JP2016205024A - Steel floor slab - Google Patents

Steel floor slab Download PDF

Info

Publication number
JP2016205024A
JP2016205024A JP2015089230A JP2015089230A JP2016205024A JP 2016205024 A JP2016205024 A JP 2016205024A JP 2015089230 A JP2015089230 A JP 2015089230A JP 2015089230 A JP2015089230 A JP 2015089230A JP 2016205024 A JP2016205024 A JP 2016205024A
Authority
JP
Japan
Prior art keywords
deck plate
bridge axis
groove
rib
deck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015089230A
Other languages
Japanese (ja)
Other versions
JP6451476B2 (en
Inventor
耕一 横関
Koichi Yokozeki
耕一 横関
冨永 知徳
Noriyoshi Tominaga
知徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015089230A priority Critical patent/JP6451476B2/en
Publication of JP2016205024A publication Critical patent/JP2016205024A/en
Application granted granted Critical
Publication of JP6451476B2 publication Critical patent/JP6451476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a steel floor slab, for facilitating manufacture by using a raw material in the same as usual, and improving fatigue strength in a welding route part formed in a welding place between a deck plate and a closed cross-sectional rib.SOLUTION: A steel floor slab 1 of applying the present invention comprises a deck plate 2 for applying a live load by extending in the bridge axial direction and formed in a substantially plate shape, a closed cross-sectional rib 3 welded to the reverse surface side B of the deck plate 2 and extending in the bridge axial direction and a groove part 5 formed on the reverse surface side B of the deck plate 2. The closed cross-sectional rib 3 comprises a closed space 30 formed in a closed cross-sectional shape in the bridge axial orthogonal direction X, an edge part 31 installed on the reverse surface side B of the deck plate 2 by melting welding metal 6 and a welding route part 61 formed on the closed space 30 side in a boundary between a reverse surface 2a of the deck plate 2 and the welding metal 6.SELECTED DRAWING: Figure 6

Description

本発明は、鋼床版で懸念される閉断面リブの溶接ルート部からの疲労亀裂の発生防止対策を目的とするもので、橋軸方向に延びて積載荷重が負荷される鋼床版に関する。   The present invention relates to a steel floor slab that extends in the direction of the bridge axis and is loaded with a loading load.

従来から、デッキプレートに閉断面リブによる補強を施した橋梁用鋼床版では、平坦な表面を有するデッキプレートに、閉断面リブの端部を溶接によって接合した構造が一般的である。橋梁用鋼床版は、上面に舗装が施されたデッキプレートと、下面を補剛する縦リブ及び横リブとで構成されて、縦リブとして閉断面形状の部材を用いることで、比較的低コストでの製造が可能となるものである。   2. Description of the Related Art Conventionally, a steel deck for bridges in which a deck plate is reinforced with a closed cross-section rib generally has a structure in which the end of the closed cross-section rib is joined to a deck plate having a flat surface by welding. Steel decks for bridges are composed of deck plates with paving on the upper surface and vertical and horizontal ribs that stiffen the lower surface. Manufacturing at a low cost is possible.

ここで、橋梁用鋼床版は、要求される全耐荷荷重に対して占める交通荷重の割合が大きく、繰返し交通荷重による疲労損傷が発生しやすいため、特に、デッキプレートと閉断面縦リブとの接合箇所に形成された溶接ルート部で発生する疲労亀裂は、その発生数が多いだけでなく、デッキプレートの陥没を引き起して直ちに交通への重大な影響を及ぼす可能性があることから、その対策技術の確立が必要とされている。   Here, the steel slab for bridges has a large ratio of traffic load to the total load capacity required, and fatigue damage due to repeated traffic load is likely to occur. Fatigue cracks that occur at the weld route formed at the joints are not only large in number, but can cause a sinking of the deck plate and immediately have a significant impact on traffic. It is necessary to establish countermeasure technology.

このため、特許文献1に開示された鋼床版は、閉断面リブの端部に曲げ加工を施すことで、溶接ルート部に発生する応力振幅を低減して、疲労寿命を延長しようとするものである。また、特許文献2に開示された鋼床版は、特に、横リブに閉断面リブが挿通される部材交差部で、溶接ルート部に発生する応力振幅が大きくなることから、デッキプレートに溶接されるリブを閉断面リブ内で閉断面リブと並行する方向に追加することで、部材交差部での応力振幅を低減させて、溶接ルート部からの疲労亀裂の発生を抑止しようとするものである。   For this reason, the steel slab disclosed in Patent Document 1 attempts to extend the fatigue life by bending the end of the closed cross-section rib to reduce the stress amplitude generated in the weld root. It is. In addition, the steel slab disclosed in Patent Document 2 is welded to the deck plate because the stress amplitude generated in the welding root portion is increased particularly at the member intersection where the closed cross-section rib is inserted into the lateral rib. By adding a rib in the closed cross-section rib in a direction parallel to the closed cross-section rib, it is intended to reduce the stress amplitude at the member intersection and suppress the occurrence of fatigue cracks from the weld root. .

特開2013−87432号公報JP 2013-87432 A 特開2014−92000号公報JP 2014-92000 A

しかし、特許文献1に開示された鋼床版は、閉断面リブ端部を閉断面リブ内側に向けるように曲げ加工を施した場合に、曲げ加工部に溶接を行うため、母材に高じん性が要求されるものとなり、他方で、閉断面リブ端部を閉断面リブ外側に向けるように曲げ加工を施した場合に、横リブに閉断面リブが挿通される部材交差部の構造が複雑となることから、製作性が低下するおそれがある。   However, the steel floor slab disclosed in Patent Document 1 is welded to the bent portion when bending is performed so that the end of the closed cross-section rib faces the inside of the closed cross-section rib. On the other hand, when bending is performed so that the end of the closed cross-section rib faces the outside of the closed cross-section rib, the structure of the member intersection where the closed cross-section rib is inserted into the lateral rib is complicated Therefore, the manufacturability may be reduced.

また、特許文献2に開示された鋼床版は、既存のデッキプレート、縦リブ及び横リブだけでなく、さらに付加物となるリブが取り付けられることで、全体重量の増加を招くものとなって、鋼床版の優位性の一つである軽量性が損なわれるだけでなく、付加物とデッキプレートとの溶接部の端部が疲労損傷を発生させやすいディテールとなって、新たな疲労亀裂の起点の発生も懸念されるものとなる。   Moreover, the steel floor slab disclosed in Patent Document 2 is not only an existing deck plate, vertical ribs and horizontal ribs, but is further attached with additional ribs, thereby increasing the overall weight. Not only is the lightness, which is one of the advantages of steel decks, lost, but the end of the welded part between the adjunct and the deck plate has become a detail that tends to cause fatigue damage. The starting point is also a concern.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、従来と同様の素材を用いることで製造を容易にするとともに、新たな溶接部の追加や重量増加を伴わず、デッキプレートと閉断面リブとの溶接箇所に形成される溶接ルート部での疲労強度を向上させた鋼床版を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to facilitate manufacture by using the same material as the conventional one and to add a new welded portion. Another object of the present invention is to provide a steel slab with improved fatigue strength at the weld root formed at the welded portion between the deck plate and the closed cross-section rib without increasing the weight.

第1発明に係る鋼床版は、橋軸方向に延びて積載荷重が負荷される鋼床版であって、略板状に形成されたデッキプレートと、前記デッキプレートの裏面側に溶接されて橋軸方向に延びる閉断面リブと、前記デッキプレートの裏面側に形成される溝部とを備え、前記閉断面リブは、橋軸直交方向で閉断面形状に形成される閉空間と、溶接金属を溶融することで前記デッキプレートの裏面側に取り付けられる端縁部と、前記デッキプレートの裏面と溶接金属との境界で前記閉空間側に形成される溶接ルート部とを有し、前記溝部は、前記デッキプレートの表面側の溝底で所定の残存板厚を有し、前記溶接ルート部から前記閉空間側に所定の離間距離で離間させて、橋軸方向に沿って形成されることを特徴とする。   The steel slab according to the first invention is a steel slab that extends in the direction of the bridge axis and is loaded with a loading load, and is welded to the deck plate formed in a substantially plate shape and the back side of the deck plate. A closed cross-section rib extending in the bridge axis direction, and a groove formed on the back side of the deck plate, the closed cross-section rib is formed in a closed space formed in a closed cross-sectional shape in the direction orthogonal to the bridge axis, and weld metal An edge portion attached to the back surface side of the deck plate by melting, and a welding root portion formed on the closed space side at the boundary between the back surface of the deck plate and the weld metal, and the groove portion, The deck plate has a predetermined remaining thickness at the groove bottom on the surface side of the deck plate, and is formed along the bridge axis direction at a predetermined separation distance from the welding root portion to the closed space side. And

第2発明に係る鋼床版は、第1発明において、前記デッキプレートは、前記閉断面リブに交差させて橋軸直交方向に延びる横リブが、前記デッキプレートの裏面側に溶接により固定されるものであり、橋軸方向で前記横リブの両側に設けられる溶接金属の脚長と、前記デッキプレートの裏面に対向する前記横リブの端面とで、橋軸方向に所定の固定幅で固定面が形成されて、前記溝部は、前記固定面の橋軸方向の中心軸を橋軸直交方向で前記閉空間まで延ばした仮想基準線から、橋軸方向の両側に離間した位置に、橋軸方向に延びる両端部の各々が配置されることを特徴とする。   A steel deck according to a second invention is the steel plate according to the first invention, wherein the deck plate has a transverse rib that intersects the closed cross-section rib and extends in a direction perpendicular to the bridge axis, and is fixed to the back side of the deck plate by welding. A fixed surface with a predetermined fixed width in the bridge axis direction is formed by a leg length of the weld metal provided on both sides of the horizontal rib in the bridge axis direction and an end surface of the horizontal rib facing the back surface of the deck plate. The groove portion is formed in the bridge axis direction at a position spaced apart on both sides in the bridge axis direction from a virtual reference line that extends to the closed space in a direction orthogonal to the bridge axis in the bridge axis direction. Each of the extending both ends is arranged.

第3発明に係る鋼床版は、第2発明において、前記溝部は、前記仮想基準線から橋軸方向で10mm以上、250mm以下の範囲に、前記両端部の各々が配置されることを特徴とする。   A steel deck according to a third invention is characterized in that, in the second invention, each of the both end portions is arranged in a range of 10 mm or more and 250 mm or less in the bridge axis direction from the virtual reference line. To do.

第4発明に係る鋼床版は、第2発明又は第3発明において、前記溝部は、橋軸方向で前記仮想基準線に跨がって、橋軸方向に所定の延伸長で延びて連続して形成されることを特徴とする。   In the steel deck according to the fourth invention, in the second invention or the third invention, the groove portion extends over the virtual reference line in the bridge axis direction and extends in the bridge axis direction with a predetermined extension length. It is characterized by being formed.

第5発明に係る鋼床版は、第1発明〜第4発明の何れかにおいて、前記溝部は、前記デッキプレートの裏面側に前記端縁部が取り付けられる溶接箇所での橋軸直交方向の断面で、前記溶接ルート部から前記溝部の内側での前記溝底の内面に向けた接線が、前記デッキプレートの裏面に対する傾斜角度θを30°以上として、かつ、前記溝底の残存板厚が8mm以上となるように形成されることを特徴とする。   A steel deck according to a fifth aspect of the present invention is the steel plate according to any one of the first to fourth aspects, wherein the groove is a cross-section in a direction perpendicular to the bridge axis at a welding point where the edge is attached to the back side of the deck plate. Then, the tangent line from the welding root portion toward the inner surface of the groove bottom inside the groove portion has an inclination angle θ with respect to the back surface of the deck plate of 30 ° or more, and the remaining thickness of the groove bottom is 8 mm. It is formed so that it may become the above.

第6発明に係る鋼床版は、第1発明〜第5発明の何れかにおいて、前記溝部は、前記デッキプレートの裏面側に前記端縁部が取り付けられる溶接箇所での橋軸直交方向の断面で、前記溝部の内側での前記溝底の内面が略半円弧状に形成されるとともに、前記溝底の内面の曲率半径rが、下記(1)式により規定される関係を満足することを特徴とする。ここで、r:前記溝底の内面の曲率半径、td:前記デッキプレートの板厚とする。   A steel deck according to a sixth aspect of the present invention is the cross-section in the direction orthogonal to the bridge axis at the welding location where the end edge is attached to the back side of the deck plate. The inner surface of the groove bottom inside the groove is formed in a substantially semicircular arc shape, and the radius of curvature r of the inner surface of the groove bottom satisfies the relationship defined by the following equation (1). Features. Here, r is the radius of curvature of the inner surface of the groove bottom, and td is the thickness of the deck plate.

Figure 2016205024
Figure 2016205024

第1発明〜第6発明によれば、デッキプレートの裏面側で溶接ルート部から閉空間側に離間させて、容易な加工で溝部が形成されるため、デッキプレートに曲げ外力が作用したときに、デッキプレートの表面側に引張応力が発生するものの、デッキプレートの裏面側での圧縮応力の流れが溝部で遮断されるものとなり、溝部の側方に低応力領域が形成されて、デッキプレートの裏面で溶接ルート部の近傍での応力集中を回避することで、溶接ルート部を起点とした疲労亀裂がデッキプレートの裏面側に発生することを防止することが可能となる。   According to the first to sixth inventions, the groove portion is formed by easy processing on the back surface side of the deck plate away from the welding root portion, and when a bending external force acts on the deck plate. Although tensile stress is generated on the surface side of the deck plate, the flow of compressive stress on the back side of the deck plate is blocked by the groove, and a low stress region is formed on the side of the groove, By avoiding stress concentration in the vicinity of the welding root portion on the back surface, it is possible to prevent a fatigue crack starting from the welding root portion from occurring on the back surface side of the deck plate.

第2発明によれば、閉断面リブと横リブとを交差させた箇所において、デッキプレートに著しく大きい曲げ外力が作用するにもかかわらず、デッキプレートの裏面側に形成された溝部で圧縮応力の流れが遮断されることで、新たな溶接部の追加や重量増加を伴わず、溶接ルート部の疲労強度を向上させて、デッキプレートの裏面側での疲労亀裂の発生を確実に防止することが可能となる。   According to the second aspect of the present invention, in the place where the closed cross-section rib and the transverse rib intersect each other, a significantly large bending external force acts on the deck plate, but the compressive stress is generated in the groove formed on the back surface side of the deck plate. By interrupting the flow, it is possible to improve the fatigue strength of the weld root without adding new welds or increase the weight, and to reliably prevent the occurrence of fatigue cracks on the back side of the deck plate. It becomes possible.

第3発明によれば、仮想基準線から橋軸方向で10mm以上、250mm以下の範囲に溝部の両端部が配置されることで、溝部の延伸長が20mm以上、500mm以下となり、デッキプレートの断面剛性の低下等を懸念することなく、溶接ルート部での発生応力を十分に低減させることが可能となる。   According to the third aspect of the invention, by arranging both ends of the groove in the range of 10 mm or more and 250 mm or less in the bridge axis direction from the virtual reference line, the extending length of the groove becomes 20 mm or more and 500 mm or less, and the cross section of the deck plate It is possible to sufficiently reduce the stress generated at the welding root without worrying about a decrease in rigidity.

第4発明によれば、橋軸方向で仮想基準線に跨がって、溝部が連続して形成されることで、デッキプレートの裏面と横リブの端面とが固定面で拘束された範囲に、溝部で遮断された圧縮応力が流れないものとなり、デッキプレートの裏面側での疲労亀裂の発生を確実に防止することが可能となる。   According to the fourth aspect of the present invention, the groove is continuously formed across the virtual reference line in the bridge axis direction, so that the back surface of the deck plate and the end surface of the lateral rib are in a range constrained by the fixed surface. Thus, the compressive stress blocked by the groove does not flow, and it is possible to reliably prevent the occurrence of fatigue cracks on the back surface side of the deck plate.

第5発明によれば、溶接ルート部から溝底の内面に向けた接線が、デッキプレートの裏面に対する傾斜角度を30°以上として、かつ、溝底の残存板厚が8mm以上となるように形成されることで、溶接ルート部での発生応力を十分に低減させながら、必要な残存板厚を確保することが可能となる。   According to the fifth invention, the tangent line from the welding root portion toward the inner surface of the groove bottom is formed so that the inclination angle with respect to the back surface of the deck plate is 30 ° or more and the remaining thickness of the groove bottom is 8 mm or more. By doing so, it is possible to ensure the necessary remaining plate thickness while sufficiently reducing the generated stress at the welding root portion.

第6発明によれば、溝底の内面の曲率半径が上記(1)式により規定される関係を満足することで、接線の傾斜角度が如何なる大きさであっても、溝底の内面での応力集中の抑制効果を安定させることが可能となる。   According to the sixth aspect of the invention, the radius of curvature of the inner surface of the groove bottom satisfies the relationship defined by the above equation (1), so that the tangential inclination angle is whatever the size of the inner surface of the groove bottom. It is possible to stabilize the effect of suppressing stress concentration.

本発明を適用した鋼床版が導入される橋梁を示す斜視図である。It is a perspective view which shows the bridge in which the steel deck slab to which this invention is applied is introduced. (a)は、本発明を適用した鋼床版を示す正面図であり、(b)は、その側面図である。(A) is a front view which shows the steel deck to which this invention is applied, (b) is the side view. (a)は、本発明を適用した鋼床版で断面略半円形状の閉断面リブを示す正面図であり、(b)は、断面略V形状の閉断面リブを示す正面図である。(A) is a front view which shows the closed cross-sectional rib of a substantially semicircular cross section with the steel deck which applied this invention, (b) is a front view which shows the closed cross-section rib of a substantially V-shaped cross section. 本発明を適用した鋼床版の溶接ルート部を示す拡大正面図である。It is an enlarged front view which shows the welding route part of the steel deck to which this invention is applied. 本発明を適用した鋼床版の溶接ルート部の変形例を示す拡大正面図である。It is an enlarged front view which shows the modification of the welding route part of the steel deck to which this invention is applied. 本発明を適用した鋼床版の溝部の態様を示す拡大正面図である。It is an enlarged front view which shows the aspect of the groove part of the steel deck which applied this invention. 本発明を適用した鋼床版の溝部の態様を示す拡大平面図である。It is an enlarged plan view which shows the aspect of the groove part of the steel deck which applied this invention. (a)は、従来のデッキプレートに発生する疲労亀裂を示す拡大正面図であり、(b)は、本発明を適用した鋼床版の低応力領域又は無応力領域を示す拡大正面図である。(A) is an enlarged front view which shows the fatigue crack which generate | occur | produces in the conventional deck plate, (b) is an enlarged front view which shows the low stress area | region or no-stress area | region of the steel deck which applied this invention. . (a)は、本発明を適用した鋼床版で閉断面リブと横リブとが交差しない箇所を示す拡大正面図であり、(b)は、閉断面リブと横リブとが交差する箇所を示す拡大正面図である。(A) is an enlarged front view which shows the location where a closed cross-section rib and a horizontal rib do not cross | intersect with the steel deck which applied this invention, (b) is a location where a closed cross-section rib and a horizontal rib cross. It is an enlarged front view shown. (a)は、本発明を適用した鋼床版の有限要素解析モデルを示す平面図であり、(b)は、その正面図である。(A) is a top view which shows the finite element analysis model of the steel deck to which this invention is applied, (b) is the front view. 本発明を適用した鋼床版の溶接ルート部での発生応力及び溝底の残存板厚と接線の傾斜角度との関係を示すグラフである。It is a graph which shows the relationship between the generating stress in the welding root part of the steel deck to which this invention is applied, the residual plate | board thickness of a groove bottom, and the inclination angle of a tangent. 本発明を適用した鋼床版の発生応力と溝部の延伸長との関係を示すグラフである。It is a graph which shows the relationship between the generated stress of the steel deck to which this invention is applied, and the extending | stretching length of a groove part. (a)は、本発明を適用した鋼床版で応力集中係数とr/tdとの関係を示すグラフであり、(b)は、応力集中係数の変化率とr/tdとの関係を示すグラフである。(A) is a graph which shows the relationship between a stress concentration factor and r / td in the steel slab to which this invention is applied, (b) shows the relationship between the rate of change of a stress concentration factor and r / td. It is a graph. 本発明を適用した鋼床版でスカラップが形成された横リブを示す正面図である。It is a front view which shows the horizontal rib in which the scallop was formed with the steel deck which applied this invention. 本発明を適用した鋼床版でスカラップが形成された横リブを示す拡大平面図である。It is an enlarged plan view which shows the horizontal rib in which the scallop was formed with the steel deck which applied this invention. (a)は、本発明を適用した鋼床版で橋軸直交方向に延びるダイアフラムを示す正面図であり、(b)は、橋軸直交方向に延びるブラケットを示す正面図である。(A) is a front view which shows the diaphragm extended in a bridge axis orthogonal direction by the steel deck to which this invention is applied, (b) is a front view which shows the bracket extended in a bridge axis orthogonal direction.

以下、本発明を適用した鋼床版1を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the steel deck 1 to which this invention is applied is demonstrated in detail, referring drawings.

本発明を適用した鋼床版1は、図1に示すように、橋梁8等の床版として用いられて、鉄道の車輪又は車両のタイヤ80等の交通荷重が積載荷重として負荷されるものである。   As shown in FIG. 1, a steel deck 1 to which the present invention is applied is used as a deck of a bridge 8 or the like and is loaded with a traffic load such as a railway wheel or a vehicle tire 80 as a load. is there.

本発明を適用した鋼床版1は、略板状に形成された鋼板等が用いられるデッキプレート2と、デッキプレート2の裏面側Bに取り付けられるUリブ等の閉断面リブ3と、デッキプレート2の裏面側Bに形成される溝部5とを備える。   A steel floor slab 1 to which the present invention is applied includes a deck plate 2 in which a steel plate or the like formed in a substantially plate shape is used, a closed cross-section rib 3 such as a U rib attached to the back surface B of the deck plate 2, and a deck plate 2 and a groove portion 5 formed on the back surface side B of the back surface.

デッキプレート2は、デッキプレート2の裏面2aに沿って、例えば、複数の閉断面リブ3が橋軸直交方向Xに並べられて取り付けられる。デッキプレート2は、必要に応じて、デッキプレート2の表面2bに沿って、高さ方向Yの上方に舗装81等が施される。   The deck plate 2 is attached along the back surface 2a of the deck plate 2 with, for example, a plurality of closed cross-section ribs 3 arranged in the bridge axis orthogonal direction X. The deck plate 2 is provided with a pavement 81 or the like above the height direction Y along the surface 2b of the deck plate 2 as necessary.

デッキプレート2は、裏面2a及び表面2bが略平坦状に形成されて、橋軸方向Zに延びる1又は複数の閉断面リブ3と、閉断面リブ3に交差させて橋軸直交方向Xに延びる1又は複数の横リブ4とが、デッキプレート2の裏面側Bに溶接により固定される。   The deck plate 2 has a back surface 2a and a front surface 2b formed in a substantially flat shape, one or a plurality of closed cross-section ribs 3 extending in the bridge axis direction Z, and extending in the bridge axis orthogonal direction X crossing the closed cross-section ribs 3. One or a plurality of lateral ribs 4 are fixed to the back surface side B of the deck plate 2 by welding.

デッキプレート2は、図2に示すように、高さ方向Yに10mm〜20mm程度の板厚tdとなり、また、閉断面リブ3は、6mm〜15mm程度の板厚tlとなるとともに、横リブ4は、橋軸方向Zに9mm〜19mm程度の板厚tbとなる。   As shown in FIG. 2, the deck plate 2 has a plate thickness td of about 10 mm to 20 mm in the height direction Y, and the closed cross-section rib 3 has a plate thickness tl of about 6 mm to 15 mm and the lateral rib 4 Is a plate thickness tb of about 9 mm to 19 mm in the bridge axis direction Z.

閉断面リブ3は、図2(a)に示すように、鋼板等を折り曲げることにより断面略U形状に形成される。なお、閉断面リブ3は、図3(a)に示すように、断面略半円形状等の略円弧状に形成されてもよく、また、図3(b)に示すように、断面略V形状等に形成されてもよく、さらに、断面略U形状、略円弧状、略V形状等にその他の断面形状を組み合わせたものとしてもよい。   As shown in FIG. 2A, the closed cross-section rib 3 is formed in a substantially U-shaped cross section by bending a steel plate or the like. The closed cross-section rib 3 may be formed in a substantially arc shape such as a substantially semicircular cross section as shown in FIG. 3A, and the cross section substantially V as shown in FIG. It may be formed in a shape or the like, and may be a combination of another cross-sectional shape with a substantially U-shaped cross-section, a substantially arc-shaped shape, a substantially V-shaped shape, or the like.

閉断面リブ3は、デッキプレート2を補強するために設けられて、図2(a)に示すように、デッキプレート2の裏面2aと略平行に延びて略平坦状に形成されるUリブフランジ35と、橋軸直交方向XでUリブフランジ35の両側端から上方に向けて延びる一対のUリブウェブ36とを備える。   The closed cross-section rib 3 is provided to reinforce the deck plate 2 and, as shown in FIG. 2A, extends substantially parallel to the back surface 2a of the deck plate 2 and is formed in a substantially flat shape. 35 and a pair of U-rib webs 36 extending upward from both side ends of the U-rib flange 35 in the bridge axis orthogonal direction X.

閉断面リブ3は、橋軸直交方向Xで閉断面形状に形成される閉空間30と、デッキプレート2の裏面側Bに取り付けられる端縁部31とを有する。閉断面リブ3は、Uリブフランジ35と一対のUリブウェブ36とに取り囲まれて閉空間30が形成されるとともに、Uリブウェブ36の高さ方向Yの上端が、デッキプレート2の裏面2aに溶接される端縁部31となる。   The closed cross-section rib 3 has a closed space 30 formed in a closed cross-sectional shape in the bridge axis orthogonal direction X, and an end edge portion 31 attached to the back surface side B of the deck plate 2. The closed cross-section rib 3 is surrounded by a U rib flange 35 and a pair of U rib webs 36 to form a closed space 30, and the upper end in the height direction Y of the U rib web 36 is welded to the back surface 2 a of the deck plate 2. It becomes the edge part 31 to be done.

閉断面リブ3は、図4に示すように、溶接金属6を溶融することでデッキプレート2の裏面側Bに端縁部31が取り付けられるものであり、デッキプレート2の裏面2aと溶接金属6との境界で、閉空間30側に形成される溶接ルート部61を有する。   As shown in FIG. 4, the closed cross-section rib 3 is one in which the edge 31 is attached to the back surface side B of the deck plate 2 by melting the weld metal 6, and the back surface 2 a of the deck plate 2 and the weld metal 6. And a welding route portion 61 formed on the closed space 30 side.

閉断面リブ3は、デッキプレート2の裏面側Bに端縁部31が取り付けられる溶接箇所での橋軸直交方向Xの断面で、デッキプレート2の裏面2aと溶接金属6との交点が2箇所に形成されて、2箇所の交点のうち閉空間30側の交点が溶接ルート部61となり、また、2箇所の交点のうち横リブ4側の交点が溶接止端部62となる。   The closed cross-section rib 3 is a cross-section in the bridge axis orthogonal direction X at the welding location where the edge 31 is attached to the back surface side B of the deck plate 2, and there are two intersections between the back surface 2 a of the deck plate 2 and the weld metal 6. Of the two intersections, the intersection on the closed space 30 side becomes the welding root portion 61, and the intersection on the horizontal rib 4 side among the two intersections becomes the welding toe portion 62.

溶接ルート部61は、デッキプレート2の裏面2a及び閉断面リブ3の端縁部31に、溶接金属6を十分に一体化させて、溶接金属6が閉空間30の内側まで設けられないものとされて、閉断面リブ3の端縁部31の上方で、閉空間30の内側と外側との境界に形成される。   The welding route portion 61 is such that the weld metal 6 is sufficiently integrated with the back surface 2 a of the deck plate 2 and the end edge portion 31 of the closed cross-section rib 3 so that the weld metal 6 is not provided to the inside of the closed space 30. Thus, it is formed at the boundary between the inner side and the outer side of the closed space 30 above the edge 31 of the closed cross-section rib 3.

溶接ルート部61は、図5(a)に示すように、デッキプレート2の裏面2aや閉断面リブ3の端縁部31に、溶接金属6が十分に一体化されない場合においては、閉空間30の外側に形成される。溶接ルート部61は、図5(b)に示すように、閉空間30の外側から内側まで溶接金属6が設けられる場合においては、閉空間30の内側に形成されるものとなる。   As shown in FIG. 5A, the welding route portion 61 is a closed space 30 when the weld metal 6 is not sufficiently integrated with the back surface 2 a of the deck plate 2 or the end edge portion 31 of the closed cross-section rib 3. Formed on the outside. As shown in FIG. 5B, the welding route portion 61 is formed inside the closed space 30 when the weld metal 6 is provided from the outside to the inside of the closed space 30.

溶接止端部62は、グラインダー処理又は超音波衝撃処理(UIT)等の溶接箇所改善処理を施すことができる。ここで、超音波衝撃処理(UIT)とは、超音波衝撃処理装置の先端に取り付けられたピンを溶接止端部62に当てて、超音波振動による衝撃をピンから溶接止端部62に加えることにより、溶接止端部62の溶接残留応力を引張から圧縮に変化させて、溶接箇所での溶接金属6の金属組織を改善させるものである。   The weld toe portion 62 can be subjected to a welding point improvement process such as a grinder process or an ultrasonic impact process (UIT). Here, the ultrasonic impact treatment (UIT) applies a pin attached to the tip of the ultrasonic impact treatment device to the weld toe 62 and applies an impact caused by ultrasonic vibration to the weld toe 62 from the pin. Thereby, the welding residual stress of the weld toe portion 62 is changed from tension to compression, and the metal structure of the weld metal 6 at the welded portion is improved.

横リブ4は、図2(b)に示すように、例えば、所定の板厚tbの鋼板等が用いられる。横リブ4は、閉断面リブ3のUリブフランジ35及びUリブウェブ36に沿って切り欠かれることで切欠部40が形成されて、閉断面リブ3を切欠部40に嵌め込むようにして、閉断面リブ3に交差させるものとなる。   As shown in FIG. 2B, the lateral rib 4 is made of, for example, a steel plate having a predetermined thickness tb. The lateral rib 4 is notched along the U rib flange 35 and the U rib web 36 of the closed cross-section rib 3 to form a notch 40, and the closed cross-section rib 3 is fitted into the notch 40 so that the closed cross-section rib 3 will be crossed.

横リブ4は、デッキプレート2の裏面側Bに溶接により固定するときに、デッキプレート2の裏面2aに対向する端面41が、高さ方向Yの上方に向けて配置される。横リブ4は、端面41をデッキプレート2の裏面2aに当接又は離間させるとともに、デッキプレート2の裏面2aに端面41を固定することで、橋軸方向Zに所定の固定幅Eで固定面7が形成される。   When the horizontal rib 4 is fixed to the back surface side B of the deck plate 2 by welding, an end surface 41 facing the back surface 2a of the deck plate 2 is arranged upward in the height direction Y. The lateral rib 4 has a fixed surface with a predetermined fixed width E in the bridge axis direction Z by bringing the end surface 41 into contact with or away from the back surface 2a of the deck plate 2 and fixing the end surface 41 to the back surface 2a of the deck plate 2. 7 is formed.

横リブ4は、デッキプレート2の裏面側Bに溶接により固定されるため、橋軸方向Zの両側に設けられる溶接金属6の脚長Jと、横リブ4の端面41の板厚tbとが、固定面7の固定幅E(E=tb+2×J)となる。なお、横リブ4は、デッキプレート2の裏面2aに機械的に接合する場合、機械的接合によって橋軸方向Zにデッキプレート2が拘束される長さが、固定面7の固定幅Eとなる。   Since the lateral rib 4 is fixed to the back surface side B of the deck plate 2 by welding, the leg length J of the weld metal 6 provided on both sides in the bridge axis direction Z and the plate thickness tb of the end surface 41 of the lateral rib 4 are: It becomes the fixed width E (E = tb + 2 × J) of the fixed surface 7. When the lateral rib 4 is mechanically joined to the back surface 2 a of the deck plate 2, the length in which the deck plate 2 is restrained in the bridge axis direction Z by mechanical joining is the fixed width E of the fixed surface 7. .

溝部5は、図6に示すように、デッキプレート2の裏面側Bが切り欠かれることで、デッキプレート2の裏面2aから高さ方向Yの上方に向けて凹状に形成されるものとなる。溝部5は、デッキプレート2の表面側Aの溝底50で所定の残存板厚taを有して、デッキプレート2の裏面側Bから表面側Aまで貫通させることなく形成される。   As shown in FIG. 6, the groove portion 5 is formed in a concave shape from the back surface 2 a of the deck plate 2 upward in the height direction Y by cutting out the back surface side B of the deck plate 2. The groove portion 5 has a predetermined remaining plate thickness ta at the groove bottom 50 on the surface side A of the deck plate 2 and is formed without penetrating from the back surface side B to the surface side A of the deck plate 2.

溝部5は、溶接ルート部61から閉断面リブ3の閉空間30側で、橋軸直交方向Xに所定の離間距離dで離間させて、溝部5の内側に溝側面51が形成される。溝部5は、残存板厚taを有する溝底50の最深部50aからデッキプレート2の裏面2aまで、高さ方向Yで所定の高さ寸法hを有するものとなる。   The groove part 5 is separated from the welding root part 61 on the closed space 30 side of the closed cross-section rib 3 by a predetermined separation distance d in the bridge axis orthogonal direction X, and a groove side surface 51 is formed inside the groove part 5. The groove part 5 has a predetermined height dimension h in the height direction Y from the deepest part 50a of the groove bottom 50 having the remaining plate thickness ta to the back surface 2a of the deck plate 2.

溝部5は、デッキプレート2の裏面側Bに閉断面リブ3の端縁部31が取り付けられる溶接箇所での橋軸直交方向Xの断面で、デッキプレート2の表面側Aの溝底50の内面が、溝部5の内側で所定の曲率半径rを有して、略半円弧状の内面形状で形成される。溝部5は、これに限らず、溝部5の内側で溝底50が如何なる内面形状で形成されてもよい。   The groove portion 5 is a cross section in the bridge axis orthogonal direction X at the welding point where the end edge portion 31 of the closed cross-section rib 3 is attached to the back surface side B of the deck plate 2, and the inner surface of the groove bottom 50 on the surface side A of the deck plate 2. However, it has a predetermined radius of curvature r inside the groove portion 5 and is formed in a substantially semicircular inner surface shape. The groove part 5 is not limited to this, and the groove bottom 50 may be formed in any inner shape inside the groove part 5.

溝部5は、例えば、溶接ルート部61から溝部5の内側での溝底50の内面に向けた接線Cが、デッキプレート2の裏面2aに対する傾斜角度θを30°以上として、かつ、溝底50の残存板厚taが8mm以上となるように形成される。   For example, the tangent line C from the welding root portion 61 to the inner surface of the groove bottom 50 on the inner side of the groove portion 5 has an inclination angle θ with respect to the back surface 2a of the deck plate 2 of 30 ° or more. The remaining plate thickness ta is 8 mm or more.

溝部5は、溝部5の内側での溝底50の内面が略半円弧状に形成されるとともに、溝底50の内面の曲率半径rが、下記(1)式により規定される関係を満足するものとなる。ここで、r:溝底50の内面の曲率半径、td:デッキプレート2の板厚とする。   The groove portion 5 has an inner surface of the groove bottom 50 formed inside the groove portion 5 in a substantially semicircular arc shape, and a curvature radius r of the inner surface of the groove bottom 50 satisfies a relationship defined by the following expression (1). It will be a thing. Here, r is the radius of curvature of the inner surface of the groove bottom 50, and td is the thickness of the deck plate 2.

Figure 2016205024
Figure 2016205024

溝部5は、図7に示すように、溶接ルート部61から橋軸直交方向Xに所定の離間距離dで離間させて、橋軸方向Zに沿って形成されて、橋軸方向Zの両端部52まで所定の延伸長Lで延びるものとなる。溝部5は、平面方向で略長円形状に形成されるものであるが、略矩形状、略楕円形状等に形成されてもよい。   As shown in FIG. 7, the groove portion 5 is formed along the bridge axis direction Z at a predetermined distance d in the bridge axis orthogonal direction X from the welding root portion 61, and has both end portions in the bridge axis direction Z. It extends with a predetermined stretch length L up to 52. The groove 5 is formed in a substantially oval shape in the planar direction, but may be formed in a substantially rectangular shape, a substantially elliptical shape, or the like.

溝部5は、横リブ4の固定面7の橋軸方向Zの中心軸Gを、橋軸直交方向Xで閉断面リブ3の閉空間30まで延ばしたものを仮想基準線Hとしたときに、仮想基準線Hから橋軸方向Zの両側に離間した位置に、橋軸方向Zに延びる両端部52の各々が配置される。   When the groove portion 5 is a virtual reference line H obtained by extending the central axis G in the bridge axis direction Z of the fixed surface 7 of the lateral rib 4 to the closed space 30 of the closed cross-section rib 3 in the bridge axis orthogonal direction X, Each of the both end portions 52 extending in the bridge axis direction Z is disposed at positions spaced from the virtual reference line H on both sides in the bridge axis direction Z.

溝部5は、例えば、橋軸方向Zで横リブ4の両側に設けられる溶接金属6の脚長Jを6mm、横リブ4の端面41の板厚tbを9mmとしたとき、固定面7の固定幅Eが21mmとなり、仮想基準線Hから橋軸方向Zで10mm以上、250mm以下の範囲に、両端部52の各々が配置されるものとなる。   For example, when the leg length J of the weld metal 6 provided on both sides of the lateral rib 4 in the bridge axis direction Z is 6 mm and the plate thickness tb of the end surface 41 of the lateral rib 4 is 9 mm, the groove 5 has a fixed width of the fixed surface 7. E is 21 mm, and each of the end portions 52 is arranged in the range of 10 mm or more and 250 mm or less in the bridge axis direction Z from the virtual reference line H.

溝部5は、橋軸方向Zで仮想基準線Hに跨がって、橋軸方向Zに延びて連続して形成されて、仮想基準線Hから橋軸方向Zで10mmの位置に両端部52を配置するとき、橋軸方向Zの延伸長Lが20mmとなり、仮想基準線Hから橋軸方向Zで250mmの位置に両端部52を配置するとき、橋軸方向Zの延伸長Lが500mmとなる(20mm≦L≦500mm)。   The groove 5 extends continuously in the bridge axis direction Z across the virtual reference line H in the bridge axis direction Z, and is formed at both ends 52 at positions 10 mm from the virtual reference line H in the bridge axis direction Z. When the both ends 52 are arranged at a position 250 mm from the virtual reference line H in the bridge axis direction Z, the extension length L in the bridge axis direction Z is 500 mm. (20 mm ≦ L ≦ 500 mm).

なお、溝部5は、仮想基準線Hに跨がって、橋軸方向Zに延びて連続して形成されるものに限らず、仮想基準線Hから橋軸方向Zで10mm以上、250mm以下の範囲に両端部52の各々が配置されて、仮想基準線Hに跨がることなく、橋軸方向Zに断続して形成されてもよい。   Note that the groove 5 is not limited to the continuous extension extending in the bridge axis direction Z across the virtual reference line H, and is not less than 10 mm and not more than 250 mm in the bridge axis direction Z from the virtual reference line H. Each of the end portions 52 may be disposed in the range, and may be formed intermittently in the bridge axis direction Z without straddling the virtual reference line H.

橋梁8は、図8に示すように、車両のタイヤ80等による交通荷重が積載されるものであり、特に、タイヤ80等の積載荷重が、閉断面リブ3の閉空間30の上方から負荷されるときに、閉断面リブ3の閉空間30の上方に配置されたデッキプレート2が、高さ方向Yの上方から下方に向けてたわんで湾曲変形しようとするものとなる。   As shown in FIG. 8, the bridge 8 is loaded with a traffic load due to the tires 80 of the vehicle. In particular, the loaded load of the tires 80 is loaded from above the closed space 30 of the closed cross-section rib 3. In this case, the deck plate 2 disposed above the closed space 30 of the closed cross-section rib 3 tends to bend and deform from the upper side in the height direction Y toward the lower side.

このとき、従来のデッキプレート9は、図8(a)に示すように、タイヤ80の積載荷重により高さ方向Yの上方から下方に向けて湾曲変形しようとするときに、上方から下方に向けた曲げ外力Mが作用することで、デッキプレート9の表面側Aに引張応力Tが発生するとともに、デッキプレート9の裏面側Bに圧縮応力Pが発生する。   At this time, as shown in FIG. 8 (a), the conventional deck plate 9 is directed from the upper side to the lower side when attempting to curve and deform from the upper side in the height direction Y to the lower side due to the load of the tire 80. When the bending external force M acts, a tensile stress T is generated on the front surface side A of the deck plate 9 and a compressive stress P is generated on the rear surface side B of the deck plate 9.

従来のデッキプレート9は、デッキプレート9の裏面側Bに圧縮応力Pが発生することで、溶接ルート部91及び溶接止端部92が形成されるデッキプレート9の裏面9aに圧縮応力Pが集中するものとなり、溶接ルート部91及び溶接止端部92を起点として、デッキプレート9の裏面9aに疲労亀裂Fが発生する。   In the conventional deck plate 9, the compressive stress P is concentrated on the back surface 9 a of the deck plate 9 on which the welding root portion 91 and the weld toe portion 92 are formed by generating the compressive stress P on the back surface side B of the deck plate 9. The fatigue crack F occurs on the back surface 9a of the deck plate 9 starting from the welding root portion 91 and the weld toe portion 92.

溶接止端部92は、デッキプレート9の裏面側Bに露出するものであり、グラインダー処理又は超音波衝撃処理(UIT)等の溶接箇所改善処理を施すことで、溶接止端部92を起点とした疲労亀裂Fの発生を抑止することができる。これに対して、溶接ルート部91は、閉空間90側に形成されて露出しないため、超音波衝撃処理(UIT)等の溶接箇所改善処理を施すことができないものとなる。   The weld toe portion 92 is exposed on the back surface side B of the deck plate 9, and the weld toe portion 92 is set as a starting point by performing a welding point improvement process such as a grinder process or an ultrasonic impact process (UIT). The occurrence of fatigue cracks F can be suppressed. On the other hand, since the welding route portion 91 is formed on the closed space 90 side and is not exposed, it is impossible to perform a welding point improvement process such as an ultrasonic impact process (UIT).

このため、従来のデッキプレート9は、溶接ルート部91に超音波衝撃処理(UIT)等の溶接箇所改善処理を施すことができず、デッキプレート9の裏面側Bに圧縮応力Pが発生することで、特に、溶接ルート部91を起点として、デッキプレート9の裏面9aに疲労亀裂Fが発生するおそれがあった。   For this reason, the conventional deck plate 9 cannot be subjected to welding point improvement processing such as ultrasonic impact processing (UIT) on the welding route portion 91, and compressive stress P is generated on the back side B of the deck plate 9. In particular, the fatigue crack F may occur on the back surface 9 a of the deck plate 9 starting from the welding root portion 91.

これに対して、本発明を適用した鋼床版1は、図8(b)に示すように、デッキプレート2の裏面側Bで、溶接ルート部61から閉空間30側に離間させて溝部5が形成されることで、デッキプレート2に閉空間30側で曲げ外力Mが作用したときに、デッキプレート2の表面側Aに引張応力Tが発生するものの、デッキプレート2の裏面側Bでの圧縮応力Pの流れが溝部5で遮断されるものとなる。   On the other hand, as shown in FIG. 8 (b), the steel slab 1 to which the present invention is applied is separated from the welding root portion 61 to the closed space 30 side on the back surface side B of the deck plate 2, and the groove portion 5 is provided. When a bending external force M acts on the deck plate 2 on the closed space 30 side, a tensile stress T is generated on the surface side A of the deck plate 2, but on the back surface side B of the deck plate 2. The flow of the compressive stress P is blocked by the groove 5.

本発明を適用した鋼床版1は、デッキプレート2の裏面側Bでの圧縮応力Pの流れが溝部5で遮断されることで、デッキプレート2の裏面2aより上方に離間して圧縮応力Pが発生するものとなり、橋軸直交方向Xで溝部5の溶接ルート部61側に、低応力領域又は無応力領域Rが形成される。   In the steel slab 1 to which the present invention is applied, the flow of the compressive stress P on the back surface side B of the deck plate 2 is blocked by the groove 5, so that the compressive stress P is separated upward from the back surface 2 a of the deck plate 2. Thus, a low-stress region or a no-stress region R is formed on the welding route part 61 side of the groove part 5 in the bridge axis orthogonal direction X.

これにより、本発明を適用した鋼床版1は、溝部5の溶接ルート部61側に低応力領域又は無応力領域Rが形成されるため、デッキプレート2の裏面2aで溶接ルート部61の近傍での応力集中を回避して、溶接ルート部61を起点とした疲労亀裂Fが、デッキプレート2の裏面側Bに発生することを防止することが可能となる。   Thereby, since the low-stress area | region or the no-stress area | region R is formed in the welding root part 61 side of the groove part 5 in the steel deck 1 to which this invention is applied, it is the vicinity of the welding root part 61 by the back surface 2a of the deck plate 2. Thus, it is possible to prevent the stress cracking at the back surface side B of the deck plate 2 from occurring at the back surface side B of the deck plate 2.

本発明を適用した鋼床版1は、従来と同様の素材を用いることで製造を容易にするとともに、新たな溶接部の追加や重量増加を伴わず、デッキプレート2と閉断面リブ3との溶接箇所に形成される溶接ルート部61での疲労強度を向上させることが可能となる。   The steel floor slab 1 to which the present invention is applied is easy to manufacture by using the same material as the conventional one, and without adding a new weld or increasing the weight, the deck plate 2 and the closed cross-section rib 3 It is possible to improve the fatigue strength at the weld root portion 61 formed at the weld location.

本発明を適用した鋼床版1は、図9(a)に示すように、閉断面リブ3と横リブ4とが交差しない箇所においても、デッキプレート2に閉空間30側で曲げ外力Mが作用することから、デッキプレート2の裏面側Bで圧縮応力Pの流れを溝部5で遮断することで、デッキプレート2の裏面側Bに疲労亀裂Fが発生することを防止することが可能となる。   As shown in FIG. 9A, the steel deck 1 to which the present invention is applied has a bending external force M applied to the deck plate 2 on the closed space 30 side even at a location where the closed cross-section rib 3 and the lateral rib 4 do not intersect. Therefore, it is possible to prevent the occurrence of fatigue cracks F on the back surface side B of the deck plate 2 by blocking the flow of the compressive stress P on the back surface side B of the deck plate 2 by the groove portion 5. .

本発明を適用した鋼床版1は、特に、図9(b)に示すように、閉断面リブ3と横リブ4とを交差させた箇所において、デッキプレート2の裏面2aと横リブ4の端面41とが固定面7で拘束されるため、閉断面リブ3と横リブ4とが交差しない箇所に比較して、デッキプレート2に閉空間30側で作用する曲げ外力Mが著しく大きいものとなる。   The steel floor slab 1 to which the present invention is applied, particularly, as shown in FIG. 9 (b), the back surface 2a of the deck plate 2 and the lateral rib 4 are formed at a location where the closed cross-section rib 3 and the lateral rib 4 intersect each other. Since the end surface 41 is constrained by the fixed surface 7, the bending external force M acting on the deck plate 2 on the closed space 30 side is remarkably large as compared with the portion where the closed cross-section rib 3 and the lateral rib 4 do not intersect. Become.

これにより、本発明を適用した鋼床版1は、特に、閉断面リブ3と横リブ4とを交差させた箇所で、デッキプレート2に大きい曲げ外力Mが作用するにもかかわらず、デッキプレート2の裏面側Bに形成された溝部5で圧縮応力Pの流れが遮断されることで、デッキプレート2と閉断面リブ3との溶接箇所に形成される溶接ルート部61での疲労強度を確実に向上させることが可能となる。   As a result, the steel slab 1 to which the present invention is applied is particularly suitable for the deck plate 2 in spite of the large bending external force M acting on the deck plate 2 where the closed cross-section rib 3 and the lateral rib 4 intersect each other. The flow of the compressive stress P is blocked by the groove portion 5 formed on the rear surface side B of the steel plate 2 so that the fatigue strength at the weld route portion 61 formed at the welded portion between the deck plate 2 and the closed cross-section rib 3 is ensured. Can be improved.

本発明を適用した鋼床版1は、溶接ルート部61から閉空間30側に離間させた離間距離dを、例えば、2mm以上、50mm以下程度とする。本発明を適用した鋼床版1は、離間距離dを2mm以上確保することで、閉断面リブ3の端縁部31をデッキプレート2の裏面2aに取り付けるときの施工誤差を吸収することができるものとなり、また、離間距離dを50mm以下とすることで、溶接ルート部61の近傍での応力集中を確実に回避することができる。   In the steel slab 1 to which the present invention is applied, the separation distance d separated from the welding root portion 61 toward the closed space 30 is, for example, about 2 mm or more and 50 mm or less. The steel floor slab 1 to which the present invention is applied can absorb a construction error when the edge 31 of the closed cross-section rib 3 is attached to the back surface 2a of the deck plate 2 by securing a separation distance d of 2 mm or more. In addition, by setting the separation distance d to 50 mm or less, stress concentration in the vicinity of the welding root portion 61 can be surely avoided.

溶接ルート部61から溝部5の内側での溝底50の内面に向けた接線Cは、図6に示すように、デッキプレート2の裏面2aに対して所定の傾斜角度θとなるものであり、接線Cの最適な傾斜角度θを求めるために、図10に示すように、FEAによる解析的検討を行った。   A tangent line C from the welding root portion 61 toward the inner surface of the groove bottom 50 inside the groove portion 5 has a predetermined inclination angle θ with respect to the back surface 2a of the deck plate 2, as shown in FIG. In order to obtain the optimum inclination angle θ of the tangent line C, as shown in FIG.

図10では、本発明を適用した鋼床版1の一部分を切り出したモデルを対象に、閉断面リブ3と横リブ4とを交差させた箇所で、閉断面リブ3の閉空間30の上方から負荷する積載荷重を50kNとして、接線Cの傾斜角度θを0°〜75°に変化させて、溝部5の離間距離dを3mm、デッキプレート2の板厚tdを16mm、閉断面リブ3の板厚tlを6mm、横リブ4の板厚tbを9mm、横リブ4の溶接箇所の脚長Jを6mm、溝底50の内面の曲率半径rを3.2mm、溝部5の延伸長Lを500mmとした。   In FIG. 10, for a model in which a part of the steel slab 1 to which the present invention is applied is cut, the closed cross-section rib 3 and the lateral rib 4 are crossed from above the closed space 30 of the closed cross-section rib 3. The loading load to be applied is 50 kN, the inclination angle θ of the tangent line C is changed from 0 ° to 75 °, the separation distance d of the groove 5 is 3 mm, the thickness td of the deck plate 2 is 16 mm, the plate of the closed cross-section rib 3 The thickness tl is 6 mm, the plate thickness tb of the lateral rib 4 is 9 mm, the leg length J of the welded portion of the lateral rib 4 is 6 mm, the curvature radius r of the inner surface of the groove bottom 50 is 3.2 mm, and the extending length L of the groove portion 5 is 500 mm. did.

図11では、FEAによる解析的検討を行った結果が、左側の縦軸を溶接ルート部61での発生応力、右側の縦軸を溝底50の残存板厚ta、横軸を傾斜角度θとして示される。本発明を適用した鋼床版1は、図11に示すように、接線Cの傾斜角度θが30°以上となるときに、溶接ルート部61での発生応力が十分に低減するものとなることがわかる。   In FIG. 11, the result of the analytical study by FEA shows that the left vertical axis is the stress generated in the welding root portion 61, the right vertical axis is the remaining thickness ta of the groove bottom 50, and the horizontal axis is the inclination angle θ. Indicated. In the steel deck 1 to which the present invention is applied, as shown in FIG. 11, when the inclination angle θ of the tangent line C is 30 ° or more, the generated stress in the weld root portion 61 is sufficiently reduced. I understand.

また、図10に示すモデルでは、接線Cの傾斜角度θが60°を超えるときに、溝底50の残存板厚taが8mmを下回ることがわかり、道路橋示方書に規定される最低部材厚の条件を満たさないものとなる。このため、本発明を適用した鋼床版1は、溝底50の残存板厚taが8mm以上となるように、接線Cの傾斜角度θを設定することが望ましい。   Further, in the model shown in FIG. 10, when the inclination angle θ of the tangent line C exceeds 60 °, it can be seen that the remaining plate thickness ta of the groove bottom 50 is less than 8 mm, and the minimum member thickness specified in the road bridge specifications. It does not meet the conditions of. For this reason, in the steel slab 1 to which the present invention is applied, it is desirable to set the inclination angle θ of the tangent line C so that the remaining plate thickness ta of the groove bottom 50 is 8 mm or more.

これにより、本発明を適用した鋼床版1は、溶接ルート部61から溝底50の内面に向けた接線Cが、デッキプレート2の裏面2aに対する傾斜角度θを30°以上として、かつ、溝底50の残存板厚taが8mm以上となるように形成されることで、溶接ルート部61での発生応力を十分に低減させながら、必要な残存板厚taを確保することが可能となる。   Thereby, the steel slab 1 to which the present invention is applied is such that the tangent C from the welding root portion 61 to the inner surface of the groove bottom 50 has an inclination angle θ with respect to the back surface 2a of the deck plate 2 of 30 ° or more and the groove By forming the remaining plate thickness ta of the bottom 50 to be 8 mm or more, it is possible to secure the necessary remaining plate thickness ta while sufficiently reducing the generated stress in the welding route portion 61.

溝部5の延伸長Lは、図7に示すように、橋軸方向Zで仮想基準線Hに跨がって、橋軸方向Zに延びて溝部5が連続するものであり、溝部5の最適な延伸長Lを求めるために、図10に示すモデルで、接線Cの傾斜角度θを45°として、溝部5の延伸長Lを0mm〜500mmに変化させて、FEAによる解析的検討を行った。   As shown in FIG. 7, the extension length L of the groove portion 5 extends across the virtual reference line H in the bridge axis direction Z, extends in the bridge axis direction Z, and is continuous with the groove portion 5. In order to obtain a proper stretching length L, an analytical study was performed by FEA using the model shown in FIG. 10 with the inclination angle θ of the tangent line C being 45 ° and the stretching length L of the groove 5 being changed from 0 mm to 500 mm. .

ここで、溝部5に遮断された圧縮応力Pは、図8(b)に示すように、溝底50に作用するが、このとき、溝底50の残存板厚taがデッキプレート2の板厚tdより小さくなること、及び溝底50が形状急変部となっていることにより、溝底50の内面に過大な応力が発生し、溝底50の内面から溝底50が破損することを回避することが必要となり、所定の残存板厚taの溝底50の内面での発生応力も、溶接ルート部61での発生応力に併せて、FEAによる解析的検討の対象とした。   Here, as shown in FIG. 8B, the compressive stress P blocked by the groove 5 acts on the groove bottom 50. At this time, the remaining thickness ta of the groove bottom 50 is the thickness of the deck plate 2. By being smaller than td and the groove bottom 50 being a shape suddenly changing portion, excessive stress is generated on the inner surface of the groove bottom 50, and the groove bottom 50 is prevented from being damaged from the inner surface of the groove bottom 50. Therefore, the stress generated on the inner surface of the groove bottom 50 having a predetermined remaining plate thickness ta is also subjected to analytical examination by FEA in addition to the stress generated in the welding root portion 61.

図12では、FEAによる解析的検討を行った結果が、縦軸を溝底50の内面での発生応力、溶接ルート部61での発生応力として、横軸を溝部5の延伸長Lとして示される。   In FIG. 12, the result of the analytical examination by FEA is shown as the generated stress on the inner surface of the groove bottom 50 and the generated stress in the welding root portion 61, and the horizontal axis as the extension length L of the groove portion 5. .

本発明を適用した鋼床版1は、図12に示すように、溝部5の延伸長Lが増大することで、溝底50の内面での発生応力が漸増する傾向があるものの、溝部5の延伸長Lが20mm以上となるときに、溝底50の内面での発生応力の漸増傾向に比較して、溶接ルート部61での発生応力が十分に低減するものとなることがわかる。   As shown in FIG. 12, the steel deck 1 to which the present invention is applied has a tendency that the stress generated on the inner surface of the groove bottom 50 gradually increases as the extension length L of the groove 5 increases. It can be seen that when the stretching length L is 20 mm or more, the generated stress at the weld root portion 61 is sufficiently reduced as compared with the gradual increase tendency of the generated stress at the inner surface of the groove bottom 50.

本発明を適用した鋼床版1は、特に、溝部5の延伸長Lが40mm以上、100mm以下となる範囲において、溶接ルート部61での発生応力が最も低減したものとなる。本発明を適用した鋼床版1は、溝部5の延伸長Lが500mmを超えると、デッキプレート2の裏面2aに溝部5を切削加工するための加工費用が増大して、また、デッキプレート2の断面剛性の低下が懸念されるため、溝部5の延伸長Lを500mm以下とすることが望ましい。   In the steel slab 1 to which the present invention is applied, the stress generated in the weld root portion 61 is most reduced particularly in the range in which the extension length L of the groove portion 5 is 40 mm or more and 100 mm or less. In the steel deck 1 to which the present invention is applied, when the extending length L of the groove portion 5 exceeds 500 mm, the processing cost for cutting the groove portion 5 on the back surface 2a of the deck plate 2 increases, and the deck plate 2 Therefore, it is desirable that the extension length L of the groove 5 is 500 mm or less.

これにより、本発明を適用した鋼床版1は、図7に示すように、仮想基準線Hから橋軸方向Zで10mm以上、250mm以下の範囲に、溝部5の両端部52が配置されることで、溝部5の延伸長Lが20mm以上、500mm以下となり、デッキプレート2の断面剛性の低下等を懸念することなく、溶接ルート部61での発生応力を十分に低減させることが可能となる。   Thereby, as shown in FIG. 7, as for the steel deck 1 to which this invention is applied, the both ends 52 of the groove part 5 are arrange | positioned in the range of 10 mm or more and 250 mm or less in the bridge axial direction Z from the virtual reference line H. Thus, the extending length L of the groove portion 5 is 20 mm or more and 500 mm or less, and it is possible to sufficiently reduce the generated stress in the welding root portion 61 without worrying about a decrease in the cross-sectional rigidity of the deck plate 2 or the like. .

本発明を適用した鋼床版1は、特に、閉断面リブ3と横リブ4とを交差させた箇所において、橋軸方向Zで仮想基準線Hに跨がって溝部5が連続して形成されることで、デッキプレート2の裏面2aと横リブ4の端面41とが固定面7で拘束されて曲げ外力Mが大きくなる範囲に、溝部5で遮断された圧縮応力Pが流されないものとなり、デッキプレート2と閉断面リブ3との溶接箇所で、溶接ルート部61での疲労強度を確実に向上させることが可能となる。   In the steel slab 1 to which the present invention is applied, the groove portion 5 is continuously formed across the virtual reference line H in the bridge axis direction Z, particularly at a location where the closed cross-section rib 3 and the lateral rib 4 intersect each other. As a result, the compressive stress P blocked by the groove portion 5 does not flow within a range in which the back surface 2a of the deck plate 2 and the end surface 41 of the lateral rib 4 are restrained by the fixed surface 7 and the bending external force M increases. In addition, the fatigue strength at the weld route portion 61 can be reliably improved at the welded portion between the deck plate 2 and the closed cross-section rib 3.

溝底50の内面での発生応力は、図8(b)に示すように、デッキプレート2の裏面側Bで溝部5に遮断された圧縮応力Pが、溝底50の内面に集中することから、溝底50の内面から溝底50が破損することを回避するものとして、下記(2)式〜(8)式により、溝底50の内面の最適な曲率半径rが求められる。   The generated stress on the inner surface of the groove bottom 50 is because the compressive stress P blocked by the groove portion 5 on the back surface side B of the deck plate 2 concentrates on the inner surface of the groove bottom 50 as shown in FIG. In order to avoid damage to the groove bottom 50 from the inner surface of the groove bottom 50, the optimum radius of curvature r of the inner surface of the groove bottom 50 is obtained by the following equations (2) to (8).

ここでは、デッキプレート2を2次元両端固定ばりとみなして、溝底50の残存板厚taの減少による応力増加、残存板厚taの減少による剛性低下が招くモーメントの再分配、略半円弧状に形成した溝底50の内面における応力集中を考慮して、溝部5が形成されない場合に比較した溝底50の内面の発生応力の比率(応力集中係数K)を計算した検討結果が、図13に示される。   Here, the deck plate 2 is regarded as a two-dimensional fixed beam at both ends, a redistribution of moments resulting in an increase in stress due to a decrease in the remaining plate thickness ta of the groove bottom 50 and a decrease in rigidity due to a decrease in the remaining plate thickness ta. Considering the stress concentration on the inner surface of the groove bottom 50 formed in FIG. 13, the result of the study of calculating the ratio of the generated stress (stress concentration coefficient K) on the inner surface of the groove bottom 50 compared to the case where the groove portion 5 is not formed is shown in FIG. Shown in

ここで、K:溝部5が形成される場合の溝底50の内面での発生応力を溝部5が形成されない場合に溝底50の内面に相当する部位での発生応力で除した値(応力集中係数)、Kt:残存板厚taの低下による応力増加を考慮した応力集中係数、Km:溝部5の局所的剛性低下を招くモーメントの再分配を考慮した応力集中係数、α:略半円弧状の切欠きを施した丸棒に曲げを作用させた場合の応力集中係数、r:溝底50の内面の曲率半径、ta:溝底50の残存板厚、td:デッキプレート2の板厚、W:閉断面リブ3の橋軸直交方向Xの幅、h:溝部5の高さ寸法、ν:鋼材のポアソン比(≒0.3)とする。   Here, K: a value obtained by dividing the stress generated on the inner surface of the groove bottom 50 when the groove portion 5 is formed by dividing the stress generated on the inner surface of the groove bottom 50 when the groove portion 5 is not formed (stress concentration) Coefficient), Kt: stress concentration factor considering the increase in stress due to a decrease in the remaining plate thickness ta, Km: stress concentration factor considering the redistribution of moments that cause local rigidity reduction of the groove 5, and α: a substantially semicircular arc shape. Stress concentration factor when bending a notched round bar, r: radius of curvature of inner surface of groove bottom 50, ta: remaining thickness of groove bottom 50, td: thickness of deck plate 2, W : The width of the closed cross-section rib 3 in the direction orthogonal to the bridge axis X, h: the height of the groove 5, and ν: the Poisson's ratio (≈0.3) of the steel material.

Figure 2016205024
Figure 2016205024

Figure 2016205024
Figure 2016205024

Figure 2016205024
Figure 2016205024

Figure 2016205024
Figure 2016205024

Figure 2016205024
Figure 2016205024

Figure 2016205024
Figure 2016205024

Figure 2016205024
Figure 2016205024

図13(a)では、縦軸が応力集中係数K、横軸がr/tdとして示される。図13(b)では、図13(a)に示した各々のr/tdにおいて、応力集中係数Kを微分することにより求められる応力集中係数Kの変化率が縦軸として、r/tdが横軸として示される。本発明を適用した鋼床版1は、図13(a)に示すように、溝底50の内面を所定の曲率半径rとして、r/tdが所定の大きさに設定されることで、応力集中係数Kが十分に小さいものとなり、溝底50の内面での応力集中を抑制させることができるものとなる。   In FIG. 13 (a), the vertical axis represents the stress concentration factor K and the horizontal axis represents r / td. In FIG. 13B, at each r / td shown in FIG. 13A, the rate of change of the stress concentration factor K obtained by differentiating the stress concentration factor K is the vertical axis, and r / td is horizontal. Shown as axis. As shown in FIG. 13 (a), the steel deck 1 to which the present invention is applied has an inner surface of the groove bottom 50 as a predetermined radius of curvature r, and r / td is set to a predetermined size so that the stress is reduced. The concentration factor K is sufficiently small, and the stress concentration on the inner surface of the groove bottom 50 can be suppressed.

本発明を適用した鋼床版1は、図13(b)に示すように、特に、r/tdが0.15未満となるときに、応力集中係数Kの変化率が大きく、溝底50の内面での応力集中の抑制効果が不安定となるが、r/tdが0.15以上となるとき、接線Cの傾斜角度θを30°、45°とすることで、r/tdの上限値にかかわらず、応力集中係数Kの変化率が安定して、溝底50の内面での応力集中の抑制効果が安定したものとなる。   As shown in FIG. 13B, the steel deck 1 to which the present invention is applied has a large rate of change of the stress concentration coefficient K, particularly when r / td is less than 0.15, and the groove bottom 50 Although the effect of suppressing stress concentration on the inner surface becomes unstable, when r / td is 0.15 or more, the inclination angle θ of the tangent line C is set to 30 ° and 45 °, whereby the upper limit of r / td Regardless of this, the rate of change of the stress concentration coefficient K becomes stable, and the effect of suppressing the stress concentration on the inner surface of the groove bottom 50 becomes stable.

本発明を適用した鋼床版1は、接線Cの傾斜角度θを60°として、r/tdが0.60を超えるときに、応力集中係数Kの変化率が大きく、溝底50の内面での応力集中の抑制効果が不安定となるため、r/tdを0.15以上、0.60以下として、溝底50の内面の曲率半径rが上記(1)式により規定される関係を満足することで、接線Cの傾斜角度θが如何なる大きさであっても、溝底50の内面での応力集中の抑制効果を安定させることが可能となる。   The steel slab 1 to which the present invention is applied has a large change rate of the stress concentration factor K when the inclination angle θ of the tangent line C is 60 ° and r / td exceeds 0.60. Therefore, r / td is set to 0.15 or more and 0.60 or less, and the radius of curvature r of the inner surface of the groove bottom 50 satisfies the relationship defined by the above formula (1). This makes it possible to stabilize the effect of suppressing the stress concentration on the inner surface of the groove bottom 50 regardless of the inclination angle θ of the tangent line C.

本発明を適用した鋼床版1は、図14に示すように、閉断面リブ3の端縁部31と、デッキプレート2と、横リブ4との3部材の接合箇所において、横リブ4を部分的に切り欠くことでスカラップ42が形成される場合にも、デッキプレート2の裏面側Bに溝部5を形成することができる。   As shown in FIG. 14, the steel deck 1 to which the present invention is applied has the horizontal ribs 4 at the joint portions of the end edge portion 31 of the closed cross-section rib 3, the deck plate 2, and the horizontal ribs 4. Even when the scallop 42 is formed by partially notching, the groove 5 can be formed on the back surface side B of the deck plate 2.

このとき、本発明を適用した鋼床版1は、図15に示すように、横リブ4にスカラップ42が形成されることで、横リブ4が閉断面リブ3の端縁部31と離間して固定されるものとなり、閉断面リブ3の端縁部31と橋軸直交方向Xに離間した位置において、橋軸方向Zの両側に設けられる溶接金属6の脚長Jと、横リブ4の端面41の板厚tbとが、固定面7の固定幅E(E=tb+2×J)となる。   At this time, in the steel slab 1 to which the present invention is applied, as shown in FIG. 15, the scallop 42 is formed on the lateral rib 4 so that the lateral rib 4 is separated from the edge 31 of the closed cross-section rib 3. The leg length J of the weld metal 6 provided on both sides of the bridge axis direction Z and the end face of the lateral rib 4 at a position separated from the end edge portion 31 of the closed cross-section rib 3 in the bridge axis orthogonal direction X The plate thickness tb of 41 is the fixed width E (E = tb + 2 × J) of the fixed surface 7.

なお、本発明を適用した鋼床版1は、閉断面リブ3が嵌め込まれる切欠部40が形成された横リブ4に限らず、図16(a)に示すダイアフラム43や、図16(b)に示すブラケット44等が、閉断面リブ3の側方で橋軸直交方向Xに延びて、所定の固定幅Eとなる固定面7で、デッキプレート2に固定させて設けられてもよい。   Note that the steel slab 1 to which the present invention is applied is not limited to the lateral rib 4 in which the notched portion 40 into which the closed cross-section rib 3 is fitted is formed, but the diaphragm 43 shown in FIG. 16A or FIG. Or the like may be provided so as to be fixed to the deck plate 2 by a fixing surface 7 that extends in the bridge axis orthogonal direction X on the side of the closed cross-section rib 3 and has a predetermined fixing width E.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。   As mentioned above, although the example of embodiment of this invention was demonstrated in detail, all the embodiment mentioned above showed only the example of actualization in implementing this invention, and these are the technical aspects of this invention. The range should not be construed as limiting.

例えば、本発明を適用した鋼床版1は、橋軸方向Zに延びて積載荷重が負荷される橋梁用の鋼床版1として用いられることを想定して、デッキプレート2の奥行方向を橋軸方向Zとして、デッキプレート2の幅方向を橋軸直交方向Xとしたが、橋梁用のものに限られず、如何なる用途に適用されてもよい。   For example, assuming that the steel deck 1 to which the present invention is applied is used as a steel deck 1 for a bridge that extends in the bridge axis direction Z and is loaded with a loading load, the depth direction of the deck plate 2 is bridged. As the axial direction Z, the width direction of the deck plate 2 is the orthogonal direction X of the bridge axis. However, the axial direction Z is not limited to that for the bridge, and may be applied to any application.

1 :鋼床版
2 :デッキプレート
2a :裏面
2b :表面
3 :閉断面リブ
30 :閉空間
31 :端縁部
35 :Uリブフランジ
36 :Uリブウェブ
4 :横リブ
40 :切欠部
41 :端面
42 :スカラップ
43 :ダイアフラム
44 :ブラケット
5 :溝部
50 :溝底
50a :最深部
51 :溝側面
52 :両端部
6 :溶接金属
61 :溶接ルート部
62 :溶接止端部
7 :固定面
8 :橋梁
80 :車両
81 :舗装
A :表面側
B :裏面側
X :橋軸直交方向
Y :高さ方向
Z :橋軸方向
DESCRIPTION OF SYMBOLS 1: Steel deck 2: Deck plate 2a: Back surface 2b: Front surface 3: Closed cross-section rib 30: Closed space 31: End edge part 35: U rib flange 36: U rib web 4: Horizontal rib 40: Notch part 41: End surface 42 : Scallop 43: Diaphragm 44: Bracket 5: Groove 50: Groove bottom 50a: Deepest part 51: Groove side surface 52: Both ends 6: Weld metal 61: Weld root 62: Weld toe 7: Fixed surface 8: Bridge 80 : Vehicle 81: Pavement A: Front side B: Back side X: Bridge axis orthogonal direction Y: Height direction Z: Bridge axis direction

Claims (6)

橋軸方向に延びて積載荷重が負荷される鋼床版であって、
略板状に形成されたデッキプレートと、前記デッキプレートの裏面側に溶接されて橋軸方向に延びる閉断面リブと、前記デッキプレートの裏面側に形成される溝部とを備え、
前記閉断面リブは、橋軸直交方向で閉断面形状に形成される閉空間と、溶接金属を溶融することで前記デッキプレートの裏面側に取り付けられる端縁部と、前記デッキプレートの裏面と溶接金属との境界で前記閉空間側に形成される溶接ルート部とを有し、
前記溝部は、前記デッキプレートの表面側の溝底で所定の残存板厚を有し、前記溶接ルート部から前記閉空間側に所定の離間距離で離間させて、橋軸方向に沿って形成されること
を特徴とする鋼床版。
A steel slab that extends in the direction of the bridge axis and is loaded with a load.
A deck plate formed in a substantially plate shape, a closed cross-section rib welded to the back surface side of the deck plate and extending in the bridge axis direction, and a groove formed on the back surface side of the deck plate,
The closed cross-section rib includes a closed space formed in a closed cross-sectional shape in a direction orthogonal to the bridge axis, an edge portion attached to the back side of the deck plate by melting a weld metal, and a weld to the back side of the deck plate. A welding route portion formed on the closed space side at the boundary with the metal,
The groove portion has a predetermined remaining plate thickness at the groove bottom on the surface side of the deck plate, and is formed along the bridge axis direction with a predetermined separation distance from the welding root portion to the closed space side. A steel floor slab characterized by
前記デッキプレートは、前記閉断面リブに交差させて橋軸直交方向に延びる横リブが、前記デッキプレートの裏面側に溶接により固定されるものであり、橋軸方向で前記横リブの両側に設けられる溶接金属の脚長と、前記デッキプレートの裏面に対向する前記横リブの端面とで、橋軸方向に所定の固定幅で固定面が形成されて、
前記溝部は、前記固定面の橋軸方向の中心軸を橋軸直交方向で前記閉空間まで延ばした仮想基準線から、橋軸方向の両側に離間した位置に、橋軸方向に延びる両端部の各々が配置されること
を特徴とする請求項1記載の鋼床版。
In the deck plate, transverse ribs extending in a direction orthogonal to the bridge axis intersecting the closed cross-section ribs are fixed to the back side of the deck plate by welding, and provided on both sides of the transverse rib in the bridge axis direction. A fixed surface is formed with a predetermined fixed width in the bridge axis direction with the leg length of the weld metal to be formed and the end surface of the lateral rib facing the back surface of the deck plate,
The groove portion has a bridge axis direction center axis in the bridge axis direction extending from the virtual reference line extending to the closed space in a direction perpendicular to the bridge axis to positions spaced apart on both sides in the bridge axis direction. The steel slab according to claim 1, wherein each is arranged.
前記溝部は、前記仮想基準線から橋軸方向で10mm以上、250mm以下の範囲に、前記両端部の各々が配置されること
を特徴とする請求項2記載の鋼床版。
3. The steel deck according to claim 2, wherein each of the both end portions is arranged in a range of 10 mm or more and 250 mm or less in the bridge axis direction from the virtual reference line.
前記溝部は、橋軸方向で前記仮想基準線に跨がって、橋軸方向に所定の延伸長で延びて連続して形成されること
を特徴とする請求項2又は3記載の鋼床版。
4. The steel slab according to claim 2, wherein the groove portion is formed continuously across the virtual reference line in the bridge axis direction and extending in the bridge axis direction with a predetermined extension length. .
前記溝部は、前記デッキプレートの裏面側に前記端縁部が取り付けられる溶接箇所での橋軸直交方向の断面で、前記溶接ルート部から前記溝部の内側での前記溝底の内面に向けた接線が、前記デッキプレートの裏面に対する傾斜角度θを30°以上として、かつ、前記溝底の残存板厚が8mm以上となるように形成されること
を特徴とする請求項1〜4の何れか1項記載の鋼床版。
The groove is a cross-section in a direction perpendicular to the bridge axis at a welding point where the end edge is attached to the back side of the deck plate, and is tangent to the inner surface of the groove bottom from the welding root to the inside of the groove However, the inclination angle θ with respect to the back surface of the deck plate is set to 30 ° or more, and the remaining plate thickness of the groove bottom is set to 8 mm or more. Steel floor slab as described in the item.
前記溝部は、前記デッキプレートの裏面側に前記端縁部が取り付けられる溶接箇所での橋軸直交方向の断面で、前記溝部の内側での前記溝底の内面が略半円弧状に形成されるとともに、前記溝底の内面の曲率半径rが、下記(1)式により規定される関係を満足すること
を特徴とする請求項1〜5の何れか1項記載の鋼床版。
Figure 2016205024
ここで、r:前記溝底の内面の曲率半径、td:前記デッキプレートの板厚とする。
The groove is a cross-section in a direction perpendicular to the bridge axis at a welding point where the edge is attached to the back side of the deck plate, and the inner surface of the groove bottom inside the groove is formed in a substantially semicircular arc shape. The steel deck according to any one of claims 1 to 5, wherein a radius of curvature r of the inner surface of the groove bottom satisfies a relationship defined by the following equation (1).
Figure 2016205024
Here, r is the radius of curvature of the inner surface of the groove bottom, and td is the thickness of the deck plate.
JP2015089230A 2015-04-24 2015-04-24 Steel deck Active JP6451476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089230A JP6451476B2 (en) 2015-04-24 2015-04-24 Steel deck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089230A JP6451476B2 (en) 2015-04-24 2015-04-24 Steel deck

Publications (2)

Publication Number Publication Date
JP2016205024A true JP2016205024A (en) 2016-12-08
JP6451476B2 JP6451476B2 (en) 2019-01-16

Family

ID=57489238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089230A Active JP6451476B2 (en) 2015-04-24 2015-04-24 Steel deck

Country Status (1)

Country Link
JP (1) JP6451476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009397A (en) * 2016-07-15 2018-01-18 日立建機株式会社 Work machine
EP3339793A1 (en) * 2016-12-23 2018-06-27 Alfa Laval Corporate AB Heat-exchanger with header welded to the core
JPWO2021215208A1 (en) * 2020-04-21 2021-10-28

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229054A (en) * 1985-04-01 1986-10-13 株式会社 中田製作所 Building panel and its production
JP2005256462A (en) * 2004-03-12 2005-09-22 Nippon Steel Corp Construction method for repairing and reinforcing steel plate deck
JP2006016803A (en) * 2004-06-30 2006-01-19 Kai Kenchiku Sekkei Jimusho:Kk Connection structure of folding plate
JP2007170178A (en) * 2004-01-30 2007-07-05 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Steel floor slab and its reinforcing method
JP2007197962A (en) * 2006-01-25 2007-08-09 Kawada Industries Inc Repairing method of joining part of deck plate and closed cross-sectional rib
JP2008223393A (en) * 2007-03-14 2008-09-25 Jfe Engineering Kk High fatigue enduring steel structure
US20090258245A1 (en) * 2006-07-31 2009-10-15 Koutarou Inose Stiffened plate and a method of producing same
JP2012026178A (en) * 2010-07-23 2012-02-09 Ihi Corp Structure and method for reinforcing weld zone between steel floor slab and vertical stiffener
JP2013087432A (en) * 2011-10-14 2013-05-13 Nippon Steel & Sumitomo Metal Steel plate floor for bridge, and method of manufacturing steel plate floor for bridge
JP2014092000A (en) * 2012-11-06 2014-05-19 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Steel plate deck and bridge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229054A (en) * 1985-04-01 1986-10-13 株式会社 中田製作所 Building panel and its production
JP2007170178A (en) * 2004-01-30 2007-07-05 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Steel floor slab and its reinforcing method
JP2005256462A (en) * 2004-03-12 2005-09-22 Nippon Steel Corp Construction method for repairing and reinforcing steel plate deck
JP2006016803A (en) * 2004-06-30 2006-01-19 Kai Kenchiku Sekkei Jimusho:Kk Connection structure of folding plate
JP2007197962A (en) * 2006-01-25 2007-08-09 Kawada Industries Inc Repairing method of joining part of deck plate and closed cross-sectional rib
US20090258245A1 (en) * 2006-07-31 2009-10-15 Koutarou Inose Stiffened plate and a method of producing same
JP2008223393A (en) * 2007-03-14 2008-09-25 Jfe Engineering Kk High fatigue enduring steel structure
JP2012026178A (en) * 2010-07-23 2012-02-09 Ihi Corp Structure and method for reinforcing weld zone between steel floor slab and vertical stiffener
JP2013087432A (en) * 2011-10-14 2013-05-13 Nippon Steel & Sumitomo Metal Steel plate floor for bridge, and method of manufacturing steel plate floor for bridge
JP2014092000A (en) * 2012-11-06 2014-05-19 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Steel plate deck and bridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009397A (en) * 2016-07-15 2018-01-18 日立建機株式会社 Work machine
EP3339793A1 (en) * 2016-12-23 2018-06-27 Alfa Laval Corporate AB Heat-exchanger with header welded to the core
WO2018115253A1 (en) * 2016-12-23 2018-06-28 Alfa Laval Corporate Ab Heat exchanger
CN110088558A (en) * 2016-12-23 2019-08-02 阿法拉伐股份有限公司 Heat exchanger
JPWO2021215208A1 (en) * 2020-04-21 2021-10-28
JP7375175B2 (en) 2020-04-21 2023-11-07 株式会社日立製作所 welded structure

Also Published As

Publication number Publication date
JP6451476B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5961041B2 (en) Steel slab and steel slab bridge equipped with the same
JP6451476B2 (en) Steel deck
JP2008223393A (en) High fatigue enduring steel structure
JP4668760B2 (en) Steel bridge repair and reinforcement structure and method
JP6065690B2 (en) Beam end joint structure
JP5712843B2 (en) Fatigue improving structure of lateral rib and steel deck
JP5277086B2 (en) Joint assembly and expansion joint for bridge
JP2017101514A (en) Steel floor slab, reinforcement method and manufacturing method of steel floor slab
JP5510597B1 (en) Circular ring reinforcing beam member
JP2009190880A (en) Crane girder reinforcing structure
JP5378324B2 (en) Steel slab rib crossing joint structure and bridge
JP2017014823A (en) Expansion joint
BR112020005441A2 (en) structural element
US10859103B2 (en) Weld joint assembly
JP2008050766A (en) Reinforcing bar truss and deck plate with reinforcing bar truss
JP5640858B2 (en) Reinforcing structure and reinforcing method for existing steel members
JP6853463B2 (en) Reinforcing bar
JP6829799B2 (en) Reinforcing bar
JP7370577B2 (en) Reinforcement fittings and reinforcement structure for reinforced concrete perforated beams
CN214613664U (en) Device for enhancing transverse rigidity of bridge in T-beam reinforcement construction
KR200268181Y1 (en) Structure of Gusset Plate Part of Steel Box Girder for Bridge
JP5640859B2 (en) Reinforcing structure and reinforcing method for existing joint structure
JP3152097U (en) Composite steel plate bottom steel plate structure
JP6645028B2 (en) Cover plate
JP6792775B2 (en) Reinforcing bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R151 Written notification of patent or utility model registration

Ref document number: 6451476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350