JP2016203050A - Coating apparatus and method of manufacturing coated film - Google Patents

Coating apparatus and method of manufacturing coated film Download PDF

Info

Publication number
JP2016203050A
JP2016203050A JP2015084154A JP2015084154A JP2016203050A JP 2016203050 A JP2016203050 A JP 2016203050A JP 2015084154 A JP2015084154 A JP 2015084154A JP 2015084154 A JP2015084154 A JP 2015084154A JP 2016203050 A JP2016203050 A JP 2016203050A
Authority
JP
Japan
Prior art keywords
coating
coating liquid
liquid
sheet
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084154A
Other languages
Japanese (ja)
Other versions
JP6007281B1 (en
Inventor
道平 創
So Michihira
創 道平
小松原 誠
Makoto Komatsubara
誠 小松原
実 矢木
Minoru Yagi
実 矢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2015084154A priority Critical patent/JP6007281B1/en
Priority to TW105102361A priority patent/TWI681821B/en
Priority to KR1020160042000A priority patent/KR20160123993A/en
Priority to CN201610214414.3A priority patent/CN106040513A/en
Application granted granted Critical
Publication of JP6007281B1 publication Critical patent/JP6007281B1/en
Publication of JP2016203050A publication Critical patent/JP2016203050A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/06Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length by rubbing contact, e.g. by brushes, by pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/1013Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to flow or pressure of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material

Abstract

PROBLEM TO BE SOLVED: To provide a coating apparatus etc. which can suppress variation of thickness of a coated film relatively quickly, reliably and, moreover, without waste.SOLUTION: A coating apparatus includes: a coating part which applies coating liquid containing a solidifying component onto a sheet relatively moved and forms a coated film by solidifying the applied coating liquid; a liquid feeding part which feeds the coating liquid to the coating part; a measurement part which measures mass flow rate of the coating liquid supplied to the coating part by the liquid feeding part; and a control part which stores a standard value of the mass flow rate calculated from a prescribed numerical expression therein and alters the mass flow rate of the coating liquid by means of the liquid feeding part based on the standard value and a measurement result of the measurement part.SELECTED DRAWING: Figure 1

Description

本発明は、塗工装置及び塗工膜の製造方法に関する。   The present invention relates to a coating apparatus and a method for manufacturing a coating film.

従来、固化成分を含有する塗工液をシート上に塗工する塗工部と、該塗工部に塗工液を送る送液部とを備え、シートに塗工液を塗工して塗工膜を形成する塗工装置が用いられている。かかる塗工装置では、塗工部からの塗工液の吐出量が変動すると、得られた塗工膜の厚みが変動したものとなり、塗工膜が所望の性能を発揮し得ないおそれがある。   Conventionally, a coating part for coating a coating liquid containing a solidifying component on a sheet and a liquid feeding part for sending the coating liquid to the coating part are provided, and the coating liquid is applied to the sheet by coating. A coating apparatus for forming a film is used. In such a coating apparatus, when the discharge amount of the coating liquid from the coating unit varies, the thickness of the obtained coating film varies, and the coating film may not exhibit the desired performance. .

そこで、塗工部に送られる塗工液の量を制御して、塗工部からの塗工液の吐出量を制御するように構成された塗工装置が提案されている。   In view of this, there has been proposed a coating apparatus configured to control the amount of the coating liquid sent to the coating unit to control the discharge amount of the coating liquid from the coating unit.

例えば、塗工液を塗工部に送る送液部と、送液部と塗工部との間に配されて塗工液の送液量を測定する測定部と、測定部での測定結果に基づいて送液部による送液量を変更させる制御部とを備えた塗工装置が提案されている(特許文献1、2参照)。   For example, a liquid feeding part that sends the coating liquid to the coating part, a measuring part that is disposed between the liquid feeding part and the coating part and measures the liquid feeding amount of the coating liquid, and a measurement result in the measuring part And a controller for changing the amount of liquid fed by the liquid feeding unit based on the above (see Patent Documents 1 and 2).

特開2007−330935号公報JP 2007-330935 A 特開2011−194329号公報JP2011-194329A

しかし、上記特許文献1、2では、塗工液の送液量として体積流量を測定し、該体積流量の測定結果に基づいて塗工液の送液量(すなわち、体積流量)を調整しているが、これら特許文献の塗工装置では、所望の厚みを有する塗工膜が十分に得られない場合がある。   However, in the above Patent Documents 1 and 2, the volume flow rate is measured as the coating liquid feeding amount, and the coating liquid feeding amount (that is, the volume flow rate) is adjusted based on the measurement result of the volume flow rate. However, there are cases in which a coating film having a desired thickness cannot be obtained sufficiently with the coating apparatus of these patent documents.

一方、シート上に形成された塗工膜の厚みを測定し、該測定結果に基づいて塗工液の送液量を変更することも考えられる。しかし、このような調整では、送液部で調整された塗工液が、塗工膜の測定結果に反映されるまでに、比較的距離及び時間がかかるため、塗工膜の厚みの変動を、塗工液の送液量の変更に速やかに反映できないおそれがあり、また、塗工液の無駄が生じることにもつながる。   On the other hand, it is also conceivable to measure the thickness of the coating film formed on the sheet and change the amount of the coating liquid fed based on the measurement result. However, in such an adjustment, it takes a relatively long distance and time until the coating liquid adjusted in the liquid feeding section is reflected in the measurement result of the coating film. In addition, there is a possibility that it cannot be immediately reflected in a change in the amount of the coating liquid fed, and the coating liquid is wasted.

本発明は、上記問題点に鑑み、比較的速やかに且つ確実に、しかも無駄なく塗工膜の厚みの変動を抑制し得る塗工装置及び塗工膜の製造方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a coating apparatus and a coating film manufacturing method capable of suppressing fluctuations in the thickness of the coating film relatively quickly and reliably and without waste. .

本発明者らが、塗工液の送液量と形成された塗工膜の厚みとの関係について鋭意研究したところ、塗工液の体積は、塗工装置の周囲の環境温度によって変動するおそれがあるため、体積流量を送液量の指標とすると、上記体積変動に起因して、得られた塗工膜の厚みの変動が十分に抑制されないおそれがあることが判明した。そして、かかる知見に基づいてさらに鋭意研究を行い、質量流量を送液量の指標とすることによって、得られた塗工膜の厚みの変動が、より抑制され得ることを見出して、本発明を完成した。   When the present inventors diligently studied the relationship between the amount of the coating liquid fed and the thickness of the formed coating film, the volume of the coating liquid may vary depending on the ambient temperature around the coating apparatus. Therefore, it has been found that if the volume flow rate is used as an index of the liquid feeding amount, the variation in the thickness of the obtained coating film may not be sufficiently suppressed due to the volume variation. Based on this finding, we conducted further diligent research, and found that the variation in the thickness of the obtained coating film can be further suppressed by using the mass flow rate as an indicator of the amount of liquid delivered. completed.

すなわち、本発明に係る塗工装置は、
移動するシート上に、固化成分を含有する塗工液を塗工し、該塗工された塗工液が固化されることにより塗工膜を形成する塗工部と、
該塗工部に前記塗工液を送る送液部と、
前記送液部によって前記塗工部に送られる前記塗工液の質量流量を測定する測定部と、
前記質量流量の基準値が格納されており、該基準値と前記測定部の測定結果とに基づいて前記送液部による前記塗工液の質量流量を変更させる制御部とを備えており、
前記基準値が、下記数式(1)、(2)及び(3)に基づいて決定されるようになっている。
That is, the coating apparatus according to the present invention is
On the moving sheet, a coating solution containing a solidifying component is applied, and a coating part that forms a coating film by solidifying the coated coating solution; and
A liquid feeding section for feeding the coating liquid to the coating section;
A measuring unit for measuring a mass flow rate of the coating liquid sent to the coating unit by the liquid feeding unit;
A reference value of the mass flow rate is stored, and includes a control unit that changes the mass flow rate of the coating liquid by the liquid feeding unit based on the reference value and the measurement result of the measurement unit,
The reference value is determined based on the following mathematical formulas (1), (2), and (3).

Figure 2016203050
S:質量流量の基準値(kg/min)
W:シート上に塗工される塗工液の幅の設定値(m)
U:塗工部に対するシートの相対的な移動速度(m/min)
t_ref:シート上に塗工され、固化された塗工膜の厚みの設定値(m)
ρ_s:シート上に塗工され、固化された塗工膜の密度(kg/m
B:塗工液中の固化成分の質量分率(−)
ρ_a:シート上に塗工され、固化された塗工膜の密度の仮設定値(kg/m
t_ms:シート上に塗工され、固化された塗工膜の厚みの測定値(m)
ρ_L:塗工液の密度の測定値(kg/m
T:塗工されるときの塗工液の温度(℃)
P:塗工されるときの塗工液の圧力(Pa)
Q:塗工されるときの質量流量(kg/min)
a、b、c、d、e:係数(−)
Figure 2016203050
S: Standard value of mass flow rate (kg / min)
W: Set value (m) of the width of the coating liquid to be coated on the sheet
U: Movement speed of sheet relative to coated part (m / min)
t_ref: set value (m) of the thickness of the coating film coated and solidified on the sheet
ρ_s: density of the coating film coated on the sheet and solidified (kg / m 3 )
B: Mass fraction of the solidified component in the coating liquid (-)
ρ_a: Temporary setting value (kg / m 3 ) of the density of the coating film coated and solidified on the sheet
t_ms: Measured value (m) of the thickness of the coating film that has been coated and solidified on the sheet
ρ_L: measured value of density of coating liquid (kg / m 3 )
T: Temperature of the coating liquid at the time of coating (° C)
P: Pressure of coating liquid when coating (Pa)
Q: Mass flow rate when coating (kg / min)
a, b, c, d, e: coefficient (-)

かかる構成によれば、送液部によって塗工部に送られる塗工液の送液量を測定部によって測定できるため、塗工膜の厚みを測定する場合によりも、速やかに、且つ無駄なく塗工膜の厚みの変動を抑制し得る。
しかも、塗工液の送液量の指標として質量流量を採用し、測定部によって塗工液の質量流量の測定を行い、さらに、測定部の測定結果と質量流量の基準値とに基づいて塗工液の流量を変更させることができるため、体積流量を指標とする場合よりも、確実に塗工膜の厚みの変動を抑制し得る。
また、質量流量の基準値がシート上に塗工された塗工液中の固化成分の質量分率に基づいて決定されることによって、塗工膜の厚みと相関関係を有する塗工液の固化成分の質量分率に基づいて、基準値を設定することとなる。従って、より精度良く質量流量を変更させ得る。
さらに、上記固化成分の質量分率を、塗工液の密度、及び、塗工液の温度に加えて、さらに、塗工液の圧力、及び、塗工液の質量流量に基づいて決定することによって、一層精度良く質量流量を変更させ得る。
従って、上記構成の塗工装置によれば、比較的速やかに且つ確実に、しかも無駄なく塗工膜の厚みの変動を抑制し得る。
According to such a configuration, since the liquid feeding amount of the coating liquid sent to the coating part by the liquid feeding part can be measured by the measuring part, the coating can be applied quickly and without waste even when the thickness of the coating film is measured. Variations in the thickness of the film can be suppressed.
In addition, the mass flow rate is adopted as an index of the liquid feeding amount of the coating liquid, the mass flow rate of the coating liquid is measured by the measuring unit, and the coating is performed based on the measurement result of the measuring unit and the reference value of the mass flow rate. Since the flow rate of the working liquid can be changed, fluctuations in the thickness of the coating film can be suppressed more reliably than when the volume flow rate is used as an index.
In addition, the solidification of the coating liquid having a correlation with the thickness of the coating film by determining the reference value of the mass flow rate based on the mass fraction of the solidified component in the coating liquid coated on the sheet The reference value is set based on the mass fraction of the component. Therefore, the mass flow rate can be changed with higher accuracy.
Furthermore, in addition to the density of the coating liquid and the temperature of the coating liquid, the mass fraction of the solidified component is further determined based on the pressure of the coating liquid and the mass flow rate of the coating liquid. Therefore, the mass flow rate can be changed with higher accuracy.
Therefore, according to the coating apparatus having the above-described configuration, it is possible to suppress variation in the thickness of the coating film relatively quickly and reliably and without waste.

また、本発明の塗工膜の製造方法は、
前記塗工装置を用いて塗工膜を形成する塗工膜の製造方法であって、
前記測定部により、前記塗工液の前記質量流量を測定しながら、且つ、
前記制御部により、前記基準値と前記測定部の測定結果とに基づいて前記送液部による前記送液速度を変更させながら、
前記塗工部により、前記シート上に前記塗工液を塗工して塗工膜を形成する。
Moreover, the manufacturing method of the coating film of the present invention includes:
A coating film manufacturing method for forming a coating film using the coating apparatus,
While measuring the mass flow rate of the coating liquid by the measurement unit, and
While changing the liquid feeding speed by the liquid feeding unit based on the reference value and the measurement result of the measuring unit by the control unit,
The coating unit coats the coating solution on the sheet to form a coating film.

以上の通り、本発明によれば、比較的速やかに且つ確実に、しかも無駄なく塗工膜の厚みの変動を抑制し得る塗工装置及び塗工膜の製造方法が提供される。   As described above, according to the present invention, it is possible to provide a coating apparatus and a method for manufacturing a coating film that can suppress variation in the thickness of the coating film relatively quickly and reliably and without waste.

本発明の一実施形態に係る塗工装置の概略構成図Schematic block diagram of a coating apparatus according to an embodiment of the present invention 本実施形態の塗工装置によってシートに塗工液が塗工された状態の一例を示す概略側面図The schematic side view which shows an example of the state by which the coating liquid was applied to the sheet | seat by the coating apparatus of this embodiment 本実施形態の塗工装置によってシートに塗工液が塗工された状態の一例を示す概略側面図The schematic side view which shows an example of the state by which the coating liquid was applied to the sheet | seat by the coating apparatus of this embodiment 本実施形態の塗工装置によってシートに塗工液が塗工された状態の一例を示す概略側面図The schematic side view which shows an example of the state by which the coating liquid was applied to the sheet | seat by the coating apparatus of this embodiment 実施例での予備実験に用いられる装置の概略構成図Schematic configuration diagram of apparatus used for preliminary experiment in Examples

以下に本発明に係る塗工装置、該塗工装置を用いた塗工膜の製造方法の実施形態について図面を参照しつつ説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of a coating apparatus according to the present invention and a method for producing a coating film using the coating apparatus will be described below with reference to the drawings.

図1に示すように、本実施形態の塗工装置1は、固化成分を含有する塗工液3が収容された収容部5と、塗工液3を該収容部5から下流側へと送る送液部としてのポンプ7と、ポンプ7によって送られた塗工液3を、長手方向に沿って下流側(実線矢印参照)に相対的に移動する帯状のシート11に順次塗工して塗工膜40を形成する塗工部13と、ポンプ7と塗工部13との間に配されて、ポンプ7によって塗工部13へと送られる塗工液3の質量流量を測定する測定部21と、基準値Sを格納しており、該基準値Sと測定部21の測定結果Dとに基づいてポンプ7に質量流量を変更させる制御部23と、塗工液3の移動経路を形成する配管15と、シート11を支持する支持部19とを備えている。また、塗工装置1は、シート11上に塗工された塗工液3を固化させる固化部27を備えている。   As shown in FIG. 1, the coating apparatus 1 of this embodiment sends the coating | coated part 3 in which the coating liquid 3 containing a solidification component was accommodated, and the coating liquid 3 from this accommodating part 5 to a downstream side. The pump 7 as the liquid feeding section and the coating liquid 3 sent by the pump 7 are sequentially applied to the belt-like sheet 11 that moves relative to the downstream side (see the solid line arrow) along the longitudinal direction. A coating unit 13 that forms the coating film 40 and a measuring unit that is disposed between the pump 7 and the coating unit 13 and measures the mass flow rate of the coating liquid 3 that is sent to the coating unit 13 by the pump 7. 21 and a reference value S are stored, and a control unit 23 that causes the pump 7 to change the mass flow rate based on the reference value S and the measurement result D of the measurement unit 21 and a movement path of the coating liquid 3 are formed. The piping 15 to support and the support part 19 which supports the sheet | seat 11 are provided. In addition, the coating apparatus 1 includes a solidifying unit 27 that solidifies the coating liquid 3 coated on the sheet 11.

前記塗工液3は、固化成分を含有し、シート11に塗工されて、該シート11上で固化されるものである。このような塗工液3としては、例えばポリマー溶液が挙げられ、上記固化成分として用いられる材料としては、熱硬化性材料、紫外線硬化性材料、電子線硬化性材料等が挙げられる。
また、シート11としては、例えば、樹脂フィルムが挙げられる。図1では、シート11が可撓性を有する長尺状のものである態様を示すが、その他、単板状である態様や、非可撓性を有する態様を採用することもできる。
The coating liquid 3 contains a solidifying component, is applied to the sheet 11, and is solidified on the sheet 11. Examples of the coating liquid 3 include a polymer solution, and examples of the material used as the solidifying component include a thermosetting material, an ultraviolet curable material, and an electron beam curable material.
Moreover, as the sheet | seat 11, a resin film is mentioned, for example. Although FIG. 1 shows a mode in which the sheet 11 has a long and flexible shape, a mode in which the sheet 11 is a single plate or a mode in which the sheet 11 is inflexible can also be adopted.

収容部5は、シート11に塗工されるために用いられる塗工液3を収容するものである。かかる収容部5としては、例えば、金属製のタンク等が挙げられる。   The accommodating part 5 accommodates the coating liquid 3 used for applying to the sheet 11. As this accommodating part 5, a metal tank etc. are mentioned, for example.

ポンプ7は、収容部5に収容された塗工液3を下流側に、塗工部13へと送るものである。かかるポンプ7としては、例えば、ギアポンプ、ダイアフラムポンプ、プランジャーポンプ、スネークポンプ、といった従来公知のポンプが挙げられる。なお、ここでは、ポンプ7と配管15とで送液部が構成されている。   The pump 7 sends the coating liquid 3 stored in the storage unit 5 downstream to the coating unit 13. Examples of the pump 7 include conventionally known pumps such as a gear pump, a diaphragm pump, a plunger pump, and a snake pump. Here, the pump 7 and the pipe 15 constitute a liquid feeding unit.

塗工部13は、ポンプ7から送られた塗工液3を、例えばローラ等の支持部19で支持されつつ該塗工部13に対して相対的に下流側へと移動する帯状のシート11に、順次塗工するものである。かかる塗工部13としては、例えばダイコーター等が挙げられる。   The coating unit 13 is a belt-like sheet 11 that moves the coating liquid 3 sent from the pump 7 toward the downstream side relative to the coating unit 13 while being supported by a support unit 19 such as a roller. In addition, coating is performed sequentially. As this coating part 13, a die coater etc. are mentioned, for example.

配管15は、収容部5とポンプ7との間、及び、ポンプ7と塗工部13との間にそれぞれ接続されて、収容部5からポンプ7を介して塗工部13へと塗工液3を移動させる経路を形成するものである。
上記配管15としては、金属材料、樹脂と金属とが混合された複合材料や、樹脂材料等を用いて管状に形成されたチューブ等が挙げられる。
The pipe 15 is connected between the storage unit 5 and the pump 7 and between the pump 7 and the coating unit 13, and the coating liquid is supplied from the storage unit 5 to the coating unit 13 via the pump 7. 3 is formed.
Examples of the pipe 15 include a metal material, a composite material in which a resin and a metal are mixed, a tube formed in a tubular shape using a resin material, and the like.

支持部19は、長手方向に移動するシート11を、塗工部13の反対側から支持するものである。かかる支持部19としては、ローラ等が挙げられる。   The support part 19 supports the sheet 11 moving in the longitudinal direction from the opposite side of the coating part 13. Examples of the support portion 19 include a roller.

測定部21は、ポンプ7によって塗工部13へと送られる塗工液3の質量流量を測定するものである。かかる測定部21は、ポンプ7と塗工部13との間において配管15に配されている。かかる測定部21は、塗工液3の質量流量を測定し、測定結果Dを電子データとして制御部23に送信するようになっている。また、測定部21は、塗工液3の密度、温度、圧力を測定することができるようになっている。
このような測定部21としては、例えば、流量計と、圧力計とを有するものが挙げられる。該流量計としては、特に限定されるものではないが、例えば、塗工液3の質量流量、密度及び温度を測定可能な流量計等が挙げられる。また、圧力計は、塗工液3の圧力が測定可能であればよく、特に限定されない。なお、測定部21は、測定対象ごとに測定可能な測定器を備えていてもよい。
The measuring unit 21 measures the mass flow rate of the coating liquid 3 sent to the coating unit 13 by the pump 7. The measuring unit 21 is arranged in the pipe 15 between the pump 7 and the coating unit 13. The measurement unit 21 measures the mass flow rate of the coating liquid 3 and transmits the measurement result D to the control unit 23 as electronic data. Further, the measuring unit 21 can measure the density, temperature, and pressure of the coating liquid 3.
As such a measurement part 21, what has a flow meter and a pressure gauge is mentioned, for example. Although it does not specifically limit as this flow meter, For example, the flow meter etc. which can measure the mass flow rate of the coating liquid 3, a density, and temperature are mentioned. The pressure gauge is not particularly limited as long as the pressure of the coating liquid 3 can be measured. In addition, the measurement part 21 may be equipped with the measuring device which can be measured for every measuring object.

制御部23は、塗工液3の質量流量の基準値Sを電子データとして格納しており、測定部21から送信された電子データとしての測定結果Dを受信し、基準値Sと、測定結果Dとに基づいて、ポンプ7による塗工液3の送液量(すなわち、質量流量)を変更させるようになっている。
具体的には、制御部23は、受信した測定結果Dを基準値Sと比較し、測定結果Dが基準値Sよりも大きい場合には、ポンプ7による送液量(すなわち、質量流量)を減少させ、測定結果Dが基準値Sよりも小さい場合には、ポンプ7による送液量(すなわち、質量流量)を増加させる機能を有している。
また、塗工液3の質量流量、密度、温度及び圧力を受信し、予め設定されたa、b、c、d、eを用いて数式(3)によってBを算出し、さらに、このBと、予め決定されたρ_sとを用いて数式(1)によって基準値Sを決定する機能も有している。
The control unit 23 stores the reference value S of the mass flow rate of the coating liquid 3 as electronic data, receives the measurement result D as electronic data transmitted from the measurement unit 21, receives the reference value S, and the measurement result. Based on D, the liquid feed amount (that is, mass flow rate) of the coating liquid 3 by the pump 7 is changed.
Specifically, the control unit 23 compares the received measurement result D with the reference value S. When the measurement result D is larger than the reference value S, the control unit 23 determines the amount of liquid fed by the pump 7 (that is, mass flow rate). When the measurement result D is smaller than the reference value S, it has a function of increasing the amount of liquid fed by the pump 7 (that is, mass flow rate).
Further, the mass flow rate, density, temperature and pressure of the coating liquid 3 are received, and B is calculated by Equation (3) using a, b, c, d and e set in advance. Also, it has a function of determining the reference value S according to the equation (1) using ρ_s determined in advance.

固化部27は、塗工液3を固化させるための装置である。該固化部27は、塗工液3の種類に応じて適宜設定され、例えば、熱風式または赤外線(IR)照射式の乾燥装置、紫外線(UV)照射装置や、電子線(EB)照射装置等が挙げられる。具体的には、塗工液3が加熱により硬化する材料を有している場合には、上記加熱装置が挙げられ、塗工液3が紫外線照射により硬化する材料を有している場合には、紫外線照射装置等が挙げられ、塗工液3が電子線により硬化する材料を有している場合には、上記電子線照射装置が挙げられる。なお、本発明においては、塗工液3の種類によっては、塗工装置が固化部を有しない構成を採用してもよい。   The solidifying unit 27 is a device for solidifying the coating liquid 3. The solidifying unit 27 is appropriately set according to the type of the coating liquid 3. For example, a hot air type or infrared (IR) irradiation type drying device, an ultraviolet (UV) irradiation device, an electron beam (EB) irradiation device, or the like. Is mentioned. Specifically, when the coating liquid 3 has a material that is cured by heating, the above-described heating device may be mentioned, and when the coating liquid 3 has a material that is cured by ultraviolet irradiation, In the case where the coating liquid 3 has a material that is cured by an electron beam, the above-mentioned electron beam irradiation device may be mentioned. In the present invention, depending on the type of the coating liquid 3, a configuration in which the coating apparatus does not have a solidified portion may be employed.

本実施形態では、基準値Sが、シート11上に塗工される塗工液3の固化成分の質量分率に基づいて決定されるようになっている。
このように、基準値Sが、シート11上に塗工される塗工液3中の固化成分の質量分率に基づいて決定されるようになっていることによって、塗工膜40の厚みと相関関係を有する塗工液3の固化成分の質量分率に基づいて、基準値Sを設定することとなる。従って、より適切に質量流量を調整し得る。
In the present embodiment, the reference value S is determined based on the mass fraction of the solidified component of the coating liquid 3 applied on the sheet 11.
As described above, the reference value S is determined based on the mass fraction of the solidified component in the coating liquid 3 to be coated on the sheet 11, whereby the thickness of the coating film 40 and The reference value S is set based on the mass fraction of the solidified component of the coating liquid 3 having a correlation. Therefore, the mass flow rate can be adjusted more appropriately.

具体的には、基準値Sが、下記数式(1)、(2)及び(3)に基づいて決定されるようになっている。   Specifically, the reference value S is determined based on the following mathematical formulas (1), (2), and (3).

Figure 2016203050
Figure 2016203050

上記Sは、質量流量の基準値であり、上記数式(1)によって算出される値である。   The S is a reference value for the mass flow rate, and is a value calculated by the mathematical formula (1).

上記数式(1)において、前記Wは、シート11上に塗工される塗工液3の幅Wの設定値であり、塗工膜40の幅に相当する。該Wは、得られる塗工膜40の種類等に応じて予め適宜設定され得る。
なお、シート11上の塗工液3の形状(すなわち塗工膜40の形状)は、特に限定されるものではない。また、シート11上の塗工液3は、例えば、シート11の移動方向において連続した1つの塗工液3として塗工されても、間欠した複数の塗工液3として塗工されてもよい。さらに、シート11上の塗工液3は、例えば、シート11の幅方向(移動方向と垂直な方向)において連続した1つの塗工液3として塗工されても、間欠した複数の塗工液3として塗工されてもよい。
かかる塗工液3の幅Wは、例えば、幅方向においてシート11上に1つの塗工液3が塗工され、図2に示すように、該塗工液3の幅がシート11よりも狭い場合には、その塗工液3の幅であり、図3に示すように、該塗工液3の幅がシート11の幅と同じ場合には、シート11の幅である。また、図4に示すように、幅方向においてシート11上に複数の塗工液3が互いに間隔を空けて塗工される場合には、シート11上に塗工される塗工液3の幅は、各塗工液3の幅の合計であり、例えば、幅方向に間隔を空けて塗工液3が3つ塗工される場合には、シート11上に塗工される塗工液3の幅は、3つの塗工液3a、3b、3cの幅W1、W2及びW3の合計である(W=W1+W2+W3)。
In the above mathematical formula (1), W is a set value of the width W of the coating liquid 3 applied on the sheet 11 and corresponds to the width of the coating film 40. The W may be appropriately set in advance according to the type of the coating film 40 to be obtained.
The shape of the coating liquid 3 on the sheet 11 (that is, the shape of the coating film 40) is not particularly limited. Further, the coating liquid 3 on the sheet 11 may be applied, for example, as one coating liquid 3 continuous in the moving direction of the sheet 11 or may be applied as a plurality of intermittent coating liquids 3. . Further, the coating liquid 3 on the sheet 11 is, for example, a plurality of intermittent coating liquids even if the coating liquid 3 is applied as one continuous coating liquid 3 in the width direction (direction perpendicular to the moving direction) of the sheet 11. 3 may be applied.
The width W of the coating liquid 3 is, for example, that one coating liquid 3 is applied on the sheet 11 in the width direction, and the width of the coating liquid 3 is narrower than that of the sheet 11 as shown in FIG. In this case, it is the width of the coating liquid 3, and as shown in FIG. 3, when the width of the coating liquid 3 is the same as the width of the sheet 11, the width of the sheet 11. In addition, as shown in FIG. 4, when a plurality of coating liquids 3 are applied on the sheet 11 at intervals in the width direction, the width of the coating liquid 3 applied on the sheet 11. Is the sum of the widths of the coating liquids 3. For example, when three coating liquids 3 are applied at intervals in the width direction, the coating liquid 3 applied on the sheet 11. Is the sum of the widths W1, W2 and W3 of the three coating liquids 3a, 3b and 3c (W = W1 + W2 + W3).

上記Uは、塗工部13に対するシート11の相対的な移動速度である。また、該Uは、得られる塗工膜40の種類等に応じて予め適宜設定され得る。
上記t_refは、シート11上に塗工され、固化されて得られる塗工膜40の厚みの設定値であり、該t_refは、塗工膜40の種類等に応じて予め適宜設定され得る。
上記Bは、塗工液3中の固化成分の質量分率である。該Bは、数式(3)によって決定され、塗工液3の種類等に応じて予め適宜設定され、さらに、塗工中に変更され得る。
U is a relative moving speed of the sheet 11 with respect to the coating portion 13. The U can be appropriately set in advance according to the type of the coating film 40 to be obtained.
The t_ref is a set value of the thickness of the coating film 40 obtained by being coated on the sheet 11 and solidified, and the t_ref can be appropriately set according to the type of the coating film 40 and the like.
B is the mass fraction of the solidified component in the coating liquid 3. The B is determined by the mathematical formula (3), is appropriately set in advance according to the type of the coating liquid 3 and the like, and can be changed during the coating.

上記ρ_sは、シート11上に塗工され、固化された塗工膜40の密度であり、上記数式(2)によって算出される値である。   The ρ_s is the density of the coating film 40 applied and solidified on the sheet 11, and is a value calculated by the above formula (2).

上記数式(2)において、前記ρ_aは、シート11上に塗工され、固化された塗工膜40の密度の仮設定値であり、該ρ_aは、塗工液3の種類等に応じて予め適宜設定され得る。
上記t_msは、シート11上に塗工され、固化された塗工膜40の厚みの測定値であり、該t_msは、予備実験等で上記数式(1)中のρ_sを上記該密度の仮設定値ρ_aと設定し、この条件でシート11上に塗工液3を塗工したときに、固化した塗工膜40の厚みを測定して得られる値である。
In the above mathematical formula (2), the ρ_a is a temporary setting value of the density of the coating film 40 coated and solidified on the sheet 11, and the ρ_a is determined in advance according to the type of the coating liquid 3 and the like. It can be set appropriately.
The t_ms is a measured value of the thickness of the coating film 40 coated and solidified on the sheet 11, and the t_ms is a preliminary setting of the density in the equation (1) by performing a preliminary experiment or the like. It is a value obtained by measuring the thickness of the solidified coating film 40 when the value ρ_a is set and the coating liquid 3 is coated on the sheet 11 under these conditions.

基準値Sが、上記数式(1)及び(2)に基づいて決定されるようになっていることによって、塗工液3の種類が同じ場合に、W、U、t_ref、Bを変えても、同じρ_sを使用可能であるため、予備実験が1回で済む、という利点がある。   Since the reference value S is determined based on the above formulas (1) and (2), even when W, U, t_ref, and B are changed when the type of the coating liquid 3 is the same. Since the same ρ_s can be used, there is an advantage that only one preliminary experiment is required.

上記基準値Sは、予備実験等にて、塗工膜40の密度の値を仮設定値ρ_aと設定し、厚みを設定値t_refと設定し、幅をWと設定し、移動速度をUと設定し、さらに後述するようにして上記Bを得て、仮基準値S’を上記数式(1)から求め、塗工液3をシート11に塗工し、固化された塗工膜を得る。得られた塗工膜の厚みを測定し、t_msを得る。そして、t_ref、ρ_a、t_msから、上記数式(2)によって、ρ_sを得る。
そして、W、U、t_ref、ρ_s、及び、Bから上記数式(1)によって基準値Sが決定される。
The reference value S is set to a temporary setting value ρ_a, a thickness is set to a setting value t_ref, a width is set to W, and a moving speed is set to U in a preliminary experiment or the like. Then, as described later, the above B is obtained, the temporary reference value S ′ is obtained from the above mathematical formula (1), the coating liquid 3 is applied to the sheet 11, and a solidified coating film is obtained. The thickness of the obtained coating film is measured to obtain t_ms. Then, ρ_s is obtained from t_ref, ρ_a, t_ms by the above equation (2).
Then, the reference value S is determined by the above formula (1) from W, U, t_ref, ρ_s, and B.

また、上記Bは、上記数式(3)によって決定されるようになっている。
上記数式(3)において、上記ρ_Lは、塗工液3の密度の測定値である。
上記Tは、塗工されるときの塗工液3の温度の測定値である。
上記Pは、塗工されるときの塗工液3の圧力(Pa)である。より具体的には、塗工液3をポンプ7から塗工部13に供給し、塗工部13から塗工しているときに測定部21によって測定される値である。なお、かかる測定部21によって測定されることから分かるように、圧力は、シート11に塗工する前の塗工液3の圧力である。
上記Qは、質量流量の測定値(kg/min)であり、塗工液3をポンプ7から塗工部13に供給し、塗工部13によって塗工しているときに測定部21によって測定される値である。
上記a、b、c、d及びeは、係数であり、塗工液3の種類に応じて、予め適宜設定され得る。
Further, the B is determined by the mathematical formula (3).
In the above formula (3), ρ_L is a measured value of the density of the coating liquid 3.
Said T is a measured value of the temperature of the coating liquid 3 at the time of coating.
Said P is the pressure (Pa) of the coating liquid 3 at the time of coating. More specifically, the value is measured by the measurement unit 21 when the coating liquid 3 is supplied from the pump 7 to the coating unit 13 and coating is performed from the coating unit 13. As can be seen from the measurement by the measurement unit 21, the pressure is the pressure of the coating liquid 3 before coating on the sheet 11.
Q is a measured value (kg / min) of the mass flow rate, measured by the measuring unit 21 when the coating liquid 3 is supplied from the pump 7 to the coating unit 13 and is applied by the coating unit 13. Is the value to be
The a, b, c, d, and e are coefficients, and can be appropriately set in advance according to the type of the coating liquid 3.

上記Bとして、上記数式(3)に基づいて決定される値が用いられることによって、上記仮基準値S’を求めてρ_sを得る実験(予備実験)と、基準値Sの決定(算出)を行う実験(基準値Sの算出実験)との間でBが変更された場合であっても、当該Bだけを設定変更すればよく、他のパラメータを変更する必要がないため、簡便に基準値Sを決定できる、という利点がある。
また、基準値Sの決定後、決定された基準値Sを用いてシート11に塗工液3を塗工している間にBが変動しても、その変動に応じて基準値Sを再算出できるため、より精度良く塗工液3の塗工を行うことができる。
As B, a value determined based on Equation (3) is used, whereby an experiment (preliminary experiment) for obtaining ρ_s by obtaining the provisional reference value S ′ and a determination (calculation) of the reference value S are performed. Even if B is changed between the experiment to be performed (calculation of the reference value S), it is only necessary to change the setting of B, and it is not necessary to change other parameters. There is an advantage that S can be determined.
Further, after the reference value S is determined, even if B changes while the coating liquid 3 is applied to the sheet 11 using the determined reference value S, the reference value S is re-applied according to the change. Since it can be calculated, the coating liquid 3 can be applied with higher accuracy.

具体的には、Bが上記数式(3)に基づいて決定される際には、事前の予備実験等によって、B、ρ_L、T、P、Qのデータを数パターン取得しておき、これらB、ρ_L、T、P、Qを逆算することによって、係数a、b、c、d及びeが算出される。
例えば以下のようにして、a、b、c、d及びeが算出される。すなわち、塗工液3の種類は同じであるが、塗工液3中の固化成分の質量分率B’が互いに異なる複数の塗工液3を準備する。この質量分率B’は、下記数式(4)または(5)から算出し得る。
Specifically, when B is determined based on the above equation (3), several patterns of B, ρ_L, T, P, and Q data are obtained by preliminary experiments or the like, and these B , Ρ_L, T, P, and Q are calculated in reverse to calculate the coefficients a, b, c, d, and e.
For example, a, b, c, d, and e are calculated as follows. That is, although the kind of coating liquid 3 is the same, the several coating liquid 3 from which the mass fraction B 'of the solidification component in the coating liquid 3 differs mutually is prepared. This mass fraction B ′ can be calculated from the following mathematical formula (4) or (5).

Figure 2016203050
Figure 2016203050

すなわち、上記B’が、上記数式(4)に基づいて決定される場合には、塗工液3の組成から上記B’が算出される。   That is, when the B ′ is determined based on the mathematical formula (4), the B ′ is calculated from the composition of the coating liquid 3.

一方、上記B’が、上記数式(5)に基づいて決定される場合には、例えばシート11上に塗工液3が塗工された後、固化される前の質量(固化前の質量)と、該塗工液3が固化された後の質量(固化後の質量)とを測定し、得られた固化前の質量と、固化後の質量とに基づいて、上記B’が算出される。なお、上記B’が、上記数式(5)に基づいて決定される場合には、塗工液3が塗工される対象は、上記帯状のシート11に特に限定されるものではない。かかる対象としては、その他、例えば、アルミカップ、ガラス板、シート11の切断片等が挙げられる。
これら固化前の質量と、固化後の質量とは、例えば、電子天秤等によってそれぞれ測定される値である。
On the other hand, when said B 'is determined based on said Numerical formula (5), after coating the coating liquid 3 on the sheet | seat 11, for example, the mass before solidification (mass before solidification) And the mass after the coating liquid 3 is solidified (the mass after the solidification), and B ′ is calculated based on the obtained mass before the solidification and the mass after the solidification. . In addition, when said B 'is determined based on said Numerical formula (5), the object to which the coating liquid 3 is coated is not specifically limited to the said strip | belt-shaped sheet | seat 11. FIG. Other examples of the object include an aluminum cup, a glass plate, and a cut piece of the sheet 11.
The mass before solidification and the mass after solidification are values measured by, for example, an electronic balance.

また、質量分率B’が異なる塗工液3の数量は、特に限定されるものではないが、例えば異なる3段階の質量分率の塗工液を用いることができる。該複数の塗工液3のそれぞれについて、温度T、圧力P、質量流量Qを変更しながら密度ρ_Lを測定する。
また、本実施形態では、測定部21によって、密度ρ_L、温度T、圧力P、質量流量Qが測定されるようになっており、このような測定部21としては、例えば、圧力計と、密度、温度及び質量流量を測定可能な流量計とを有するものが挙げられる。このような圧力計としては、例えば、バルコム社製の圧力計(VFM−A6)が挙げられ、流量計としては、エンドレスハウザー社製のコリオリ式流量計(プロマス80F)が挙げられる。
Further, the number of coating liquids 3 having different mass fractions B ′ is not particularly limited. For example, coating liquids having three different mass fractions can be used. For each of the plurality of coating liquids 3, the density ρ_L is measured while changing the temperature T, the pressure P, and the mass flow rate Q.
In the present embodiment, the measurement unit 21 measures the density ρ_L, the temperature T, the pressure P, and the mass flow rate Q. Examples of such a measurement unit 21 include a pressure gauge, a density, and the like. And a flow meter capable of measuring temperature and mass flow rate. An example of such a pressure gauge is a pressure gauge (VFM-A6) manufactured by VALCOM, and an example of a flow meter is a Coriolis type flow meter (Promass 80F) manufactured by Endless Hauser.

そして、得られた密度ρ_L、温度T、圧力P、及び、質量流量Q、質量分率B’を、上記数式(3)に代入し、例えば最小二乗法を用いて係数a、b、c、d及びeが算出される。
そして、算出されたa、b、c、d及びeと、測定された塗工液3の密度ρ_Lと、測定された塗工液3の温度Tと、測定された塗工液3の圧力Pと、測定された塗工液3の質量流量Qとを、上記数式(3)に代入することによって、実際にシート11上に塗工液3を塗工する際の上記Bが算出される。また、シート11に塗工液3を塗工している間において、上記Bが算出される。
上記Bが、上記数式(3)に基づいて決定されることによって、シート11上への塗工液3の塗工を行いながら、リアルタイムで上記Bが決定されるため、より精度良く、より適切に、上記Bが決定され得る。
また、上記密度ρ_L及び温度Tに加えて、上記質量流量Q及び上記圧力Pに基づいて上記Bを算出することによって、上記密度ρ_L及び温度Tに基づいて上記Bを算出する場合よりも、より精度良く、より適切に、上記Bが決定され得る。
Then, the obtained density ρ_L, temperature T, pressure P, mass flow rate Q, and mass fraction B ′ are substituted into the above equation (3), and the coefficients a, b, c, d and e are calculated.
And the calculated a, b, c, d and e, the measured density ρ_L of the coating liquid 3, the measured temperature T of the coating liquid 3, and the measured pressure P of the coating liquid 3 Then, by substituting the measured mass flow rate Q of the coating liquid 3 into the above formula (3), the above B when actually applying the coating liquid 3 on the sheet 11 is calculated. Further, B is calculated while the coating liquid 3 is being applied to the sheet 11.
Since B is determined in real time while the coating liquid 3 is applied on the sheet 11 by determining B based on the mathematical formula (3), more accurate and more appropriate. In the above, B can be determined.
Further, in addition to the density ρ_L and the temperature T, by calculating the B based on the mass flow rate Q and the pressure P, more than when calculating the B based on the density ρ_L and the temperature T. B can be determined more accurately and more appropriately.

上記した塗工装置1は、ポンプ7により塗工液3を、測定部21によって該塗工液3の質量流量を測定しながら、塗工部13に送り、送られた塗工液3を塗工部13からシート11上に吐出することによって塗工する。この塗工の間、測定部21の測定結果Dが制御部23に送信され、制御部23は、基準値Sよりも測定結果Dの方が大きいと判断した場合には、ポンプ7に送液量としての質量流量を減少させる。一方、制御部23は、基準値Sよりも測定結果Dの方が小さいと判断した場合には、ポンプ7に送液量としての質量流量を増加させる。
このようにして、制御部23により、ポンプ7によって送られる塗工液3の質量流量が変更されながら、塗工部13により塗工液3がシート11上に塗工され、シート11上に塗工された塗工液3が固化部27によって固化されて、塗工膜40が形成される。
The coating apparatus 1 described above sends the coating liquid 3 by the pump 7 to the coating unit 13 while measuring the mass flow rate of the coating liquid 3 by the measuring unit 21, and applies the sent coating liquid 3. Coating is performed by discharging from the processing section 13 onto the sheet 11. During this coating, the measurement result D of the measurement unit 21 is transmitted to the control unit 23, and when the control unit 23 determines that the measurement result D is larger than the reference value S, the liquid is sent to the pump 7. Reduce the mass flow as a quantity. On the other hand, when the control unit 23 determines that the measurement result D is smaller than the reference value S, the control unit 23 causes the pump 7 to increase the mass flow rate as the liquid feeding amount.
In this way, while the mass flow rate of the coating liquid 3 sent by the pump 7 is changed by the control unit 23, the coating liquid 3 is applied onto the sheet 11 by the coating unit 13 and applied onto the sheet 11. The processed coating liquid 3 is solidified by the solidifying unit 27, and the coating film 40 is formed.

かかる塗工装置1によれば、ポンプ(送液部)7によって塗工部13に送られる塗工液3の送液量を測定部21によって測定できるため、塗工膜40の厚みを測定する場合によりも、速やかに、且つ無駄なく塗工膜40の厚みの変動を抑制し得る。
しかも、塗工液3の送液量の指標として質量流量を採用し、測定部21によって塗工液3の質量流量の測定を行い、さらに、測定部21の測定結果Dと質量流量の基準値Sとに基づいて塗工液3の送液量を調整することができるため、体積流量を指標とする場合よりも、確実に塗工膜40の厚みの変動を抑制し得る。
また、質量流量の基準値Sがシート11上に塗工された塗工液3中の固化成分の質量分率Bに基づいて決定されることによって、塗工膜40の厚みと相関関係を有する塗工液3の固化成分の質量分率に基づいて、基準値Sを設定することとなる。従って、より精度良く質量流量を変更させ得る。
さらに、上記固化成分の質量分率Bを、塗工液3の密度ρ_L及び塗工液3の温度Tに加えて、塗工液3の圧力P及び塗工液3の質量流量Qに基づいて決定することによって、一層精度良く質量流量を変更させ得る
従って、上記構成の塗工装置1によれば、比較的速やかに且つ確実に、しかも無駄なく塗工膜40の厚みの変動を抑制し得る。
According to the coating apparatus 1, since the liquid feeding amount of the coating liquid 3 sent to the coating part 13 by the pump (liquid feeding part) 7 can be measured by the measuring part 21, the thickness of the coating film 40 is measured. Depending on the case, the variation of the thickness of the coating film 40 can be suppressed promptly and without waste.
In addition, the mass flow rate is adopted as an index of the liquid feed amount of the coating liquid 3, the mass flow rate of the coating liquid 3 is measured by the measuring unit 21, and the measurement result D of the measuring unit 21 and the reference value of the mass flow rate Since the liquid feeding amount of the coating liquid 3 can be adjusted based on S, fluctuations in the thickness of the coating film 40 can be suppressed more reliably than when the volume flow rate is used as an index.
Further, the reference value S of the mass flow rate is determined based on the mass fraction B of the solidified component in the coating liquid 3 applied on the sheet 11, thereby having a correlation with the thickness of the coating film 40. The reference value S is set based on the mass fraction of the solidified component of the coating liquid 3. Therefore, the mass flow rate can be changed with higher accuracy.
Furthermore, the mass fraction B of the solidified component is added to the density ρ_L of the coating liquid 3 and the temperature T of the coating liquid 3, and based on the pressure P of the coating liquid 3 and the mass flow rate Q of the coating liquid 3. Accordingly, the mass flow rate can be changed with higher accuracy. Therefore, according to the coating apparatus 1 configured as described above, the variation in the thickness of the coating film 40 can be suppressed relatively quickly and reliably and without waste. .

また、本実施形態においては、制御部23は、塗工液3の質量流量を、基準値Sの±10%以内となるように調整することが好ましく、±5%以内となるように調整することがより好ましい。   In the present embodiment, the control unit 23 preferably adjusts the mass flow rate of the coating liquid 3 to be within ± 10% of the reference value S, and adjusts it to be within ± 5%. It is more preferable.

このように、制御部23が、塗工液3の質量流量を、基準値Sの±10%以内となるように調整することによって、より確実に、且つ無駄なく塗工膜40の厚みの変動を抑制し得る。   In this way, the control unit 23 adjusts the mass flow rate of the coating liquid 3 to be within ± 10% of the reference value S, thereby more reliably and efficiently changing the thickness of the coating film 40. Can be suppressed.

また、本実施形態の塗工膜の製造方法は、前記塗工装置1を用いて、測定部21により、塗工液3の質量流量を測定しながら、且つ、制御部23により、基準値Sと測定部21の測定結果Dとに基づいてポンプ7による質量流量を変更させながら、塗工部13により、シート上11に塗工液3を塗工し、塗工された塗工液3を固化部27で固化して、塗工膜40を形成する。   Moreover, the manufacturing method of the coating film of this embodiment is using the said coating apparatus 1, measuring the mass flow rate of the coating liquid 3 with the measurement part 21, and also using the control part 23 with reference value S. The coating liquid 3 is applied on the sheet 11 by the coating section 13 while changing the mass flow rate by the pump 7 based on the measurement result D of the measurement section 21 and the coating liquid 3 applied. The coating film 40 is formed by solidifying at the solidifying portion 27.

かかる構成によれば、上記と同様、比較的速やかに且つ確実に、しかも無駄なく塗工膜40の厚みの変動を抑制し得る。   According to such a configuration, as described above, it is possible to suppress the variation in the thickness of the coating film 40 relatively quickly and reliably and without waste.

本実施形態の塗工装置及び塗工膜の製造方法は、上記の通りであるが、本発明は上記実施形態に限定されず、本発明の意図する範囲内において適宜設計変更可能である。   The coating apparatus and the coating film manufacturing method of the present embodiment are as described above, but the present invention is not limited to the above-described embodiment, and the design can be changed as appropriate within the intended scope of the present invention.

次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

本実施例では、実際に上記数式(3)からBを算出した実験、及び、算出されたBの妥当性を検討した実験を示す。また、比較として、上記数式(3)において、塗工前の塗工液の圧力P及び塗工液の質量流量Qを用いることなくBを算出する数式である下記数式(6)を用い、下記数式(6)からBを算出した実験、算出されたBの妥当性を検討した実験も、併せて示す。   In the present embodiment, an experiment in which B is actually calculated from Equation (3) and an experiment in which the validity of the calculated B is examined are shown. As a comparison, in the above mathematical formula (3), the following mathematical formula (6), which is a mathematical formula for calculating B without using the pressure P of the coating liquid and the mass flow rate Q of the coating liquid, is used. An experiment for calculating B from Expression (6) and an experiment for examining the validity of the calculated B are also shown.

Figure 2016203050
上記数式(6)において、B、ρ_L、T、a、b、cは、上記数式(3)で用いられたものと同じである。
Figure 2016203050
In the above formula (6), B, ρ_L, T, a, b, and c are the same as those used in the above formula (3).

(実験1)
下記作業1〜4によって、上記数式(3)、(6)からそれぞれBを算出し、さらに、算出されたBを用いて、上記数式(1)、(2)から質量流量の基準値Sを算出した。
(Experiment 1)
By the following operations 1 to 4, B is calculated from the above formulas (3) and (6), respectively, and the reference value S of the mass flow rate is calculated from the above formulas (1) and (2) using the calculated B. Calculated.

・作業1(予備実験)
上記数式(6)に用いる係数a、b、cを算出するために、塗工液の温度T及び密度ρ_Lを取得した。
具体的には、塗工液として、固化成分としてのポリマー成分Aを溶剤に溶解させて調製された、固化成分の質量分率が異なる3種類のポリマーA溶液を用いた。
ポリマー成分Aは、重量平均分子量100万のアクリル系ポリマーを含有する溶液(固化成分濃度10質量%)から得たアクリル系粘着剤である。
塗工液の全質量に対する、塗工液中の固化成分の質量分率(上記数式(4)または(5)から算出される質量分率B’)を表1に示されるように設定して、質量分率B’が異なる3種類のポリマーA溶液を調製した。
・ Work 1 (Preliminary experiment)
In order to calculate the coefficients a, b, and c used in the above formula (6), the temperature T and the density ρ_L of the coating liquid were obtained.
Specifically, three types of polymer A solutions prepared by dissolving polymer component A as a solidifying component in a solvent and having different mass fractions of the solidifying component were used as the coating liquid.
The polymer component A is an acrylic pressure-sensitive adhesive obtained from a solution (solid component concentration 10% by mass) containing an acrylic polymer having a weight average molecular weight of 1,000,000.
The mass fraction of the solidified component in the coating liquid (mass fraction B ′ calculated from the above formula (4) or (5)) with respect to the total mass of the coating liquid is set as shown in Table 1. Three types of polymer A solutions having different mass fractions B ′ were prepared.

予備実験に用いた装置を、図5に示す。図5において、図1と共通する部分には、共通する符号を付している。この図5の装置では、ポンプ7によって配管15を通って収容部5から測定部21に塗工液3が供給され、測定部21に供給された供給された塗工液3が収容部5に返送されるようになっている。このように、塗工液3は循環されるようになっている。また、測定部21を通過した塗工液の配管15内での圧力が、圧力調整弁で調整されるようになっている。また、収容部5を加熱及び冷却して塗工液の温度が調整されるようになっている。測定部21として、該測定部21を通過する塗工液3の温度T、密度ρ_L及び質量流量Qを測定可能なコリオリ式流量計(プロマス80F、エンドレスハウザー社製)、及び、圧力Pを測定可能な圧力計(VFM−A6、バルコム社製)を用いた。
この装置を用い、各質量分率B’の塗工液について、塗工液の質量流量Q及び塗工液の圧力Pを一定にし、温度Tを3段階変更させて塗工液3を循環させ、測定部21によって、各塗工液3の密度ρ_Lを測定した。結果を表1に示す。
そして、B’と、得られたρ_L及びTとから、最小二乗法を用いて逆算することによって、a、b、cを算出した。結果を表2に示す。
The apparatus used for the preliminary experiment is shown in FIG. In FIG. 5, parts common to those in FIG. In the apparatus of FIG. 5, the coating liquid 3 is supplied from the storage unit 5 to the measurement unit 21 through the pipe 15 by the pump 7, and the supplied coating liquid 3 supplied to the measurement unit 21 is supplied to the storage unit 5. It is supposed to be returned. Thus, the coating liquid 3 is circulated. Moreover, the pressure in the piping 15 of the coating liquid which passed the measurement part 21 is adjusted with a pressure control valve. In addition, the temperature of the coating liquid is adjusted by heating and cooling the container 5. A Coriolis flow meter (Promass 80F, manufactured by Endless Hauser) capable of measuring the temperature T, density ρ_L, and mass flow rate Q of the coating liquid 3 passing through the measurement unit 21 and the pressure P are measured as the measurement unit 21. A possible pressure gauge (VFM-A6, manufactured by Valcom) was used.
Using this apparatus, the coating liquid 3 of each mass fraction B ′ is circulated by changing the mass flow Q of the coating liquid and the pressure P of the coating liquid to be constant and changing the temperature T by three stages. The density ρ_L of each coating liquid 3 was measured by the measuring unit 21. The results are shown in Table 1.
Then, a, b, and c were calculated from B ′ and the obtained ρ_L and T by performing reverse calculation using the least square method. The results are shown in Table 2.

Figure 2016203050
Figure 2016203050

Figure 2016203050
Figure 2016203050

・作業2(予備実験)
上記数式(3)に用いる係数a、b、c、d、eを算出するために、塗工液の温度T、密度ρ_L、塗工液の圧力P、塗工液の質量流量Qを取得した。
具体的には、上記作業1と同様の塗工液、及び、装置を用い、各質量分率B’の塗工液について、温度Tを3段階変更させ、さらに、塗工液の圧力P及び塗工液の質量流量Qをそれぞれ2段階変更させて塗工液を循環させ、測定部21によって、各塗工液の密度ρ_Lを測定した。結果を表3に示す。
そして、B’と、得られたρ_L、T、P及びQとから、最小二乗法を用いて逆算することによって、a、b、c、d、eを算出した。結果を表4に示す。
・ Work 2 (Preliminary experiment)
In order to calculate the coefficients a, b, c, d, and e used in the above formula (3), the temperature T, the density ρ_L, the pressure P of the coating liquid, and the mass flow rate Q of the coating liquid were obtained. .
Specifically, using the same coating liquid and apparatus as in operation 1 above, the temperature T of the coating liquid of each mass fraction B ′ is changed in three stages, and the pressure P of the coating liquid and The coating liquid was circulated by changing the mass flow rate Q of the coating liquid in two stages, and the density ρ_L of each coating liquid was measured by the measuring unit 21. The results are shown in Table 3.
Then, a, b, c, d, and e were calculated from B ′ and the obtained ρ_L, T, P, and Q by using the least square method. The results are shown in Table 4.

Figure 2016203050
Figure 2016203050

Figure 2016203050
Figure 2016203050

・作業3(本実験)
実験例1〜4
各塗工液について、上記数式(6)を用いてBを算出し、さらに、上記数式(1)、(2)を用いて質量流量の基準値Sを算出した。
具体的には、シート上に塗工される塗工液の幅W、塗工部に対するシートの相対的な移動速度U、固化された塗工膜の厚みの設定値t_refを、表5に示すように設定した。また、シート上に塗工され、固化された塗工膜の密度の仮設定値ρ_aを、表5に示すように設定した。
そして、上記で得られたa、b、cと、測定されたT及びρ_Lとを上記数式(6)に代入してBを算出した。
かかる設定条件で、図1に示すような塗工装置を用いて、シートとしてのポリエチレンテレフタレート(PET)フィルム(MRF、三菱樹脂社製)上に、塗工液を塗布し、固化させて塗工膜を形成し、形成された塗工膜の厚みt_msを、接触式変位計(リニアゲージ、尾崎製作所社製)を用いて測定した。また、数式(2)からρ_sを算出した。結果を表5に示す。なお、数式(1)から算出した仮の基準値S’も参考として、表5に示す。また、塗工液の温度Tも、表5に併せて示す。
さらに、表6に示す設定条件で、上記と同様に、図1に示すような塗工装置を用いてPETフィルム上に塗工液を塗布し、固化させて塗工膜を形成し、形成された塗工膜の厚みt_msを測定した。
そして、得られたt_msに対する、表5で設定した設定値t_refの比を算出した。結果を表6に示す。また、数式(1)から算出した基準値Sも、表6に併せて示す。
表6に示すように、実験例1では、数式(6)から算出されたB(=0.120)は、上記数式(4)または(5)から算出されたB(=0.120)と一致した。また、厚みの測定値t_msと、厚みの設定値t_refとが一致した。
一方、実験例2〜4では、数式(6)から算出されたB(=0.124、0.122、0.127)は、上記数式(4)または(5)から算出されたB(=0.120)と一致しなかった。また、厚みの測定値t_msと、厚みの設定値t_refとが一致しなかった。
このことから、数式(6)を用いた場合には、所定の設定値(実験例1の設定値)から別の設定値(実験例2〜4)に変更したとき、厚みの変動を抑制できないことがわかった。
・ Work 3 (this experiment)
Experimental Examples 1-4
About each coating liquid, B was computed using the said Numerical formula (6), Furthermore, the reference value S of the mass flow rate was computed using the said Numerical formula (1), (2).
Specifically, Table 5 shows the width W of the coating liquid applied on the sheet, the relative moving speed U of the sheet with respect to the coating portion, and the set value t_ref of the thickness of the solidified coating film. Was set as follows. Further, a temporary setting value ρ_a of the density of the coating film coated and solidified on the sheet was set as shown in Table 5.
Then, B was calculated by substituting the obtained a, b, and c and the measured T and ρ_L into the above equation (6).
Under such setting conditions, a coating liquid is applied on a polyethylene terephthalate (PET) film (MRF, manufactured by Mitsubishi Plastics) as a sheet using a coating apparatus as shown in FIG. A film was formed, and the thickness t_ms of the formed coating film was measured using a contact displacement meter (linear gauge, manufactured by Ozaki Seisakusho). Further, ρ_s was calculated from Equation (2). The results are shown in Table 5. In addition, the temporary reference value S ′ calculated from the formula (1) is also shown in Table 5 for reference. The temperature T of the coating solution is also shown in Table 5.
Furthermore, under the setting conditions shown in Table 6, similarly to the above, a coating liquid is applied on a PET film using a coating apparatus as shown in FIG. 1 and solidified to form a coating film. The thickness t_ms of the coated film was measured.
Then, the ratio of the set value t_ref set in Table 5 to the obtained t_ms was calculated. The results are shown in Table 6. The reference value S calculated from the mathematical formula (1) is also shown in Table 6.
As shown in Table 6, in Experimental Example 1, B (= 0.120) calculated from Equation (6) is equal to B (= 0.120) calculated from Equation (4) or (5). Matched. Further, the measured thickness value t_ms and the set thickness value t_ref coincided.
On the other hand, in Experimental Examples 2 to 4, B (= 0.124, 0.122, 0.127) calculated from Equation (6) is B (= 0.124, 0.122, 0.127) calculated from Equation (4) or (5) above. 0.120). Also, the measured thickness value t_ms did not match the set thickness value t_ref.
From this, when Formula (6) is used, when it changes from a predetermined setting value (setting value of Experimental example 1) to another setting value (Experimental examples 2-4), the fluctuation | variation of thickness cannot be suppressed. I understood it.

・作業4(本実験)
実験例5〜8
各塗工液について、上記数式(3)を用いてBを算出し、さらに、上記数式(1)、(2)を用いて質量流量の基準値Sを算出した。
具体的には、シート上に塗工される塗工液の幅W、塗工部に対するシートの相対的な移動速度U、固化された塗工膜の厚みの設定値t_refを、表5に示すように設定した。また、シート上に塗工され、固化された塗工膜の密度の仮設定値ρ_aを、表5に示すように設定した。
そして、上記で得られたa、b、c、d、eと、測定されたT、ρ_L、P、Qとを上記数式(3)に代入してBを算出した。
かかる設定条件で、図1に示すような塗工装置を用いて、シートとしてのポリエチレンテレフタレート(PET)フィルム(MRF、三菱樹脂社製)上に、塗工液を塗布し、固化させて塗工膜を形成し、形成された塗工膜の厚みt_msを、接触式変位計(リニアゲージ、尾崎製作所社製)を用いて測定した。また、数式(2)からρ_sを算出した。結果を表5に示す。なお、数式(1)から算出した仮の基準値S’も参考として、表5に示す。また、塗工液の温度Tも、表5に併せて示す。
そして、得られたt_msに対する、表5で設定した設定値t_refの比を算出した。結果を表6に示す。また、数式(1)から算出した基準値Sも、表6に併せて示す。
表6に示すように、実験例5〜8では、数式(3)から算出されたB(=0.120)は、上記数式(4)または(5)から算出されたB(=0.120)と一致した。また、厚みの設定値t_msと、厚みの設定値t_refとが一致した。
このことから、数式(3)を用いた場合には、所定の設定値(実験例5〜8から選択された1つの設定値)から別の設定値(実験例5〜8から選択された別の設定値)に変更したとき、厚みの変動を抑制できることがわかった。
・ Work 4 (this experiment)
Experimental Examples 5-8
About each coating liquid, B was computed using the said Numerical formula (3), Furthermore, the reference value S of the mass flow rate was computed using the said Numerical formula (1), (2).
Specifically, Table 5 shows the width W of the coating liquid applied on the sheet, the relative moving speed U of the sheet with respect to the coating portion, and the set value t_ref of the thickness of the solidified coating film. Was set as follows. Further, a temporary setting value ρ_a of the density of the coating film coated and solidified on the sheet was set as shown in Table 5.
Then, B was calculated by substituting the a, b, c, d, e obtained above and the measured T, ρ_L, P, Q into the above equation (3).
Under such setting conditions, a coating liquid is applied on a polyethylene terephthalate (PET) film (MRF, manufactured by Mitsubishi Plastics) as a sheet using a coating apparatus as shown in FIG. A film was formed, and the thickness t_ms of the formed coating film was measured using a contact displacement meter (linear gauge, manufactured by Ozaki Seisakusho). Further, ρ_s was calculated from Equation (2). The results are shown in Table 5. In addition, the temporary reference value S ′ calculated from the formula (1) is also shown in Table 5 for reference. The temperature T of the coating solution is also shown in Table 5.
Then, the ratio of the set value t_ref set in Table 5 to the obtained t_ms was calculated. The results are shown in Table 6. The reference value S calculated from the mathematical formula (1) is also shown in Table 6.
As shown in Table 6, in Experimental Examples 5 to 8, B (= 0.120) calculated from Equation (3) is B (= 0.120) calculated from Equation (4) or (5). ). In addition, the thickness set value t_ms and the thickness set value t_ref coincided.
From this, when Formula (3) is used, another set value (another selected from Experimental Examples 5 to 8) is changed from a predetermined set value (one set value selected from Experimental Examples 5 to 8). It was found that the variation in thickness can be suppressed when the value is changed to (set value).

上記の通り、数式(6)を用いてBを算出した場合と比較して、数式(3)を用いてBを算出した場合には、U、W、Q、Pが変動しても、精度良くBを求めることができ、その結果、数式(1)、(2)を用いて精度良く基準値Sを求めることができることがわかった。
このことから、塗工中にρ_L、T、P、Qを測定しながら数式(3)を用いてBを変更し、これに基づいて数式(1)を用いて基準値Sを変更する場合の方が、塗工中にρ_L、Tを測定しながら数式(6)を用いてBを変更し、これに基づいて数式(1)を用いて基準値Sを変更する場合よりも、得られた塗工膜の厚みの変動が、より抑制され得ることがわかった。
As described above, when B is calculated using Equation (3) as compared to the case where B is calculated using Equation (6), even if U, W, Q, and P vary, the accuracy It was found that B can be obtained well, and as a result, the reference value S can be obtained with high accuracy using the formulas (1) and (2).
From this, B is changed using Equation (3) while measuring ρ_L, T, P, Q during coating, and the reference value S is changed using Equation (1) based on this. Was obtained rather than changing B using Equation (6) while measuring ρ_L and T during coating, and changing reference value S using Equation (1) based on this. It was found that the variation in the thickness of the coating film can be further suppressed.

Figure 2016203050
Figure 2016203050

Figure 2016203050
Figure 2016203050

1:塗工装置、3:塗工液、5:収容部、7:ポンプ、11:シート、13:塗工部、15:配管、19:支持部、21:測定部、23:制御部、27:固化部、40:塗工膜 1: coating device, 3: coating solution, 5: storage unit, 7: pump, 11: sheet, 13: coating unit, 15: piping, 19: support unit, 21: measurement unit, 23: control unit, 27: Solidified part, 40: Coating film

Claims (2)

移動するシート上に、固化成分を含有する塗工液を塗工し、該塗工された塗工液が固化されることにより塗工膜を形成する塗工部と、
該塗工部に前記塗工液を送る送液部と、
前記送液部によって前記塗工部に送られる前記塗工液の質量流量を測定する測定部と、
前記質量流量の基準値が格納されており、該基準値と前記測定部の測定結果とに基づいて前記送液部による前記塗工液の質量流量を変更させる制御部とを備えており、
前記基準値が、下記数式(1)、(2)及び(3)に基づいて決定されるようになっていることを特徴とする塗工装置。
Figure 2016203050
S:質量流量の基準値(kg/min)
W:シート上に塗工される塗工液の幅の設定値(m)
U:塗工部に対するシートの相対的な移動速度(m/min)
t_ref:シート上に塗工され、固化された塗工膜の厚みの設定値(m)
ρ_s:シート上に塗工され、固化された塗工膜の密度(kg/m
B:塗工液中の固化成分の質量分率(−)
ρ_a:シート上に塗工され、固化された塗工膜の密度の仮設定値(kg/m
t_ms:シート上に塗工され、固化された塗工膜の厚みの測定値(m)
ρ_L:塗工液の密度の測定値(kg/m
T:塗工されるときの塗工液の温度(℃)
P:塗工されるときの塗工液の圧力(Pa)
Q:塗工されるときの塗工液の質量流量(kg/min)
a、b、c、d、e:係数(−)
On the moving sheet, a coating solution containing a solidifying component is applied, and a coating part that forms a coating film by solidifying the coated coating solution; and
A liquid feeding section for feeding the coating liquid to the coating section;
A measuring unit for measuring a mass flow rate of the coating liquid sent to the coating unit by the liquid feeding unit;
A reference value of the mass flow rate is stored, and includes a control unit that changes the mass flow rate of the coating liquid by the liquid feeding unit based on the reference value and the measurement result of the measurement unit,
The said reference value is determined based on following numerical formula (1), (2) and (3), The coating device characterized by the above-mentioned.
Figure 2016203050
S: Standard value of mass flow rate (kg / min)
W: Set value (m) of the width of the coating liquid to be coated on the sheet
U: Movement speed of sheet relative to coated part (m / min)
t_ref: set value (m) of the thickness of the coating film coated and solidified on the sheet
ρ_s: density of the coating film coated on the sheet and solidified (kg / m 3 )
B: Mass fraction of the solidified component in the coating liquid (-)
ρ_a: Temporary setting value (kg / m 3 ) of the density of the coating film coated and solidified on the sheet
t_ms: Measured value (m) of the thickness of the coating film that has been coated and solidified on the sheet
ρ_L: measured value of density of coating liquid (kg / m 3 )
T: Temperature of the coating liquid at the time of coating (° C)
P: Pressure of coating liquid when coating (Pa)
Q: Mass flow rate of coating liquid when coating (kg / min)
a, b, c, d, e: coefficient (-)
請求項1に記載の塗工装置を用いて塗工膜を形成する塗工膜の製造方法であって、
前記測定部により、前記塗工液の前記質量流量を測定しながら、且つ、
前記制御部により、前記基準値と前記測定部の測定結果とに基づいて前記送液部による前記質量流量を変更させながら、
前記塗工部により、前記シート上に前記塗工液を塗工して塗工膜を形成する塗工膜の製造方法。
A method for producing a coating film that forms a coating film using the coating apparatus according to claim 1,
While measuring the mass flow rate of the coating liquid by the measurement unit, and
While changing the mass flow rate by the liquid feeding unit based on the reference value and the measurement result of the measurement unit by the control unit,
The manufacturing method of the coating film which coats the said coating liquid on the said sheet | seat by the said coating part, and forms a coating film.
JP2015084154A 2015-04-16 2015-04-16 Coating apparatus and coating film manufacturing method Active JP6007281B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015084154A JP6007281B1 (en) 2015-04-16 2015-04-16 Coating apparatus and coating film manufacturing method
TW105102361A TWI681821B (en) 2015-04-16 2016-01-26 Coating apparatus and method for producing coating film
KR1020160042000A KR20160123993A (en) 2015-04-16 2016-04-06 Coating apparatus and method for producing coating film
CN201610214414.3A CN106040513A (en) 2015-04-16 2016-04-07 Coating apparatus and method for producing coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084154A JP6007281B1 (en) 2015-04-16 2015-04-16 Coating apparatus and coating film manufacturing method

Publications (2)

Publication Number Publication Date
JP6007281B1 JP6007281B1 (en) 2016-10-12
JP2016203050A true JP2016203050A (en) 2016-12-08

Family

ID=57123241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084154A Active JP6007281B1 (en) 2015-04-16 2015-04-16 Coating apparatus and coating film manufacturing method

Country Status (4)

Country Link
JP (1) JP6007281B1 (en)
KR (1) KR20160123993A (en)
CN (1) CN106040513A (en)
TW (1) TWI681821B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111672704B (en) * 2020-06-11 2021-11-23 捷威动力工业嘉兴有限公司 Automatic non-contact surface density adjusting system and adjusting method
CN114178132B (en) * 2021-11-16 2023-05-23 深圳市曼恩斯特科技股份有限公司 Coating system and coating method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218798B2 (en) * 1993-05-21 2001-10-15 ソニー株式会社 Application method
JP2001113219A (en) * 1999-10-13 2001-04-24 Fuji Photo Film Co Ltd Supply apparatus for coating liquid for photographic photosensitive material
JP2002336763A (en) * 2001-05-15 2002-11-26 Sony Corp Coating apparatus and coating method
JP4894109B2 (en) * 2001-08-27 2012-03-14 大日本印刷株式会社 Die coat control method
JP4863782B2 (en) 2006-06-19 2012-01-25 東京応化工業株式会社 Treatment liquid supply device
JP5233343B2 (en) * 2008-03-18 2013-07-10 凸版印刷株式会社 Method for producing antiglare laminate
JP4877372B2 (en) * 2009-08-28 2012-02-15 カシオ計算機株式会社 Coating apparatus and coating method
JP2011194329A (en) 2010-03-19 2011-10-06 Nec Corp Coating system
JP5575598B2 (en) * 2010-09-29 2014-08-20 大日本スクリーン製造株式会社 Coating apparatus and coating method
JP6074356B2 (en) * 2013-12-18 2017-02-01 日東電工株式会社 Coating apparatus and coating film manufacturing method

Also Published As

Publication number Publication date
JP6007281B1 (en) 2016-10-12
TWI681821B (en) 2020-01-11
KR20160123993A (en) 2016-10-26
TW201637729A (en) 2016-11-01
CN106040513A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6074356B2 (en) Coating apparatus and coating film manufacturing method
US11225008B2 (en) Method and device for determining a layer property of a layer in an extrusion process
JP5518949B2 (en) Mass flow control system
JP2023065485A (en) Object made out of additive manufacturing, and manufacturing method thereof
JP6007281B1 (en) Coating apparatus and coating film manufacturing method
JP6420997B2 (en) Coating apparatus and coating film manufacturing method
JP2015512812A (en) Method for providing volumetric flow
JP2015512812A5 (en)
JP6397598B1 (en) Coating apparatus and coating film manufacturing method
JP5163532B2 (en) Coating liquid coating method and coating system
CN110280449B (en) Coating apparatus and method for producing coating film
JP2012061444A (en) Coating apparatus
JP2008036624A (en) Die, and die type coating device and method
JP6593093B2 (en) Coating apparatus, coating apparatus, and method for producing coated film web
TWI380894B (en) Volatile property prediction device, volatilization performance prediction method
FI117276B (en) Fluid Treatment System
JP2008230130A (en) Manufacturing method of and manufacturing apparatus for film having uniform thickness distribution
CN212120595U (en) Membrane material rubber coating device
JP6122804B2 (en) Method for curing coating layer, curing apparatus, and method for producing laminated film using the curing method
US11982607B2 (en) Method and measuring arrangement for determining a rheological property of a fluid
JP4749224B2 (en) DIE, DIE TYPE COATING APPARATUS AND COATING METHOD
JP2021146291A (en) Extrusion method
JP3622871B2 (en) Coating equipment
JP2016215111A (en) Coating device, coating control device and coating control method
JP2981389B2 (en) Quantitative discharge control method for pseudoplastic fluid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6007281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250