JP2016204812A - Composite japanese paper yarn and manufacturing method thereof, japanese paper yarn fabric and japanese paper yarn knit - Google Patents
Composite japanese paper yarn and manufacturing method thereof, japanese paper yarn fabric and japanese paper yarn knit Download PDFInfo
- Publication number
- JP2016204812A JP2016204812A JP2015188849A JP2015188849A JP2016204812A JP 2016204812 A JP2016204812 A JP 2016204812A JP 2015188849 A JP2015188849 A JP 2015188849A JP 2015188849 A JP2015188849 A JP 2015188849A JP 2016204812 A JP2016204812 A JP 2016204812A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- japanese paper
- composite
- washi
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
本発明は、和紙を素材とする用品に用いる和紙糸織物、和紙糸編物に関する。とくには、耐久性に優れかつ長時間の使用時において足のムレが少なくまた足のダメージが少ないランニングシューズ等に好適に用いることのできる和紙糸織物に関する。またそれらの編織物に好適に用いられる複合和紙糸とその製造方法に関する。 The present invention relates to a Japanese paper yarn woven fabric and a Japanese paper yarn knitted fabric used for articles made of Japanese paper. In particular, the present invention relates to a Japanese paper thread fabric that can be suitably used for running shoes and the like that are excellent in durability and have little foot stuffiness and little foot damage when used for a long time. The present invention also relates to composite Japanese paper yarns suitably used for those knitted fabrics and a method for producing the same.
ランニングシューズは、とくに長距離レースなどに使用される場合、足のムレが少ないことが重要な特性の一つである。このため、目開きの大きいラッセル編地などがアッパーの素材として用いられている(例えば特許文献1)。このような目開きの大きい編地は目開きのサイズが約1ないし数mmもあり、選手の走行時の足の発汗による水分を放出あるいは蒸発させるのには適している。しかし、走行中に汚水や砂などの微粒の異物がシューズの内側に侵入しやすいといえる。また、編地の組織によっては凹凸が大きくなるので、その場合は足に違和感がないとはいえない。 Running shoes are one of the important characteristics, especially when they are used for long-distance races, and so on. For this reason, a raschel knitted fabric with a large mesh is used as the upper material (for example, Patent Document 1). Such a knitted fabric having a large opening has an opening of about 1 to several mm, and is suitable for releasing or evaporating moisture caused by sweating of the feet when the athlete runs. However, it can be said that fine foreign matters such as sewage and sand easily enter the inside of the shoe during traveling. Moreover, since unevenness becomes large depending on the structure of the knitted fabric, it cannot be said that there is no sense of incongruity in the foot.
このため、目開きが少なくかつ吸湿性に優れて足の発汗による水分を外部に効率よく発散させ、これにより足のムレが少なくまた足のダメージが少ないアッパーの素材が求められている。 For this reason, there is a demand for an upper material that has little mesh opening and excellent hygroscopicity and efficiently dissipates moisture due to sweating of the foot to the outside, thereby reducing foot stuffiness and foot damage.
さらに、長距離レースでは、原始的な走りに立ち戻ってランニングシューズを裸足でじかに着用して使用するケースが少なからずある。裸足の走行は人間の走りにとって最も自然で足や全身に無理な負担がかからず疲労が少ないからであるといわれている。そのような使用態様にあっては、マメができたり、そのマメが走行中に破れたりするようなことがよくある。そのような足のダメージが発生しにくいランニングシューズが求められている。 Furthermore, in long-distance races, there are not a few cases in which running shoes are used barefoot and returned to primitive driving. Barefoot running is said to be the most natural for human running, because it does not impose an unreasonable burden on the feet or the whole body and is less fatigued. In such a mode of use, it is often the case that a bean is formed or that the bean is torn during travel. There is a need for running shoes that are less likely to cause such foot damage.
また、ランニングシューズ用の織物に限らず、和紙からなる糸を素材とする、表面が平滑な高密度織物が求められている。 In addition, there is a demand for a high-density fabric with a smooth surface made of yarn made of Japanese paper, as well as a running shoe fabric.
また、和紙からなる糸は製織や編成といった布帛製造における糸切れが多いという問題があった。 In addition, there is a problem that yarn made of Japanese paper has many yarn breaks in fabric production such as weaving and knitting.
本発明は、目開きが殆んどなくかつ吸湿性に優れて足の発汗による水分を外部に効率よく発散させ、これにより足のムレが少なくまた足のダメージが少ない、アッパーの素材に適した和紙糸織物を提供することを目的とする。 The present invention is suitable for an upper material that has almost no mesh opening and has excellent hygroscopicity and efficiently dissipates moisture due to sweating of the foot to the outside, thereby reducing foot stuffiness and foot damage. It aims at providing a Japanese paper thread fabric.
また、本発明は、目開きが殆んどなく表面が平滑な、和紙を素材とする高密度の和紙糸織物を提供することを目的とする。 Another object of the present invention is to provide a high-density Japanese paper yarn woven fabric made of Japanese paper that has almost no openings and a smooth surface.
さらに、本発明は、和紙糸の製織や編成における糸切れが多いという問題を改善することのできる複合和紙糸を提供することを目的とする。 Furthermore, an object of the present invention is to provide a composite Japanese paper yarn that can improve the problem of many yarn breaks in weaving or knitting of Japanese paper yarn.
本発明の要旨とするところは、テープ状にスリットされた和紙を主成分としてなる和紙糸と、補強糸とが分離可能撚係数70〜250で撚り合わされた状態の、複合糸からなり、前記補強糸は最大応力点伸度が8%以上であり、3%伸長時の引張り力が前記和紙糸の引張り強さの1/20以上であり、前記和紙糸の繊度と前記補強糸の繊度との比が1:1〜15:1であり、前記複合糸中の前記和紙糸と前記補強糸との糸長差率が1.5〜12%である複合和紙糸であるところにある。 The gist of the present invention consists of a composite yarn in which a Japanese paper yarn mainly composed of Japanese paper slit in a tape shape and a reinforcing yarn are twisted together with a separable twist coefficient of 70 to 250, and the reinforcing yarn The maximum elongation at the stress point of the yarn is 8% or more, the tensile force at 3% elongation is 1/20 or more of the tensile strength of the Japanese paper yarn, and the fineness of the Japanese paper yarn and the fineness of the reinforcing yarn The ratio is 1: 1 to 15: 1, and the composite Japanese paper yarn has a yarn length difference ratio of 1.5 to 12% between the Japanese paper yarn and the reinforcing yarn in the composite yarn.
前記複合和紙糸においては、Eを糸長差率と同じ値の率としたとき、引張り力−伸長率曲線における、伸長率E〜E+3%の伸長域の引張り力−伸長率曲線の平均勾配が、伸長率0%〜Eの伸長域の平均勾配の1〜2.5倍であり得る。 In the composite Japanese paper yarn, when E is a rate equal to the yarn length difference rate, the average gradient of the tensile force-elongation rate curve in the elongation range of the elongation rate E to E + 3% in the tensile force-elongation rate curve is , It may be 1 to 2.5 times the average slope of the elongation range from 0% to E.
前記複合和紙糸においては、前記補強糸が熱融着性繊維を含んで成り得る。 In the composite Japanese paper yarn, the reinforcing yarn may include a heat-fusible fiber.
前記複合和紙糸においては、前記補強糸がポリエチレンテレフタレートとポリトリメチレンテレフタレートとのサイドバイサイド型複合繊維からなるフィラメント糸であり得る。 In the composite Japanese paper yarn, the reinforcing yarn may be a filament yarn made of a side-by-side type composite fiber of polyethylene terephthalate and polytrimethylene terephthalate.
また、本発明の要旨とするところは、前記複合和紙糸がさらに熱収縮されてなる複合和紙糸であるところにある。 Further, the gist of the present invention resides in that the composite Japanese paper yarn is a composite Japanese paper yarn which is further thermally contracted.
さらに、本発明の要旨とするところは、前記複合和紙糸を準備し、該複合和紙糸を熱収縮させることを特徴とする複合和紙糸の製造方法であるところにある。 Further, the gist of the present invention resides in a method for producing a composite washi yarn, characterized in that the composite washi yarn is prepared and the composite washi yarn is thermally contracted.
また、本発明の要旨とするところは、前記複合和紙糸の製造方法であって、撚係数が50〜200の前記和紙糸を準備する工程、前記和紙糸と前記補強糸とを引き揃えて該加撚和紙糸の加撚方向と逆方向に、該和紙糸の撚数の1.5〜3倍の撚数で加撚する工程を含む複合和紙糸の製造方法であるところにある。 Further, the gist of the present invention is a method for producing the composite Japanese paper yarn, the step of preparing the Japanese paper yarn having a twist coefficient of 50 to 200, the Japanese paper yarn and the reinforcing yarn are aligned, The present invention is a method for producing a composite Japanese paper yarn including a step of twisting the twisted Japanese paper yarn in a direction opposite to the twisting direction of the twisted Japanese paper yarn with a twist number of 1.5 to 3 times the twist number of the Japanese paper yarn.
また、本発明の要旨とするところは、前記複合和紙糸の製造方法であって、
前記テープ状にスリットされた和紙からなる実質的に無撚の前記和紙糸を準備する工程、
該和紙糸に水を付与して湿った和紙糸を得る工程、
該湿った和紙糸と前記補強糸とを引き揃え状態で撚係数が70〜250の撚数で加撚する工程
を含む複合和紙糸の製造方法であるところにある。
The gist of the present invention is a method for producing the composite Japanese paper thread,
Preparing the substantially untwisted Japanese paper yarn comprising the Japanese paper slit in the tape shape;
Applying water to the washi yarn to obtain a wet washi yarn,
The wet Japanese paper yarn and the reinforcing yarn are in a state where they are aligned, and a method for producing a composite Japanese paper yarn comprising a step of twisting with a twist number of 70 to 250 in a twisted state.
また、本発明の要旨とするところは、前記複合和紙糸の製造方法であって、
前記テープ状にスリットされた和紙からなる実質的に無撚の前記和紙糸を準備する工程、
該和紙糸に水を付与して湿った和紙糸を得る工程、
該湿った和紙糸を前記補強糸に対してオーバーフィードして両者を加撚機の加撚域に供給し、撚係数が70〜250の撚数で加撚する工程
を含む複合和紙糸の製造方法であるところにある。
The gist of the present invention is a method for producing the composite Japanese paper thread,
Preparing the substantially untwisted Japanese paper yarn comprising the Japanese paper slit in the tape shape;
Applying water to the washi yarn to obtain a wet washi yarn,
Manufacture of a composite washi yarn including a step of overfeeding the wet washi yarn to the reinforcing yarn, supplying both to the twisting region of the twisting machine, and twisting with a twist number of 70 to 250 Is where the way is.
また、本発明の要旨とするところは、前記複合和紙糸を経糸の少なくとも一部に用い、経糸における複合和紙糸の本数割合が30%以上である和紙糸織物であるところにある。 The gist of the present invention resides in a Japanese paper yarn fabric in which the composite Japanese paper yarn is used as at least a part of the warp, and the ratio of the number of the composite Japanese paper yarn in the warp is 30% or more.
さらに、本発明の要旨とするところは、平織組織構造または綾織組織構造の織物であって、前記複合和紙糸を経糸とし、前記複合和紙糸を緯糸とし、緯糸織密度係数が35〜55である前記和紙糸織物であるところにある。 The gist of the present invention is a woven fabric having a plain weave structure or a twill weave structure, wherein the composite Japanese paper yarn is a warp, the composite Japanese paper yarn is a weft, and a weft weave density coefficient is 35 to 55. It is the place where it is the said Japanese paper thread fabric.
また、本発明の要旨とするところは、平織組織構造または綾織組織構造の織物であって、テープ状にスリットされた和紙を主成分としてなる和紙糸を緯糸とし、前記複合和紙糸を経糸とし、前記織物の緯糸織密度係数が35〜50である前記和紙糸織物であるところにある。 Further, the gist of the present invention is a woven fabric having a plain weave structure or a twill weave structure, wherein the washi yarn is composed mainly of Japanese paper slit in a tape shape, and the composite washi yarn is used as a warp, The weft yarn weaving fabric has a weft weave density coefficient of 35-50.
さらに、本発明の要旨とするところは、前記和紙糸織物がさらに熱収縮されてなる織物であり、該織物に用いられた複合和紙糸が前記複合和紙糸である和紙糸織物であるところにある。 Further, the gist of the present invention resides in that the Japanese paper yarn woven fabric is further woven by thermal shrinkage, and the composite Japanese paper yarn used in the woven fabric is a Japanese paper yarn woven fabric which is the composite Japanese paper yarn. .
また、本発明の要旨とするところは、前記和紙糸織物をアッパーに用いたランニングシューズであるところにある。 Further, the gist of the present invention resides in a running shoe using the above-mentioned Japanese paper yarn fabric as an upper.
さらに、本発明の要旨とするところは、前記複合和紙糸を編成してなる和紙糸編物であるところにある。 Further, the gist of the present invention resides in a Japanese paper yarn knitted fabric obtained by knitting the composite Japanese paper yarn.
前記和紙糸織物においては、前記補強糸が熱融着性繊維を含んで成り、該補強糸中で該熱融着性繊維同士が融着され得る。 In the Japanese paper yarn woven fabric, the reinforcing yarn includes heat-fusible fibers, and the heat-fusible fibers can be fused in the reinforcing yarn.
前記和紙糸編物においては、前記補強糸が熱融着性繊維を含んで成り、該補強糸中で該熱融着性繊維同士が融着され得る。 In the Japanese paper yarn knitted fabric, the reinforcing yarn includes heat-fusible fibers, and the heat-fusible fibers can be fused in the reinforcing yarn.
本発明により、目開きが殆んどなく表面が平滑な、和紙を素材とする高密度織物が提供される。 According to the present invention, there is provided a high-density woven fabric made of Japanese paper having almost no openings and a smooth surface.
本発明により、目開きが殆んどなくかつ吸湿性に優れて足の発汗による水分を外部に効率よく発散させ、これにより足のムレが少なくまた足のダメージが少ない、アッパーの素材に適した和紙糸織物が提供される。 According to the present invention, it is suitable for the upper material, which has almost no mesh opening and is excellent in hygroscopicity and efficiently dissipates moisture due to sweating of the foot to the outside, thereby reducing foot stuffiness and foot damage. A Japanese paper yarn fabric is provided.
さらに加えて、本発明により、和紙糸の製織や編成における糸切れが多いという問題を改善することのできる複合和紙糸が提供される。 In addition, the present invention provides a composite washi yarn that can improve the problem of many yarn breaks in weaving and knitting of washi yarn.
またさらに加えて、本発明により、和紙糸の被覆性が良好な複合和紙糸が提供される。 In addition, according to the present invention, a composite Japanese paper thread with good coverage of the Japanese paper thread is provided.
本発明は和紙糸を用いた高織密度の和紙糸織物およびその織物に好適に用いることのできる複合和紙糸およびその製造方法に関する。また複合和紙糸を用いた編物に関する。 The present invention relates to a high weaving density Japanese paper yarn fabric using a Japanese paper yarn, a composite Japanese paper yarn that can be suitably used for the fabric, and a method for producing the same. The present invention also relates to a knitted fabric using composite Japanese paper yarn.
本発明の和紙糸織物は、和紙を主素材とする糸を少なくとも経糸の一部または全部に用い、かつ、和紙を主素材とする糸を少なくとも緯糸の一部または全部に用いた、織物である。この織物としては、平織または綾織の織物であることが好ましい。なお、この織物のこれら組織はマット織、うね織などの誘導組織、変化組織を含む。平織または綾織は糸の浮きが少ないので堅固な構造の織物が得られ、シューズなどのはげしい力が作用する用途に用いる織物の組織として適している。本発明の和紙糸織物はランニングシューズのアッパーなどに好適に用いられる。 The Japanese paper yarn woven fabric of the present invention is a woven fabric in which a yarn mainly composed of Japanese paper is used for at least a part or all of warp yarns, and a yarn mainly composed of Japanese paper is used for at least some or all of weft yarns. . The woven fabric is preferably a plain woven fabric or a twill woven fabric. In addition, these structures | tissues of this textile fabric include induction | guidance | derivation structures | tissues, such as a mat | matte woven fabric and a woven fabric, and a change structure | tissue. A plain weave or twill weave has a tight structure because it has little yarn floating, and is suitable as a fabric structure used in applications where a strong force acts, such as shoes. The Japanese paper yarn fabric of the present invention is suitably used for an upper of a running shoe.
本発明に用いられる和紙はこうぞ、みつまた、雁皮、麻類、針葉樹、広葉樹、笹等の和紙に適した原料植物を叩解して得られる繊維からなる和紙原料を漉いて作られる紙である。和紙の目付けは略10〜30g/m2程度が製造技術上好ましいが、この範囲を超えて目付けが大きいものやこの範囲を超えて目付けが小さいものの使用も可能である。 The Japanese paper used in the present invention is a paper made by pulverizing a Japanese paper raw material made of fibers obtained by beating a raw material plant suitable for Japanese paper such as Kozo, Mitsumo, husks, hemp, conifers, hardwoods and cocoons. The weight of Japanese paper is preferably about 10 to 30 g / m 2 in terms of manufacturing technology. However, it is possible to use a paper having a large basis weight exceeding this range or a basis weight being small beyond this range.
本発明に用いられる和紙には20重量%以下であれば上記の和紙原料以外の原料繊維が含まれていてもよい。この和紙原料以外の繊維の含有率が20重量%を越えると、和紙特有の吸湿性、強度が劣って、本発明におけるランニングシューズ等の製品の特性に影響することがある。本発明に用いられる和紙においては、上記の和紙原料の含有率が90重量%以上であることが製品の性能上最も好ましい。 The Japanese paper used in the present invention may contain raw material fibers other than the above Japanese paper raw material as long as it is 20% by weight or less. If the content of fibers other than the Japanese paper raw material exceeds 20% by weight, the hygroscopicity and strength peculiar to Japanese paper are inferior, which may affect the characteristics of products such as running shoes in the present invention. In the Japanese paper used in the present invention, the content of the Japanese paper raw material is most preferably 90% by weight or more in terms of product performance.
本発明に用いられる和紙を主素材とする糸(以下「和紙糸」と称する)は、和紙を細幅(例えば0.8〜30mm幅)のテープ状にスリットした和紙テープ(実質的に無撚の和紙糸)、あるいはこの和紙テープを加撚して得られるもの(加撚された和紙糸)、あるいは和紙テープと他の糸との合撚糸(加撚された和紙糸)である。すなわち、本発明に用いられる和紙糸は、テープ状にスリットされた和紙を主成分としてなる和紙糸である。和紙糸が和紙テープと他の糸との合撚糸であってもよいが、和紙糸には60重量%以上の和紙が含まれていることが和紙糸の良好な吸湿性やムレ感のなさという本来の性能を損なわないうえで必要である。和紙糸における和紙以外の糸の比率が40重量%以下であれば、良好な吸湿性や独特のサラッとした触感という和紙糸特有の性能が維持される。和紙糸は和紙のみからなることがさらに好ましい。和紙糸は単糸であってもよいが、双糸であってもよい。和紙糸の線密度(単位長さ当たりの重量)は1/60(g/m)〜1/8(g/m)であることが好ましい。すなわち、単糸の場合は60〜8番手であることが好ましい。和紙糸は加撚されていることが、糸の強度を得るうえでは好ましい。和紙糸の撚数については、撚係数KWが50〜150であることが好ましい。KWはT/√Nで定義される値である(Tは糸の撚数(回/m)、Nは糸の番手(糸の線密度(g/m)の逆数)。 A thread mainly composed of Japanese paper used in the present invention (hereinafter referred to as “Japanese paper thread”) is a Japanese paper tape (substantially untwisted) obtained by slitting Japanese paper into a thin tape (for example, 0.8-30 mm width). Of Japanese paper), a product obtained by twisting this Japanese paper tape (twisted Japanese paper yarn), or a twisted yarn of Japanese paper tape and other yarn (twisted Japanese paper yarn). That is, the Japanese paper thread used in the present invention is a Japanese paper thread whose main component is Japanese paper slit in a tape shape. The Japanese paper yarn may be a twisted yarn of a Japanese paper tape and another yarn, but the Japanese paper yarn contains 60% by weight or more of Japanese paper, which means that the Japanese paper yarn has good hygroscopicity and lack of stuffiness. Necessary to maintain the original performance. If the ratio of the non-Japanese paper thread to the Japanese paper thread is 40% by weight or less, the performance unique to the Japanese paper thread, such as good hygroscopicity and a unique smooth feel, is maintained. It is more preferable that the Japanese paper thread is composed only of Japanese paper. The Japanese paper yarn may be a single yarn or a double yarn. The linear density (weight per unit length) of the Japanese paper thread is preferably 1/60 (g / m) to 1/8 (g / m). That is, in the case of a single yarn, it is preferably 60 to 8th. The Japanese paper yarn is preferably twisted in order to obtain the strength of the yarn. The number of twists of paper yarn, it is preferable twist coefficient K W is 50 to 150. K W is a value defined by T / √N (T is the number of yarn twists (times / m), and N is the yarn count (reciprocal of yarn linear density (g / m)).
本明細書における糸の番手はメートル番手をいう。 The yarn count in this specification refers to a metric count.
なお、本明細書において「撚数」は、ことわりのない限りは単位長さ当たりの撚回数をいう。 In the present specification, “twist number” means the number of twists per unit length unless otherwise specified.
和紙糸を用いた織物は、吸湿性に優れるので、ランニングシューズのアッパー等に適しているが、平織、または綾織構造の織物は、織物の織密度が高いと表面が緻密で平滑になり、かつ、繰り返し外力を受けた場合の形態安定性に優れる。この点で、本発明の和紙糸織物は平織構造の織物であることがさらに好ましい。 A woven fabric using Japanese paper yarn is excellent in hygroscopicity and is therefore suitable for uppers of running shoes, etc., but a plain woven or twill woven fabric has a dense and smooth surface when the woven fabric density is high, and Excellent form stability when subjected to repeated external forces. In this respect, the Japanese paper yarn fabric of the present invention is more preferably a plain weave fabric.
しかし、経糸の一部または全部に和紙糸を用いて織物を製造するとき、高織密度の織物を得るために筬打ち力を大きくすると、製織時に筬打ちにより発生する経糸張力(筬打ち力)で経糸の和紙糸が切断するというトラブルが起こりやすい。これは、和紙糸がたかだか4%前後あるいはそれ以下と極めて最大応力点伸度が小さい低伸度の糸であり、和紙糸にかかる糸の長手方向の衝撃力により切断されやすいことによる。また、和紙糸の初期引張り弾性率が50〜80cN/dtexほどと高くて、静的な織組織構造においても経糸がまがりにくくかつ伸びにくいという理由で高緯糸織密度の織物組織が得られにくいので無理に高密度の織物を得ようとするとその衝撃力がさらに大きくなることによる。とくに、平織、または綾織構造の織物は、糸の浮きが少ないので、この傾向が強い。 However, when manufacturing a woven fabric using Japanese paper yarn for part or all of the warp, if the beating force is increased in order to obtain a high weaving density woven fabric, the warp tension generated by beating during weaving (beating force) Therefore, the trouble that the Japanese paper thread of the warp is cut easily occurs. This is because the Japanese paper yarn is a low elongation yarn having an extremely small maximum stress point elongation of about 4% or less at most, and is easily cut by an impact force in the longitudinal direction of the yarn on the Japanese paper yarn. In addition, the initial tensile elastic modulus of Japanese paper yarn is as high as about 50 to 80 cN / dtex, and even in a static woven structure structure, it is difficult to obtain a woven structure having a high weft weave density because it is difficult to warp and stretch easily. This is because the impact force is further increased when trying to obtain a high-density fabric. In particular, a plain woven fabric or a twill woven fabric has a high tendency because there is little yarn floating.
なお、経糸張力は経糸の1本1本に独立して発生するので、経糸に和紙糸以外の糸も配した(経糸の総本数Nが、和紙糸N1本と和紙糸以外の糸N2本の和)場合であっても、この和紙糸が筬打ち力で切断するというトラブルを避けることはできない。 Since the warp tension is generated independently for each warp, a thread other than the Japanese paper thread is also arranged in the warp (the total number of warp threads N is one Japanese paper thread N and a thread N 2 other than the Japanese paper thread). Even in the case of book sum), it is impossible to avoid the trouble that this Japanese paper thread cuts with a punching force.
本発明における初期引張り弾性率(G)は、繊度x(dtex)の糸を引張り試験機によりスパン間隔20cmで把持して引張り速度1mm/secで伸長し引張り応力が0.05cN/dtexがかかったときの糸の長さ(スパン)をL0とし、さらにその状態から糸を基準長の1%伸長したときの引張り荷重をW(cN)としたときG=(W−(0.05×x))×100/xで定義される値G(cN/dtex)である。 In the present invention, the initial tensile elastic modulus (G) was determined by grasping a yarn of fineness x (dtex) with a span tester at a span interval of 20 cm and elongating at a pulling speed of 1 mm / sec and applying a tensile stress of 0.05 cN / dtex. When the length (span) of the yarn is L0 and the tensile load when the yarn is extended by 1% of the reference length from that state is W (cN), G = (W− (0.05 × x)) ) × 100 / x, which is a value G (cN / dtex).
糸の引っ張り強度を向上のために主糸と補強糸とを単純に合撚して組み合わせることは常套手段であるが、単に補強糸として高強力の糸を用いるだけでは、本発明において耐筬打ち衝撃張力の向上という効果を得ることが難しい。 In order to improve the tensile strength of the yarn, it is a conventional means to simply combine the main yarn and the reinforcing yarn by twisting and twisting them. It is difficult to obtain the effect of improving the impact tension.
例えば、補強糸の初期引張り弾性率が低い場合は、そのような単純な合撚糸を経糸として織物を製造するとき、筬打ちにより発生する経糸張力で補強糸が主糸である和紙糸の切断伸度(最大応力点伸度)まで伸びたときに和紙糸が切断される傾向があるので、筬打ち衝撃張力の向上という効果を得ることが難しい。 For example, when the initial tensile elastic modulus of the reinforcing yarn is low, when producing a fabric using such a simple twisted yarn as a warp, the cutting and stretching of the Japanese paper yarn whose main yarn is the reinforcing yarn with the warp tension generated by punching. Since the Japanese paper thread tends to be cut when it is stretched to a degree (maximum stress point elongation), it is difficult to obtain the effect of improving the strike impact tension.
また、補強糸の初期引張り弾性率が和紙糸と同程度以上と高い場合は、そのような単純な合撚糸は和紙糸と同程度あるいはそれ以上の高弾性率を有するので、織組織のなかで経糸がまがりにくく従って高緯糸織密度の織物が得られにくい。 In addition, when the initial tensile elastic modulus of the reinforcing yarn is as high as or higher than that of Japanese paper yarn, such a simple twisted yarn has a high elastic modulus equivalent to or higher than that of Japanese paper yarn. It is difficult to warp the warp, and therefore it is difficult to obtain a fabric having a high weft weave density.
本発明者は和紙糸を用いて高織密度の織物を得ることを検討し、本発明に至った。 The present inventor has studied to obtain a high-weaving density woven fabric using Japanese paper thread, and has reached the present invention.
本発明の和紙糸織物においては、織物の経糸の耐筬打ち衝撃張力の向上を目的として和紙糸の他に補強糸が用いられる。補強糸と和紙糸とが複合されて本発明の複合和紙糸が得られる。この複合和紙糸は織物の経糸に用いられる。複合和紙糸は緯糸にも用いてよい。この複合和紙糸は、和紙糸と補強糸とが撚り合わされた状態の複合糸である。 In the Japanese paper yarn woven fabric of the present invention, a reinforcing yarn is used in addition to the Japanese paper yarn for the purpose of improving the strike impact resistance of the warp of the woven fabric. The composite yarn of the present invention is obtained by combining the reinforcing yarn and the washi yarn. This composite Japanese paper thread is used for warp of textiles. Composite washi yarn may also be used for weft. This composite Japanese paper yarn is a composite yarn in a state in which a Japanese paper yarn and a reinforcing yarn are twisted together.
本発明においては、和紙糸と補強糸との「撚り合わされた状態」とは、和紙糸と補強糸とが複合された複合糸条について、まっすぐな状態の複合糸条の一端を固定し、他端を複合糸条の長手方向を軸として一方向に所定の回数回転させることにより和紙糸と補強糸とを分離した状態にすることが出来るように、和紙糸と補強糸とが複合され、和紙糸と補強糸とが互いに複合糸条の糸軸を軸とする螺旋状(二重螺旋状)に絡み合った状態をいう。本明細書においては、このような態様における単位長さの複合和紙糸の分離に要する回転の数を分離可能撚数(T/m)と定義する。 In the present invention, the “twisted state” of the Japanese paper yarn and the reinforcing yarn means that the composite yarn in which the Japanese paper yarn and the reinforcing yarn are combined is fixed at one end of the straight composite yarn, The washi yarn and the reinforcing yarn are combined so that the end can be rotated a predetermined number of times in one direction around the longitudinal direction of the composite yarn, so that the washi yarn and the reinforcing yarn can be separated from each other. A state in which the yarn and the reinforcing yarn are entangled with each other in a spiral shape (double spiral shape) around the yarn axis of the composite yarn. In the present specification, the number of rotations required for separating the unit-length composite Japanese paper yarn in such an embodiment is defined as a separable twist number (T / m).
和紙糸と補強糸との「撚り合わされた状態」により、本発明の複合和紙糸は糸軸方向にしごき力を受けた場合に形態がくずれにくい。このようなしごき力は糸がガイドによりこすられながら走行する場合や、編成中に糸が編針にかかった状態などに発生する。 Due to the “twisted state” of the washi yarn and the reinforcing yarn, the composite washi yarn of the present invention is not easily deformed when subjected to a squeezing force in the direction of the yarn axis. Such a squeezing force occurs when the yarn travels while being rubbed by a guide, or when the yarn is applied to the knitting needle during knitting.
補強糸としてはポリエステル繊維、ナイロン繊維、ポリオレフィン繊維、レーヨンなどの人造繊維からなるフィラメント糸(マルチフィラメント糸)、加工糸、あるいはスパン糸が挙げられる。綿、麻、絹などの紡織用天然繊維からなるスパン糸あるいは混紡糸、あるいはフィラメント糸であってもよい。 Examples of the reinforcing yarn include filament yarn (multifilament yarn) made of artificial fibers such as polyester fiber, nylon fiber, polyolefin fiber, and rayon, processed yarn, and spun yarn. Spun yarns or blended yarns made of natural fibers for textiles such as cotton, hemp, and silk, or filament yarns may be used.
複合和紙糸における和紙糸の繊度と補強糸の繊度との比は、1:1〜15:1であることが好ましい。複合和紙糸における和紙糸の比率がこの範囲を下回ると、本発明におけるランニングシューズ等の製品の特性に影響する。すなわち、製品の吸湿性や足の発汗による水分を外部に効率よく発散させこれにより足のムレが少なくまた足のダメージが少ないという性能が劣ることになる。複合和紙糸における和紙糸の比率がこの範囲を上回ると、補強糸を用いることによる可織性の効果が発揮されにくくなる。 The ratio between the fineness of the Japanese paper yarn and the fineness of the reinforcing yarn in the composite Japanese paper yarn is preferably 1: 1 to 15: 1. When the ratio of the Japanese paper thread in the composite Japanese paper thread is below this range, the characteristics of the product such as running shoes in the present invention are affected. That is, the moisture absorption of the product and the moisture generated by sweating of the foot are efficiently diffused to the outside, which results in inferior performance such as less foot stuffiness and less foot damage. When the ratio of the washi yarn in the composite washi yarn exceeds this range, the woven effect due to the use of the reinforcing yarn is hardly exhibited.
さらに、この複合和紙糸に用いられる補強糸の初期引張り弾性率は20〜150cN/dtexであることが好ましい。補強糸の初期引張り弾性率が20cN/dtexを下回ると、筬打ちにより発生する経糸張力で補強糸が和紙糸の切断伸度近くまで伸びたときに補強糸にかかる力が小さく、筬打ちにより和紙糸が切断される要因となりかねないので、筬打ち衝撃張力の向上という効果を得るうえでは、補強糸の初期引張り弾性率が20cN/dtexであることが好ましい。補強糸の初期引張り弾性率が20cN/dtex以上であると、筬打ちにより発生する経糸張力で補強糸が和紙糸の切断伸度まで伸びたときに和紙糸が切断される傾向がきわめて小さくなり、筬打ち衝撃張力の向上という効果を得るうえで好ましい。補強糸の初期引張り弾性率が150cN/dtexを超えると、複合和紙糸の初期引張り弾性率が大きくなり、静的な織組織構造において経糸がまがりにくくかつ伸びにくい傾向があるので高緯糸織密度の織物組織を得るうえで最適とはいえない。 Furthermore, the initial tensile elastic modulus of the reinforcing yarn used for this composite Japanese paper yarn is preferably 20 to 150 cN / dtex. When the initial tensile elastic modulus of the reinforcing yarn is less than 20 cN / dtex, the force applied to the reinforcing yarn is small when the reinforcing yarn is extended to near the cutting elongation of the Japanese paper yarn by warp tension generated by the hammering. Since the thread may be a factor of cutting, it is preferable that the initial tensile elastic modulus of the reinforcing thread is 20 cN / dtex in order to obtain the effect of improving the strike impact tension. When the initial tensile elastic modulus of the reinforcing yarn is 20 cN / dtex or more, the tendency of the washi yarn to be cut when the reinforcing yarn is extended to the cutting elongation of the washi yarn with warp tension generated by punching is extremely small. It is preferable for obtaining the effect of improving the strike impact tension. If the initial tensile elastic modulus of the reinforcing yarn exceeds 150 cN / dtex, the initial tensile elastic modulus of the composite Japanese paper yarn increases, and the warp yarns tend to be difficult to stretch and stretch in a static woven structure structure. It is not optimal for obtaining a fabric structure.
本発明において用いられる複合和紙糸においては、複合和紙糸中に存在する和紙糸の長さと、この複合和紙糸中に存在する補強糸の長さが異なる。くわしくは、所定の長さLcに切断された複合和紙糸(切断複合和紙糸)を和紙糸と補強糸とに分離して取り出されたその和紙糸の長さをLa、その補強糸の長さをLbとしたとき、((La−Lb)/Lb)×100%の値Rが1.5〜12%である。Rが4〜9%であることが高緯糸織密度の織物組織を得るうえでさらに好ましい。Rは、切断複合和紙糸を解撚などにより和紙糸と補強糸とに分離してそれぞれの長さを計測して求めることができる。Lcの値は特に限定されるものではないが、20〜30cmであることが測定の容易さから好ましい。 In the composite Japanese paper yarn used in the present invention, the length of the Japanese paper yarn existing in the composite Japanese paper yarn is different from the length of the reinforcing yarn present in the composite Japanese paper yarn. Specifically, the length of the Washi yarn taken out by separating the composite Washi yarn (cut compound Washi yarn) cut into a predetermined length Lc into Washi yarn and reinforcing yarn is La, and the length of the reinforcing yarn. When Lb is Lb, the value R of ((La−Lb) / Lb) × 100% is 1.5 to 12%. In order to obtain a woven fabric having a high weft weave density, R is more preferably 4 to 9%. R can be obtained by separating the cut composite Japanese paper yarn into a Japanese paper yarn and a reinforcing yarn by untwisting or the like and measuring the respective lengths. The value of Lc is not particularly limited, but is preferably 20 to 30 cm from the viewpoint of ease of measurement.
Rのこのような範囲でLaがLbより大きいことと、複合和紙糸における上述の撚り合わされた状態により、和紙糸は複合和紙糸中で複合和紙糸の糸軸を軸とする略螺旋状の形状をなすような捲縮状態となって存在している。本発明においては、このRを(複合和紙糸中の和紙糸と補強糸との)糸長差率と定義する。なお、所定の長さLcに切断された複合和紙糸から分離された和紙糸および補強糸の長さは、その分離操作により生じた撚を必要に応じて戻して、和紙糸および補強糸の撚数が複合される前の和紙糸および補強糸の撚数となるようにして測定された長さである。 Due to the fact that La is larger than Lb in such a range of R and the above-described twisted state of the composite washi yarn, the washi yarn has a substantially spiral shape around the axis of the composite washi yarn in the composite washi yarn. It exists in a crimped state that makes In the present invention, this R is defined as the yarn length difference rate (between the washi yarn and the reinforcing yarn in the composite washi yarn). The length of the Japanese paper yarn and the reinforcing yarn separated from the composite Japanese paper yarn cut to the predetermined length Lc is adjusted by returning the twist generated by the separation operation as needed. The length is measured so that the number of twists of the Japanese paper yarn and the reinforcing yarn before the number is combined.
本発明における糸の長さは、糸に荷重0.05cN/dtexの伸長荷重がかかっているときの長さである。 The length of the yarn in the present invention is a length when an elongation load of 0.05 cN / dtex is applied to the yarn.
製織時に経糸張力が作用すると、上述のように複合和紙糸中に存在する和紙糸の長さと、この複合和紙糸中に存在する補強糸の長さが異なるため、まず複合和紙糸中の補強糸に張力が発生して補強糸が伸長する(Aステージ)。和紙糸はそのAステージにおいては、複合和紙糸の長手方向に、略螺旋状捲縮状態からほぼ直線状になるまで引き伸ばされるが、和紙糸にかかる主な張力は略螺旋状捲縮状態の和紙糸をほぼ直線状になるまで引き伸ばすに要する力であり、この張力で和紙糸が切断することはない。 When warp tension acts during weaving, the length of the Japanese paper yarn present in the composite Japanese paper yarn is different from the length of the reinforcing yarn present in this composite Japanese paper yarn as described above. The tension is generated in the wire and the reinforcing yarn is extended (A stage). In the A stage, the Washi yarn is stretched in the longitudinal direction of the composite Washi yarn from a substantially spiral crimped state until it becomes almost straight, but the main tension applied to the Washi yarn is the Washi yarn in a substantially spiral crimped state. This is the force required to stretch the yarn until it becomes substantially linear, and the washi yarn will not be cut by this tension.
複合和紙糸がさらに伸長すると和紙糸はほぼ直線状の状態となり和紙糸に大きな張力が発生する。Aステージに次いで経糸張力が増加すると、和紙糸と補強糸の両者の長手方向に糸を伸長する経糸張力が作用する(Bステージ)。このBステージにおいて筬打ちにより経糸張力が最大に達する。Bステージでは高い緯糸織密度を得るのに必要な高い経糸張力を和紙糸を主体として補強糸との両者で受け持つ。このとき、Aステージの存在により、筬打ちにより経糸が伸びて経糸張力が最大に達するまでに和紙糸が和紙糸の切断伸度以上に伸びて切断するトラブルを避けることができる。 When the composite washi yarn is further extended, the washi yarn is in a substantially straight state, and a large tension is generated on the washi yarn. When the warp tension increases after the A stage, the warp tension that stretches the yarn in the longitudinal direction of both the Japanese paper thread and the reinforcing thread acts (B stage). In this B stage, the warp tension reaches the maximum by beating. In the B stage, a high warp tension necessary for obtaining a high weft weave density is handled mainly by the Japanese paper yarn and the reinforcing yarn. At this time, due to the presence of the A stage, it is possible to avoid the trouble that the Japanese paper yarn extends beyond the cutting elongation of the Japanese paper yarn and cuts until the warp yarn is stretched by beating and the warp tension reaches the maximum.
Rが1.5%未満であると、Aステージがないか、極めて短いので、Bステージの初期で和紙糸に過重の張力がかかり、和紙糸の切断が生じやすい。Rが12%を超えて大きいと、和紙糸の螺旋構造が伸び切らないで織り込まれAステージで1回の筬打ちが終了する場合があり、和紙糸織物の表面の平滑性が悪くなるおそれがある。 If R is less than 1.5%, there is no A stage or it is very short, so excessive tension is applied to the Japanese paper thread at the beginning of the B stage, and the Japanese paper thread is likely to be cut. If R is greater than 12%, the spiral structure of the Japanese paper thread may be woven without being fully stretched and one beating may be completed at the A stage, and the smoothness of the surface of the Japanese paper thread fabric may be deteriorated. is there.
本発明の複合和紙糸においては、Rが4〜9%であることが和紙糸織物の表面の平滑性のうえでさらに好ましい。和紙糸が切断するトラブルを避けることと和紙糸織物の表面の平滑性のうえで、Rが5〜7%であることがさらに好ましい。 In the composite Japanese paper yarn of the present invention, R is more preferably 4 to 9% in view of the smoothness of the surface of the Japanese paper yarn fabric. It is more preferable that R is 5 to 7% in view of avoiding trouble that the Japanese paper yarn is cut and the smoothness of the surface of the Japanese paper yarn fabric.
また、Bステージの初期における経糸張力は、筬打ちによる経糸張力のピークの値に比べれば小さいので、補強糸の3%伸長時の引張り力は和紙糸の引張り強さの1/20以上であることが好ましい。 Further, since the warp tension at the initial stage of the B stage is smaller than the peak value of warp tension due to beating, the tensile force when the reinforcing thread is stretched by 3% is 1/20 or more of the tensile strength of the Japanese paper thread. It is preferable.
複合和紙糸は、和紙糸と、補強糸とが撚り合わされた状態であるので、複合和紙糸の伸長に伴い補強糸が和紙糸をその径方向に圧縮して拘束する力が生じ、このため前記のAステージにおいても、すなわち、複合和紙糸のAステージに相当する初期の伸長域においても和紙糸が補強糸とともに伸ばされる力が生ずると思われる。その結果、複合和紙糸の初期の伸長域における引張り力−伸長率曲線の勾配がBステージに相当する伸長域における引張り力−伸長率曲線の勾配に近いものになり、引張り力−伸長率曲線がなめらかになって、複合和紙糸が和紙糸の切断伸度を越えた急激な筬打ち力に耐えることができるようになると思われる。 Since the composite washi yarn is in a state where the washi yarn and the reinforcing yarn are twisted together, the reinforcing yarn compresses the washi yarn in its radial direction and restrains it as the composite washi yarn expands. Also in the A stage, that is, in the initial extension region corresponding to the A stage of the composite washi yarn, it is considered that a force for stretching the washi yarn together with the reinforcing yarn is generated. As a result, the gradient of the tensile force-elongation rate curve in the initial elongation region of the composite Japanese paper thread is close to the gradient of the tensile force-elongation rate curve in the elongation region corresponding to the B stage, and the tensile force-elongation rate curve is It appears that the composite Japanese paper thread will be able to withstand a sharp beating force that exceeds the cut elongation of the Japanese paper thread.
このためには、複合和紙糸は、分離可能撚係数Ksが70〜250であることが好ましい。分離可能撚係数KsはTs/√Nで定義される値である(Tsは糸の分離可能撚数(回/m)、Nは複合和紙糸の番手)。分離可能撚係数Ksが100〜250であることが、急激な筬打ち力に耐えることができるうえでさらに好ましい。Ksが150〜250であることが、急激な筬打ち力に耐えることができるうえで最も好ましい。 For this purpose, the composite Japanese paper yarn preferably has a separable twist coefficient Ks of 70 to 250. The separable twist coefficient Ks is a value defined by Ts / √N (Ts is the number of separable twists of the yarn (times / m), and N is the count of the composite Japanese paper yarn). It is further preferable that the separable twist coefficient Ks is 100 to 250 in view of being able to withstand a rapid striking force. It is most preferable that Ks is 150 to 250 in order to withstand a sharp striking force.
Ksが70を下回ると複合和紙糸のAステージに相当する初期の伸長域において補強糸が和紙糸を拘束する力が少なく、Bステージにおいて和紙糸に筬打ちにより過重の衝撃力が生じて複合和紙糸が切断するおそれがある。Ksが250を越えると、和紙糸織物の表面の平滑性が悪くなる。また、撚ビリが生ずる領域に近づくので複合和紙糸の強力も低下して好ましくない。 When Ks is less than 70, the reinforcing yarn has little force to restrain the washi yarn in the initial extension region corresponding to the A stage of the composite washi yarn, and the impact force of the heavy weight is generated on the washi yarn by beating at the B stage. There is a risk of the thread breaking. When Ks exceeds 250, the smoothness of the surface of the Japanese paper yarn fabric is deteriorated. In addition, since it approaches the region where twisting occurs, the strength of the composite Japanese paper thread is also lowered, which is not preferable.
本発明における糸の5%伸長時の引張り力は、糸を引張り試験機によりスパン間隔(つかみ具間隔)200mmで両端把持して引張り速度200mm/minで伸長し引張り応力が0.05cN/dtexがかかったときの糸の長さ(スパン)を基準長とし、さらにその状態から糸を基準長の5%伸長したときの引張り荷重で定義される値である。 The tensile force at the time of 5% elongation of the yarn in the present invention is that the yarn is held at both ends with a span interval (grip interval) of 200 mm by a tensile tester and stretched at a pulling speed of 200 mm / min, and the tensile stress is 0.05 cN / dtex. This is a value defined by a tensile load when the length (span) of the yarn when applied is a reference length and the yarn is further extended by 5% of the reference length from this state.
本発明における糸の最大応力点伸度は、糸を引張り試験機によりスパン間隔20cmで両端把持して引張り速度200mm/minで伸長し引張り応力が0.05cN/dtexがかかったときの糸の長さ(スパン長)を基準長L0とし、さらにその状態から糸を伸長し最大応力に達したときの糸の長さ(スパン長)をL1としたとき、((L1−L0)/L0)×100(%)で定義される値である。 The maximum elongation at the stress point of the yarn in the present invention is the length of the yarn when the yarn is held at both ends by a tensile tester with a span interval of 20 cm and stretched at a pulling speed of 200 mm / min and a tensile stress of 0.05 cN / dtex is applied. When the length (span length) is defined as the reference length L0 and the length (span length) of the yarn when the yarn is stretched to reach the maximum stress from the state is defined as L1, ((L1-L0) / L0) × It is a value defined by 100 (%).
本発明における糸の引張り強さは、糸が最大応力点伸度に達したときの力をいう。 The tensile strength of the yarn in the present invention refers to the force when the yarn reaches the maximum stress point elongation.
なお、本明細書における糸の物性、形態に関する値は20℃、65%RHの環境下で測定されるものである。また、この値は、ランダムにサンプリングされた10個の試料について得られた測定値の平均である。 In addition, the value regarding the physical property of a thread | yarn in this specification, and a form are measured in the environment of 20 degreeC and 65% RH. This value is the average of the measured values obtained for 10 samples sampled randomly.
また、前述のように補強糸の初期引張り弾性率は20〜300cN/dtexであることが好ましいが、補強糸の初期引張り弾性率が20cN/dtex未満であるとBステージにおいて経糸張力が和紙糸に過重にかかるのでBステージにおいて和紙糸が切断するおそれがある。 Further, as described above, the initial tensile elastic modulus of the reinforcing yarn is preferably 20 to 300 cN / dtex. However, if the initial tensile elastic modulus of the reinforcing yarn is less than 20 cN / dtex, the warp tension becomes Washi yarn in the B stage. Since it is excessively heavy, the Japanese paper thread may be cut off at the B stage.
(製造方法1)
複合和紙糸の製造方法としては、加撚された和紙糸と補強糸とを引き揃えて、加撚された和紙糸の加撚方向と逆方向に加撚する逆撚工程、を含む製造方法が挙げられる。すなわち、この場合、逆撚工程に供する和紙糸は撚られた状態の和紙糸である。この加撚された状態の和紙糸は、和紙テープを加撚して得られたものである。あるいは、和紙テープと他の糸との引きそろえ糸を加撚して得られたものである。和紙糸が撚られた状態の単糸である場合は、逆撚工程に供する和紙糸はその撚方向にさらに追撚したものであってもよい。この場合は、逆撚工程に供する和紙糸の撚数は、追撚前の撚数と追撚の撚数との和である。和紙糸は双糸であってもよい。この場合、逆撚工程の撚方向は和紙糸の撚方向と逆方向(逆撚)である。和紙糸が双糸の場合、逆撚工程に供する和紙糸は上撚方向にさらに追撚したものであってもよい。また、和紙糸が双糸である場合は、逆撚工程に供する和紙糸の撚数は和紙糸の上撚数である。双糸の和紙糸が追撚された場合は、逆撚工程に供する和紙糸の撚数は追撚前の上撚数と追撚数との和が複合和紙糸の撚数である。また、この場合、逆撚工程の撚方向は逆撚工程に供する和紙糸の上撚方向と逆方向である。
(Manufacturing method 1)
As a method for producing a composite Japanese paper yarn, there is a production method including a reverse twisting step in which twisted Japanese paper yarn and reinforcing yarn are aligned and twisted in a direction opposite to the twisting direction of the twisted Japanese paper yarn. Can be mentioned. That is, in this case, the Japanese paper yarn to be subjected to the reverse twisting process is a Japanese paper yarn in a twisted state. The twisted Japanese paper thread is obtained by twisting a Japanese paper tape. Alternatively, it is obtained by twisting an alignment yarn of Japanese paper tape and another yarn. When the Japanese paper yarn is a single yarn in a twisted state, the Japanese paper yarn subjected to the reverse twisting process may be further twisted in the twisting direction. In this case, the number of twists of the Japanese paper yarn subjected to the reverse twisting step is the sum of the number of twists before the additional twist and the number of twists of the additional twist. The Japanese paper yarn may be a twin yarn. In this case, the twisting direction of the reverse twisting process is the reverse direction (reverse twisting) to the twisting direction of the Japanese paper yarn. When the Japanese paper yarn is a twin yarn, the Japanese paper yarn subjected to the reverse twisting process may be further twisted in the upper twist direction. When the Japanese paper yarn is a double yarn, the number of twists of the Japanese paper yarn subjected to the reverse twisting process is the upper twist number of the Japanese paper yarn. In the case where the double Japanese paper yarn is twisted, the number of twists of the Japanese paper yarn subjected to the reverse twisting process is the sum of the number of top twists and the number of additional twists before the twisting is the number of twists of the composite Japanese paper yarn. Moreover, in this case, the twisting direction of the reverse twisting process is opposite to the upper twisting direction of the Japanese paper yarn subjected to the reverse twisting process.
この製造方法においては、和紙糸本来の撚り縮み及び/または順撚工程での和紙糸(または和紙テープ)の撚り縮みが逆撚工程で戻されるので、逆撚工程で、補強糸の撚り縮みが和紙糸の撚り縮みより大きくなり、ある一定の長さの複合和紙糸中で和紙糸または和紙テープと補強糸との糸長差が生ずるとともに、和紙糸と補強糸とが互いに複合和紙糸の糸軸を軸とする螺旋状に絡み合う糸構造が生ずる。すなわち、順撚工程及び逆撚工程での撚り数を調整することにより、本発明の複合和紙糸が得られる。逆撚工程に供する補強糸は、無撚の、または糸収束のために撚係数が20以下に加撚されたマルチフィラメント糸、あるいは双糸のスパン糸が好ましい。 In this production method, the original twist and shrinkage of the washi yarn and / or the twist of the washi yarn (or washi tape) in the forward twisting process is returned in the reverse twisting process. The length of the Washi yarn is larger than the twist of the Washi yarn, and there is a difference in yarn length between the Washi yarn or Washi tape and the reinforcing yarn in the composite Washi yarn of a certain length. A thread structure intertwining spirally with the axis as an axis is generated. That is, the composite Japanese paper thread | yarn of this invention is obtained by adjusting the twist number in a forward twist process and a reverse twist process. The reinforcing yarn subjected to the reverse twisting step is preferably a non-twisted, multifilament yarn twisted to a twist coefficient of 20 or less for yarn convergence, or a twin yarn spun yarn.
逆撚工程に供する和紙糸の撚係数(双糸の場合は上撚の撚係数)は50〜200であることが好ましい。逆撚工程における引き揃え糸の撚数は、逆撚工程に供する和紙糸の撚数の1.5〜3倍であることが好ましい。このような逆撚りにより、和紙糸自体の撚を有するとともに、その和紙糸と補強糸とが互いに複合和紙糸の糸軸を軸とする螺旋状に絡み合って適度に撚り合わされた状態が得られる。 It is preferable that the twist coefficient of the Japanese paper yarn to be subjected to the reverse twisting process (in the case of twin yarn, the twist coefficient of the upper twist) is 50 to 200. It is preferable that the number of twists of the aligned yarn in the reverse twisting process is 1.5 to 3 times the number of twists of the Japanese paper thread used in the reverse twisting process. By such reverse twisting, the Japanese paper yarn itself has a twist, and the Japanese paper yarn and the reinforcing yarn are intertwined in a spiral shape around the axis of the composite Japanese paper yarn and are appropriately twisted.
(製造方法2)
複合和紙糸の他の製造方法としては、加撚された和紙糸(糸A)と補強糸(糸B)とを併行して連続的にリング撚糸機のような加撚機の加撚域に供給して加撚して前記複合和紙糸を得る合撚工程、を含む製造方法が挙げられる。この場合、合撚工程において加撚域に和紙糸をオーバーフィードする。この合撚工程の撚方向は、加撚された和紙糸の撚方向は、和紙糸の撚方向と逆方向である。
(Manufacturing method 2)
As another method for producing a composite Japanese paper yarn, a twisted Japanese paper yarn (yarn A) and a reinforcing yarn (yarn B) are continuously used in a twisting region of a twisting machine such as a ring twisting machine. And a twisting step of supplying and twisting to obtain the composite washi yarn. In this case, the Japanese paper yarn is over-fed into the twisted region in the twisting step. The twisting direction of the twisting process is the same as the twisting direction of the washi yarn.
これにより、ある一定の長さの複合和紙糸中で和紙糸と補強糸との糸長差が生ずるとともにその和紙糸と補強糸とが互いに複合和紙糸の糸軸を軸とする螺旋状に絡み合う糸構造が生ずる。オーバーフィードとは、糸Aと糸Bを加撚域に連続して同時供給する際に、ある一定時間中に加撚域に供給される糸Aの長さaが糸Bの長さbより大きいように供給することをいう。a/b(オーバーフィード率)の値は、1.015〜1.12であることが好ましい。a/bの値がこの範囲をはずれると、((La−Lb)/Lb)×100%の値Rが1.5〜12%である複合和紙糸を得ることが難しい。 As a result, a yarn length difference between the Japanese paper yarn and the reinforcing yarn is generated in the composite Japanese paper yarn having a certain length, and the Japanese paper yarn and the reinforcing yarn are intertwined in a spiral shape about the axis of the composite Japanese paper yarn. A yarn structure results. The overfeed means that when the yarn A and the yarn B are continuously supplied to the twisted region at the same time, the length a of the yarn A supplied to the twisted region in a certain time is longer than the length b of the yarn B. It means to supply as big. The value of a / b (overfeed rate) is preferably 1.015 to 1.12. When the value of a / b is out of this range, it is difficult to obtain a composite Japanese paper yarn having a value R of ((La−Lb) / Lb) × 100% of 1.5 to 12%.
加撚域に和紙糸をオーバーフィードする方法としては、例えば、加撚された和紙糸と補強糸とを異なる速度(和紙糸の供給速度>補強糸の供給速度)でリング撚糸機の加撚域に同時供給する方法が挙げられる。この速度差(単位時間に加撚域に供給される補強糸の長さとその単位時間に加撚域に供給される和紙糸の長さの差)で加撚域に和紙糸がオーバーフィードされることになる。 As a method of overfeeding the Japanese paper yarn to the twisted region, for example, the twisted region of the ring twisting machine is different between the twisted Japanese paper yarn and the reinforcing yarn at different speeds (Japanese paper yarn supply speed> reinforcement yarn supply speed). The method of simultaneously supplying to is mentioned. The Japanese paper yarn is over-fed to the twisted region by this speed difference (the difference between the length of the reinforcing yarn supplied to the twisted region per unit time and the length of the Japanese paper yarn supplied to the twisted region per unit time). It will be.
(製造方法3)
製造方法2と同様の目的で加撚域に加撚された和紙糸をオーバーフィードする他の方法としては、例えば、加撚された和紙糸と補強糸とを引き揃えてリング撚糸機の1のフィードロールに同時供給し、このとき、供給される補強糸に加撚域における補強糸の張力より大きい所定の張力をかけておく方法が挙げられる。この場合、加撚域で補強糸の張力の大部分が開放されることにより、補強糸が長手方向に弾性回復し、結果的に加撚域に和紙糸がオーバーフィードされることになる。
(Manufacturing method 3)
As another method for overfeeding the Japanese paper yarn twisted in the twisted region for the same purpose as in the
(製造方法4)
複合和紙糸のさらに他の製造方法としては、和紙糸を補強糸にカバリングしたのち補強糸の巻付け方向と同方向に追撚する方法が挙げられる。カバリングは、例えば、和紙糸を巻いた中空ボビンを回転させ、補強糸をその中空ボビンの中空部を通過させることにより補強糸のまわりに和紙糸を連続的に巻きつけることにより行うことができる。
(Manufacturing method 4)
As another method for producing the composite washi yarn, there is a method in which the washi yarn is covered with the reinforcing yarn and then twisted in the same direction as the winding direction of the reinforcing yarn. Covering can be performed, for example, by continuously winding the Japanese paper thread around the reinforcing thread by rotating the hollow bobbin wound with the Japanese paper thread and passing the reinforcing thread through the hollow portion of the hollow bobbin.
(製造方法5)
また、本発明の複合和紙糸は、実質的に無撚でかつ湿った和紙テープと補強糸とを引き揃えた状態(引き揃え状態)で加撚することによって得ることができる。実質的に無撚とは、製造工程中に発生する解舒撚りなどの不可避の撚りを除いては可撚されていない状態をいう。解舒撚りは、巻糸体から糸(和紙テープ)を縦に引き出すことにより生ずる撚りであり、巻糸体の径によるが、その撚数は例えば2〜30T/mである。また、その他の要因で和紙テープに付加された撚りであっても撚数が100T/m以下であれば被覆性に影響する度合いは少なく、本発明の効果を得ることができる。すなわち、本明細書においては実質的に無撚の和紙テープは100T/m以下の撚数の和紙テープをいう。
(Manufacturing method 5)
In addition, the composite Japanese paper yarn of the present invention can be obtained by twisting in a state where the substantially non-twisted and wet Japanese paper tape and the reinforcing yarn are aligned (aligned state). “Substantially untwisted” refers to a state in which twisting is not possible except for inevitable twisting such as unwinding twisting that occurs during the manufacturing process. Unwinding twisting is a twist generated by pulling a yarn (Japanese paper tape) vertically from a wound body, and depending on the diameter of the wound body, the number of twists is, for example, 2 to 30 T / m. Further, even if the twist is added to the Japanese paper tape due to other factors, the degree of influence on the coverage is small as long as the number of twists is 100 T / m or less, and the effects of the present invention can be obtained. That is, in this specification, the substantially non-twisted Japanese paper tape refers to a Japanese paper tape having a twist number of 100 T / m or less.
加撚は加撚機構を有する加撚機により行うことが出来る。この加撚機としては、リングツイスタ、アップツイスタ、ダブルツイスタなどが例示される。加撚の撚係数は70〜250であることが好ましい。撚係数がこの範囲を下回ると良好な被覆が得られないことがある。撚係数がこの範囲を上回ると、糸が硬くなる傾向があり、製品の良好な風合いや触感が損なわれることがある。撚係数が80〜150であることが、良好な被覆と程度の触感を得るうえでさらに好ましい。 The twisting can be performed by a twisting machine having a twisting mechanism. Examples of the twisting machine include a ring twister, an up twister, and a double twister. The twisting coefficient of twisting is preferably 70 to 250. If the twist coefficient is below this range, a good coating may not be obtained. If the twist coefficient exceeds this range, the yarn tends to be hard, and the good texture and feel of the product may be impaired. A twist coefficient of 80 to 150 is more preferable for obtaining a good coating and a good tactile sensation.
加撚機としてリングツイスタを用いる場合は、実質的に無撚でかつ湿った和紙テープと補強糸とを加撚機の加撚域にフィードロールなどを用いて併行して等速で同時供給することによって得ることができる。 When a ring twister is used as a twisting machine, substantially untwisted and wet Japanese paper tape and reinforcing yarn are simultaneously fed to the twisting area of the twisting machine using a feed roll or the like at the same speed. Can be obtained.
湿った和紙テープを得る方法としては、和紙テープの巻き体、あるいは和紙テープと補強糸との引き揃え糸の巻き体を水に浸漬して和紙テープに吸水させたのちその水から取り出す方法、加撚域に向けて走行する和紙テープに水を、噴霧あるいは滴下、あるいは流下する方法などが挙げられる。あるいは、加撚域に向けて走行する和紙テープを、表面に水を付着させたいわゆるキスロールに接触させる方法、あるいは、加撚域に向けて走行する和紙テープを、水分を含むフェルト等の含水体に接触させる方法などが例示されるがこれらに限定されない。 A method for obtaining a wet Japanese paper tape is a method of immersing a Japanese paper tape roll or a winding thread of a Japanese paper tape and a reinforcing yarn in water and absorbing the water into the Japanese paper tape, and then removing it from the water. Examples thereof include a method of spraying, dripping, or flowing down water on a Japanese paper tape that travels toward a twisted region. Alternatively, a method of bringing a Japanese paper tape traveling toward the twisted region into contact with a so-called kiss roll having water attached to the surface, or a Japanese paper tape traveling toward the twisted region including water-containing felt such as felt Although the method etc. which are made to contact are illustrated, it is not limited to these.
加撚機としてダブルツイスタやアップツイスタを用いる場合は、和紙テープを湿った状態にする方法としては、和紙テープと補強糸とを引き揃えて巻き取って巻き糸体となし、その巻き糸体を加撚機に仕掛ける前に水に浸漬して和紙テープに吸水させたのちその水から取り出すことにより和紙テープを構成する和紙糸に水を付与するという方法や、和紙テープと補強糸とを引き揃えて巻き取って巻き糸体となす前に和紙テープに水分を付与することによって和紙テープを湿った状態にするという方法が例示される。 When a double twister or an up twister is used as a twisting machine, as a method for making the washi tape wet, the washi tape and the reinforcing thread are drawn together and wound to form a wound thread body. Before putting on the twisting machine, immerse it in water and absorb it into the washi tape, then take it out of the water and add water to the washi thread that composes the washi tape. An example is a method in which the Japanese paper tape is moistened by applying moisture to the Japanese paper tape before winding it into a wound body.
このような方法で得られた複合和紙糸は、和紙テープが補強糸をきわめて良好に被覆している。この良好な被覆性は、製造方法5において無染色の和紙テープと濃色に染色された補強糸を用いて得られた複合和紙糸により確認することができる。すなわち、そのようにして得られた複合和紙糸により、和紙テープが補強糸をきわめて良好に被覆しているので補強糸が殆んど糸表面に露出せず、外観上は補強糸を目認することがきわめて難しいことが確認できる。 In the composite washi yarn obtained by such a method, the washi tape covered the reinforcing yarn very well. This good covering property can be confirmed by the composite Japanese paper yarn obtained by using the undyed Japanese paper tape and the reinforcing yarn dyed in dark color in the production method 5. That is, with the composite washi yarn obtained in this way, the washi tape covered the reinforcing yarn very well, so that the reinforcing yarn is hardly exposed on the yarn surface, and the reinforcing yarn is visually recognized. It can be confirmed that this is extremely difficult.
従って、製造方法5により得られた複合和紙糸は、製織性が良好であるばかりではなく、その複合和紙糸を用いた編織物は、表面に補強糸が露出することが殆んどない。これにより、極めて良好な和紙調の触感が得られる。 Therefore, the composite Japanese paper yarn obtained by the production method 5 not only has good weaving properties, but the knitted fabric using the composite Japanese paper yarn hardly exposes the reinforcing yarn on the surface. Thereby, a very good Japanese paper-like feel can be obtained.
(製造方法6)
また、本発明の複合和紙糸は、実質的に無撚でかつ湿った和紙テープと補強糸とのあいだに速度差を与えて、両者を製造方法2で用いると同様な加撚機の加撚域にフィードロールなどを用いて供給し撚係数70〜250で加撚することによって得ることができる。すなわち、実質的に無撚でかつ湿った和紙テープを補強糸に対してオーバーフィードして両者を撚糸機の加撚域に供給することによって得ることができる。この場合のオーバーフィード率の値は、1.015〜1.12であることが好ましい。加撚機としてはリングツイスタを用いることができる。
(Manufacturing method 6)
In addition, the composite washi yarn of the present invention is substantially untwisted and gives a speed difference between the wet washi tape and the reinforcing yarn. It can be obtained by supplying the region with a feed roll or the like and twisting at a twisting coefficient of 70 to 250. That is, it can be obtained by overfeeding a substantially non-twisted and wet Japanese paper tape to the reinforcing yarn and supplying them to the twisting region of the twisting machine. In this case, the value of the overfeed rate is preferably 1.015 to 1.12. A ring twister can be used as the twister.
製造方法6により、和紙テープが、補強糸を製造方法5で得られる複合和紙糸よりもさらに良好に補強糸を被覆している複合和紙糸が得られる。また、製造方法6により得られる複合和紙糸は、製造方法5で得られる複合和紙糸よりも高伸度であり、製編性にまさる。 By the production method 6, a composite washi yarn in which the washi tape is coated with the reinforcing yarn even better than the composite washi yarn obtained by the production method 5 is obtained. Further, the composite Japanese paper yarn obtained by the production method 6 has a higher elongation than the composite Japanese paper yarn obtained by the production method 5, and exceeds the knitting property.
製造方法5においては、和紙テープは湿った状態であることにより、その長手方向に引き延ばされやすくなっており、加撚時に生ずる和紙テープをその長手方向に延ばす力で容易に引き延ばされて補強糸とのあいだに糸長差が生じ、このため、供給される和紙テープが実質的に無撚であることと相俟って和紙テープの被覆性が向上することが良好なカバリング性が得られる主要因であると推定される。製造方法6においては、この引き延ばされ効果に加えてオーバーフィードの効果により、和紙テープの被覆性がさらに向上すると思われる。 In the manufacturing method 5, since the Japanese paper tape is in a wet state, the Japanese paper tape is easily stretched in the longitudinal direction, and is easily stretched by the force of extending the Japanese paper tape generated during twisting in the longitudinal direction. Therefore, there is a difference in yarn length between the reinforcing yarn and the covering property of the washi tape is improved in combination with the fact that the supplied washi tape is substantially untwisted. Presumed to be the main factor obtained. In the production method 6, it is considered that the coverage of the Japanese paper tape is further improved by the effect of overfeeding in addition to the stretched effect.
製造方法5,6においては、加撚域に供される和紙テープは湿った和紙テープである。湿った和紙テープとは、和紙テープを構成する和紙が、30重量%以上の水分率で水分を保持している状態の和紙テープをいう。この水分率が50重量%以上であることが製造方法5,6において和紙テープの被覆性のよい複合和紙を得るうえでさらに好ましい。水分率は、湿った和紙テープの重量をWw、この湿った和紙テープを105℃20分で乾燥して得られた乾燥和紙テープの重量をWdとしたときの、((Ww−Wd)/Wd)×100(%)の値として得られる。この水分は和紙構成するセルロース繊維の吸湿によりセルロース繊維に保持された水分や、和紙構成するセルロース繊維の表面に吸着された水分や、和紙構成するセルロース繊維間に毛細管現象により保持されている水分などにより構成されている。好ましい水分率の上限は特に限定されるものではないが、過剰の水分は例えば加撚時などの工程中に生ずる、糸の回転による遠心力や慣性力や自然落下などにより加撚などの工程中に意識的な余分の操作をともなうことなく除去される。 In the manufacturing methods 5 and 6, the Japanese paper tape provided to a twist area is a wet Japanese paper tape. A damp washi tape refers to a washi tape in a state where the washi constituting the washi tape retains moisture at a moisture content of 30% by weight or more. It is more preferable that the moisture content is 50% by weight or more in the production methods 5 and 6 in order to obtain a composite Japanese paper having good coverage of the Japanese paper tape. Moisture content, wet paper tape weight W w, when the weight of dry paper tapes obtained The wet paper tape was dried at 105 ° C. 20 minutes was W d, ((W w -W d ) / W d ) × 100 (%). This moisture is the moisture retained by the cellulose fibers by moisture absorption of the cellulose fibers constituting the Japanese paper, the moisture adsorbed on the surface of the cellulose fibers constituting the Japanese paper, the moisture retained by the capillary phenomenon between the cellulose fibers constituting the Japanese paper, etc. It is comprised by. The upper limit of the preferred moisture content is not particularly limited, but excess water is generated during the process such as twisting, for example, during the process of twisting due to centrifugal force or inertial force due to the rotation of the yarn, natural fall, etc. Is removed without any conscious extra operation.
(製造方法7)
またさらには、本発明において用いられる複合和紙糸は、熱収縮しにくいという和紙糸の性質を利用して、和紙糸と補強糸とを引き揃えたのち加撚して得られた合撚糸あるいは製造方法1〜6のいずれかの方法で得られた複合和紙糸、を加熱して補強糸を熱収縮させることによって得ることができる。
(Manufacturing method 7)
Still further, the composite washi yarn used in the present invention is a twisted yarn or a product obtained by twisting the washi yarn and the reinforcing yarn after aligning the washi yarn using the property of the washi yarn that is difficult to heat shrink. It can be obtained by heat-shrinking the reinforcing yarn by heating the composite Japanese paper yarn obtained by any one of methods 1 to 6.
製造方法1〜6のいずれかの方法に対応する製造方法7により得られる複合和紙糸は、その対応の製造方法1〜6のいずれかの方法で得られる複合和紙糸よりも高伸度であり、製編性にまさる。 The composite Japanese paper yarn obtained by the production method 7 corresponding to any one of the production methods 1 to 6 has a higher elongation than the composite Japanese paper yarn obtained by any of the corresponding production methods 1 to 6. Superior to knitting.
製造方法1〜7で得られる複合和紙糸は、和紙糸と、補強糸とが互いに複合和紙糸の糸軸を軸とする螺旋状に絡み合って撚り合わされた状態である。この絡み合いが充分であると、複合和紙糸の伸長に伴い補強糸が和紙糸をその径方向に圧縮して拘束する力が生じ、このため前記のAステージにおいても、すなわち、図1に示す複合和紙糸の「引張り力−伸長率」曲線のモデルにおいて、複合和紙糸のAステージに相当する初期の伸長域AAにおいても和紙糸が補強糸とともに伸ばされる力が生ずると思われる。その結果、複合和紙糸の伸長域AAにおけるこの曲線の勾配がBステージに相当する伸長域BBにおけるこの曲線の勾配に近いものになる。 The composite Japanese paper yarns obtained by the production methods 1 to 7 are in a state in which the Japanese paper yarn and the reinforcing yarn are entangled and twisted in a spiral shape around the axis of the composite Japanese paper yarn. When this entanglement is sufficient, a force is generated that the reinforcing yarn compresses and restrains the washi yarn in its radial direction as the composite washi yarn is stretched. Therefore, even in the A stage, that is, the composite shown in FIG. In the model of the “tension force-elongation rate” curve of the Japanese paper yarn, it is considered that a force that the Japanese paper yarn is stretched together with the reinforcing yarn is generated even in the initial elongation area AA corresponding to the A stage of the composite Japanese paper yarn. As a result, the gradient of this curve in the elongation area AA of the composite Japanese paper thread becomes close to the gradient of this curve in the elongation area BB corresponding to the B stage.
本発明の複合和紙糸は、複合和紙糸中での和紙糸に注目すると、和紙糸自身が和紙糸の糸軸に沿った方向を軸として撚られている構造を有しているので、複合和紙糸の伸長域AAにおける引張り力−伸長率曲線の勾配P1が伸長域BBにおける引張り力−伸長率曲線の勾配P2に近いものになるという傾向があり、P1がP2と近い値になる。製造方法1において逆撚の撚数が逆撚前の和紙糸の撚数より多い場合はその傾向が顕著に顕われることとなる。 When paying attention to the Japanese paper yarn in the composite Japanese paper yarn, the composite Japanese paper yarn of the present invention has a structure in which the Japanese paper yarn itself is twisted about the direction along the yarn axis of the Japanese paper yarn. elongation zone tension in AA force of the thread - slope P 1 is the tensile force in the extension region BB elongation curve - tend to become as close to the gradient P 2 elongation curve, a value close P 1 is the P 2 Become. In the production method 1, when the number of twists of the reverse twist is larger than the number of twists of the Japanese paper yarn before the reverse twist, the tendency is remarkably revealed.
このように、本発明の複合和紙糸は、伸長域AAにおける引張り力−伸長率曲線の勾配が伸長域BBにおける引張り力−伸長率曲線の勾配に近いものになっており、伸長域BBにおいても和紙糸が補強糸を充分に拘束するので筬打ちにより和紙糸にかかる衝撃力を吸収する能力が大きい。このため筬打ちによる経糸の切断がきわめて生じにくく、強い力で緯糸を打ち込むことができ、緯糸織密度がきわめて大きく目開きが殆んどない和紙糸織物を得ることができる。 Thus, the composite Japanese paper thread of the present invention has a gradient of the tensile force-elongation rate curve in the extension region AA that is close to the gradient of the tensile force-elongation rate curve in the extension region BB. Since the Japanese paper yarn sufficiently restrains the reinforcing yarn, the ability to absorb the impact force applied to the Japanese paper yarn by hammering is great. For this reason, the warp yarn is hardly cut by beating, the weft can be driven with a strong force, and a Japanese paper yarn woven fabric having a very high weft weave density and almost no openings can be obtained.
本発明の複合和紙糸は、引張り力−伸長率曲線の勾配P1に相当する伸長域が勾配P2に相当する伸長域に変化する点の伸度Eが糸長差率Rにより影響される。E1が対象の複合和紙糸の糸長差率Rと同じ値である(E1=R)として、複合和紙糸の伸長率0〜E1(%)の伸長域Q1を伸長域AAとし、伸長域Q1の引張り力−伸長率曲線の平均勾配をP1とし、伸長率E1(=R)〜(E1+E2)の伸長域Q2を伸長域BBとしQ2の引張り力−伸長率曲線の平均勾配をP2とする。P2がP1の1〜2.5倍であることが、筬打ちによる経糸の切断が生じにくく、緯糸織密度の大きい和紙糸織物を得るうえで好ましい。E2は,和紙糸の最大応力点伸度をEmax(%)としたときにE2=Emax(%)で表わされる値である。ここで、P2はE2=3%としたときのQ2の引張り力−伸長率曲線の平均勾配と略同等とみなすことができる。従って、E2=3%としたときのP2がP1の1〜2.5倍であることが、筬打ちによる経糸の切断が生じにくく、緯糸織密度の大きい和紙糸織物を得るうえで好ましい。1〜2.5倍であることが最も好ましい。
Composite paper yarn of the present invention, a tensile force - elongation E of the point elongation range corresponding to the gradient P 1 elongation curve changes elongation range corresponding to the gradient P 2 is affected by the yarn length Saritsu R . As E1 is the same value as the yarn length Saritsu R of the composite paper yarn object (E1 = R), the extension region to Q 1 composite
伸長率は糸を引張り試験機によりスパン間隔(つかみ具間隔)200mmで両端把持して引張り速度200mm/minで伸長し引張り応力が0.05cN/dtexがかかったときの糸の長さ(スパン)を基準長とし、さらにその状態から糸を基準長のE(%)伸長したときのEの値で定義される。 Elongation rate is the length (span) of the yarn when the yarn is held at both ends with a span interval (grip interval) of 200 mm by a tensile tester, stretched at a pulling speed of 200 mm / min, and a tensile stress of 0.05 cN / dtex is applied. Is defined as a value of E when the yarn is further extended E (%) of the reference length from that state.
P2がP1の1〜2.5倍であるという特性の複合和紙糸は、例えば、補強糸の3%伸長時の引張り力が和紙糸の引張り強さの1/15以上であり、初期引張り弾性率が40〜120cN/dtexであり、和紙糸の繊度と補強糸の繊度との比が3:1〜8:1であり、糸長差率Rが4〜9%であり、複合和紙糸中で和紙糸と補強糸とが互いに複合和紙糸の糸軸を軸とする螺旋状に絡み合って撚り合わされた状態の複合和紙糸により得ることができることがわかった。 Composite paper yarn property that P 2 is 1 to 2.5 times the P 1 is, for example, tensile strength at 3% elongation of the reinforcing yarn is 1/15 or more paper yarn tensile strength, initial Tensile elastic modulus is 40 to 120 cN / dtex, ratio of fineness of Japanese paper yarn to fineness of reinforcing yarn is 3: 1 to 8: 1, yarn length difference ratio R is 4 to 9%, and composite Japanese paper It was found that the Japanese paper yarn and the reinforcing yarn in the yarn can be obtained by a composite Japanese paper yarn in a state where they are intertwined in a spiral shape around the axis of the composite Japanese paper yarn.
このような特性を有する本発明の複合和紙糸を得る製造方法としては、なかでも製造方法1を採用することが工程が簡易であるという点で好ましい。また、この製造方法1において、逆撚工程に供する和紙糸の撚係数(双糸の場合は上撚の撚係数)が50〜200であり、逆撚工程における引き揃え糸の撚数が、逆撚工程に供する和紙糸の撚数の1.5〜3倍であることが好ましい。 As a manufacturing method for obtaining the composite Japanese paper yarn of the present invention having such characteristics, it is preferable to employ the manufacturing method 1 because the process is simple. Moreover, in this manufacturing method 1, the twist coefficient (the twist coefficient of the top twist in the case of twin yarn) of the Japanese paper thread used for the reverse twist process is 50 to 200, and the twist number of the aligned yarn in the reverse twist process is reversed. It is preferable that it is 1.5 to 3 times the twist number of the Japanese paper thread to be subjected to the twisting step.
また、被覆性の良好な複合和紙糸を得るうえでは、製造方法5,6、あるいは製造方法5または6をベースとした製造方法7、を採用することが好ましい。製造方法6、あるいは製造方法6をベースとした製造方法7、を採用することがさらに好ましい。 Further, in order to obtain a composite Japanese paper thread having good covering properties, it is preferable to employ production methods 5 and 6, or production method 7 based on production method 5 or 6. It is more preferable to employ the manufacturing method 6 or the manufacturing method 7 based on the manufacturing method 6.
前述のように、和紙糸は極めて低伸度の糸であり、糸の長手方向の衝撃により切断されやすいので、筬打ち時の糸の長手方向の衝撃により切断されやすい。このため、織機の停台が頻発して生産効率を損なわれるので、和紙糸からは高緯糸織密度の織物が得られにくい。しかし、複合和紙糸を経糸にして、和紙糸Aを緯糸として打ち込むと、その複合和紙糸と同じ番手の和紙糸を経糸にして、緯糸として和紙糸Aを用いる場合に比べて、3割ほど緯糸織密度の大きい織物が通常の生産効率を損なわずに得られることがわかった。 As described above, the Japanese paper yarn is a yarn having a very low elongation, and is easily cut by the impact in the longitudinal direction of the yarn. For this reason, since the loom stops frequently and the production efficiency is impaired, it is difficult to obtain a fabric having a high weft yarn density from Japanese paper yarn. However, when the composite Japanese paper yarn is used as the warp and the Japanese paper yarn A is driven as the weft, the weft yarn of the same number as the composite Japanese paper yarn is used as the warp, and about 30% of the weft yarn is used as the weft. It was found that a woven fabric having a high weave density can be obtained without impairing the normal production efficiency.
すなわち、複合和紙糸を経糸にして、例えばその複合和紙糸と同番手の和紙糸を緯糸として打ち込んだ場合、緯糸織密度係数が50に達する和紙糸織物が通常の生産効率を損なわずに得られる。緯糸織密度係数KはK=W×√Gで定義される。ここで、Wは緯糸の織密度(本/10cm)、Gは緯糸の線密度(g/m(番手の逆数))である。この緯糸織密度係数の(最大)値をK0=50とする。これに対して、同じ番手の和紙糸を経糸にした場合は、通常の製織が可能な和紙糸織物の緯糸織密度係数は0.65K0未満である。緯糸の織密度Wは、織物の経糸方向の単位幅当たりの、緯糸の本数である。 That is, when a composite Japanese paper yarn is used as a warp, for example, when a Japanese paper yarn of the same number as the composite Japanese paper yarn is driven as a weft, a Japanese paper yarn fabric having a weft weave density coefficient of 50 can be obtained without impairing normal production efficiency. . The weft weave density coefficient K is defined as K = W × √G. Here, W is the weave density of the weft yarn (10/10 cm), and G is the linear density of the weft yarn (g / m (reciprocal number)). The (maximum) value of the weft weave density coefficient is K 0 = 50. In contrast, when the paper yarn of the same yarn count in warp and weft weaving density coefficient of paper yarn fabric capable conventional weaving is less than 0.65K 0. The weft density W of the weft is the number of wefts per unit width in the warp direction of the fabric.
緯糸に番手の異なる複数種の糸が用いられた場合は、Gは各糸の線密度の算術平均値である。例えば、緯糸が緯糸1と緯糸2からなる場合、経糸方向を幅方向として、単位幅内に存在する緯糸1の本数がY1、線密度がG1、緯糸2の本数がY2、線密度がG2、であるとき、Gは、G=(G1×Y1+G2×Y2)/(Y1+Y2)で与えられる。なお、単位幅は織組織の経糸方向の繰り返しの整数倍に相当するように設定する。また、Gの算出において、線密度の平均値として算術平均を用いることにより、幾何平均や調和平均(番手の算術平均)にくらべて実態にかなっているとわかった。 When a plurality of types of yarns having different counts are used for the wefts, G is an arithmetic average value of the linear density of each yarn. For example, when the weft consists of the weft 1 and the weft 2 , the warp direction is the width direction, the number of wefts 1 existing within the unit width is Y1, the line density is G1, the number of wefts 2 is Y2, the line density is G2, G is given by G = (G1 × Y1 + G2 × Y2) / (Y1 + Y2). The unit width is set so as to correspond to an integer multiple of repetitions in the warp direction of the woven structure. In addition, in calculating G, it was found that the arithmetic average was used as the average value of the linear density, and it was more realistic than the geometric average and the harmonic average (the arithmetic average).
また、和紙糸と補強糸を引き揃えたのち加撚して得られた合撚糸を経糸にした場合、糸長差率Rが1.5%未満であると、通常の製織が可能な和紙糸織物の緯糸織密度係数Kは0.7K0未満である。 In addition, when a twisted yarn obtained by twisting a Japanese paper yarn and a reinforcing yarn and then twisting is used as a warp yarn, a Washi yarn capable of normal weaving if the yarn length difference ratio R is less than 1.5%. weft weaving density factor K of the fabric is less than 0.7 K 0.
緯糸、経糸とも複合和紙糸の場合は、複合和紙糸を経糸にして和紙糸を緯糸として打ち込んだ場合よりさらに高緯糸織密度の和紙糸織物が通常の生産効率を損なわずに得られる。すなわち、織組織が平織または綾織の場合でも、緯糸織密度係数が35〜55である和紙糸織物が通常の生産効率を損なわずに得られる。 When both the weft and the warp are composite Japanese paper yarns, a Japanese paper yarn woven fabric having a higher weft weave density can be obtained without impairing normal production efficiency than when the composite Japanese paper yarn is used as a warp and the Japanese paper yarn is driven as a weft. That is, even when the woven structure is plain or twill, a Japanese paper yarn woven fabric having a weft weave density coefficient of 35 to 55 can be obtained without impairing normal production efficiency.
本発明の和紙糸織物に用いられる経糸と緯糸は同番手の糸であることが織物の力学的性質のバランスのうえで好ましいが、用途によっては経糸と緯糸が必ずしも同番手でなくともよい。 The warp and weft used in the Japanese paper yarn woven fabric of the present invention are preferably yarns having the same number, in view of the balance of the mechanical properties of the fabric, but the warps and wefts do not necessarily have the same number depending on the application.
また、本発明の和紙糸織物は、複合和紙糸のほかに複合和紙糸以外の糸を経糸の一部に用いた交織織物であってもよい。経糸と緯糸の一部に複合和紙糸以外の糸を用いた交織織物であってもよい。緯糸のすくなくとも一部に本発明の和紙糸以外の糸を用いた交織織物であってもよい。この交織織物としては、経糸および緯糸に複合和紙糸と通常の糸とを1本交互に配した綾織組織の織物などが例示される。経糸に用いられる複合和紙糸以外の糸としては、紡織用の既存の繊維からなるフィラメント糸、加工糸、紡績糸などの、衣料用、日用品用布資材、家具、インテリア用品用布資材、産業資材、に用いられている、織物に一般的に用いられている糸が例示される。緯糸に用いられる複合和紙糸以外の糸としては、紡織用の既存の繊維からなるフィラメント糸、加工糸、紡績糸などの、衣料用、日用品用布資材、家具、インテリア用品用布資材、産業資材、に用いられている織物に一般的に用いられる糸が例示される。紡織用の既存の繊維としては、麻,綿、絹などの天然繊維、ポリエステル系、ポリアミド系、アクリル系などの合成繊維、レーヨンなどのセルロース系人造繊維などが例示されるがこれらに限定されない。 Further, the Japanese paper yarn fabric of the present invention may be a woven fabric using a yarn other than the composite Japanese paper yarn as a part of the warp yarn in addition to the composite Japanese paper yarn. An unwoven fabric using yarn other than composite Japanese paper yarn as part of the warp and weft may be used. It may be a woven fabric using yarn other than the Japanese paper yarn of the present invention as at least a part of the weft. Examples of the union woven fabric include a twill woven fabric in which a composite Japanese paper yarn and a normal yarn are alternately arranged on warps and wefts. As yarns other than composite Japanese paper yarn used for warp, filament yarn, processed yarn, spun yarn, etc., made from existing fibers for textiles, clothing materials for daily necessities, furniture materials for furniture, interior goods, industrial materials And yarns generally used for fabrics are exemplified. Non-composite Washi yarn used for wefts includes filament yarns, processed yarns, spun yarns made of existing fibers for textiles, clothing materials for daily use, furniture materials for furniture, interior goods, industrial materials Examples of yarns generally used for fabrics used in the above. Examples of existing fibers for textile use include, but are not limited to, natural fibers such as hemp, cotton, and silk, synthetic fibers such as polyester, polyamide, and acrylic, and cellulose-based artificial fibers such as rayon.
複合和紙糸と複合和紙糸以外の糸との交織により、両者の特性を併せ持つ織物が得られる。 By weaving the composite Japanese paper yarn and the yarn other than the composite Japanese paper yarn, a woven fabric having both characteristics can be obtained.
本発明において、経糸の一部に用いことのできる、複合和紙糸以外の糸は、単独で製織した場合、緯糸織密度係数が35〜55である織物が、通常の生産効率を損なわずに得られる糸である。 In the present invention, when the yarn other than the composite Japanese paper yarn that can be used for a part of the warp is woven alone, a woven fabric having a weft weave density coefficient of 35 to 55 can be obtained without impairing normal production efficiency. Thread.
経糸に用いる複合和紙糸以外の糸は一般には初期引張り弾性率が複合和紙糸なみ、あるいはそれ以下であるので、そのようなケースでは、本発明の和紙糸織物がこのような交織織物である場合、緯糸織密度係数が35〜55である和紙糸織物が得られる。 Since the yarn other than the composite Japanese paper yarn used for the warp generally has an initial tensile modulus equal to or less than that of the composite Japanese paper yarn, in such a case, the Japanese paper yarn fabric of the present invention is such a woven fabric. A Japanese paper yarn woven fabric having a weft weave density coefficient of 35 to 55 is obtained.
本発明の和紙糸織物が交織織物である場合、織物に和紙の特性を活かすうえで、また、従来の和紙糸使いの織物特有のごわごわした感触を緩和するうえで、経糸における複合和紙糸の本数割合は30%以上であることが好ましい。緯糸における複合和紙糸の本数割合も30%以上であることがさらに好ましい。 When the Japanese paper yarn woven fabric of the present invention is a woven fabric, the number of composite Japanese paper yarns in the warp is used to make use of the characteristics of Japanese paper in the woven fabric and to relieve the stiff feel peculiar to the fabric using conventional Japanese paper yarn. The ratio is preferably 30% or more. The ratio of the number of composite Japanese paper yarns in the weft is more preferably 30% or more.
本発明の複合和紙糸を用いた和紙糸織物は、高密度で表面が緻密で平滑であり、また、とくにせん断変形に対して型崩れが少なく、外力に対する寸法安定性と、耐久性に優れる。また、本発明の複合和紙糸の初期引張り弾性率が従来の和紙糸の初期引張り弾性率にくらべて小さいので、織物の引っ張り硬さ(KESシステムにおけるLT値)が従来の和紙糸使いの織物にくらべて小さい。このため、従来の和紙糸使いの織物のごわごわした感触が緩和される。また、本発明の複合和紙糸を用いた和紙糸織物は、吸水性に優れ、ランニングシューズのアッパーに用いた場合の耐久性に優れ、かつ、従来の和紙糸使いの織物を用いたアッパーの場合にくらべて履き心地もよい。また、本発明の複合和紙糸を用いた和紙糸織物をアッパーに用いたランニングシューズは、裸足で着用した場合の長時間の連続走行時の足のダメージが小さい。また、本発明の和紙糸織物は、靴の中敷としても好適に用いることができる。 The Japanese paper yarn fabric using the composite Japanese paper yarn of the present invention has a high density, a fine surface and is smooth, and particularly has little deformation due to shear deformation, and is excellent in dimensional stability against external force and durability. In addition, since the initial tensile elastic modulus of the composite Japanese paper yarn of the present invention is smaller than the initial tensile elastic modulus of the conventional Japanese paper yarn, the tensile strength of the fabric (LT value in the KES system) is lower than that of the conventional Japanese paper yarn using fabric. Smaller than that. For this reason, the stiff feel of the traditional Japanese paper thread fabric is alleviated. In addition, the Japanese paper yarn fabric using the composite Japanese paper yarn of the present invention is excellent in water absorption, excellent durability when used in the upper of running shoes, and in the case of an upper using a conventional Japanese paper yarn using fabric Compared to comfort. Moreover, the running shoe using the Japanese paper yarn fabric using the composite Japanese paper yarn of the present invention for the upper has little damage to the foot during continuous running for a long time when worn barefoot. Moreover, the Japanese paper thread fabric of the present invention can be suitably used as an insole for shoes.
また、本発明の複合和紙糸に用いる補強糸は熱融着性繊維を含む糸であってもよい。熱融着性繊維は加熱により溶融するポリマーからなる繊維、あるいは、加熱により溶融するポリマーが繊維の表面の少なくとも一部分に露出するように配された繊維である。 Further, the reinforcing yarn used for the composite Japanese paper yarn of the present invention may be a yarn containing a heat-fusible fiber. The heat-fusible fiber is a fiber made of a polymer that melts by heating, or a fiber that is arranged so that the polymer that melts by heating is exposed on at least a part of the surface of the fiber.
熱融着性繊維を構成する熱溶融性ポリマーとしては、ポリエステル系繊維、ポリアミド系繊維、ポリオレフィン系繊維などの熱可塑性樹脂が挙げられる。副糸として、融点の異なる2種類の繊維を含む糸条が用いられてもよい。この場合、両者の融点の間の温度で織物を加熱することにより、融点の低い繊維を熱融着性繊維として機能させることができる。この態様にあっては、融点の高い繊維はこの加熱により溶融せず強力がほぼ維持されるので、織物の強力がこの加熱により大きく損なわれることがない。 Examples of the heat-fusible polymer constituting the heat-fusible fiber include thermoplastic resins such as polyester fiber, polyamide fiber, and polyolefin fiber. As the secondary yarn, a yarn containing two types of fibers having different melting points may be used. In this case, by heating the woven fabric at a temperature between the melting points of the two, fibers having a low melting point can function as heat-fusible fibers. In this embodiment, since the fiber having a high melting point is not melted by this heating and the strength is substantially maintained, the strength of the fabric is not greatly impaired by this heating.
熱融着性繊維が融点がT℃の1種類のポリマーからなる場合は、織物の加熱温度Hが、T≦H≦T+3℃であることが織物の強力がこの加熱により大きく損なわれることを避けるうえでは好ましい。 When the heat-fusible fiber is made of one kind of polymer having a melting point of T ° C., the heating temperature H of the woven fabric satisfies T ≦ H ≦ T + 3 ° C. to prevent the strength of the woven fabric from being greatly impaired by this heating. Above, it is preferable.
さらに、熱融着性繊維としては、融点の異なる2種類の樹脂が芯鞘状に複合されてなる繊維、あるいはバイメタル状に複合されてなる繊維(バイコンポーネントファイバー)であってもよい。この態様においても、両者の融点の間の温度で織物を加熱することにより、融点の高い樹脂がこの加熱により溶融せず、強力がほぼ維持されるので、織物の強力がこの加熱により大きく損なわれることがない。 Further, the heat-fusible fiber may be a fiber in which two types of resins having different melting points are combined in a core-sheath shape, or a fiber (bicomponent fiber) formed in a bimetallic shape. Also in this embodiment, by heating the fabric at a temperature between the melting points of both, the resin having a high melting point is not melted by this heating, and the strength is substantially maintained, so that the strength of the fabric is greatly impaired by this heating. There is nothing.
熱融着性繊維は、フィラメントであってもよい。ステープルであってもよい。フィラメントである場合は、他のフィラメントと混繊して用いられてもよい。あるいは、他の糸条と合糸や交撚して用いられてもよい。ステープルである場合は他の繊維と混紡されて用いられてもよい。 The heat-fusible fiber may be a filament. Staples may be used. When it is a filament, it may be used by mixing with other filaments. Alternatively, it may be used in combination with other yarns or in a twisted manner. In the case of a staple, it may be used by being blended with other fibers.
このような態様の複合和紙糸を用いた本発明の和紙糸織物を加熱加工して熱融着性繊維を溶融(した後冷却)することにより、複合和紙糸中で熱融着性繊維同士が融着する。さらに熱融着性繊維と和紙とがアンカー効果により結合する場合もある。また、補強糸が熱融着性繊維以外の繊維を含む場合は、その繊維に熱融着性繊維が融着したり熱融着性繊維以外の繊維同士が熱融着性繊維を介して接着する。これにより、複合和紙糸が剛くなる。これらの結果和紙糸織物が剛くなるとともに寸法安定性が向上する。これにより、和紙糸織物のさらなる加工時における搬送や移動操作、加工操作などにおける取扱いが容易となる。 The Japanese paper yarn fabric of the present invention using the composite Japanese paper yarn of such an aspect is heat-processed to melt (and then cool) the heat-fusible fiber, so that the heat-fusible fibers are combined in the composite Japanese paper yarn. Fuse. Furthermore, the heat-fusible fiber and Japanese paper may be bonded by an anchor effect. If the reinforcing yarn contains fibers other than the heat-fusible fiber, the heat-fusible fiber is fused to the fiber, or the fibers other than the heat-fusible fiber are bonded to each other via the heat-fusible fiber. To do. As a result, the composite Japanese paper thread becomes stiff. As a result, the Japanese paper yarn fabric becomes stiff and the dimensional stability is improved. As a result, handling during the further processing of the Japanese paper yarn woven fabric, the moving operation, the processing operation, and the like are facilitated.
このような態様の複合和紙糸を用いた和紙糸編物においても、同様の効果が得られる。 The same effect can be obtained also in the Japanese paper yarn knitted fabric using the composite Japanese paper yarn of such an aspect.
加熱加工手段としては熱ロールを用いてもよい。この熱ロールにより表面にエンボスによる凹凸の賦型が行われてもよい。 A heat roll may be used as the heat processing means. The surface of the surface may be embossed by embossing with this heat roll.
この剛くなった複合和紙糸を含む本発明の和紙糸織物、あるいは編物は、和紙の感触や吸湿性や分子吸着性や、天然物の触感や外観を活かして、フィルター材等の産業資材、ランプシェードや間仕切り用遮蔽材、などのインテリア用材、小物収納用のケース用材などに好適に用いることができる。 The Japanese paper yarn woven fabric or knitted fabric of the present invention including this stiffened composite Japanese paper yarn is made of industrial materials such as filter materials, taking advantage of the feel and moisture absorption and molecular adsorption of Japanese paper, and the touch and appearance of natural products. It can be suitably used for interior materials such as lamp shades and partitioning shielding materials, case materials for storing small items, and the like.
本発明の和紙糸織物は、インソール、サンダル、スリッパなどを含む履物の履物用材、カーテン地、壁紙、家具や自動車などの移動体の内装具の張地などのインテリア用の用品材や移動体の内装用材、ハンドバッグ、ポシェットなどのバッグ類の袋部に袋材や表面材として用いる素材、財布やカードケースどの物入れ用品類の収納部の用材や表面材などの素材、さらには、衣料の生地として好適に用いることができる。これらは、吸湿性に優れ、寸法安定性や耐久性にきわめて優れ、皮革類や合成繊維からなる布帛や綿布では得られないナチュラルで平滑なサラッとした良好な触感を有する。また、これらは脱臭性を有し、室内、車内や庫内の臭気を軽減する効果がある。また、これらは、プレス加工などによりきわめて平滑な表面、あるいは特殊な凹凸が賦与された表面を得ることができる。 The Japanese paper yarn woven fabric of the present invention is used for interior articles such as footwear materials for footwear including insole, sandals, slippers, etc., curtain fabrics, wallpaper, upholstery for interior items of moving objects such as furniture and automobiles, and mobile objects. As materials for interior materials, handbags, pouchettes, etc., as materials for bags and surface materials, materials for the storage and storage materials of wallets and card cases and other storage items, and materials for clothing It can be used suitably. These are excellent in hygroscopicity, extremely excellent in dimensional stability and durability, and have a natural, smooth and smooth feel that cannot be obtained with a fabric or cotton fabric made of leather or synthetic fibers. Moreover, these have deodorizing property and are effective in reducing the odor in a room | chamber interior, a vehicle interior, or a store | warehouse | chamber. Further, they can obtain a very smooth surface or a surface provided with special irregularities by press working or the like.
本発明の和紙糸織物は、補強や装飾や保護などの付加的な機能付与を目的として、布地や膜状物のようなシート地が張り合わされたものであってもよい。このシート地としては、編地、織地、皮革、人造皮革、フィルムなどが用いられてもよい。 The Japanese paper yarn fabric of the present invention may be one in which a sheet material such as a fabric or a film-like material is laminated for the purpose of providing additional functions such as reinforcement, decoration, and protection. As the sheet fabric, knitted fabric, woven fabric, leather, artificial leather, film, or the like may be used.
また、複合和紙糸の補強糸として熱収縮によりストレッチ性が付与される性質の糸を用いることにより、和紙糸織物にストレッチ性を付与できる。すなわち、このような性質の糸を補強糸として用いた複合和紙糸を経糸および/または緯糸に用いて製織して得た織物を例えば5〜15%熱収縮させることにより、和紙糸を用いた高密度の織物にストレッチ性が付与される。熱収縮によりストレッチ性が付与される性質の糸としては、ポリエチレンテレフタレートとポリトリメチレンテレフタレートとのサイドバイサイド型複合繊維からなるフィラメント糸(例えば、東レ・オペロンテックス株式会社製の商品名ライクラT400ファイバー)が例示される。 Further, by using a yarn having a property of imparting a stretch property by thermal contraction as a reinforcing yarn of the composite washi yarn, the stretch property can be imparted to the washi yarn fabric. That is, a fabric obtained by weaving a composite Japanese paper yarn using a yarn having such properties as a reinforcing yarn as a warp and / or weft is subjected to heat shrinkage, for example, by 5 to 15%. Stretch is imparted to the fabric of density. As a yarn having a stretch property by heat shrinkage, a filament yarn composed of a side-by-side type composite fiber of polyethylene terephthalate and polytrimethylene terephthalate (for example, trade name LYCRA T400 fiber manufactured by Toray Operontex Co., Ltd.). Illustrated.
熱収縮させることによりストレッチ性が付与される性質の糸とは、0.05cN/dtexの荷重のもとで130℃の乾熱または98℃の熱水で処理されることにより、伸縮伸長率(JIS L 1090に準拠して測定される値)が40%以上の糸となる糸である。 The yarn having the property of imparting stretchability by heat shrinking is treated with dry heat of 130 ° C. or hot water of 98 ° C. under a load of 0.05 cN / dtex, and thereby the stretch elongation rate ( The value measured according to JIS L 1090) is 40% or more.
また、複合和紙糸を熱収縮させたのち、この複合和紙糸を経糸および/または緯糸に用いて製織することにより、和紙糸を用いた織物にストレッチ性が付与される。この熱収縮における熱収縮率は5〜25%であることが好ましい。熱処理は例えば糸の染色によるものであってもよい。枷に取って熱水で処理する態様であってもよい。 Further, after the composite Japanese paper yarn is subjected to heat shrinkage, the composite Japanese paper yarn is woven using warp and / or weft to give stretchability to the woven fabric using the Japanese paper yarn. The heat shrinkage rate in this heat shrinkage is preferably 5 to 25%. The heat treatment may be, for example, by dyeing yarn. It may be an embodiment in which it is taken up in a basket and treated with hot water.
複合和紙糸を製織後に熱収縮させても、和紙糸を用いた織物にストレッチ性が付与される。熱収縮させた複合和紙糸を製織後にさらに熱収縮させてもよい。 Even if the composite Japanese paper yarn is heat-shrinked after weaving, stretchability is imparted to the fabric using the Japanese paper yarn. The heat-shrinked composite washi yarn may be further heat-shrinked after weaving.
さらに、本発明の複合和紙糸は、編物に適用した場合も、編成工程における編針の運動に伴う糸張力に起因する糸切れの防止に対して、上述の筬打ち時の糸張力に起因する糸切れ防止のメカニズムと類似の効果により、有効に作用する。すなわち、和紙糸は編物の製造に適用すると編成時に糸切れが多発し編成性が不良であり、編み機の回転数を落とさないと編成できなかったりするが、本発明の複合和紙糸を編物の製造に適用すると編成時の糸切れが減少し編み機の操業効率が向上する。編成としては、丸編、横編、トリコット編、ラッセル編などが例示される。 Furthermore, the composite washi yarn of the present invention is a yarn resulting from the above-described yarn tension at the time of lashing against the yarn breakage caused by the yarn tension accompanying the movement of the knitting needle in the knitting process even when applied to a knitted fabric. It works effectively by the effect similar to the mechanism of cutting prevention. In other words, when Japanese paper yarn is applied to the manufacture of knitted fabrics, yarn breakage frequently occurs during knitting and the knitting property is poor, and knitting cannot be performed unless the rotational speed of the knitting machine is lowered. When applied to knitting, the yarn breakage during knitting is reduced and the operation efficiency of the knitting machine is improved. Examples of the knitting include a circular knitting, a flat knitting, a tricot knitting, and a Russell knitting.
補強糸として熱収縮によりストレッチ性が付与される性質の糸を用いた複合和紙糸を編物の製造に適用すると、和紙糸を用いた場合に比べてさらに大幅に編成性が向上し、綿糸などの通常の糸と同等の編密度の編物を同等の機械条件で編成することが可能である。このような編成用の複合和紙糸は、テープ状にスリットされた和紙を主成分としてなる和紙糸と、補強糸とが撚り合わされた状態の複合糸(熱収縮前の複合和紙糸)を熱収縮させて得ることができる。熱処理は例えば糸の染色によるものであってもよい。枷に取って熱水で処理する態様であってもよい。 Applying a composite Japanese paper yarn using a yarn with the property of imparting stretchability by heat shrink as a reinforcing yarn to the production of knitted fabrics, the knitting property is further improved compared to the case of using a Japanese paper yarn, such as cotton yarn. A knitted fabric having a knitting density equivalent to that of a normal yarn can be knitted under the same mechanical conditions. Such knitting composite Japanese paper yarn is a heat-shrinkable composite yarn (composite Japanese paper yarn before heat shrinkage) in which a Japanese paper yarn mainly composed of Japanese paper slit in a tape shape and a reinforcing yarn are twisted together. Can be obtained. The heat treatment may be, for example, by dyeing yarn. It may be an embodiment in which it is taken up in a basket and treated with hot water.
この補強糸は最大応力点伸度が8%以上であり、3%伸長時の引張り力がこの和紙糸の引張り強さの1/20以上であり、和紙糸の繊度と補強糸の繊度との比は2:1〜15:1であり、複合糸中の和紙糸と補強糸との糸長差率が1.5〜12%である。また、この補強糸は熱収縮によりストレッチ性が付与される性質の糸であり、具体的には、ポリエチレンテレフタレートとポリトリメチレンテレフタレートとのサイドバイサイド型複合繊維からなるフィラメント糸(例えば、東レ・オペロン株式会社製の商品名ライクラT400ファイバー)が例示される。複合糸の熱収縮温度は110〜150℃であることが好ましい。熱収縮率は5〜20%であることが好ましい。 This reinforcing yarn has a maximum stress point elongation of 8% or more, and the tensile force at 3% elongation is 1/20 or more of the tensile strength of this Japanese paper yarn. The fineness of the Japanese paper yarn and the fineness of the reinforcing yarn The ratio is 2: 1 to 15: 1, and the yarn length difference rate between the Japanese paper yarn and the reinforcing yarn in the composite yarn is 1.5 to 12%. In addition, this reinforcing yarn is a yarn having a stretch property imparted by heat shrinkage. Specifically, a filament yarn comprising a side-by-side type composite fiber of polyethylene terephthalate and polytrimethylene terephthalate (for example, Toray Operon Co., Ltd.) The product name LYCRA T400 fiber manufactured by the company is exemplified. The heat shrinkage temperature of the composite yarn is preferably 110 to 150 ° C. The heat shrinkage rate is preferably 5 to 20%.
これらのような態様で得られる本発明の和紙糸編物は靴下や靴用素材、衣料、などに、吸湿性と独特のサラッとした触感を特徴として適用される。和紙糸編物の編地としては、丸編地、横編地、トリコット編地、ラッセル編地などが例示される。熱収縮させた複合和紙糸を編成後にさらに熱収縮させてもよい。 The Japanese paper yarn knitted fabric of the present invention obtained in such an embodiment is applied to socks, shoe materials, clothing, and the like, characterized by hygroscopicity and a unique smooth touch. Examples of the knitted fabric of the Japanese paper yarn knitted fabric include a circular knitted fabric, a flat knitted fabric, a tricot knitted fabric, and a Russell knitted fabric. The heat-shrinkable composite Japanese paper yarn may be further heat-shrinked after knitting.
実施例における試料の引張り力−伸長率曲線、最大応力点伸度、引張り強さの測定は、島津製作所製 引張試験機 AG−IS10KNを用い、つかみ具間隔200mm、引張り速度200mm/minで行った。 The tensile force-elongation rate curve, the maximum stress point elongation, and the tensile strength of the samples in the examples were measured using a tensile tester AG-IS10KN manufactured by Shimadzu Corporation at a gripper interval of 200 mm and a tensile speed of 200 mm / min. .
実施例1
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし加撚し30.5番手の和紙糸を得た。この和紙糸の撚数は430T/m(Z撚)であった。補強糸として56dtex、f24のポリエステル加工糸(撚数100T/m(S撚))を用いた。和紙糸の最大応力点伸度は3.7%、引張り強さは654cN、初期引張り弾性率は62cN/dtexであった。図2にこの和紙糸の代表的な引張り力−伸長率曲線を示す。補強糸の初期引張り弾性率は95cN/dtex、3%伸長時の引張り力は140N/dtex、最大応力点伸度は30%であった。
Example 1
Japanese paper made from Japanese paper raw material (15 g / m 2 basis weight) was slit into a tape and twisted to obtain 30.5th Japanese paper thread. The twist number of this Japanese paper thread was 430 T / m (Z twist). A 56 dtex, f24 polyester processed yarn (twist number 100 T / m (S twist)) was used as the reinforcing yarn. The maximum stress point elongation of the Japanese paper yarn was 3.7%, the tensile strength was 654 cN, and the initial tensile elastic modulus was 62 cN / dtex. FIG. 2 shows a typical tensile force-elongation rate curve of this Japanese paper thread. The initial tensile elastic modulus of the reinforcing yarn was 95 cN / dtex, the tensile force at 3% elongation was 140 N / dtex, and the maximum stress point elongation was 30%.
この和紙糸とこの補強糸とを合糸してアップツイスタで900T/m(S撚)で加撚後、スチームセッターで110℃20分の撚止めセットして24.4番手の複合和紙糸を得た。 This Japanese paper thread and this reinforcing thread are combined and twisted with an up twister at 900 T / m (S twist), then set with a steam setter at 110 ° C. for 20 minutes, and the 24.4th composite Japanese paper thread is obtained. Obtained.
この複合和紙糸の最大応力点伸度は10.2%、引張り強さは728cNであった。分離可能撚係数は182であり、糸長差率は6.3%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。 The maximum elongation at the stress point of this composite Japanese paper yarn was 10.2%, and the tensile strength was 728 cN. The separable twist coefficient was 182 and the yarn length difference rate was 6.3%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
図3にこの複合和紙糸の代表的な引張り力−伸長率曲線を示す。引張り力−伸長率曲線における、伸長率6.3%〜9.3%の伸長域の引張り力−伸長率曲線の平均勾配は、伸長率0%〜6.3%の伸長域の平均勾配の1.8倍であった。 FIG. 3 shows a typical tensile force-elongation rate curve of this composite Japanese paper thread. In the tensile force-elongation rate curve, the average slope of the tensile force-elongation rate curve in the elongation range of 6.3% to 9.3% is equal to the average slope of the elongation range of 0% to 6.3%. It was 1.8 times.
実施例2
実施例1で用いたものと同様の和紙糸を巻いた中空ボビンをボビンの軸方向を回転軸として回転させ、実施例1で用いたものと同様の補強糸をその中空ボビンの中空部を通過させることにより補強糸のまわりに和紙糸を連続的に巻きつけてカバリング糸を得た。巻きつけ数は550T/m(S撚)であった。このカバリング糸を100T/m(S撚)で追撚し、スチームセッターで110℃20分の撚止めセットし、24.1番手の複合和紙糸を得た。この複合和紙糸の最大応力点伸度は10.4%、引張り強さは790cNであった。この複合和紙糸の分離可能撚係数は133であり、糸長差率は7%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。
Example 2
A hollow bobbin wound with a Japanese paper thread similar to that used in Example 1 is rotated with the axial direction of the bobbin as the rotation axis, and the same reinforcing thread as used in Example 1 passes through the hollow part of the hollow bobbin. As a result, a Japanese paper yarn was continuously wound around the reinforcing yarn to obtain a covering yarn. The number of windings was 550 T / m (S twist). This covering yarn was twisted at 100 T / m (S twist), and set with a steam setter at 110 ° C. for 20 minutes to obtain 24.1th composite Japanese paper yarn. This composite Japanese paper yarn had a maximum stress point elongation of 10.4% and a tensile strength of 790 cN. This composite Japanese paper yarn had a separable twist coefficient of 133, and a yarn length difference rate of 7%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
図4にこの複合和紙糸の代表的な引張り力−伸長率曲線を示す。引張り力−伸長率曲線における、伸長率7〜10%の伸長域の引張り力−伸長率曲線の平均勾配は、伸長率0%〜7%の伸長域の平均勾配の2.8倍であった。 FIG. 4 shows a typical tensile force-elongation rate curve of this composite Japanese paper thread. In the tensile force-elongation rate curve, the average gradient of the tensile force-elongation rate curve in the elongation range of 7 to 10% was 2.8 times the average gradient of the elongation region in the elongation rate of 0% to 7%. .
実施例3
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし加撚し30番手の和紙糸を得た。この和紙糸の撚数は200T/m(Z撚)であった。補強糸として実施例1で用いたものと同様の糸を用いた。和紙糸の最大応力点伸度は2.7%、引張り強さは450cN、初期引張り弾性率は60cN/dtexであった。
Example 3
Japanese paper made from a Japanese paper raw material (15 g / m 2 per unit area) was slit into a tape and twisted to obtain 30th Japanese paper thread. The twist number of this Japanese paper thread was 200 T / m (Z twist). A yarn similar to that used in Example 1 was used as the reinforcing yarn. The maximum stress point elongation of Japanese paper yarn was 2.7%, the tensile strength was 450 cN, and the initial tensile elastic modulus was 60 cN / dtex.
この和紙糸とこの補強糸とを、異なる速度で加撚域に供給できるリング撚糸機でS方向に550T/m加撚して、スチームセッターで110℃20分の撚止めセットし、24.8番手の複合和紙糸を得た。このとき、撚糸機の加撚域に供給する補強糸と和紙糸との速度比(単位時間に加撚域に供給される補強糸の長さとその単位時間に加撚域に供給される和紙糸の長さの比)を1:1.05とした。この複合和紙糸の分離可能撚係数は111であり、糸長差率は5%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。 This Japanese paper yarn and this reinforcing yarn are twisted 550 T / m in the S direction with a ring twisting machine that can supply the twisted region at different speeds, and then twisted and set at 110 ° C. for 20 minutes with a steam setter, 24.8 A composite washi yarn was obtained. At this time, the speed ratio between the reinforcing yarn supplied to the twisting region of the twisting machine and the Japanese paper yarn (the length of the reinforcing yarn supplied to the twisting region per unit time and the Japanese paper yarn supplied to the twisting region per unit time) The ratio of the lengths) was 1: 1.05. This composite Japanese paper yarn had a separable twist coefficient of 111 and a yarn length difference of 5%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
実施例4
経糸及び緯糸として実施例1で得られた複合和紙糸を用いて、平織り組織により経糸織密度240本/10cm、緯糸織密度223本/10cmの和紙糸織物を得た。緯糸織密度係数は45であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。
Example 4
Using the composite Japanese paper yarn obtained in Example 1 as the warp and weft, a Japanese paper yarn woven fabric having a warp weave density of 240/10 cm and a weft weave density of 223/10 cm was obtained using a plain weave structure. The weft weave density coefficient was 45. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency.
実施例5
経糸及び緯糸として実施例2で得られた複合和紙糸を用いて、平織り組織により経糸織密度190/10cm、緯糸織密度172本/10cmの和紙糸織物を得た。得られた織物の緯糸織密度係数は35であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。
Example 5
Using the composite Japanese paper yarn obtained in Example 2 as the warp and weft, a Japanese paper yarn woven fabric having a warp weave density of 190/10 cm and a weft weave density of 172 yarns / 10 cm was obtained with a plain weave structure. The resulting woven fabric had a weft weave density coefficient of 35. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency.
実施例6
経糸として実施例1で得られた複合和紙糸を用い、緯糸としてこの複合和紙糸と同じ番手の和紙糸を用いて平織り組織の織物を製織した。この和紙糸は、和紙原料を抄紙して作られた和紙をテープ状にスリットし加撚し、撚数390/m(Z撚)に加撚したものである。得られた織物の緯糸織密度係数は40であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。
Example 6
A plain weave woven fabric was woven using the composite Japanese paper yarn obtained in Example 1 as the warp and the Japanese paper yarn of the same count as the composite Japanese paper yarn as the weft. This Japanese paper thread is a Japanese paper made from a Japanese paper raw material, slit into a tape shape and twisted, and twisted to a twist number of 390 / m (Z twist). The resulting woven fabric had a weft weave density coefficient of 40. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency.
実施例7
和紙原料を抄紙して作られた和紙(目付20g/m2)をテープ状にスリットし加撚し22番手の和紙糸Aを得た。和紙糸Aの撚数は340T/m(Z撚)であった。補強糸として84dtexのポリエステル加工糸を用いた。和紙糸Aの最大応力点伸度は3.7%、引張り強さは930cN、初期引張り弾性率は65cN/dtexであった。この補強糸(A)の初期引張り弾性率は98cN/dtex、3%伸長時の引張り力は145N/dtexであった。最大応力点伸度は32%であった。
Example 7
Japanese paper made from Japanese paper raw material (weight per unit area 20 g / m 2 ) was slit into a tape and twisted to obtain 22nd Japanese paper yarn A. The number of twists of Japanese paper thread A was 340 T / m (Z twist). A 84 dtex polyester processed yarn was used as the reinforcing yarn. The maximum stress point elongation of Japanese paper thread A was 3.7%, the tensile strength was 930 cN, and the initial tensile elastic modulus was 65 cN / dtex. The initial tensile elastic modulus of this reinforcing yarn (A) was 98 cN / dtex, and the tensile force at 3% elongation was 145 N / dtex. The maximum stress point elongation was 32%.
和紙糸Aと補強糸(A)とを合糸してアップツイスタで750T/m(S撚)で加撚後、スチームセッターで110℃20分の撚止めセットして16.8番手の複合和紙糸Aを得た。 Washi yarn A and reinforcing yarn (A) are combined and twisted with an up twister at 750 T / m (S twist), then set with a steam setter at 110 ° C. for 20 minutes, and 16.8th composite Japanese paper Yarn A was obtained.
複合和紙糸Aの最大応力点伸度は10.5%、引張り強さは1080cNであった。分離可能撚係数は182であり、糸長差率は6.8%であった。また、複合和紙糸Aでは、和紙糸と補強糸とが撚り合わされている構造を有していた。複合和紙糸Aの引張り力−伸長率曲線における、伸長率6.8%〜9.8%の伸長域の引張り力−伸長率曲線の平均勾配は、伸長率0%〜6.8%の伸長域の平均勾配の1.5倍であった。 The composite Japanese paper yarn A had a maximum stress point elongation of 10.5% and a tensile strength of 1080 cN. The separable twist coefficient was 182 and the yarn length difference rate was 6.8%. The composite Japanese paper yarn A had a structure in which the Japanese paper yarn and the reinforcing yarn were twisted together. The average gradient of the tensile force-elongation rate curve in the elongation range of 6.8% to 9.8% in the tensile force-elongation rate curve of the composite Japanese paper thread A is the elongation of 0% to 6.8%. It was 1.5 times the average slope of the area.
また、和紙原料(目付15g/m2)を抄紙して作られた和紙をテープ状にスリットし加撚し43番手の和紙糸Bを得た。和紙糸Bの撚数は500T/m(Z撚)であった。補強糸(B)として実施例1で用いたものと同様の56dtexのポリエステル加工糸を用いた。和紙糸Bの最大応力点伸度は3.6%、引張り強さは480cN、初期引張り弾性率は64cN/dtexであった。 Further, a Japanese paper made from a Japanese paper raw material (15 g / m 2 per unit area) was slit into a tape shape and twisted to obtain 43rd Japanese paper yarn B. The number of twists of Japanese paper yarn B was 500 T / m (Z twist). A 56 dtex polyester processed yarn similar to that used in Example 1 was used as the reinforcing yarn (B). The maximum stress point elongation of Japanese paper yarn B was 3.6%, the tensile strength was 480 cN, and the initial tensile elastic modulus was 64 cN / dtex.
和紙糸Bと補強糸(B)とを合糸してアップツイスタで800T/m(S撚)で加撚後、スチームセッターで110℃20分の撚止めセットして31.5番手の複合和紙糸Bを得た。 Washi yarn B and reinforcing yarn (B) are combined and twisted with an up twister at 800 T / m (S twist), then set with a steam setter at 110 ° C. for 20 minutes, and 31.5th composite Japanese paper Yarn B was obtained.
複合和紙糸Bの最大応力点伸度は10.7%、引張り強さは510cNであった。分離可能撚係数は150であり、糸長差率は7%であった。また、複合和紙糸Bでは、和紙糸と補強糸とが撚り合わされている構造を有していた。引張り力−伸長率曲線における、伸長率7%〜10%の伸長域の引張り力−伸長率曲線の平均勾配は、伸長率0%〜7%の伸長域の平均勾配の1.5倍であった。 The composite Japanese paper yarn B had a maximum stress point elongation of 10.7% and a tensile strength of 510 cN. The separable twist coefficient was 150, and the yarn length difference rate was 7%. Further, the composite washi yarn B had a structure in which the washi yarn and the reinforcing yarn were twisted together. In the tensile force-elongation rate curve, the average slope of the tensile force-elongation rate curve in the elongation range of 7% to 10% is 1.5 times the average gradient of the elongation range of 0% to 7%. It was.
経糸として複合和紙糸Aを用い、緯糸として複合和紙糸Bを用いて図5に示す組織の織物を製織した。得られた織物の緯糸織密度は260本/10cm(緯糸織密度係数46)、経糸の織密度は205本/10cmであった。製織は経糸切れがほとんどなく正常に行われた。なお、緯糸の織密度280本/10cmを越える高緯糸織密度の織物は、製織を試みたが筬打ち時の経糸切れのため織機の正常運転が困難であった。 A woven fabric having the structure shown in FIG. 5 was woven using the composite Japanese paper yarn A as the warp and the composite Japanese paper yarn B as the weft. The resulting woven fabric had a weft weave density of 260 pieces / 10 cm (weft weave density coefficient 46), and the warp weave density was 205 pieces / 10 cm. Weaving was performed normally with almost no warp breakage. Although weaving was attempted for a fabric having a high weft weaving density exceeding 280 weft yarn density / 10 cm, normal operation of the loom was difficult due to warp breakage during hammering.
実施例8
実施例7で得られた複合和紙糸Aと同様の複合和紙糸を経糸と緯糸に用いて平織りの織物を製織した。得られた織物の緯糸の織密度は180本/10cm(緯糸織密度係数43)、経糸の織密度は210本/10cmであった。製織は経糸切れがほとんどなく正常に行われた。なお、緯糸の織密度205本/10cmを越える高緯糸織密度の織物は、製織を試みたが筬打ち時の経糸切れのため織機の正常運転が困難であった。
Example 8
A plain weave fabric was woven using the same composite Japanese paper yarn as the composite Japanese paper yarn A obtained in Example 7 as warp and weft. The weft density of the resulting woven fabric was 180/10 cm (weft weave density coefficient 43), and the warp weave density was 210/10 cm. Weaving was performed normally with almost no warp breakage. In addition, weaving was attempted for a fabric having a high weft weaving density exceeding 205 wefts / 10 cm, but normal operation of the loom was difficult due to warp breakage at the time of hammering.
実施例9
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし加撚し31番手の和紙糸Cを得た。和紙糸Cの撚数は420T/m(Z撚)であった。補強糸として実施例7で用いたものと同様の84dtexのポリエステル加工糸を用いた。和紙糸Cの最大応力点伸度は3.7%、引張り強さは660cN、初期引張り弾性率は65cN/dtexであった。
Example 9
Japanese paper made from Japanese paper raw material (15 g / m 2 per unit area) was slit into a tape and twisted to obtain 31st Japanese paper yarn C. The number of twists of Japanese paper thread C was 420 T / m (Z twist). The same 84 dtex polyester processed yarn as that used in Example 7 was used as the reinforcing yarn. The maximum stress point elongation of Japanese paper thread C was 3.7%, the tensile strength was 660 cN, and the initial tensile elastic modulus was 65 cN / dtex.
和紙糸Cと補強糸とを合糸してアップツイスタで850T/m(S撚)で加撚後、スチームセッターで110℃20分の撚止めセットして23番手の複合和紙糸Cを得た。 Washi yarn C and reinforcing yarn were combined and twisted with an up twister at 850 T / m (S twist), and then set with a steam setter at 110 ° C. for 20 minutes to obtain 23rd composite Washi yarn C. .
複合和紙糸Cの最大応力点伸度は10.3%、引張り強さは770cNであった。分離可能撚係数は182であり、糸長差率は6.8%であった。また、複合和紙糸Cでは、和紙糸と補強糸とが撚り合わされている構造を有していた。複合和紙糸Aの引張り力−伸長率曲線における、伸長率6.8%〜9.8%の伸長域の引張り力−伸長率曲線の平均勾配は、伸長率0%〜6.8%の伸長域の平均勾配の1.5倍であった。 The composite Japanese paper yarn C had a maximum stress point elongation of 10.3% and a tensile strength of 770 cN. The separable twist coefficient was 182 and the yarn length difference rate was 6.8%. In addition, the composite Japanese paper yarn C had a structure in which the Japanese paper yarn and the reinforcing yarn were twisted together. The average gradient of the tensile force-elongation rate curve in the elongation range of 6.8% to 9.8% in the tensile force-elongation rate curve of the composite Japanese paper thread A is the elongation of 0% to 6.8%. It was 1.5 times the average slope of the area.
経糸として複合和紙糸Cを用い、緯糸として複合和紙糸Bを用いて図5に示す組織の織物を製織した。得られた織物の緯糸織密度は260本/10cm(緯糸織密度係数46)、経糸の織密度は225本/10cmであった。製織は経糸切れがほとんどなく正常に行われた。なお、緯糸の織密度280本/10cmを越える高緯糸織密度の織物は、製織を試みたが筬打ち時の経糸切れのため織機の正常運転が困難であった。 A woven fabric having the structure shown in FIG. 5 was woven using the composite Japanese paper yarn C as the warp and the composite Japanese paper yarn B as the weft. The weft density of the obtained woven fabric was 260 pieces / 10 cm (weft weave density coefficient 46), and the weave density of warps was 225 pieces / 10 cm. Weaving was performed normally with almost no warp breakage. Although weaving was attempted for a fabric having a high weft weaving density exceeding 280 weft yarn density / 10 cm, normal operation of the loom was difficult due to warp breakage during hammering.
実施例10
補強糸としてポリエチレンテレフタレートとポリトリメチレンテレフタレートとのサイドバイサイド型複合繊維からなるフィラメント糸(東レ・オペロンテックス株式会社製の商品名ライクラT400ファイバー)56dtexを用いたほかは、実施例4と同様にして和紙糸織物を得た。この織物を130℃で熱処理してたてよことも10%幅入れし、伸縮性を有する和紙糸織物を得た。緯糸方向の伸縮率(JIS L 1096 A法に準拠)は、9.5%であった。
Example 10
Japanese paper in the same manner as in Example 4 except that a filament yarn (trade name LYCRA T400 fiber manufactured by Toray Operontex Co., Ltd.) 56 dtex made of side-by-side type composite fiber of polyethylene terephthalate and polytrimethylene terephthalate was used as the reinforcing yarn. A yarn fabric was obtained. This fabric was heat-treated at 130 ° C. and 10% width was added to obtain a Japanese paper yarn fabric having elasticity. The stretch rate in the weft direction (based on JIS L 1096 A method) was 9.5%.
実施例11
経糸A及び緯糸Aとして実施例1で得られた複合和紙糸を用い、経糸B及び緯糸Bとして167dtex、f72のポリエステルフィラメント糸(撚り数110T/m)を用い、図6に示す組織のセミ二重織組織の和紙糸織物を製織した。製織時の経糸切れはほとんどなく、正常な操業が行われた。得られた織物の緯糸織密度は290本/10cm(緯糸織密度係数48)、経糸の織密度は280本/10cmであった。製織は経糸切れがほとんどなく正常に行われた。
Example 11
The composite Japanese paper yarn obtained in Example 1 is used as the warp yarn A and the weft yarn A, and the polyester filament yarn of 167 dtex and f72 (twisting number 110 T / m) is used as the warp yarn B and the weft yarn B. Washi yarn woven fabric with a heavy weaving structure was woven. There was almost no warp breakage during weaving, and normal operation was performed. The weft density of the obtained woven fabric was 290/10 cm (weft weave density coefficient 48), and the weave density of the warp was 280/10 cm. Weaving was performed normally with almost no warp breakage.
実施例12
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし加撚し41番手の和紙糸を得た。この和紙糸の撚数は500T/m(Z)であった。補強糸として56dtex、f24のポリエステル加工糸(撚数100T/m(S))を用いた。和紙糸の最大応力点伸度は3.7%、引張り強さは480cN、初期引張り弾性率は61cN/dtexであった。補強糸の初期引張り弾性率は80cN/dtex、3%伸長時の引張り力は125N/dtex、最大応力点伸度は35%であった。
Example 12
Japanese paper made from Japanese paper raw material (15 g / m 2 basis weight) was slit into a tape and twisted to obtain 41st Japanese paper yarn. The twist number of this Japanese paper yarn was 500 T / m (Z). A 56 dtex, f24 polyester processed yarn (twisting number 100 T / m (S)) was used as the reinforcing yarn. The maximum elongation at the stress point of the Japanese paper yarn was 3.7%, the tensile strength was 480 cN, and the initial tensile elastic modulus was 61 cN / dtex. The initial tensile elastic modulus of the reinforcing yarn was 80 cN / dtex, the tensile force at 3% elongation was 125 N / dtex, and the maximum stress point elongation was 35%.
この和紙糸とこの補強糸とを合糸してアップツイスタで850T/m(S撚)で加撚後、スチームセッターで110℃20分の撚止めセットして31.5番手の複合和紙糸を得た。 This Japanese paper thread and this reinforcing thread are combined, twisted with an up twister at 850 T / m (S twist), and set with a steam setter at 110 ° C. for 20 minutes, and the 31.5th composite Japanese paper thread is obtained. Obtained.
この複合和紙糸の最大応力点伸度は10.2%、引張り強さは560cNであった。分離可能撚係数は180であり、糸長差率は6.1%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。 This composite Japanese paper thread had a maximum stress point elongation of 10.2% and a tensile strength of 560 cN. The separable twist coefficient was 180, and the yarn length difference rate was 6.1%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
経糸A及び緯糸Aとしてこの複合和紙糸を用い、経糸B及び緯糸Bとして56dtex、f24のポリエステルフィラメント糸(撚り数1000T/m(S))を用い、図7に示す組織の和紙糸織物を製織した。製織時の経糸切れはほとんどなく、正常な操業が行われた。得られた織物の緯糸織密度は320本/10cm(緯糸織密度係数44)、経糸の織密度は382本/10cmであった。製織は経糸切れがほとんどなく正常に行われた。 This composite Japanese paper yarn is used as the warp A and the weft A, and 56 dtex, f24 polyester filament yarn (twisting number 1000 T / m (S)) is used as the warp B and the weft B, and the Japanese paper yarn fabric having the structure shown in FIG. 7 is woven. did. There was almost no warp breakage during weaving, and normal operation was performed. The resulting fabric had a weft weave density of 320 yarns / 10 cm (weft weave density coefficient 44), and the warp weave density was 382 yarns / 10 cm. Weaving was performed normally with almost no warp breakage.
実施例13
実施例7で得られた複合和紙糸Aと同様の複合和紙糸を枷に取ってその枷を98℃の熱水で20分間処理して10%収縮させた。処理後の複合和紙糸を靴下編機で編成し紳士用靴下を製造した。編成は通常の同一番手の綿糸の編成機械条件と同様にして、糸切れなどのトラブルなく、編成が可能であった。得られた靴下は優れた吸水性と独特のサラッとした触感を有し、登山用など長時間の使用時に快適に使用することができた。
Example 13
A composite Japanese paper thread similar to the composite Japanese paper thread A obtained in Example 7 was taken up in a cocoon and the cocoon was treated with hot water at 98 ° C. for 20 minutes to shrink 10%. The processed composite washi yarn was knitted with a sock knitting machine to produce socks for men. Knitting was possible without troubles such as yarn breakage in the same manner as the normal knitting machine conditions for cotton yarn of the same count. The obtained socks had excellent water absorption and a unique smooth feel, and could be used comfortably during long-time use such as for mountain climbing.
比較例1
経糸、緯糸として実施例1で得られた複合和紙糸と同じ番手の和紙糸を経糸及び緯糸に用いて平織り組織の和紙糸織物を製織した。この和紙糸は、和紙原料を抄紙して作られた和紙をテープ状にスリットし加撚し、撚数450T/m(Z撚)に加撚したものである。得られた織物の経糸織密度は165本/10cm、緯糸織密度は153本/10cm(緯糸織密度係数31)であった。これ以上の高緯糸織密度の織物の製織を試みたが筬打ち時の経糸切れのため織機の正常運転が困難であった。
Comparative Example 1
A Japanese paper yarn woven with a plain weave structure was woven using the Japanese paper yarn of the same count as the composite Japanese paper yarn obtained in Example 1 as the warp and weft. This Japanese paper thread is a Japanese paper made from a Japanese paper raw material, slit into a tape shape and twisted, and twisted to a twist number of 450 T / m (Z twist). The warp weave density of the obtained woven fabric was 165 pieces / 10 cm, and the weft weave density was 153 pieces / 10 cm (weft weave density coefficient 31). Attempts were made to fabricate fabrics with higher weft yarn density than this, but normal operation of the loom was difficult due to warp breakage at the time of hammering.
比較例2
和紙原料を抄紙して作られた和紙をテープ状にスリットし、実施例1で用いたものと同様の補強糸と合糸し、撚数450T/m(Z撚)で加撚して、実施例1で得られた複合和紙糸と同じ番手の複合糸を得た。この複合糸の分離可能撚係数は92であり、糸長差率は0.5%であった。経糸及び緯糸としてこの複合糸を用いて、平織り組織により経糸織密度170本/10cm、緯糸織密度163本/10cmの和紙糸織物を得た。緯糸織密度係数は33であった。これ以上の高緯糸織密度の織物の製織を試みたが筬打ち時の経糸切れのため織機の正常運転が困難であった。
Comparative Example 2
Washi made from Japanese paper raw material is slit into a tape shape, combined with the same reinforcing yarn used in Example 1, and twisted at a twist number of 450 T / m (Z twist). A composite yarn having the same count as the composite Japanese paper yarn obtained in Example 1 was obtained. The separable twist coefficient of this composite yarn was 92, and the yarn length difference rate was 0.5%. Using this composite yarn as a warp and a weft, a Japanese paper yarn woven fabric having a warp weave density of 170/10 cm and a weft weave density of 163/10 cm was obtained by a plain weave structure. The weft weave density coefficient was 33. Attempts were made to fabricate fabrics with higher weft yarn density than this, but normal operation of the loom was difficult due to warp breakage at the time of hammering.
比較例3
実施例1で得られた複合和紙糸と同番手のポリエステルステープル65%、綿35%のスパン糸を用いて実施例1で得られたものと同組織、同織密度の織物を作成した。この織物を、実施例、他の比較例で得られた織物とともに表1に示す性能比較に供した。
Comparative Example 3
A woven fabric having the same structure and the same density as that obtained in Example 1 was prepared using 65% polyester staple and 35% cotton spun yarn having the same number as the composite Japanese paper yarn obtained in Example 1. This woven fabric was subjected to the performance comparison shown in Table 1 together with the woven fabric obtained in Examples and other comparative examples.
比較例4
和紙原料を抄紙して作られた和紙(目付20g/m2)をテープ状にスリットし加撚し25番手の和紙糸を得た。この和紙糸の撚数は540T/m(Z撚)であった。この和紙糸をスチームセッターで110℃20分の撚止めセットしたのち、靴下編機での編成を試みた。通常の同一番手の綿糸の編成機械条件と同様の編成では糸切れが多発したので回転数を通常の同一番手の綿糸の編成の場合の1/3にしてようやく編成可能であった。
Comparative Example 4
Japanese paper made from Japanese paper raw material (20 g / m 2 per unit area) was slit into a tape shape and twisted to obtain 25th Japanese paper thread. The twist number of this Japanese paper thread was 540 T / m (Z twist). This Japanese paper thread was twisted and set at 110 ° C. for 20 minutes with a steam setter and then knitted with a sock knitting machine. In knitting similar to the normal knitting cotton yarn knitting machine conditions, yarn breakage occurred frequently, so that the number of revolutions was finally reduced to 1/3 of the normal knitting cotton yarn knitting.
比較例5
経糸A及び緯糸Aとして和紙糸を用いたほかは実施例11と同様にして実施例11と同様の組織、織密度の和紙糸織物の製織を実施例11と同様の機械条件で試行したが、経糸切れが多発した。この和紙糸は、和紙原料を抄紙して作られた和紙をテープ状にスリットし加撚(400T/m(Z))した24.4番手の和紙糸である。
Comparative Example 5
Weaving of the same structure as in Example 11 and the weaving density of Japanese paper yarn woven fabric was performed under the same mechanical conditions as in Example 11 except that Japanese paper yarn was used as the warp A and the weft A. Many warp breaks occurred. This Japanese paper thread is a 24.4th Japanese paper thread obtained by slitting a Japanese paper made from a Japanese paper raw material into a tape and twisting (400 T / m (Z)).
比較例6
経糸A及び緯糸Aとして和紙糸を用いたほかは実施例12と同様にして実施例12と同様の組織、織密度の和紙糸織物の製織を実施例12と同様の機械条件で試行したが、経糸切れが多発した。この和紙糸は、和紙原料を抄紙して作られた和紙をテープ状にスリットし加撚(450T/m(Z))した31.5番手の和紙糸である。
Comparative Example 6
The same structure as in Example 12 except that washi yarn was used as the warp A and the weft A, and the weaving of a Japanese paper yarn woven fabric having a weaving density was tried under the same mechanical conditions as in Example 12. Many warp breaks occurred. This Japanese paper thread is a 31.5th Japanese paper thread obtained by slitting a Japanese paper made from a Japanese paper raw material into a tape shape and twisting (450 T / m (Z)).
実施例14
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし、無撚の44番手の和紙糸を得た。補強糸として実施例7で用いたと同様の加工糸を用いた。この加工糸は黒色に染色して用いた。この和紙糸とこの補強糸とを、引き揃えて並走させてリング撚糸機でS方向に600T/m加撚し、複合和紙糸を得た。このとき、走行中の和紙糸が加撚域に入る前に湿った状態となるように、和紙糸が加撚域に入る直前に和紙糸に水を噴霧した。噴霧されかつ加撚前の状態を再現して採取した和紙糸の水分率は50%であった。
Example 14
Japanese paper (15 g / m 2 basis weight) made by making a Japanese paper raw material was slit into a tape shape to obtain a 44th untwisted Japanese paper thread. A processed yarn similar to that used in Example 7 was used as the reinforcing yarn. This processed yarn was used after being dyed black. This Japanese paper yarn and this reinforcing yarn were aligned and run in parallel, and twisted 600 T / m in the S direction by a ring twisting machine to obtain a composite Japanese paper yarn. At this time, water was sprayed on the Japanese paper yarn just before the Japanese paper yarn entered the twisting region so that the running Japanese paper yarn was wet before entering the twisting region. The moisture content of the Japanese paper yarn sprayed and collected by reproducing the state before twisting was 50%.
得られた複合和紙糸の最大応力点伸度は9.5%、分離可能撚係数は110であり、糸長差率は3%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。 The obtained composite washi yarn had a maximum stress point elongation of 9.5%, a separable twist coefficient of 110, and a yarn length difference of 3%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
得られた複合和紙糸は、補強糸が和紙糸でほぼ完全に被覆されており、外観の目視で補強糸の存在が認められる箇所は5メートルで1箇所程度であった。またその箇所は10倍の拡大レンズを用いてはじめて点状に見える程度のものであった。これに対して、同様に染色した加工糸を補強糸として実施例1と同様にして得られた複合和紙糸は、外観の目視で補強糸の存在が認められる箇所が0.5メートルで1箇所程度であり、またその箇所は拡大レンズを用いずとも容易に見える程度の長さのものであった。 The obtained composite washi yarn was almost completely covered with the washi yarn, and the presence of the reinforcing yarn was recognized by visual observation of the appearance was about 1 in 5 meters. Further, the portion was such that it appeared to be point-like only when a 10 × magnification lens was used. On the other hand, the composite Japanese paper yarn obtained in the same manner as in Example 1 using the similarly dyed processed yarn as the reinforcing yarn has a location where the presence of the reinforcing yarn is visually recognized as 0.5 meters, one location The portion was of such a length that it could be easily seen without using a magnifying lens.
得られた複合和紙糸を経糸及び緯糸として用いて、平織り組織により和紙糸織物を得た。緯糸織密度係数は45であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。 Using the obtained composite Japanese paper yarn as warp and weft, a Japanese paper yarn fabric was obtained with a plain weave structure. The weft weave density coefficient was 45. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency.
また得られた複合和紙糸を丸編機で編成した。編成時の糸切れなどのトラブルは殆んどなく、従来糸による編成並みの効率で編成できた。 The obtained composite washi yarn was knitted with a circular knitting machine. There was almost no trouble such as yarn breakage during knitting, and knitting was as efficient as knitting with conventional yarn.
比較例7
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし、無撚の44番手の和紙糸を得た。補強糸として実施例7で用いたと同様の加工糸を用いた。この加工糸は黒色に染色して用いた。この和紙糸とこの補強糸とを、引き揃えて並走させてリング撚糸機でS方向に600T/m加撚し、複合糸を得た。
Comparative Example 7
Japanese paper (15 g / m 2 basis weight) made by making a Japanese paper raw material was slit into a tape shape to obtain a 44th untwisted Japanese paper thread. A processed yarn similar to that used in Example 7 was used as the reinforcing yarn. This processed yarn was used after being dyed black. This Japanese paper yarn and this reinforcing yarn were aligned and run in parallel, and twisted 600 T / m in the S direction with a ring twisting machine to obtain a composite yarn.
この複合糸の糸長差率は0.5%であった。また、この複合糸は黒色の補強糸が杢糸状に露出していた。 The yarn length difference rate of this composite yarn was 0.5%. In this composite yarn, the black reinforcing yarn was exposed in the form of a kite string.
経糸及び緯糸としてこの複合糸を用いて、平織り組織により和紙糸織物を得た。緯糸織密度係数は33であった。これ以上の高緯糸織密度の織物の製織を試みたが筬打ち時の経糸切れのため織機の正常運転が困難であった。 Using this composite yarn as warp and weft, a Japanese paper yarn woven fabric was obtained with a plain weave structure. The weft weave density coefficient was 33. Attempts were made to fabricate fabrics with higher weft yarn density than this, but normal operation of the loom was difficult due to warp breakage at the time of hammering.
実施例15
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし、無撚の44番手の和紙糸を得た。補強糸として実施例14で用いたと同様の加工糸を用いた。この和紙糸とこの補強糸とを、異なる速度で加撚域に供給できるリング撚糸機でS方向に600T/m加撚し、複合和紙糸を得た。このとき、走行中の和紙糸が加撚域に入る前に湿った状態となるように、和紙糸が加撚域に入る直前に和紙糸に水を噴霧した。噴霧されかつ加撚前の状態を再現して採取した和紙糸の水分率は50%であった。撚糸機の加撚域に供給する補強糸と和紙糸との速度比(単位時間に加撚域に供給される補強糸の長さとその単位時間に加撚域に供給される和紙糸の長さの比)を1:1.05とした。この複合和紙糸の最大応力点伸度は10.5%、分離可能撚係数は115であり、糸長差率は6%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。
Example 15
Japanese paper (15 g / m 2 basis weight) made by making a Japanese paper raw material was slit into a tape shape to obtain a 44th untwisted Japanese paper thread. A processed yarn similar to that used in Example 14 was used as the reinforcing yarn. This Japanese paper yarn and this reinforcing yarn were twisted 600 T / m in the S direction with a ring twisting machine capable of supplying the twisted region at different speeds to obtain a composite Japanese paper yarn. At this time, water was sprayed on the Japanese paper yarn just before the Japanese paper yarn entered the twisting region so that the running Japanese paper yarn was wet before entering the twisting region. The moisture content of the Japanese paper yarn sprayed and collected by reproducing the state before twisting was 50%. Speed ratio between the reinforcing yarn supplied to the twisting area of the twisting machine and the Japanese paper thread (the length of the reinforcing yarn supplied to the twisting area per unit time and the length of the Japanese paper thread supplied to the twisting area per unit time) Ratio) was set to 1: 1.05. This composite Japanese paper yarn had a maximum stress point elongation of 10.5%, a separable twist coefficient of 115, and a yarn length difference of 6%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
得られた複合和紙糸は、補強糸が和紙糸でほぼ完全に被覆されており、外観の目視で補強糸の存在が認められず、10倍の拡大レンズを用いてはじめて点状に見える程度の補強糸の露出が20メートルで1箇所程度存在するのみであった。 The obtained composite Japanese paper yarn is almost completely covered with the Japanese paper yarn, and the presence of the reinforcing yarn is not recognized by visual observation of the appearance. The exposure of the reinforcing yarn was only about one place at 20 meters.
得られた複合和紙糸を経糸及び緯糸として用いて、平織り組織により和紙糸織物を得た。緯糸織密度係数は45であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。 Using the obtained composite Japanese paper yarn as warp and weft, a Japanese paper yarn fabric was obtained with a plain weave structure. The weft weave density coefficient was 45. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency.
また得られた複合和紙糸を丸編機で編成した。編成時の糸切れなどのトラブルは殆んどなく、通常の綿糸と同等の効率で編成できた。 The obtained composite washi yarn was knitted with a circular knitting machine. There was almost no trouble such as yarn breakage during knitting, and the knitting was as efficient as normal cotton yarn.
実施例16
和紙原料を抄紙して作られた和紙(目付12g/m2)をテープ状にスリットし、無撚の68番手の和紙糸を得た。補強糸として実施例1で用いたと同様の加工糸を用いた。この和紙糸とこの補強糸とを、異なる速度で加撚域に供給できるリング撚糸機でS方向に820T/m加撚し、複合和紙糸を得た。このとき、走行中の和紙糸が加撚域に入る前に湿った状態となるように、和紙糸が加撚域に入る直前に和紙糸に水を噴霧した。噴霧されかつ加撚前の状態を再現して採取した和紙糸の水分率は50%であった。撚糸機の加撚域に供給する補強糸と和紙糸との速度比(単位時間に加撚域に供給される補強糸の長さとその単位時間に加撚域に供給される和紙糸の長さの比)を1:1.05とした。この複合和紙糸の最大応力点伸度は10.5%、分離可能撚係数は113であり、糸長差率は6%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。
Example 16
Japanese paper made from Japanese paper raw material (12 g / m 2 per unit area) was slit into a tape shape to obtain untwisted 68th Japanese paper yarn. A processed yarn similar to that used in Example 1 was used as the reinforcing yarn. This Japanese paper yarn and this reinforcing yarn were twisted 820 T / m in the S direction with a ring twisting machine capable of supplying the twisted region at different speeds to obtain a composite Japanese paper yarn. At this time, water was sprayed on the Japanese paper yarn just before the Japanese paper yarn entered the twisting region so that the running Japanese paper yarn was wet before entering the twisting region. The moisture content of the Japanese paper yarn sprayed and collected by reproducing the state before twisting was 50%. Speed ratio between the reinforcing yarn supplied to the twisting area of the twisting machine and the Japanese paper thread (the length of the reinforcing yarn supplied to the twisting area per unit time and the length of the Japanese paper thread supplied to the twisting area per unit time) Ratio) was set to 1: 1.05. This composite Japanese paper yarn had a maximum stress point elongation of 10.5%, a separable twist coefficient of 113, and a yarn length difference rate of 6%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
得られた複合和紙糸は、補強糸が和紙糸でほぼ完全に被覆されていた。 In the obtained composite washi yarn, the reinforcing yarn was almost completely covered with the washi yarn.
得られた複合和紙糸を丸編機で編成した。編成時の糸切れなどのトラブルは殆んどなく、通常の綿糸と同等の効率で編成できた。この編地を用いたTシャツは、サラッとした感触を有し、高温高湿時に着用するTシャツとして好適であった。 The obtained composite Japanese paper yarn was knitted with a circular knitting machine. There was almost no trouble such as yarn breakage during knitting, and the knitting was as efficient as normal cotton yarn. A T-shirt using this knitted fabric had a smooth feel and was suitable as a T-shirt to be worn at high temperature and high humidity.
実施例17
和紙原料を抄紙して作られた和紙(目付15g/m2)をテープ状にスリットし、無撚の32番手の和紙糸を得た。補強糸として実施例7で用いたと同様の加工糸を用いた。この和紙糸とこの補強糸とを、異なる速度で加撚域に供給できるリング撚糸機でS方向に420T/m加撚し、複合和紙糸を得た。このとき、走行中の和紙糸が加撚域に入る前に湿った状態となるように、和紙糸が加撚域に入る直前に和紙糸に水を噴霧した。噴霧されかつ加撚前の状態を再現して採取した和紙糸の水分率は50%であった。撚糸機の加撚域に供給する補強糸と和紙糸との速度比(単位時間に加撚域に供給される補強糸の長さとその単位時間に加撚域に供給される和紙糸の長さの比)を1:1.05とした。この複合和紙糸の最大応力点伸度は10.5%、分離可能撚係数は113であり、糸長差率は6%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。
Example 17
Japanese paper (15 g / m 2 basis weight) made by making Japanese paper raw material was slit into a tape shape to obtain 32nd untwisted Japanese paper yarn. A processed yarn similar to that used in Example 7 was used as the reinforcing yarn. This Japanese paper yarn and this reinforcing yarn were twisted 420 T / m in the S direction with a ring twisting machine capable of supplying the twisted region at different speeds to obtain a composite Japanese paper yarn. At this time, water was sprayed on the Japanese paper yarn just before the Japanese paper yarn entered the twisting region so that the running Japanese paper yarn was wet before entering the twisting region. The moisture content of the Japanese paper yarn sprayed and collected by reproducing the state before twisting was 50%. Speed ratio between the reinforcing yarn supplied to the twisting area of the twisting machine and the Japanese paper thread (the length of the reinforcing yarn supplied to the twisting area per unit time and the length of the Japanese paper thread supplied to the twisting area per unit time) Ratio) was set to 1: 1.05. This composite Japanese paper yarn had a maximum stress point elongation of 10.5%, a separable twist coefficient of 113, and a yarn length difference rate of 6%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
得られた複合和紙糸は、補強糸が和紙糸でほぼ完全に被覆されていた。 In the obtained composite washi yarn, the reinforcing yarn was almost completely covered with the washi yarn.
得られた複合和紙糸をマットウース組織により和紙糸織物を得た。緯糸織密度係数は45であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。この和紙糸織物はシューズのアッパーの素材、インソールの素材、バッグの素材、として、サラッとした感触を有し、好適に用いることができた。 The resulting composite Japanese paper thread was used to obtain a Japanese paper thread woven fabric with a mattose structure. The weft weave density coefficient was 45. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency. This Japanese paper yarn woven fabric has a smooth feel as a material for an upper of a shoe, a material for an insole, and a material for a bag, and can be suitably used.
実施例18
和紙原料を抄紙して作られた和紙(目付12g/m2)をテープ状にスリットし、無撚の89番手の和紙糸を得た。補強糸として33dtexのポリエステル加工糸を用いた。この和紙糸とこの補強糸とを、異なる速度で加撚域に供給できるリング撚糸機でS方向に750T/m加撚し、複合和紙糸を得た。このとき、走行中の和紙糸が加撚域に入る前に湿った状態となるように、和紙糸が加撚域に入る直前に和紙糸に水を噴霧した。噴霧されかつ加撚前の状態を再現して採取した和紙糸の水分率は50%であった。撚糸機の加撚域に供給する補強糸と和紙糸との速度比(単位時間に加撚域に供給される補強糸の長さとその単位時間に加撚域に供給される和紙糸の長さの比)を1:1.05とした。この複合和紙糸の最大応力点伸度は10.5%、分離可能撚係数は113であり、糸長差率は6%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。
Example 18
A Japanese paper (12 g / m 2 basis weight) made by making a Japanese paper raw material was slit into a tape shape to obtain a 89th Japanese paper thread with no twist. A 33 dtex polyester processed yarn was used as the reinforcing yarn. This Japanese paper yarn and this reinforcing yarn were twisted at 750 T / m in the S direction with a ring twisting machine capable of supplying the twisted region at different speeds to obtain a composite Japanese paper yarn. At this time, water was sprayed on the Japanese paper yarn just before the Japanese paper yarn entered the twisting region so that the running Japanese paper yarn was wet before entering the twisting region. The moisture content of the Japanese paper yarn sprayed and collected by reproducing the state before twisting was 50%. Speed ratio between the reinforcing yarn supplied to the twisting area of the twisting machine and the Japanese paper thread (the length of the reinforcing yarn supplied to the twisting area per unit time and the length of the Japanese paper thread supplied to the twisting area per unit time) Ratio) was set to 1: 1.05. This composite Japanese paper yarn had a maximum stress point elongation of 10.5%, a separable twist coefficient of 113, and a yarn length difference rate of 6%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together.
得られた複合和紙糸は、補強糸が和紙糸でほぼ完全に被覆されていた。 In the obtained composite washi yarn, the reinforcing yarn was almost completely covered with the washi yarn.
得られた複合和紙糸を丸編機で編成した。編成時の糸切れなどのトラブルは殆んどなく、通常の綿糸と同等の効率で編成できた。この編地はサラッとした感触を有するインナーや、タイツ用の編地として好適であった。 The obtained composite Japanese paper yarn was knitted with a circular knitting machine. There was almost no trouble such as yarn breakage during knitting, and the knitting was as efficient as normal cotton yarn. This knitted fabric was suitable as a knitted fabric for inners or tights having a smooth feel.
実施例19
補強糸として54dtex、f24のポリエステル特殊フィラメント糸(ユニチカトレーディング株式会社製の商品名メルセット)からなる加工糸を用いたほかは、実施例16と同様にして複合和紙糸を得た。メルセットは、芯材としてレギュラーポリエステル、鞘材として低融点ポリエステルを用いた芯鞘構造の繊維からなるマルチフィラメント糸である。この複合和紙糸の最大応力点伸度は10.3%、分離可能撚係数は113であり、糸長差率は6%であった。また、この複合和紙糸は、和紙糸と補強糸とが撚り合わされている構造を有していた。得られた複合和紙糸は、補強糸が和紙糸でほぼ完全に被覆されていた。得られた複合和紙糸を経糸及び緯糸として用いて、平織り組織により和紙糸織物を得た。緯糸織密度係数は45であった。製織は経糸切れがほとんどなく通常の生産効率を損なわずに正常に行われた。
Example 19
A composite Japanese paper yarn was obtained in the same manner as in Example 16 except that a processed yarn made of polyester special filament yarn of 54 dtex and f24 (trade name Melset manufactured by Unitika Trading Co., Ltd.) was used as the reinforcing yarn. Melset is a multifilament yarn made of core-sheath fibers using regular polyester as a core material and low-melting polyester as a sheath material. This composite Japanese paper yarn had a maximum elongation at the stress point of 10.3%, a separable twist coefficient of 113, and a yarn length difference rate of 6%. Further, this composite Japanese paper yarn had a structure in which a Japanese paper yarn and a reinforcing yarn were twisted together. In the obtained composite washi yarn, the reinforcing yarn was almost completely covered with the washi yarn. Using the obtained composite Japanese paper yarn as warp and weft, a Japanese paper yarn fabric was obtained with a plain weave structure. The weft weave density coefficient was 45. Weaving was carried out normally with almost no warp breakage and without impairing normal production efficiency.
得られた織物を190℃、2分でテンターを用いて定長加熱セットして布帛を得た。この布帛は加熱セット前の織物に比べて剛直であり、和紙調の感触と外観を有し、寸歩安定性が良好であった。ランプセード用の素材として好適であった。 The obtained woven fabric was heated at a constant length using a tenter at 190 ° C. for 2 minutes to obtain a fabric. This fabric was stiffer than the fabric before heating set, had a Japanese paper-like feel and appearance, and had good step stability. It was suitable as a material for lampsade.
ランニングシューズ性能比較
実施例4〜6、比較例1〜3で得られた織物をアッパーとしてランニングシューズを作成し、各モニター(現役のランナー)が裸足で着用して100kmの走行テストを実施した。テスト結果を表1に示す。
Running shoes performance comparison Running shoes were prepared using the fabrics obtained in Examples 4 to 6 and Comparative Examples 1 to 3 as uppers, and each monitor (active runner) was worn barefoot and a running test of 100 km was performed. The test results are shown in Table 1.
本発明の和紙糸織物、和紙糸編物は、耐久性と、皮革や合成繊維からなる布帛や綿布では得られないナチュラルで平滑な独特のサラッとした触感を活かして、靴用素材、日用雑貨類用材、家具類用材、インテリア用材、自動車用内装用材、衣料の分野に広く適用される。 The Japanese paper yarn woven fabric and Japanese paper yarn knitted fabric of the present invention make use of durability, natural and smooth unique touch that cannot be obtained with leather or synthetic fabric or cotton fabric, and are used for shoes and daily goods. Widely applied in the fields of materials, furniture materials, interior materials, automotive interior materials, and clothing.
Claims (17)
前記補強糸は最大応力点伸度が8%以上であり、3%伸長時の引張り力が前記和紙糸の引張り強さの1/20以上であり、
前記和紙糸の繊度と前記補強糸の繊度との比が1:1〜15:1であり、
前記複合糸中の前記和紙糸と前記補強糸との糸長差率が1.5〜12%である
複合和紙糸。 It is composed of a composite yarn in a state in which a Japanese paper yarn mainly composed of Japanese paper slit in a tape shape and a reinforcing yarn are twisted together with a separable twist coefficient of 70 to 250,
The reinforcing yarn has a maximum stress point elongation of 8% or more, and a tensile force at 3% elongation is 1/20 or more of the tensile strength of the Japanese paper yarn,
The ratio of the fineness of the Japanese paper yarn and the fineness of the reinforcing yarn is 1: 1 to 15: 1;
A composite washi yarn having a yarn length difference rate of 1.5 to 12% between the washi yarn and the reinforcing yarn in the composite yarn.
撚係数が50〜200の前記和紙糸を準備する工程、
前記撚係数が50〜200の和紙糸と前記補強糸とを引き揃えて該和紙糸の加撚方向と逆方向に、該和紙糸の撚数の1.5〜3倍の撚数で加撚する工程
を含む複合和紙糸の製造方法。 A method for producing a composite Japanese paper thread according to any one of claims 1 to 4,
A step of preparing the Japanese paper yarn having a twist coefficient of 50 to 200,
The Japanese paper yarn having a twist coefficient of 50 to 200 and the reinforcing yarn are aligned and twisted in a direction opposite to the twisting direction of the Japanese paper yarn with a twist number of 1.5 to 3 times the twist number of the Japanese paper yarn. A method for producing a composite Japanese paper thread, comprising the step of:
前記テープ状にスリットされた和紙からなる実質的に無撚の前記和紙糸を準備する工程、
該和紙糸に水を付与して湿った和紙糸を得る工程、
該湿った和紙糸と前記補強糸とを引き揃えて撚係数が70〜250の撚数で加撚する工程
を含む複合和紙糸の製造方法。 A method for producing a composite Japanese paper thread according to any one of claims 1 to 4,
Preparing the substantially untwisted Japanese paper yarn comprising the Japanese paper slit in the tape shape;
Applying water to the washi yarn to obtain a wet washi yarn,
A method for producing a composite washi yarn, comprising a step of aligning the wet washi yarn and the reinforcing yarn and twisting them with a twist number of 70 to 250.
前記テープ状にスリットされた和紙からなる実質的に無撚の前記和紙糸を準備する工程、
該和紙糸に水を付与して湿った和紙糸を得る工程、
該湿った和紙糸を前記補強糸に対してオーバーフィードして両者を加撚機の加撚域に供給し、撚係数が70〜250の撚数で加撚する工程
を含む複合和紙糸の製造方法。 A method for producing a composite Japanese paper thread according to any one of claims 1 to 4,
Preparing the substantially untwisted Japanese paper yarn comprising the Japanese paper slit in the tape shape;
Applying water to the washi yarn to obtain a wet washi yarn,
Manufacture of a composite washi yarn including a step of overfeeding the wet washi yarn to the reinforcing yarn, supplying both to the twisting region of the twisting machine, and twisting with a twist number of 70 to 250 Method.
和紙糸織物。 A Japanese paper yarn woven fabric, wherein the composite Japanese paper yarn according to any one of claims 1 to 5 is used as at least a part of a warp, and the number ratio of the composite Japanese paper yarn in the warp is 30% or more.
請求項1から5のいずれかに記載の複合和紙糸を経糸とし、
請求項1から5のいずれかに記載の複合和紙糸を緯糸とし、
緯糸織密度係数が35〜55である
請求項10に記載の和紙糸織物。 A plain weave or twill weave fabric,
The composite Japanese paper thread according to any one of claims 1 to 5 is used as a warp,
The composite Japanese paper yarn according to any one of claims 1 to 5 is used as a weft,
The Japanese paper yarn fabric according to claim 10, wherein the weft weave density coefficient is 35 to 55.
テープ状にスリットされた和紙を主成分としてなる和紙糸を緯糸とし、
請求項1から5のいずれかに記載の複合和紙糸を経糸とし、
前記織物の緯糸織密度係数が35〜50である
請求項10に記載の和紙糸織物。 A plain weave or twill weave fabric,
Washi yarn, which consists mainly of Japanese paper slit in a tape shape, is used as a weft,
The composite Japanese paper thread according to any one of claims 1 to 5 is used as a warp,
The Japanese paper yarn fabric according to claim 10, wherein the weft weave density coefficient of the fabric is 35-50.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015088199 | 2015-04-23 | ||
JP2015088199 | 2015-04-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5925946B1 JP5925946B1 (en) | 2016-05-25 |
JP2016204812A true JP2016204812A (en) | 2016-12-08 |
Family
ID=56069534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015188849A Active JP5925946B1 (en) | 2015-04-23 | 2015-09-25 | Composite Japanese paper yarn and its manufacturing method, Japanese paper yarn fabric, Japanese paper yarn knitted fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5925946B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020029629A (en) * | 2018-08-21 | 2020-02-27 | 浅野撚糸株式会社 | Method for producing processed twist yarn and method for producing woven or knitted fabric |
WO2021193726A1 (en) * | 2020-03-25 | 2021-09-30 | 株式会社Itoi生活文化研究所 | Compound paper yarn, compound paper yarn manufacturing device, and compound paper yarn manufacturing method |
KR20230036706A (en) * | 2021-09-08 | 2023-03-15 | 박용임 | Continuous manufacturing method of paper yarn for a coil ring or twin ring forming and paper yarn manufactured by such manufacturing method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018021290A (en) * | 2016-07-25 | 2018-02-08 | 株式会社Itoi生活文化研究所 | Fabric using japanese paper yarn, shoes using the same and lather shoes using the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001353004A (en) * | 2000-06-16 | 2001-12-25 | Hiroshi Nakano | Insole for footwear |
JP2004036041A (en) * | 2002-07-03 | 2004-02-05 | Yoshio Okubo | Composite yarn and woven fabric composed of the same yarn |
JP4036720B2 (en) * | 2002-10-03 | 2008-01-23 | ユニチカファイバー株式会社 | Textile composite fabric |
JP2005192724A (en) * | 2004-01-06 | 2005-07-21 | Oshimo:Kk | Shoes |
JP4096120B2 (en) * | 2004-04-13 | 2008-06-04 | 株式会社 アイトスファースト | Japanese paper thread and unsewn underwear using this thread |
KR101261916B1 (en) * | 2011-03-17 | 2013-05-08 | 현대자동차주식회사 | Method manufacturing composite yarn of korea paper and composite yarn of korea paper manufacturied thereby, manufacturing method of fabric using thereof and automotive textile manufacturied thereby |
JP6145432B2 (en) * | 2014-07-22 | 2017-06-14 | 有限会社Itoi生活文化研究所 | Pile cloth |
-
2015
- 2015-09-25 JP JP2015188849A patent/JP5925946B1/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020029629A (en) * | 2018-08-21 | 2020-02-27 | 浅野撚糸株式会社 | Method for producing processed twist yarn and method for producing woven or knitted fabric |
JP7193835B2 (en) | 2018-08-21 | 2022-12-21 | 浅野撚糸株式会社 | Method for producing textured twisted yarn and method for producing woven or knitted fabric |
WO2021193726A1 (en) * | 2020-03-25 | 2021-09-30 | 株式会社Itoi生活文化研究所 | Compound paper yarn, compound paper yarn manufacturing device, and compound paper yarn manufacturing method |
JP2021155861A (en) * | 2020-03-25 | 2021-10-07 | 株式会社Itoi生活文化研究所 | Composite paper yarn, manufacturing device thereof and manufacturing method thereof |
TWI758143B (en) * | 2020-03-25 | 2022-03-11 | 日商Itoi生活文化研究所股份有限公司 | Composite paper yarn, composite paper yarn manufacturing device, and composite paper yarn manufacturing method |
US12065764B2 (en) | 2020-03-25 | 2024-08-20 | Itoi Lifestyle Research Co. | Compound paper yarn, compound paper yarn manufacturing device, and compound paper yarn manufacturing method |
KR20230036706A (en) * | 2021-09-08 | 2023-03-15 | 박용임 | Continuous manufacturing method of paper yarn for a coil ring or twin ring forming and paper yarn manufactured by such manufacturing method |
KR102641370B1 (en) * | 2021-09-08 | 2024-02-27 | 박용임 | Continuous manufacturing method of paper yarn for a coil ring or twin ring forming and paper yarn manufactured by such manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP5925946B1 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gandhi | Woven textiles: Principles, technologies and applications | |
JP7015273B2 (en) | Stretch yarns and fabrics with multiple elastic yarns | |
CA2919846C (en) | Textile structures comprising core spun yarns and associated methods for manufacture | |
JP5925946B1 (en) | Composite Japanese paper yarn and its manufacturing method, Japanese paper yarn fabric, Japanese paper yarn knitted fabric | |
US20060014016A1 (en) | Method of producing yarns and fabrics | |
CN103835045B (en) | Length composite spinning and making method thereof, cloth and cloth material fiber product using same | |
KR20220044524A (en) | composite yarn | |
CN110629342A (en) | Anti-skid and anti-bouncing yarn and fabric and production method thereof | |
JP5881284B2 (en) | Fabrics and textile products | |
JP2019173224A (en) | socks | |
US3287892A (en) | Production of elastic stretch yarns | |
JP2005105420A (en) | Sportswear | |
JP5650274B2 (en) | Heat-fusible composite yarn and woven / knitted fabric using the same | |
Chattopadhyay | Introduction: types of technical textile yarn | |
JP4460836B2 (en) | Interlining composite yarn, interlining fabric, and manufacturing method of interlining fabric | |
Yamuna Devi et al. | Futuristic Prospects of Bamboo Fiber in Textile and Apparel Industries: Fabrication and Characterization | |
JP6099522B2 (en) | Long / short composite spun yarn and knitted fabric using the spun yarn | |
CN205313767U (en) | Frivolous two tall crape surface fabric is split to anti becoming unwoven or untiwisted | |
JP4187661B2 (en) | Antistatic woven and textile products | |
EP3202965A1 (en) | Textile structures comprising core spun yarns and associated methods for manufacture | |
JP2004183193A (en) | Woven fabric | |
Mielicka | Types and suitability of yarns for knitting | |
US20210207293A1 (en) | Textile structures comprising core spun yarns and associated methods for manufacture | |
EP4284971A1 (en) | A method for making improved elasticized fabrics and elasticized fabrics made thereby | |
Swati Sahu et al. | Mechanical properties of hand-woven fabrics developed using cover spun yarn of flax and lyocell. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5925946 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |