路か、合成ガス改質路かの内少なくともいずれか一方以上を設けた内燃機関を運輸機器に搭載し運輸機器の載内機関とすることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関
An internal combustion engine provided with at least one of the hydrogen and carbon monoxide extraction facility according to any one of claims 1 to 3 or a reforming channel or a syngas reforming channel is mounted on a transportation device. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by being an onboard engine for transport equipment
請求項1乃至請求項4に記載の内燃機関であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしていることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
5. The internal combustion engine according to claim 1, wherein the internal combustion engine is operated under a certain condition, generates electric power with the rotational force, is stored in a capacitor, and the automobile is driven using the electricity as a power source. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by its structure.
請求項5に記載の蓄電器の蓄電量が設定値以上になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が設定値以下になると内燃機関エンジンで駆動する構造にした事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
When the amount of electricity stored in the capacitor according to claim 5 exceeds a set value, the driving of the internal combustion engine is stopped and the vehicle runs with electric power. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction.
請求項5に記載の内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる事も出来る構成構造にしたことを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
A greenhouse gas characterized in that a charging / receiving plug is provided in the internal combustion engine according to claim 5, and the vehicle is allowed to run as a charging means for storing electricity in a livestock battery using the electricity as a power source. Internal combustion engine that contributes to reduction and emission reduction.
請求項1乃至請求項4に記載の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素と一酸化炭素の取り出設備か、又は改質流路か、合成ガス改質路か、の内少なくともいずれかの一方を設けて、該内燃機関の燃料を生成する構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にして設けた事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
A means for directly using the rotational force of the internal combustion engine according to claim 1 as power generation power of a power generator or steam that has finished the role of turning a turbine of thermal power generation as a reforming heat source and hydrogen monoxide At least one of a carbon extraction facility, a reforming flow path, or a synthesis gas reforming path is provided to generate fuel for the internal combustion engine. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that it is provided as a means for merging.
熱又は水蒸気を廃棄している製造業に於いて、前記廃棄されている熱又は水蒸気の何れか一方か両方かの何れかを改質熱源として、水素と一酸化炭素の取り出設備か、又は改質流路か、合成ガス改質路か、の内少なくともいずれかの一方を設けて、該内燃機関の燃料を生成する構成にして当該内燃機関の燃料として内燃機関を運転して,その回転力をそのまま動力発電機の発電動力とする事を特徴とする、請求項1乃至請求項3に記載の温室効果ガス削減及び排出削減に寄与する内燃機関。
In the manufacturing industry in which heat or steam is discarded, either hydrogen or carbon monoxide extraction equipment using either the discarded heat or steam or both of them as a reforming heat source, or The internal combustion engine is operated as the fuel for the internal combustion engine by providing at least one of the reforming flow path and the synthesis gas reforming path to generate the fuel for the internal combustion engine, and the rotation thereof The internal combustion engine contributing to greenhouse gas reduction and emission reduction according to claim 1, wherein power is directly used as power generation power of a power generator.
請求項1乃至請求項4に記載の畜ガス手段は、該畜ガスタンクを車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関
The livestock gas means according to any one of claims 1 to 4 is characterized in that the livestock gas tank is mounted on an upper portion of a vehicle body or mounted on a chassis portion of the vehicle. Internal combustion engine that contributes to greenhouse gas reduction and emission reduction
請求項10に記載の畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の設置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かの、いずれかの手段を設けておる事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
The livestock gas means according to claim 10 is either a damage prevention means for preventing damage to the tank or a tank separation means for separating the tank from the vehicle installation part in the event of a collision, either or both of them. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized by providing means.
請求項1乃至請求項4に記載の内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物の何れか一方かあるいは両方かを加工して熱分解若しくは改質して水素Hか、炭素C又は炭素化合物か、二酸化炭素COか、のいずれか一種か複数種かを取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とする出発原料とするかのいずれかにする事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関。
The exhaust heat of the internal combustion engine according to any one of claims 1 to 4 is used as a reforming heat source to process either one or both of a carbon-containing compound and a hydrogen-containing compound to thermally decompose or reform hydrogen H 2 . , Carbon C or carbon compound, or carbon dioxide CO 2 , one kind or a plurality of kinds are taken out, and livestock gas is taken into the livestock gas tank, and the compound from which the gas is taken out is sold as a product and taken out An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the gas is used as a fuel for the internal combustion engine or as a starting material that is reformed and used as a fuel.
請求項1乃至請求項4に記載の内燃機関の主燃料を水素とする事を特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関。
5. An internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the main fuel of the internal combustion engine according to claim 1 is hydrogen.
請求項1乃至請求項3に記載及び請求項13に記載の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関
A water storage means for absorbing heat into the water from the exhaust gas obtained by burning the fuel according to claim 1 to claim 13 is provided in the water storage tank, and water in the storage tank is supplied by the water heat absorption means. The internal combustion engine that contributes to greenhouse gas reduction and emission reduction, characterized in that the water vapor in the exhaust gas that has been absorbed into heat becomes liquid water and is separated and recovered by water recovery means in the form of warm water
請求項1乃至請求項4に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室と、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室と、燃焼室の排ガスの通気路と水を水蒸気にする水蒸気生成手段の管路を炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスを燃焼室に導入して炭化室を加熱する燃料とする構成構造にした小規模炭素製造器。

5. A small-scale carbon production apparatus for producing plant carbon according to claim 1, wherein the carbonization chamber is configured to heat and carbonize wood or the like (plant raw material) in an environment free from oxygen, and the carbonization chamber. A combustion chamber for burning plant materials such as wood to heat the gas, a vent passage for exhaust gas in the combustion chamber and a pipe for steam generation means for converting water into steam along the inner wall of the carbonization chamber, A small-scale carbon production apparatus having a structure in which water vapor and gas generated in the carbonization process in the carbonization chamber are introduced into the combustion chamber to serve as fuel for heating the carbonization chamber.

JP2015006271A 2014-03-24 2015-01-15 How to reduce greenhouse gas emissions. Expired - Fee Related JP6132317B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016510119A JP6183981B2 (en) 2014-03-24 2015-02-17 Greenhouse gas emission reduction method
PCT/JP2015/054216 WO2015146368A1 (en) 2014-03-24 2015-02-17 Internal combustion engine and/or device as measure to reduce emission of greenhouse gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060965 2014-03-24
JP2014060965 2014-03-24

Publications (2)

Publication Number Publication Date
JP2016205133A true JP2016205133A (en) 2016-12-08
JP6132317B2 JP6132317B2 (en) 2017-05-24

Family

ID=54433385

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015006271A Expired - Fee Related JP6132317B2 (en) 2014-03-24 2015-01-15 How to reduce greenhouse gas emissions.
JP2016510119A Expired - Fee Related JP6183981B2 (en) 2014-03-24 2015-02-17 Greenhouse gas emission reduction method
JP2015051972A Pending JP2015194153A (en) 2014-03-24 2015-03-16 Internal combustion engine for greenhouse gas emission reduction measures

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016510119A Expired - Fee Related JP6183981B2 (en) 2014-03-24 2015-02-17 Greenhouse gas emission reduction method
JP2015051972A Pending JP2015194153A (en) 2014-03-24 2015-03-16 Internal combustion engine for greenhouse gas emission reduction measures

Country Status (1)

Country Link
JP (3) JP6132317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293814B (en) * 2022-01-10 2022-11-04 湖南大学 Stable dry grinding self-adaptive heavy concrete wall dismantling device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016578A (en) * 1996-06-28 1998-01-20 Suzuki Motor Corp Chassis structure of gaseous fuel vehicle
JPH11106811A (en) * 1997-10-07 1999-04-20 Nkk Corp Production of reduced iron and apparatus therefor
JPH11106770A (en) * 1997-10-07 1999-04-20 Nkk Corp Method and apparatus for power generation with dimethyl ether modification gas
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor
JP2000320407A (en) * 1999-05-13 2000-11-21 Nkk Corp Method and device for reforming dimethyl ether on vehicle
JP2001169408A (en) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd Controller for hybrid car
JP2003097355A (en) * 2001-09-19 2003-04-03 Nissan Motor Co Ltd Reformed gas engine
JP2003238973A (en) * 2001-09-28 2003-08-27 Ebara Corp Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2004149038A (en) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd Fitting structure for fuel tank module
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2006046319A (en) * 2004-06-30 2006-02-16 Jfe Holdings Inc Exhaust heat recovery device, exhaust heat recovery system, and exhaust heat recovery method
WO2007119587A1 (en) * 2006-03-30 2007-10-25 Nippon Steel Engineering Co., Ltd. Liquid fuel synthesis system
JP2007290645A (en) * 2006-04-27 2007-11-08 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2008202494A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Exhaust gas reformer system for internal combustion engine
JP2008202497A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Control device of internal combustion engine
JP2008298030A (en) * 2007-06-04 2008-12-11 Mitsui Eng & Shipbuild Co Ltd Engine system matching with biomass fuel
JP2009192125A (en) * 2008-02-14 2009-08-27 Jfe Steel Corp Reforming method and utilization method for blast furnace gas
JP2013103645A (en) * 2011-11-15 2013-05-30 Honda Motor Co Ltd Hybrid vehicle control device
JP5647364B1 (en) * 2014-03-31 2014-12-24 寛治 泉 Engine mechanism of rotary piston engine car.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4278136B2 (en) * 2003-06-04 2009-06-10 本田技研工業株式会社 Nitrogen oxide NOx treatment system and apparatus in exhaust gas of internal combustion engine
JP2015024698A (en) * 2013-07-25 2015-02-05 スズキ株式会社 Air conditioner for vehicle

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016578A (en) * 1996-06-28 1998-01-20 Suzuki Motor Corp Chassis structure of gaseous fuel vehicle
JPH11106811A (en) * 1997-10-07 1999-04-20 Nkk Corp Production of reduced iron and apparatus therefor
JPH11106770A (en) * 1997-10-07 1999-04-20 Nkk Corp Method and apparatus for power generation with dimethyl ether modification gas
JPH11311136A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Hybrid automobile and driving device therefor
JP2000320407A (en) * 1999-05-13 2000-11-21 Nkk Corp Method and device for reforming dimethyl ether on vehicle
JP2001169408A (en) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd Controller for hybrid car
JP2003097355A (en) * 2001-09-19 2003-04-03 Nissan Motor Co Ltd Reformed gas engine
JP2003238973A (en) * 2001-09-28 2003-08-27 Ebara Corp Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2004149038A (en) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd Fitting structure for fuel tank module
JP2006046319A (en) * 2004-06-30 2006-02-16 Jfe Holdings Inc Exhaust heat recovery device, exhaust heat recovery system, and exhaust heat recovery method
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
WO2007119587A1 (en) * 2006-03-30 2007-10-25 Nippon Steel Engineering Co., Ltd. Liquid fuel synthesis system
JP2007290645A (en) * 2006-04-27 2007-11-08 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2008202494A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Exhaust gas reformer system for internal combustion engine
JP2008202497A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Control device of internal combustion engine
JP2008298030A (en) * 2007-06-04 2008-12-11 Mitsui Eng & Shipbuild Co Ltd Engine system matching with biomass fuel
JP2009192125A (en) * 2008-02-14 2009-08-27 Jfe Steel Corp Reforming method and utilization method for blast furnace gas
JP2013103645A (en) * 2011-11-15 2013-05-30 Honda Motor Co Ltd Hybrid vehicle control device
JP5647364B1 (en) * 2014-03-31 2014-12-24 寛治 泉 Engine mechanism of rotary piston engine car.

Also Published As

Publication number Publication date
JP6183981B2 (en) 2017-08-30
JP2015194153A (en) 2015-11-05
JPWO2015146368A1 (en) 2017-04-13
JP6132317B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
Salvi et al. Sustainable development of road transportation sector using hydrogen energy system
Gurz et al. The meeting of hydrogen and automotive: A review
Dincer et al. A review of novel energy options for clean rail applications
CN202250480U (en) Internal-combustion engine oil-saving device with hydrogen storage alloy bottle
Bui et al. Energy storage onboard zero-emission two-wheelers: Challenges and technical solutions
WO2015146368A1 (en) Internal combustion engine and/or device as measure to reduce emission of greenhouse gas
US20080309092A1 (en) Power Generator
US9175199B2 (en) Method for providing and using an alcohol and use of the alcohol for increasing the efficiency and performance of an internal combustion engine
Dinga Hydrogen: the ultimate fuel and energy carrier
Reddy et al. Hydrogen: fuel of the near future
US20230018213A1 (en) Emission-free devices and method for performing mechanical work and for generating electrical and thermal energy
JP2017074892A (en) Engine of producing fuel with combustion of enriched oxygen air and fuel
Mendez et al. Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review
CN102039814A (en) Hydrogen vehicle capable of producing hydrogen by alcohol cracking
JP5647364B1 (en) Engine mechanism of rotary piston engine car.
CN104937082A (en) Systems and methods for utilizing alcohol fuels
Pant et al. Fundamentals and use of hydrogen as a fuel
JP6132317B2 (en) How to reduce greenhouse gas emissions.
JP2016151179A (en) Greenhouse effect gas emission reduction method
GB2584531A (en) Apparatus, system and method for high efficiency internal combustion engines and hybrid vehicles
JP5735689B1 (en) Reciprocating engine for reducing greenhouse gas emissions.
Barbosa Natural Gas and Biogas Use in Transit Bus Fleets-A Technical, Operational and Environmental Approach
Ghosh Potential of hydrogen in powering mobility and grid sectors
CN216767597U (en) Novel alcohol-hydrogen internal combustion engine combustion system
Dincer et al. Clean Rail Initiatives

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160529

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6132317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees