JP2016204716A - Manufacturing method of high carbon steel strip excellent in processability and heat treatment property - Google Patents

Manufacturing method of high carbon steel strip excellent in processability and heat treatment property Download PDF

Info

Publication number
JP2016204716A
JP2016204716A JP2015089662A JP2015089662A JP2016204716A JP 2016204716 A JP2016204716 A JP 2016204716A JP 2015089662 A JP2015089662 A JP 2015089662A JP 2015089662 A JP2015089662 A JP 2015089662A JP 2016204716 A JP2016204716 A JP 2016204716A
Authority
JP
Japan
Prior art keywords
steel strip
heat treatment
coil
temperature
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015089662A
Other languages
Japanese (ja)
Other versions
JP6596905B2 (en
Inventor
啓達 小嶋
Hirotatsu Kojima
啓達 小嶋
匹田 和夫
Kazuo Hikida
和夫 匹田
薫 川▲崎▼
Kaoru Kawasaki
薫 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015089662A priority Critical patent/JP6596905B2/en
Publication of JP2016204716A publication Critical patent/JP2016204716A/en
Application granted granted Critical
Publication of JP6596905B2 publication Critical patent/JP6596905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To manufacture high carbon steel strip excellent in processability and heat treatment property at good efficiency.SOLUTION: A steel containing, by mass%, C:0.15 to 1.0% is hot rolled in an austenite range to prepare a steel strip S, winding the steel strip S at a temperature of 550°C or less to prepare a coil 2, then the coil 2 is unwound with heat treating the unwound steel strip S to 700°C or less at average heating rate of 50°C/s or more by using a heating device 1 again and the steel strip S is wound to prepare a coil 2'.SELECTED DRAWING: Figure 1

Description

本発明は、加工性と熱処理性に優れた高炭素鋼帯の製造方法に関する。   The present invention relates to a method for producing a high carbon steel strip excellent in workability and heat treatment.

高炭素鋼帯は、自動車駆動系部品、その他の機械部品などの素材として用いられる。
これらの部品は、高炭素鋼帯を素材として、打ち抜き、曲げ、プレス加工、切削等の加工工程と、焼入れ、焼戻し、その他の熱処理工程を経て製造される。部品の品質向上、部品製造の効率化、低コスト化のためには、軟質で良好な加工性と、熱処理後の強度が容易に得られる熱処理特性が求められている。
The high carbon steel strip is used as a material for automobile drive system parts and other machine parts.
These parts are manufactured using a high carbon steel strip as a raw material, through processing steps such as punching, bending, pressing and cutting, and quenching, tempering and other heat treatment steps. In order to improve the quality of parts, increase the efficiency of manufacturing parts, and reduce costs, soft and good workability and heat treatment characteristics that can easily provide strength after heat treatment are required.

ここで、良好な加工性、すなわち軟質な鋼帯を得るため、熱間圧延終了後にコイル状に巻き取られた鋼帯は、通常は箱焼鈍が施されることが多い。
高炭素鋼帯は、炭素を高濃度に含んでいるので、熱間圧延終了後の鋼帯は、一般にフェライトとパーライトからなる硬質な組織を有している。そのため、軟質で加工性の良好な鋼帯を製造するために、通常、セメンタイトを球状化させて軟質にする球状化焼鈍が施されることが多い。
Here, in order to obtain good workability, that is, a soft steel strip, the steel strip wound up in a coil shape after the end of hot rolling is usually subjected to box annealing.
Since the high carbon steel strip contains carbon in a high concentration, the steel strip after the hot rolling has a hard structure generally made of ferrite and pearlite. For this reason, in order to produce a steel strip that is soft and has good workability, usually, spheroidizing annealing is performed in which cementite is spheroidized to make it soft.

この球状化焼鈍には長時間の加熱処理が必要とされるため、連続焼鈍方式では対応が困難であり、依然として、コイル箱焼鈍が採用されている。
また、連続焼鈍炉は設備費が高額であり、連続操業することが前提であるため、小ロットの生産品にも、コイル箱焼鈍が採用されている。
Since this spheroidizing annealing requires a long-time heat treatment, it is difficult to cope with the continuous annealing method, and coil box annealing is still employed.
In addition, since the continuous annealing furnace has a high equipment cost and is premised on continuous operation, coil box annealing is also adopted for small-lot products.

このような球状化を目的としたコイル箱焼鈍は、コイルを伝熱によって加熱する輻射加熱、すなわちコイルの外部から間接的に加熱されるため、コイル内部まで加熱するのに長時間を要する上、加熱コストが高く、また、コイル内の温度が不均一となりやすい欠点がある。   Coil box annealing for the purpose of spheroidization is a radiant heating that heats the coil by heat transfer, that is, indirectly heated from the outside of the coil, so it takes a long time to heat the inside of the coil. There are drawbacks in that the heating cost is high and the temperature in the coil tends to be non-uniform.

ここで、高炭素鋼に対して箱焼鈍を施す技術は、例えば特許文献1,2に開示されているように、加工性を向上させることを目的に数多くの開発がされてきた。   Here, as disclosed in Patent Documents 1 and 2, for example, many techniques for performing box annealing on high carbon steel have been developed for the purpose of improving workability.

特開2011−012317号公報JP 2011-012317 A 特開平09−157758号公報JP 09-157758 A

上記のとおり、高炭素鋼帯に対して良好な加工性の付与(軟質化)を目的とした箱焼鈍の技術に関しては、これまで多岐にわたり開発されてきた。
しかし近年では、自動車用部品や機械部品等の素材である高炭素鋼帯を製造するに際し、さらなる高強度化および製造性の向上が望まれているが、これらをすべて満たす技術は未だ開発されていないのが現状である。
すなわち、これまで、熱処理後の強度が容易に得られる熱処理性については、鋼成分の観点からの検討は多くされてきているものの、鋼帯の製造方法によって熱処理性を向上させる技術に関しては未だ検討されておらず、加工性と熱処理性を両立しうる高炭素鋼帯を効率よく製造できる技術の開発が望まれている。
As described above, the box annealing technique for imparting good workability (softening) to the high carbon steel strip has been developed in various ways.
However, in recent years, when manufacturing high-carbon steel strips, which are materials for automobile parts and machine parts, it is desired to further increase the strength and improve the manufacturability. However, technologies that satisfy all these requirements have not yet been developed. There is no current situation.
In other words, so far, heat treatment that can easily obtain strength after heat treatment has been studied from the viewpoint of steel components, but technology for improving heat treatment by a steel strip manufacturing method has not yet been studied. However, development of a technique capable of efficiently producing a high carbon steel strip that can achieve both workability and heat treatment is desired.

本発明は、上記問題に鑑みてなされたものであり、加工性と熱処理性に優れた高炭素鋼帯を、高い生産性で製造することができる技術を提供するものである。   This invention is made | formed in view of the said problem, and provides the technique which can manufacture the high carbon steel strip excellent in workability and heat processing property with high productivity.

本発明の要旨は、以下の通りである。   The gist of the present invention is as follows.

[1] 質量%で、C:0.15〜1.0%を含有する鋼を、オーステナイト域で熱間圧延して鋼帯とした後、この鋼帯を550℃以下の温度で巻き取りコイルとし、次いで、このコイルを巻き解きながら、巻き解かれた前記鋼帯を50℃/s以上の平均加熱速度で700℃以下まで再加熱処理し、再度、前記鋼帯を巻き取ることを特徴とする加工性と熱処理性に優れた高炭素鋼帯の製造方法。
[2] 前記再加熱処理をし、再度、前記鋼帯を巻き取った後に、箱焼鈍することを特徴とする上記[1]に記載の加工性と熱処理性に優れた高炭素鋼帯の製造方法。
[3] 前記再加熱処理を行う際、前記再加熱処理後に巻き取ったコイルの外周側が内周側よりも高温になる温度分布を持つように、前記鋼帯の長手方向に再加熱温度の分布を設けることを特徴とする上記[1]または[2]に記載の加工性と熱処理性に優れた高炭素鋼帯の製造方法。
[4] 前記再加熱処理を行う際、前記再加熱処理後の前記鋼帯をコイル状に巻き取ったときに、前記鋼帯の幅方向の両端の温度が前記鋼帯の幅中央の温度よりも高くなる温度分布を持つように、前記鋼帯の幅方向に再加熱温度の分布を設けることを特徴とする上記[1]〜[3]の何れか一項に記載の加工性と熱処理性に優れた高炭素鋼帯の製造方法。
[1] Steel containing, by mass%, C: 0.15 to 1.0%, is hot rolled in the austenite region to form a steel strip, and then the steel strip is wound at a temperature of 550 ° C. or lower. Then, while unwinding the coil, the unrolled steel strip is reheated to 700 ° C. or less at an average heating rate of 50 ° C./s or more, and the steel strip is wound again. A high carbon steel strip manufacturing method with excellent workability and heat treatment.
[2] Production of a high carbon steel strip excellent in workability and heat treatment according to the above [1], wherein after the reheating treatment and the steel strip is wound up again, box annealing is performed. Method.
[3] When performing the reheating treatment, the distribution of the reheating temperature in the longitudinal direction of the steel strip so that the outer peripheral side of the coil wound after the reheating treatment has a higher temperature distribution than the inner peripheral side. The method for producing a high carbon steel strip excellent in workability and heat treatment properties according to the above [1] or [2].
[4] When performing the reheating treatment, when the steel strip after the reheating treatment is wound into a coil shape, the temperature at both ends in the width direction of the steel strip is higher than the temperature at the center of the width of the steel strip. A reheating temperature distribution is provided in the width direction of the steel strip so as to have a higher temperature distribution, and the workability and heat treatment properties according to any one of the above [1] to [3] Of excellent high carbon steel strip.

本発明によれば、従来の焼鈍方法に比較して、熱処理に要する時間が短時間且つ低コストとなる上、加工性と熱処理性に優れた高炭素鋼帯を高い生産性で製造することができる。   According to the present invention, compared with the conventional annealing method, the time required for the heat treatment can be reduced in a short time and at a low cost, and a high carbon steel strip excellent in workability and heat treatment can be produced with high productivity. it can.

図1は、本発明において、鋼帯を再加熱する実施の態様を示す概念模式図である。FIG. 1 is a schematic diagram showing an embodiment of reheating a steel strip in the present invention. 図2は、本発明において、鋼帯を再加熱した後に箱焼鈍する実施の態様を示す概念模式図である。FIG. 2 is a conceptual schematic diagram showing an embodiment in which box annealing is performed after reheating a steel strip in the present invention.

以下、本発明の高炭素鋼帯の製造方法の一実施形態について図面を用いて説明するが、当該図面においては、図示される部材の形状や大きさ、寸法等は、実際の部材の寸法等とは異なる場合がある。   Hereinafter, an embodiment of a method for producing a high carbon steel strip according to the present invention will be described with reference to the drawings. In the drawings, the shape, size, dimensions, etc. of the illustrated members are the dimensions of the actual members, etc. May be different.

図1は、熱延工程終了後、鋼帯を一旦巻き取り、その後改めて鋼帯コイルを展開して、加熱装置1にて所定条件で再加熱し、再度巻き取る場合の本実施形態の工程を示す概念模式図である。
図1に示すように、本実施形態では、C含有鋼を、オーステナイト域で熱間圧延して鋼帯Sとし、550℃以下の温度でこの鋼帯Sを巻き取りコイル2とした後、このコイル2を巻きほどき装置3によって巻き解きながら、巻き解かれた鋼帯Sを加熱装置1によって50℃/s以上の平均加熱速度で700℃以下まで再加熱し、再度鋼帯Sを巻取装置4によってコイル状に巻き取ってコイル2´とする。
FIG. 1 shows a process of the present embodiment in the case where a steel strip is once wound after the hot rolling process is completed, and then a steel strip coil is re-developed, reheated with a heating device 1 under predetermined conditions, and wound again. It is a conceptual schematic diagram to show.
As shown in FIG. 1, in this embodiment, C-containing steel is hot-rolled in an austenite region to form a steel strip S, and this steel strip S is used as a winding coil 2 at a temperature of 550 ° C. or lower. While the coil 2 is unwound by the unwinding device 3, the unrolled steel strip S is reheated to 700 ° C or less by the heating device 1 at an average heating rate of 50 ° C / s or more, and the steel strip S is taken up again. The device 4 is wound into a coil shape to form a coil 2 '.

熱間圧延は、オーステナイト域で行い、熱延圧延工程終了後、鋼帯をコイル状に巻き取るに際しては、巻取温度が550℃以下となるよう鋼帯を冷却しておく。   Hot rolling is performed in the austenite region, and after the hot rolling process is completed, when the steel strip is wound in a coil shape, the steel strip is cooled so that the winding temperature is 550 ° C or lower.

オーステナイト域で熱間圧延を行うのは、巻取後にベイナイトまたはマルテンサイトを主体とする組織を得るための条件である。熱間圧延温度が低くてフェライトが析出すると、炭素がオーステナイトに濃縮され、炭素が均一に分散した組織(ベイナイトまたはマルテンサイト組織)を得ることができない。   The hot rolling in the austenite region is a condition for obtaining a structure mainly composed of bainite or martensite after winding. When ferrite is precipitated at a low hot rolling temperature, carbon is concentrated to austenite, and a structure (bainite or martensite structure) in which carbon is uniformly dispersed cannot be obtained.

巻取温度を550℃以下とするのは、フェライトとパーライトからなる炭素の分散が不均一な組織の形成を防止し、ベイナイトまたはマルテンサイトを主体とする炭素が均一に分散した組織(均一組織)を得るためである。
均一組織の観点から巻取温度は低温ほど好ましい。炭素が均一に分散した組織は、炭化物中への合金元素の濃化がなく、部品とした後の熱処理の加熱の際に炭化物の溶解が迅速である。特に、高周波焼入のような加熱時間が短い熱処理において、優れた熱処理性を示す。
A coiling temperature of 550 ° C. or lower prevents the formation of a structure in which the dispersion of carbon composed of ferrite and pearlite is not uniform, and a structure in which carbon mainly composed of bainite or martensite is uniformly dispersed (uniform structure) To get.
The coiling temperature is preferably as low as possible from the viewpoint of uniform structure. The structure in which carbon is uniformly dispersed does not concentrate the alloy element in the carbide, and the carbide is rapidly dissolved during the heat treatment after the part is formed. In particular, in heat treatment with a short heating time such as induction hardening, excellent heat treatment properties are exhibited.

550℃以下で巻取った後、このコイルを巻き解いて再度加熱するまでの放置時間は特に制限しないが、高温で未変態オーステナイトが多く残っている状態から再加熱しても軟質化が薄れるので、コイルが300℃以下まで冷却されてから、巻き解き・再加熱することが好ましい。   There is no particular limitation on the standing time until the coil is unwound and reheated after winding at 550 ° C. or less, but softening will fade even if reheated from a state where a large amount of untransformed austenite remains at a high temperature. It is preferable to unwind and reheat after the coil has been cooled to 300 ° C. or lower.

鋼帯コイルの再加熱に際しては、コイル2を巻きほどき装置3によって巻き解して、巻き解かれた鋼帯Sを加熱装置1によって50℃/s以上の平均加熱速度で、700℃以下の温度まで再加熱し、巻取装置4によって再度コイル状に巻き取りコイル2´とする。
加熱装置(再加熱設備)1をコンパクトにし、かつ再加熱の生産性を高めるため、再加熱する際の平均加熱速度は速い方が好ましい。平均加熱速度が50℃/s未満であると、加熱帯長が長くなる、もしくは生産性が低下して経済的でなくなるので、平均加熱速度は50℃/s以上とする。なお平均加熱速度の上限は特に限定せず、用いる加熱設備によって適宜決定してよいが、設備能力上、500℃/s以下とすることができる。
加熱装置1としては、急速加熱および均一加熱が可能な通電加熱或いは誘導加熱等の電気加熱手段が好ましい。
At the time of reheating the steel strip coil, the coil 2 is unwound by the unwinding device 3, and the unrolled steel strip S is heated by the heating device 1 at an average heating rate of 50 ° C./s or higher at 700 ° C. or lower. It is reheated to a temperature, and is wound again into a coiled coil 2 ′ by the winding device 4.
In order to make the heating device (reheating facility) 1 compact and to improve the productivity of reheating, it is preferable that the average heating rate during reheating is higher. If the average heating rate is less than 50 ° C./s, the heating zone length becomes long, or the productivity is lowered and it is not economical, so the average heating rate is set to 50 ° C./s or more. The upper limit of the average heating rate is not particularly limited and may be appropriately determined depending on the heating equipment used, but can be set to 500 ° C./s or less in terms of equipment capacity.
The heating device 1 is preferably an electric heating means such as energization heating or induction heating capable of rapid heating and uniform heating.

この再加熱工程によって、ベイナイトおよびマルテンサイト主体の組織は焼き戻され、鋼帯は軟化され、プレス成形や鍛造に適した硬さの鋼材となる。
再加熱温度が700℃を超えると、オーステナイトが出現し、その後の冷却によりパーライトが析出し、炭素の不均一が生じて熱処理性が低下するため、再加熱温度の上限は700℃とする。再加熱温度の下限は特に限定しないが、十分軟化させるための観点から、380℃以上とすることが望ましい。
By this reheating process, the structure mainly composed of bainite and martensite is tempered, the steel strip is softened, and a steel material having a hardness suitable for press molding and forging is obtained.
When the reheating temperature exceeds 700 ° C., austenite appears, pearlite is precipitated by subsequent cooling, carbon non-uniformity occurs, and the heat treatment property decreases, so the upper limit of the reheating temperature is 700 ° C. The lower limit of the reheating temperature is not particularly limited, but is preferably 380 ° C. or higher from the viewpoint of sufficiently softening.

再加熱温度が高い場合(上限温度に近い場合)には、再度巻取るまでに十分焼戻しが進行するので、再度巻取る前に冷却を行ってもよい。再度巻取る前に積極的に冷却してから巻取るほうが、耐熱性の観点から巻取装置4を簡素化できる。   When the reheating temperature is high (close to the upper limit temperature), tempering proceeds sufficiently before rewinding, so cooling may be performed before rewinding. It is possible to simplify the winding device 4 from the viewpoint of heat resistance by actively cooling after winding again before winding again.

また、再度巻き取った後の鋼帯コイル2´の温度が低いと、鋼帯コイル2´が冷えるのを待つことなく、酸洗などの次工程に回すことができ、工程間のコイルの滞留量を減らすことができ生産性が向上する。
このように、再度巻き取り後の鋼帯コイル2´の温度を下げることで生産性が向上する上、再加熱温度を高くすることは加熱設備が大型化することから、再加熱温度を低く抑えてもよいが、再加熱温度が低い場合には軟化に時間がかかるので、再度巻取った後にコイル2´が自然に冷却されると焼戻量が少なくなりすぎる。
その場合は、再加熱工程して再度巻取りコイル2´とした後に、コイル2´が高温のまま、箱焼鈍を行い(図2参照)、焼戻し時間を長くすることが好ましい。
箱焼鈍を行う場合であっても、鋼帯コイル2´はあらかじめ予加熱されているので、通常の箱焼鈍とは異なり、箱焼鈍炉内での昇温が不要であり、箱焼鈍時間を短縮できる。
In addition, if the temperature of the steel strip coil 2 'after rewinding is low, the steel strip coil 2' can be sent to the next step such as pickling without waiting for the steel strip coil 2 'to cool, and the coil stays between the steps. The amount can be reduced and the productivity is improved.
In this way, productivity is improved by lowering the temperature of the steel strip coil 2 ′ after rewinding, and increasing the reheating temperature increases the size of the heating equipment, so the reheating temperature is kept low. However, if the reheating temperature is low, it takes time to soften, and therefore the amount of tempering becomes too small when the coil 2 'is naturally cooled after rewinding.
In that case, it is preferable to perform box annealing (see FIG. 2) and to increase the tempering time while the coil 2 ′ remains at a high temperature after the reheating step and the winding coil 2 ′ again.
Even when box annealing is performed, the steel strip coil 2 'is preheated in advance, so unlike normal box annealing, there is no need to raise the temperature in the box annealing furnace, thus shortening the box annealing time. it can.

また、本発明においては、再加熱後、コイル状に巻き取った状態で冷却されるので、コイルの外周部がより迅速に冷却されることとなり、鋼帯長手方向において焼き戻しのムラが発生するおそれがある。
そのため、必要に応じて、鋼帯の長手方向に再加熱温度の分布を設けて、巻き終えた状態における鋼帯の冷却条件をコイル内外周で、均一化することもできる。
すなわち、コイル2を巻き解きながら加熱装置1にて再加熱する際、鋼帯の先端側よりも尾端側の方の再加熱温度が高くなるよう温度分布を付与することが好ましい。このような温度分布を付与した鋼帯を再度巻き取りコイル2´とすることで、このコイル2´の外周側と内周側との温度偏差を解消させることができる。
In the present invention, after reheating, the coil is cooled in a coiled state, so that the outer periphery of the coil is cooled more rapidly, and uneven tempering occurs in the longitudinal direction of the steel strip. There is a fear.
Therefore, if necessary, a reheating temperature distribution can be provided in the longitudinal direction of the steel strip, and the cooling condition of the steel strip in the finished winding state can be made uniform on the inner and outer circumferences of the coil.
That is, when reheating with the heating apparatus 1 while unwinding the coil 2, it is preferable to provide a temperature distribution so that the reheating temperature on the tail end side is higher than the front end side of the steel strip. By making the steel strip to which such a temperature distribution is provided as the winding coil 2 ′ again, the temperature deviation between the outer peripheral side and the inner peripheral side of the coil 2 ′ can be eliminated.

また、コイル2´にした時に鋼帯の両端は冷却されやすく、鋼帯幅方向において焼き戻しのムラが発生するおそれがあるので、必要に応じて、鋼帯の幅方向に再加熱温度の分布を設けて、コイル2´とした後の鋼帯幅方向の冷却条件を均一化することもできる。
すなわち、コイル2を巻き解きながら加熱装置1にて再加熱する際、鋼帯の幅方向の両端の再加熱温度が、鋼帯の幅方向中央の再加熱温度よりも高くなるよう温度分布を付与することが好ましい。このような温度分布を付与した鋼帯を再度巻き取りコイル2´とすることで、このコイル2´の幅方向での冷却条件を均一とすることができる。
In addition, when the coil 2 'is used, both ends of the steel strip are easily cooled, and uneven tempering may occur in the width direction of the steel strip. Therefore, if necessary, the reheating temperature distribution in the width direction of the steel strip The cooling conditions in the steel strip width direction after forming the coil 2 ′ can be made uniform.
That is, when reheating with the heating device 1 while unwinding the coil 2, a temperature distribution is given so that the reheating temperature at both ends in the width direction of the steel strip is higher than the reheating temperature at the center in the width direction of the steel strip. It is preferable to do. By making the steel strip to which such a temperature distribution is provided as the winding coil 2 ′ again, the cooling condition in the width direction of the coil 2 ′ can be made uniform.

従来の箱焼鈍による球状化焼鈍の場合でも、コイル長手、幅方向の加熱分布、冷却分布は軟質化に影響を及ぼすが、本発明における焼戻し(再加熱工程)による軟質化の場合は、特に温度履歴の影響を受けやすいので、再加熱温度分布を調整することは均一な焼き戻し強度を得るために重要である。   Even in the case of spheroidizing annealing by conventional box annealing, the heating distribution and cooling distribution in the coil longitudinal direction and width direction affect the softening, but in the case of softening by tempering (reheating process) in the present invention, the temperature is particularly high. Since it is easily affected by the history, adjusting the reheating temperature distribution is important for obtaining a uniform tempering strength.

熱間圧延後の鋼帯は、一般に酸洗によって酸化スケールの除去が行われる。本発明では、再加熱工程で表面の酸化やブルーイングが生じるので、熱間圧延後に酸洗を行わず、再加熱後に酸洗を行うことが好ましい。   The steel strip after hot rolling is generally subjected to removal of oxide scale by pickling. In the present invention, since surface oxidation or bluing occurs in the reheating step, it is preferable not to perform pickling after hot rolling but to perform pickling after reheating.

板厚の薄い鋼帯を製造する場合には、本発明により製造した鋼帯をさらに冷間圧延してもよい。また、部品製造時の熱処理における酸化スケールを防止するため、再度巻き取った後の鋼帯に、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっきなどの各種溶融めっきや、Zn、Zn−Ni、Zn−Feなどの電気めっきを施してもよい。溶融めっきにおいて加熱を伴う場合は、最高加熱温度を700℃以下にすることが好ましい。   When manufacturing a steel strip having a thin plate thickness, the steel strip manufactured according to the present invention may be further cold-rolled. In addition, in order to prevent oxidation scale in the heat treatment during component manufacturing, various hot dip plating such as hot dip galvanization, alloyed hot dip galvanization, hot dip aluminum plating, Zn, Zn-Ni, etc. Electroplating such as Zn-Fe may be performed. When heating is involved in hot dipping, the maximum heating temperature is preferably set to 700 ° C. or lower.

ここで、本発明が対象とする鋼帯は、Cを0.15〜1%含有するものとする。炭素量が多い場合は、熱間圧延後に巻取温度である550℃以下に冷却すると硬くなりすぎ、巻き取りが困難になったり、鋼帯が破断したりするので、C量の上限を1%とする。一方、炭素量が少ないと炭化物量も少なくなり、部品熱処理の加熱における炭化物溶解は迅速であるので、本発明の効果が小さい。本発明が対象とするC量の下限は、0.15%とする。   Here, the steel strip which this invention makes object contains C 0.15-1%. When the amount of carbon is large, it becomes too hard if it is cooled to a coiling temperature of 550 ° C. or less after hot rolling, and winding becomes difficult or the steel strip breaks, so the upper limit of the C amount is 1%. And On the other hand, when the amount of carbon is small, the amount of carbide is also small, and the dissolution of carbide in the heating of the component heat treatment is rapid, so the effect of the present invention is small. The lower limit of the amount of C targeted by the present invention is 0.15%.

本発明が対象とする鋼帯の他の成分元素は特に限定せず、本発明の効果を損なわない範囲内であれば適宜決定してよいが、加工性および熱処理性を確保する観点から、以下のような成分組成を例示できる。
なお、以下の説明においては、特に指定の無い限り、「%」は質量%を表すものとする。
The other component elements of the steel strip targeted by the present invention are not particularly limited and may be appropriately determined as long as the effects of the present invention are not impaired. From the viewpoint of ensuring workability and heat treatment, Examples of the component composition are as follows.
In the following description, “%” represents mass% unless otherwise specified.

Si:0.05〜1.0%
Siは、脱酸剤として作用し、スケール密着性を向上させ、また、焼入れ性の向上に有効な元素である。0.05%未満では、熱延時にスケールが剥離しやすくなるので、下限を0.05%とすることが好ましい。一方1.0%を超えると、Ac3変態点が上昇し、熱処理性が劣化のおそれがあるので、上限を1.0%とすることが好ましい。
Si: 0.05-1.0%
Si acts as a deoxidizer, improves scale adhesion, and is an effective element for improving hardenability. If it is less than 0.05%, the scale easily peels off during hot rolling, so the lower limit is preferably made 0.05%. On the other hand, if it exceeds 1.0%, the Ac3 transformation point increases and the heat treatment property may be deteriorated, so the upper limit is preferably made 1.0%.

Mn:0.2〜3.0%
Mnは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。0.2%未満では、添加効果が得られないので、下限を0.2%とすることが好ましい。一方、3.0%を超えると、熱間圧延荷重が増加し、焼入れ性が飽和するおそれがあるので、上限を3.0%とすることが好ましい。
Mn: 0.2 to 3.0%
Mn acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.2%, the effect of addition cannot be obtained, so the lower limit is preferably made 0.2%. On the other hand, if it exceeds 3.0%, the hot rolling load increases and the hardenability may be saturated, so the upper limit is preferably made 3.0%.

P:0.005〜0.10%以下
Pは、固溶強化元素であり、鋼帯の強度に有効な元素である。過剰な含有は、靭性を阻害するので、上限を0.10%とすることが好ましい。0.005%未満に低減することは、精錬コストの上昇を招くので、下限を0.005%とすることが好ましい。
P: 0.005 to 0.10% or less P is a solid solution strengthening element and is an element effective for the strength of the steel strip. Since excessive inclusion inhibits toughness, the upper limit is preferably made 0.10%. Since reduction to less than 0.005% causes an increase in refining costs, the lower limit is preferably made 0.005%.

S:0.0005〜0.010%
Sは、非金属介在物を形成し、加工性や、熱処理後の靭性を阻害する原因となるので、上限を0.010%とすることが好ましい。0.0005%未満に低減することは、精錬コストの大幅な上昇を招くので、下限を0.0005%とすることが好ましい。
S: 0.0005 to 0.010%
Since S forms non-metallic inclusions and becomes a cause of hindering workability and toughness after heat treatment, the upper limit is preferably made 0.010%. Since reduction to less than 0.0005% causes a significant increase in refining costs, the lower limit is preferably made 0.0005%.

Al:0.005〜0.50%
Alは、脱酸剤として作用する元素である。0.005%未満では、添加効果が十分に得られないので、下限を0.005%とすることが好ましい。一方、0.50%を超えると、Ac3変態点が上昇し、熱処理性が劣化するので、上限を0.50%とすることが好ましい。
Al: 0.005-0.50%
Al is an element that acts as a deoxidizer. If it is less than 0.005%, the effect of addition cannot be obtained sufficiently, so the lower limit is preferably made 0.005%. On the other hand, if it exceeds 0.50%, the Ac3 transformation point increases and the heat treatment properties deteriorate, so the upper limit is preferably made 0.50%.

B:0.0003〜0.0050%
Bは、焼入れ性を向上させる元素であり、部品の用途に応じて必要により添加してよいが、0.0003%以下ではその効果が十分でないため、下限を0.0003%とすることが好ましい。一方、0.0050%を超えると、添加効果は飽和し、析出物を形成して靭性を劣化させるさらに、スラブの表面割れが生じるおそれがあるので、上限を0.0050%とすることが好ましい。
B: 0.0003 to 0.0050%
B is an element that improves hardenability and may be added as necessary depending on the use of the part. However, the effect is not sufficient at 0.0003% or less, so the lower limit is preferably made 0.0003%. . On the other hand, if it exceeds 0.0050%, the effect of addition is saturated, and precipitates are formed to deteriorate toughness. Further, there is a risk of surface cracking of the slab, so the upper limit is preferably made 0.0050%. .

本実施形態においては、鋼帯の機械特性を強化するため、Cr、Ni、Cu、及び、Moの1種又は2種以上、Nb、V、Ti、及び、Wの1種又は2種以上、Ca,REMを添加してもよい。
また、鋼帯の原料としてスクラップを用いた場合、不可避的にSn、Sb、及び、Asの1種又は2種以上が混入する場合があるが、いずれも、極微量であれば本発明の効果を阻害しない。
また、鋼帯の溶製原料としてスクラップを用いた場合、Zn、Zr等の元素が、不可避的不純物として混入するが、本実施形態に係る鋼帯においては、本発明の効果、特性を阻害しない範囲で、上記元素の混入を許容する。なお、Zn、Zr等以外の元素でも、本発明鋼板の特性を阻害しない範囲で、混入を許容する。
In the present embodiment, in order to strengthen the mechanical properties of the steel strip, one or more of Cr, Ni, Cu, and Mo, one or more of Nb, V, Ti, and W, Ca and REM may be added.
In addition, when scrap is used as the raw material for the steel strip, one or more of Sn, Sb, and As may be inevitably mixed, but the effect of the present invention is sufficient if both are extremely small amounts. Does not disturb.
In addition, when scrap is used as a raw material for melting the steel strip, elements such as Zn and Zr are mixed as inevitable impurities. However, in the steel strip according to this embodiment, the effects and characteristics of the present invention are not impaired. In the range, mixing of the above elements is allowed. In addition, elements other than Zn, Zr and the like are allowed to be mixed as long as the characteristics of the steel sheet of the present invention are not impaired.

本実施形態においては、上記した元素以外の残部は実質的にFeからなり、不可避不純物をはじめ、本発明の作用効果を害さない元素を微量に添加することができる。   In the present embodiment, the balance other than the above-described elements is substantially made of Fe, and a small amount of elements that do not impair the effects of the present invention, such as inevitable impurities, can be added.

以上説明した、本発明に係る高炭素鋼帯の製造方法によれば、従来の焼鈍方法(例えば、箱焼鈍)に比較して、熱処理に要する時間が短時間且つ低コストとなる上、加工性と熱処理性に優れた高炭素鋼帯を高い生産性で製造することができる。その結果、本発明の高炭素鋼帯を加工する際において、プレス成形や鍛造などの二次加工が容易に実施できる上、その後の焼入れなどの熱処理性にもすぐれており、成形性と高強度が要求される自動車用部品等に適した鋼材を提供することができる。   According to the manufacturing method of the high carbon steel strip according to the present invention described above, the time required for the heat treatment is short and low in cost as compared with the conventional annealing method (for example, box annealing), and the workability. High carbon steel strips with excellent heat treatment properties can be manufactured with high productivity. As a result, when processing the high carbon steel strip of the present invention, secondary processing such as press molding and forging can be easily performed, and heat treatment such as subsequent quenching is excellent, and formability and high strength are also achieved. Therefore, it is possible to provide a steel material that is suitable for automobile parts and the like that are required.

次に、本発明を実施例によって更に詳細に説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to the conditions used in the following Examples.

(実施例1)
まず、質量%で、C:0.20%、Si:0.25、Mn:1.3%、P:0.017、S:0.003、Al:0.04%、Ti:0.027、B:0.002%を含有する鋼を実験室で溶解し、熱間圧延により板厚2.0mmの鋼板となし、その後、再加熱処理を施した。
Example 1
First, in mass%, C: 0.20%, Si: 0.25, Mn: 1.3%, P: 0.017, S: 0.003, Al: 0.04%, Ti: 0.027 , B: Steel containing 0.002% was melted in a laboratory, made into a steel plate having a thickness of 2.0 mm by hot rolling, and then reheated.

熱間圧延は、オーステナイト域である850℃で仕上圧延を完了し、その後、水スプレーにより表1に示す巻取温度まで冷却し、巻取温度に保持された炉の中で徐冷却した。熱延鋼板の冷却においては、実際の生産ラインにおいて鋼帯コイルとしたのちに大気中で冷却されることを想定して、この徐冷却の冷却速度は20℃/hとし、実生産における鋼帯コイルが大気中で冷却される速度を模擬した。   In hot rolling, finish rolling was completed at 850 ° C., which is an austenite region, and then cooled to the winding temperature shown in Table 1 by water spray, and then gradually cooled in a furnace maintained at the winding temperature. In the cooling of the hot-rolled steel sheet, assuming that the steel strip coil is formed in the actual production line and then cooled in the air, the cooling rate of this slow cooling is 20 ° C / h, and the steel strip in actual production is The speed at which the coil is cooled in the atmosphere was simulated.

前述の徐冷却後の再加熱処理は、通電加熱装置を用いて、模擬した。具体的には、切板に直接通電することによって、100℃/sの平均加熱速度で表1に示す再加熱温度まで加熱し、その後、再加熱温度に保持された炉の中で徐冷却した。徐冷却の冷却速度は、20℃/hとした。なお、試験番号1−1は再加熱処理を行わなかった。   The reheating treatment after the slow cooling described above was simulated using an electric heating device. Specifically, by directly energizing the cut plate, it was heated to the reheating temperature shown in Table 1 at an average heating rate of 100 ° C./s, and then gradually cooled in a furnace maintained at the reheating temperature. . The cooling rate of slow cooling was 20 ° C./h. In Test No. 1-1, no reheating treatment was performed.

得られた鋼板の熱処理性を評価した。
熱処理性の評価は、通電加熱式の加熱装置で再加熱処理を行い徐冷却した後の鋼板の板厚中心のビッカース硬さを用いて評価した。具体的に、熱処理性評価の温度履歴は、昇温速度100℃/sで850℃まで昇温した後、冷却速度30℃/sで室温までガス冷却を行い、ビッカース硬さを測定した。
以上の試験を行った巻取温度、再加熱温度の組み合わせと、熱処理性評価試験の前(熱処理評価前)と後(熱処理評価後)のビッカース硬さを表1に示す。
なお、熱処理性の評価は以下のように判定した。
<熱処理評価前>
◎:HV<200
○:200≦HV<300
△:300≦HV<400
×:400<HV
<熱処理評価後>
○:HV≧400
×:400>HV
The heat treatment property of the obtained steel sheet was evaluated.
The heat treatment property was evaluated using the Vickers hardness at the center of the thickness of the steel sheet after reheating with an electric heating type heating device and gradually cooling. Specifically, in the temperature history of heat treatment evaluation, the temperature was increased to 850 ° C. at a temperature increase rate of 100 ° C./s, and then cooled to room temperature at a cooling rate of 30 ° C./s to measure the Vickers hardness.
Table 1 shows the combination of the coiling temperature and the reheating temperature at which the above tests were performed, and the Vickers hardness before (after heat treatment evaluation) and after (after heat treatment evaluation) the heat treatment evaluation test.
In addition, evaluation of heat processing property was determined as follows.
<Before heat treatment evaluation>
A: HV <200
○: 200 ≦ HV <300
Δ: 300 ≦ HV <400
×: 400 <HV
<After heat treatment evaluation>
○: HV ≧ 400
×: 400> HV

再加熱処理を行わなかった試験番号1−1は、熱処理評価前が硬すぎて加工用途に適さないが、再加熱処理を行ったものはいずれも、熱処理評価前のビッカース硬さが400未満に軟化している。
熱処理評価後の硬さは、巻取温度が本発明範囲より高い試験番号1−7,1−8および再加熱温度が本発明範囲より高い試験番号1−4では、熱処理評価後のビッカース硬さが400未満と低くなり熱処理性の向上が不十分となっている。
巻取温度および再加熱温度を本発明の条件範囲とした、試験番号1−2,1−3,1−5,1−6は、熱処理評価前の硬さが低く、熱処理評価後の硬さが高くなっており、加工性と熱処理性に優れている。
Test number 1-1 in which reheating treatment was not performed is too hard before heat treatment evaluation and is not suitable for processing applications, but any of those subjected to reheating treatment has a Vickers hardness of less than 400 before heat treatment evaluation. It is softening.
The hardness after the heat treatment evaluation is the Vickers hardness after the heat treatment evaluation in Test Nos. 1-7 and 1-8 where the coiling temperature is higher than the range of the present invention and the Test No. 1-4 where the reheating temperature is higher than the range of the present invention Is less than 400 and the heat treatment property is not sufficiently improved.
Test numbers 1-2, 1-3, 1-5, and 1-6, in which the coiling temperature and the reheating temperature are within the range of the present invention, have low hardness before heat treatment evaluation, and hardness after heat treatment evaluation. Is high and is excellent in workability and heat treatment.

Figure 2016204716
Figure 2016204716

(実施例2)
まず、質量%で、C:0.20%、Si:0.25、Mn:1.3%、P:0.017、S:0.003、Al:0.04%、Ti:0.027、B:0.002%を含有する鋼を実験室で溶解し、熱間圧延により板厚2.0mmの鋼板となし、その後、再加熱処理を施した。
(Example 2)
First, in mass%, C: 0.20%, Si: 0.25, Mn: 1.3%, P: 0.017, S: 0.003, Al: 0.04%, Ti: 0.027 , B: Steel containing 0.002% was melted in a laboratory, made into a steel plate having a thickness of 2.0 mm by hot rolling, and then reheated.

熱間圧延は、オーステナイト域である850℃で仕上圧延を完了し、その後、水スプレーにより表2に示す巻取温度まで冷却し、巻取温度に保持された炉の中で徐冷却した。熱延鋼板の冷却においては、実際の生産ラインにおいて鋼帯コイルとしたのちに大気中で冷却されることを想定して、この徐冷却の冷却速度は20℃/hとし、実生産における鋼帯コイルが大気中で冷却される速度を模擬した。   In hot rolling, finish rolling was completed at 850 ° C., which is an austenite region, and then cooled to the winding temperature shown in Table 2 by water spray, and then gradually cooled in a furnace maintained at the winding temperature. In the cooling of the hot-rolled steel sheet, assuming that the steel strip coil is formed in the actual production line and then cooled in the air, the cooling rate of this slow cooling is 20 ° C / h, and the steel strip in actual production is The speed at which the coil is cooled in the atmosphere was simulated.

前述の徐冷却後の再加熱処理は、通電加熱装置を用いて、模擬した。具体的には、切板に直接通電することによって、100℃/sの平均加熱速度で表2に示す再加熱温度まで加熱した。その後、再加熱温度に保持された炉へ鋼板を移動させ、再加熱温度に24h保持した後に徐冷却した。24hの保持は実生産における箱焼鈍を模擬したものであり、24h保持後の徐冷却の冷却速度は、20℃/hとした。   The reheating treatment after the slow cooling described above was simulated using an electric heating device. Specifically, by directly energizing the cut plate, it was heated to the reheating temperature shown in Table 2 at an average heating rate of 100 ° C./s. Thereafter, the steel sheet was moved to a furnace maintained at the reheating temperature, and gradually cooled after being maintained at the reheating temperature for 24 hours. Holding for 24 h simulated box annealing in actual production, and the cooling rate of slow cooling after holding for 24 h was 20 ° C./h.

得られた鋼板の熱処理性を評価した。
熱処理性の評価は、通電加熱式の加熱装置で箱焼鈍を模擬した熱処理を行った後の鋼板の板厚中心のビッカース硬さを用いて評価した。具体的に、熱処理性評価の温度履歴は、昇温速度100℃/sで850℃まで昇温した後、冷却速度30℃/sで室温までガス冷却を行い、ビッカース硬さを測定した。
以上の試験を行った巻取温度、再加熱温度の組み合わせと、熱処理性評価試験の前(熱処理評価前)と後(熱処理評価後)のビッカース硬さを表2に示す。
なお、熱処理性の評価は実施例1と同様にして行った。
The heat treatment property of the obtained steel sheet was evaluated.
The heat treatment was evaluated using the Vickers hardness at the center of the thickness of the steel sheet after heat treatment simulating box annealing with an electric heating type heating device. Specifically, in the temperature history of heat treatment evaluation, the temperature was increased to 850 ° C. at a temperature increase rate of 100 ° C./s, and then cooled to room temperature at a cooling rate of 30 ° C./s to measure the Vickers hardness.
Table 2 shows the combination of the coiling temperature and reheating temperature at which the above tests were performed, and the Vickers hardness before (after heat treatment evaluation) and after (after heat treatment evaluation) the heat treatment evaluation test.
The heat treatment was evaluated in the same manner as in Example 1.

再加熱処理後に24hの保持を行った本実施例は、いずれも、熱処理評価前のビッカース硬さが300未満に軟化しており、24hの保持を行わない実施例1よりも軟質な鋼板が製造できている。
熱処理評価後の硬さは、巻取温度が本発明範囲より高い試験番号2−7および再加熱温度が本発明範囲より高い試験番号2−3、2−6では、熱処理評価後のビッカース硬さが400未満と低くなり熱処理性の向上が不十分となっている。
巻取温度および再加熱温度を本発明の条件範囲とした、試験番号2−1、2−2、2−4,2−5は、熱処理評価前の硬さが低く、熱処理評価後の硬さが高くなっており、加工性と熱処理性に優れている。
In each of the present examples in which the holding for 24 h was performed after the reheating treatment, the Vickers hardness before the heat treatment evaluation was softened to less than 300, and a softer steel plate was produced than in Example 1 in which the holding for 24 h was not performed. is made of.
The hardness after heat treatment evaluation is the Vickers hardness after heat treatment evaluation in Test Nos. 2-7 and 2-6 where the reheating temperature is higher than the range of the present invention. Is less than 400 and the heat treatment property is not sufficiently improved.
Test numbers 2-1, 2-2, 2-4, and 2-5, in which the coiling temperature and the reheating temperature are within the range of the present invention, have low hardness before heat treatment evaluation, and hardness after heat treatment evaluation. Is high and is excellent in workability and heat treatment.

Figure 2016204716
Figure 2016204716

本発明によれば、加工性に優れた高炭素鋼帯を高い生産性で製造することができ、プレス成形や鍛造などの二次加工が容易に実施できる上、その後の焼入れなどの熱処理性にもすぐれており、成形性と高強度が要求される自動車用部品等に適した鋼材を提供することができる。   According to the present invention, a high carbon steel strip excellent in workability can be produced with high productivity, secondary processing such as press molding and forging can be easily performed, and heat treatment such as subsequent quenching can be performed. It is excellent, and it is possible to provide a steel material suitable for automobile parts and the like that require formability and high strength.

1:加熱装置
2、2´:コイル(鋼帯コイル)
3:巻きほどき装置
4:巻取装置
S:鋼帯
1: Heating device 2, 2 ': Coil (steel strip coil)
3: Unwinding device 4: Winding device S: Steel strip

Claims (4)

質量%で、C:0.15〜1.0%を含有する鋼を、オーステナイト域で熱間圧延して鋼帯とした後、この鋼帯を550℃以下の温度で巻き取りコイルとし、次いで、このコイルを巻き解きながら、巻き解かれた前記鋼帯を50℃/s以上の平均加熱速度で700℃以下まで再加熱処理し、再度、前記鋼帯を巻き取ることを特徴とする加工性と熱処理性に優れた高炭素鋼帯の製造方法。   A steel containing C: 0.15 to 1.0% by mass is hot rolled in the austenite region to form a steel strip, and then this steel strip is used as a winding coil at a temperature of 550 ° C. or lower. The unrolled steel strip is reheated to 700 ° C. or less at an average heating rate of 50 ° C./s or more while unwinding the coil, and the workability is obtained by winding the steel strip again. And high carbon steel strip manufacturing method with excellent heat treatment. 前記再加熱処理をし、再度、前記鋼帯を巻き取った後に、箱焼鈍することを特徴とする請求項1に記載の加工性と熱処理性に優れた高炭素鋼帯の製造方法。   The method for producing a high-carbon steel strip excellent in workability and heat-treatability according to claim 1, wherein box annealing is performed after the reheating treatment and the steel strip are wound up again. 前記再加熱処理を行う際、前記再加熱処理後に巻き取ったコイルの外周側が内周側よりも高温になる温度分布を持つように、前記鋼帯の長手方向に再加熱温度の分布を設けることを特徴とする請求項1または2に記載の加工性と熱処理性に優れた高炭素鋼帯の製造方法。   When performing the reheating treatment, providing a reheating temperature distribution in the longitudinal direction of the steel strip so that the outer circumference side of the coil wound after the reheating treatment has a temperature distribution that is higher than the inner circumference side. The method for producing a high carbon steel strip excellent in workability and heat treatment properties according to claim 1 or 2. 前記再加熱処理を行う際、前記再加熱処理後の前記鋼帯をコイル状に巻き取ったときに、前記鋼帯の幅方向の両端の温度が前記鋼帯の幅中央の温度よりも高くなる温度分布を持つように、前記鋼帯の幅方向に再加熱温度の分布を設けることを特徴とする請求項1〜3の何れか一項に記載の加工性と熱処理性に優れた高炭素鋼帯の製造方法。   When performing the reheating treatment, when the steel strip after the reheating treatment is wound in a coil shape, the temperature at both ends in the width direction of the steel strip becomes higher than the temperature at the center of the width of the steel strip. The high-carbon steel excellent in workability and heat-treatability according to any one of claims 1 to 3, wherein a reheating temperature distribution is provided in the width direction of the steel strip so as to have a temperature distribution. Manufacturing method of the belt.
JP2015089662A 2015-04-24 2015-04-24 Manufacturing method of high carbon steel strip with excellent workability and heat treatment Active JP6596905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089662A JP6596905B2 (en) 2015-04-24 2015-04-24 Manufacturing method of high carbon steel strip with excellent workability and heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089662A JP6596905B2 (en) 2015-04-24 2015-04-24 Manufacturing method of high carbon steel strip with excellent workability and heat treatment

Publications (2)

Publication Number Publication Date
JP2016204716A true JP2016204716A (en) 2016-12-08
JP6596905B2 JP6596905B2 (en) 2019-10-30

Family

ID=57486815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089662A Active JP6596905B2 (en) 2015-04-24 2015-04-24 Manufacturing method of high carbon steel strip with excellent workability and heat treatment

Country Status (1)

Country Link
JP (1) JP6596905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026593A1 (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144243A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Method for producing high strength steel sheet excellent in sheet thickness precision
JP2014173151A (en) * 2013-03-11 2014-09-22 Nippon Steel & Sumitomo Metal High strength hot rolled steel sheet excellent in processability and fatigue characteristic and its manufacturing method
JP2016160501A (en) * 2015-03-03 2016-09-05 新日鐵住金株式会社 Hot rolled steel sheet excellent in processability, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144243A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Method for producing high strength steel sheet excellent in sheet thickness precision
JP2014173151A (en) * 2013-03-11 2014-09-22 Nippon Steel & Sumitomo Metal High strength hot rolled steel sheet excellent in processability and fatigue characteristic and its manufacturing method
JP2016160501A (en) * 2015-03-03 2016-09-05 新日鐵住金株式会社 Hot rolled steel sheet excellent in processability, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026593A1 (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same
JPWO2020026593A1 (en) * 2018-07-31 2020-08-06 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
EP3831972A4 (en) * 2018-07-31 2021-06-09 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP6596905B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6341214B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP6310452B2 (en) Steel, flat steel material and method for producing flat steel material
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP2023093564A (en) Hot-forming member
JP2009197256A (en) Method for producing high carbon steel sheet
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
US4898629A (en) Method of producing hot rolled steel strip
JP2015214732A (en) Production method of high-strength steel sheet
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
JP6596905B2 (en) Manufacturing method of high carbon steel strip with excellent workability and heat treatment
JP6747228B2 (en) Method for producing high carbon steel strip with excellent workability
JP6500389B2 (en) Method of manufacturing hot rolled steel sheet
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
WO2020158017A1 (en) Carbon alloy steel sheet and method for producing carbon alloy steel sheet
JP6610067B2 (en) Cold rolled steel sheet manufacturing method and cold rolled steel sheet
JP4608242B2 (en) Steel for cold bending
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JP6120604B2 (en) Cold-rolled steel sheet for automatic transmission member and manufacturing method thereof
JP2007107032A (en) Method for producing steel pipe for hollow stabilizer, and producing method for producing hollow stabilizer
KR20200108067A (en) High carbon cold rolled steel sheet and manufacturing method thereof
JP5890735B2 (en) Method for producing hot-rolled steel sheet having both pickling and workability
JPH06271935A (en) Production of high carbon cold rolled steel sheet small in anisotropy
JP2016166386A (en) High carbon hot rolled steel sheet excellent in cold workability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6596905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151