JP5163532B2 - Coating liquid coating method and coating system - Google Patents

Coating liquid coating method and coating system Download PDF

Info

Publication number
JP5163532B2
JP5163532B2 JP2009037649A JP2009037649A JP5163532B2 JP 5163532 B2 JP5163532 B2 JP 5163532B2 JP 2009037649 A JP2009037649 A JP 2009037649A JP 2009037649 A JP2009037649 A JP 2009037649A JP 5163532 B2 JP5163532 B2 JP 5163532B2
Authority
JP
Japan
Prior art keywords
coating
solvent
amount
concentration
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037649A
Other languages
Japanese (ja)
Other versions
JP2010188316A (en
Inventor
康晴 満田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009037649A priority Critical patent/JP5163532B2/en
Publication of JP2010188316A publication Critical patent/JP2010188316A/en
Application granted granted Critical
Publication of JP5163532B2 publication Critical patent/JP5163532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

本発明は、溶媒系の塗布液を用いる塗布方法及び塗布システムに関し、特に塗布液の濃度及び塗膜の膜厚の均一化に関する。   The present invention relates to a coating method and a coating system using a solvent-based coating solution, and more particularly to the concentration of the coating solution and the uniformization of the coating film thickness.

近年、光学機能性フィルムの高性能化に伴い塗膜の膜厚の均一化や薄膜化等の要求が以前より高くなってきている。膜厚の均一化、即ち膜厚のムラの防止のためには、経時で供給する塗布液の固形分の濃度を保って精度よく塗布する必要がある。   In recent years, with the improvement in performance of optical functional films, there has been a growing demand for uniform coating thickness and film thickness. In order to make the film thickness uniform, that is, to prevent film thickness unevenness, it is necessary to apply with high precision while maintaining the concentration of the solid content of the coating solution supplied over time.

以下、塗布液の固形分の濃度を塗布液の濃度(塗布液濃度)という。   Hereinafter, the concentration of the solid content of the coating solution is referred to as the concentration of the coating solution (coating solution concentration).

光学機能性フィルムの製造に使用される代表的な塗布装置としては、バー塗布装置、ロール塗布装置、グラビア塗布装置等がある。しかしながら、これらの塗布装置では塗布液溜部からバーやロールによって塗布液を掻き上げて支持体に塗布する方式であるため、塗布液溜部の空気と接している部分から逐次溶媒が蒸発し塗布液溜部の塗布液濃度が上昇する。このため、結果的に塗膜の膜厚が経時的に変化してしまうという問題がある。   Typical coating apparatuses used for the production of the optical functional film include a bar coating apparatus, a roll coating apparatus, and a gravure coating apparatus. However, in these coating apparatuses, since the coating liquid is scraped from the coating liquid reservoir by a bar or roll and applied to the support, the solvent is sequentially evaporated from the portion of the coating liquid reservoir that is in contact with air. The concentration of the coating solution in the liquid reservoir increases. For this reason, there exists a problem that the film thickness of a coating film changes with time.

前記問題に対し、従来から溶媒の蒸発を抑制する方法が提案されている。   In order to solve the above problem, methods for suppressing evaporation of the solvent have been proposed.

例えば、送液配管内を流れる塗布液の密度をインライン測定し、測定した測定密度と予め規定した塗布液の規定密度との密度差を演算し、前記密度差がなくなるように前記密度測定位置の上流側の前記送液配管中に密度調整用液を添加する塗布方法が提案されている(例えば、特許文献1参照)。   For example, the density of the coating liquid flowing in the liquid feeding pipe is measured in-line, the density difference between the measured measurement density and the prescribed density of the coating liquid defined in advance is calculated, and the density measurement position is set so that the density difference is eliminated. A coating method has been proposed in which a density adjusting liquid is added into the upstream liquid supply pipe (see, for example, Patent Document 1).

また、塗布液溜部の、バーやロール等の塗布部材と支持体との接触領域を除く気液界面を空気流入防止カバーで覆い、溶媒の蒸発を抑制することが提案されている(例えば、特許文献2参照)。   In addition, it has been proposed to cover the gas-liquid interface of the coating liquid reservoir except the contact area between the coating member such as a bar or roll and the support with an air inflow prevention cover to suppress evaporation of the solvent (for example, Patent Document 2).

特開2005−279342号公報JP 2005-279342 A 特開2003−340334号公報JP 2003-340334 A

特許文献1は、送液配管内を流れる塗布液の密度を、コリオリ式質量流量計を用いてインライン測定し、測定した測定密度と予め規定した塗布液の規定密度との密度差を演算し、前記密度差がなくなるように送液配管中に密度調整用液を添加する方法である。しかしながら、この方法は塗布液に含まれる溶媒が1種のみで構成されている場合にしか用いることはできず、2種以上の溶媒で構成されている塗布液には用いることはできない。また、コリオリ式質量流量計を用いることは、装置のコストアップに繋がる懸念があった。   Patent Document 1 measures the density of the coating liquid flowing in the liquid feeding pipe in-line using a Coriolis mass flow meter, calculates the density difference between the measured density and the prescribed density of the coating liquid defined in advance, In this method, the density adjusting liquid is added to the liquid feeding pipe so as to eliminate the density difference. However, this method can be used only when the solvent contained in the coating liquid is composed of only one kind, and cannot be used for the coating liquid composed of two or more kinds of solvents. Moreover, there is a concern that the use of the Coriolis mass flow meter leads to an increase in the cost of the apparatus.

以下、溶媒を1種のみ含む塗布液を単一溶媒系塗布液、溶媒を2種以上含む塗布液を混合溶媒系塗布液、とも称す。   Hereinafter, a coating solution containing only one solvent is also referred to as a single solvent coating solution, and a coating solution containing two or more solvents is also referred to as a mixed solvent coating solution.

特許文献2は、塗布液溜部の、バーやロール等の塗布部材と支持体との接触領域を除く気液界面を空気流入防止カバーで覆い、更には空気流入防止カバーで覆われた空間に不活性ガスを充填し、溶媒の蒸発を抑制する方法である。しかしながら、空気との接触を完全に遮断しているわけではないため、塗布液溜部での溶媒の蒸発を防ぐことはできず、塗布液溜部での塗布液濃度の上昇を防ぐことはできなかった。   In Patent Document 2, the air-liquid interface of the coating liquid reservoir except for the contact area between the coating member such as a bar or roll and the support is covered with an air inflow prevention cover, and further in a space covered with the air inflow prevention cover. In this method, an inert gas is filled to suppress evaporation of the solvent. However, since it does not completely block contact with air, it is not possible to prevent evaporation of the solvent in the coating liquid reservoir, and it is possible to prevent an increase in the concentration of the coating liquid in the coating liquid reservoir. There wasn't.

本発明は上記状況に鑑みなされたもので、簡易な方法及び構成で、2種以上の溶媒を有する塗布液であっても、塗布液の濃度上昇を防止することのでき、膜厚の均一なムラのない塗膜の形成を安定的に行うことができる塗布方法及び塗布システムを提供することを目的とする。   The present invention has been made in view of the above situation, and it is possible to prevent an increase in the concentration of the coating liquid even in the case of a coating liquid having two or more kinds of solvents with a simple method and configuration, and a uniform film thickness. It is an object of the present invention to provide a coating method and a coating system that can stably form a coating film without unevenness.

上記目的は、下記の方法及び構成により達成される。   The above object is achieved by the following method and configuration.

1.搬送する長尺の支持体に、種以上の溶媒を含有する溶媒系の塗布液を塗布装置に送液して塗布し、塗膜を形成する塗布方法において、
前記塗布装置からの前記2種以上の溶媒の各々の単位時間の蒸発量と前記蒸発量の総計を、シミュレーション手段を用いたシミュレーションで算出し、
前記2種以上の溶媒の各々について、算出された蒸発量に相当する量の溶媒を、前記塗布装置に送液される前記塗布液に補給し、
前記送液される塗布液の濃度を変更することを特徴とする塗布方法。
1. In a coating method in which a long coating to be conveyed is applied by feeding a solvent-based coating solution containing two or more solvents to a coating apparatus and applying it.
Calculating the total evaporation amount of each of the two or more types of solvents from the coating apparatus and the evaporation amount by simulation using a simulation means;
Wherein for each of two or more solvents, the solvent in an amount corresponding to the calculated evaporation Hatsuryou, and supplied to the coating liquid which is fed to the coating apparatus,
A coating method comprising changing the concentration of the coating solution to be fed.

2.前記シミュレーションで算出された量の溶媒が補給された塗布液を用いて塗布を行い、塗布直後と乾燥後の塗膜の膜厚をそれぞれ測定し、その測定結果を基に前記塗布液の濃度を算出し、前記塗布液の濃度と予め規定した基準塗布液濃度との差異及び前記差異に相当する溶媒の補正量を算出し、前記溶媒の補正量を基に前記シミュレーションに基づく溶媒の補給量を変更することを特徴とする前記1に記載の塗布方法。   2. Coating is performed using a coating solution supplemented with the amount of solvent calculated in the simulation, and the film thickness of the coating film is measured immediately after coating and after drying, and the concentration of the coating solution is determined based on the measurement result. And calculating a difference between the concentration of the coating liquid and a predetermined reference coating liquid concentration and a solvent correction amount corresponding to the difference, and determining a solvent replenishment amount based on the simulation based on the solvent correction amount. 2. The coating method according to 1 above, wherein the coating method is changed.

3.前記溶媒の補給での溶媒毎の補給比率は、前記シミュレーションで算出された溶媒毎の蒸発量の比率であることを特徴とする前記1または2に記載の塗布方法。   3. 3. The coating method according to 1 or 2, wherein the replenishment ratio for each solvent in the replenishment of the solvent is a ratio of the evaporation amount for each solvent calculated by the simulation.

4.搬送する長尺の支持体に、種以上の溶媒を含有する溶媒系の塗布液を塗布装置に送液して塗布し、塗膜を形成する塗布システムにおいて、
前記塗布装置からの前記2種以上の溶媒の各々の単位時間の蒸発量と前記蒸発量の総計を算出するシミュレーションを行うシミュレーション手段と、
前記塗布装置に送液される前記塗布液に、前記2種以上の溶媒を補給する溶媒補給手段と、
前記溶媒補給手段での前記2種以上の溶媒の各々の補給量を制御する制御手段と、を有し、
算出された前記溶媒毎の蒸発量に相当する量の溶媒を送液される前記塗布液に補給し、前記送液される塗布液の濃度を変更することを特徴とする塗布システム。
4). In a coating system for forming a coating film by feeding a coating solution of a solvent system containing two or more solvents to a coating device and applying it to a long support to be conveyed.
A simulation means for performing a simulation for calculating a total amount of the evaporation amount and the evaporation amount of each of the two or more types of solvents from the coating apparatus;
Solvent replenishing means for replenishing the coating liquid fed to the coating apparatus with the two or more solvents ;
Control means for controlling the replenishment amount of each of the two or more solvents in the solvent replenishing means,
An application system characterized in that an amount of solvent corresponding to the calculated evaporation amount for each solvent is replenished to the applied coating solution, and the concentration of the applied coating solution is changed.

5.前記シミュレーションで算出された量の溶媒が補給された塗布液を用いた塗布後の、塗布直後と乾燥後の塗膜の膜厚を測定する膜厚測定手段と、
前記測定の結果を基に、塗布液の濃度を算出する濃度算出手段と、
前記塗布液の濃度と予め規定した基準塗布液濃度との差異及び前記差異に相当する溶媒の補正量を算出する溶媒補正量算出手段と、を有し、
前記制御手段は、前記溶媒の補正量を基に、前記シミュレーションに基づく溶媒の補給量を変更することを特徴とする前記4に記載の塗布システム。
5. Film thickness measuring means for measuring the film thickness of the coating film immediately after coating and after coating using the coating liquid supplemented with the amount of solvent calculated in the simulation,
Based on the result of the measurement, a concentration calculating means for calculating the concentration of the coating liquid;
A solvent correction amount calculating means for calculating a difference between the concentration of the coating liquid and a predetermined reference coating liquid concentration and a solvent correction amount corresponding to the difference;
5. The coating system according to 4, wherein the control unit changes a replenishment amount of the solvent based on the simulation based on the correction amount of the solvent.

6.前記溶媒の補給での溶媒毎の補給比率は、前記シミュレーションで算出された溶媒毎の蒸発量の比率であることを特徴とする前記4または5に記載の塗布システム。   6). 6. The coating system according to 4 or 5, wherein the replenishment ratio for each solvent in the replenishment of the solvent is a ratio of the evaporation amount for each solvent calculated by the simulation.

7.前記塗布液は、光学フィルム機能性フィルム製造用の塗布液であることを特徴とする前記4から6の何れか1項に記載の塗布システム。   7). The coating system according to any one of 4 to 6, wherein the coating liquid is a coating liquid for producing an optical film functional film.

8.前記塗布装置は、バー塗布装置、ロール塗布装置、グラビア塗布装置の何れかであることを特徴とする前記4から7の何れか1項に記載の塗布システム。   8). The coating system according to any one of 4 to 7, wherein the coating device is any one of a bar coating device, a roll coating device, and a gravure coating device.

上記のように、蒸発量のシミュレーションを行い、溶媒毎の蒸発量を算出し、それに相当する溶媒の量を補給量として補給することにより、複数の溶媒を含有する混合溶媒系塗布液の濃度変化減少を図ることができる。   As described above, simulation of evaporation amount, calculation of evaporation amount for each solvent, and supply of corresponding solvent amount as replenishment amount, change in concentration of mixed solvent type coating liquid containing multiple solvents Reduction can be achieved.

更に、実際の塗布を行い、塗膜の膜厚の実測値を基に塗布液濃度を算出し、シミュレーションで算出された溶媒の補給量を修正することで、経時的に塗布液濃度を基準塗布液濃度に合わせることが可能になる。これにより、膜厚の均一な塗膜の形成が可能になる。   Furthermore, the actual coating is performed, the coating solution concentration is calculated based on the measured value of the film thickness of the coating film, and the amount of solvent replenishment calculated in the simulation is corrected, so that the coating solution concentration can be applied over time. It becomes possible to adjust to the liquid concentration. Thereby, it is possible to form a coating film having a uniform film thickness.

本発明に係る塗布液の塗布方法が適用される塗布システムの概念図である。1 is a conceptual diagram of a coating system to which a coating liquid coating method according to the present invention is applied. 経過時間に対する塗布液濃度の変化を示す図である。It is a figure which shows the change of the coating liquid density | concentration with respect to elapsed time. 境膜伝熱係数を修正する前と実際の系での蒸発量を基に修正した後での、溶媒毎の蒸発量のシミュレーションの比較を示す図である。It is a figure which shows the comparison of the simulation of the evaporation amount for every solvent before correcting a film heat transfer coefficient, and after correcting based on the evaporation amount in an actual system.

以下、図を参照しながら本発明の実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明に係る塗布液の塗布方法が適用される塗布システム20の一例を示す概念図である。本実施の形態では、塗布システム20は、光学機能性フィルムの塗布システムとしている。   FIG. 1 is a conceptual diagram showing an example of a coating system 20 to which a coating liquid coating method according to the present invention is applied. In the present embodiment, the coating system 20 is an optical functional film coating system.

ロール状に巻かれた長尺状の支持体10は、図示しない駆動手段により巻き出し部10Aから矢印X方向に繰り出され搬送され、塗布装置210で塗布液が塗布され塗膜が形成される。塗膜が形成された支持体10は、乾燥装置50で塗膜の乾燥が行われ、UV照射装置を通過した後、巻き取り部10Bに巻き取られる。   The long support 10 wound in a roll shape is fed out from the unwinding portion 10A in the direction of arrow X by a driving means (not shown) and conveyed, and a coating solution is applied by the coating device 210 to form a coating film. The support 10 on which the coating film has been formed is dried by the drying device 50, passed through the UV irradiation device, and then wound around the winding unit 10B.

本実施の形態では、塗布装置210はロール塗布装置とし、塗布液は、2種の溶媒(A溶媒及びB溶媒)を有する混合溶媒系塗布液としている。塗布装置の方式及び溶媒の種類数はこれに限定されるものではなく、例えば、光学機能性フィルムの製造には、バー塗布装置、グラビア塗布装置等も好ましく用いられる。   In the present embodiment, the coating device 210 is a roll coating device, and the coating solution is a mixed solvent coating solution having two types of solvents (A solvent and B solvent). The method of the coating apparatus and the number of types of solvents are not limited to this, and for example, a bar coating apparatus, a gravure coating apparatus, etc. are preferably used for the production of an optical functional film.

塗布装置210は、塗布ロール214とガイドロール217a、217bと塗布ロール214の下方に設けられた塗布液溜部(塗布液パン)211と塗布ロール214の回転により塗布液溜部211から掻き上げられた過剰の塗布液を塗布前に掻き落とすブレード216とを備える。   The coating device 210 is scraped from the coating liquid reservoir 211 by the rotation of the coating roll 214, the guide rolls 217a, 217b, the coating liquid reservoir (coating liquid pan) 211 provided below the coating roll 214, and the coating roll 214. And a blade 216 for scraping off an excessive coating liquid before coating.

塗布液ロール214の約下半分は、塗布液溜部211に満たされている塗布液に浸漬されている。   About the lower half of the coating solution roll 214 is immersed in the coating solution filled in the coating solution reservoir 211.

また、塗布液溜部211には、塗布液の温度を検出する温度センサー213及び温度制御装置212が設けられ、塗布液溜部の塗布液の温度制御が行われる。前記温度制御により、塗布液温度が上昇して溶媒の蒸発量が増加すること、また塗布液温度が低下して塗布液中の固形分が析出することを防止している。本実施の形態では、温度センサー213に熱電対を用い、温度制御装置212に塗布液溜部211に冷却水や温水を循環させる方式を用いているが、これに限定されるものではない。   The coating liquid reservoir 211 is provided with a temperature sensor 213 for detecting the temperature of the coating liquid and a temperature control device 212 to control the temperature of the coating liquid in the coating liquid reservoir. The temperature control prevents the coating liquid temperature from increasing and the amount of solvent evaporation from increasing, and the coating liquid temperature from decreasing to prevent the solid content in the coating liquid from precipitating. In the present embodiment, a thermocouple is used for the temperature sensor 213 and a system in which cooling water or hot water is circulated in the coating liquid reservoir 211 is used for the temperature control device 212. However, the present invention is not limited to this.

塗膜の形成は、搬送する支持体10を、回転自在に支持されたガイドロール217a、217bにより塗布ロール214に押し当てた状態で、塗布ロール214の回転により塗布液溜部211の塗布液を掻き上げて支持体10の被塗布面上に塗布することで行われる。掻き上げられた過剰の塗布液はブレード216により塗布前に掻き落とされる。   The coating film is formed by applying the coating liquid in the coating liquid reservoir 211 by the rotation of the coating roll 214 while the support 10 to be conveyed is pressed against the coating roll 214 by the guide rolls 217a and 217b that are rotatably supported. It is carried out by scraping it up and applying it onto the application surface of the support 10. The excess coating liquid that has been scraped is scraped off by the blade 216 before coating.

本実施の形態では、塗布ロール214は支持体10の搬送方向と同方向に回転駆動される。   In the present embodiment, the application roll 214 is rotationally driven in the same direction as the conveyance direction of the support 10.

塗布液は、塗布液槽231に貯留され、塗布液送液手段であるポンプP1により送液配管234を介して塗布装置210の塗布液溜部211に送液される。2種の溶媒は、それぞれ溶媒槽232、233に貯留され、溶媒補給手段であるポンプP2、P3で送液配管234に送液され、送液される塗布液に補給される。塗布液送液手段及び溶媒補給手段には、ポンプ(P1、P2、P3)に加え、制御バルブ(不図示)等を用いた構成とすることもできる。ポンプ(P1、P2、P3)には、送液量、補給量を精度よく制御するため、ダイヤフラムポンプ、ギヤポンプ、プランジャーポンプが好ましく用いられる。   The coating liquid is stored in the coating liquid tank 231, and is fed to the coating liquid reservoir 211 of the coating apparatus 210 via the liquid feeding pipe 234 by a pump P1 that is a coating liquid feeding means. The two kinds of solvents are respectively stored in the solvent tanks 232 and 233, and are fed to the liquid feeding pipe 234 by the pumps P2 and P3 which are solvent replenishing means, and are replenished to the coating liquid to be fed. In addition to the pumps (P1, P2, P3), a control valve (not shown) or the like may be used for the coating liquid feeding means and the solvent supply means. For the pumps (P1, P2, P3), a diaphragm pump, a gear pump, and a plunger pump are preferably used in order to accurately control the liquid feeding amount and the replenishing amount.

制御手段である制御部241は、ポンプP1、P2、P3を制御し、送液量(補給量)を制御する。演算部242は、後述のシミュレーション手段の機能、各種数値、量の算出機能を有する。   The control unit 241 that is a control unit controls the pumps P1, P2, and P3, and controls the liquid feeding amount (replenishment amount). The calculation unit 242 has a function of a simulation unit, which will be described later, and various numerical value and quantity calculation functions.

塗布装置210の下流側には、膜厚測定手段である膜厚計245a、245bが設けられ、塗膜が形成され搬送される支持体の塗膜の膜厚が測定される。膜厚計245aは、塗布直後の、即ち乾燥される前のウエット膜厚を測定し、膜厚計245bは乾燥装置50で乾燥後のドライ膜厚が測定される。測定データは演算部242に送られる。   On the downstream side of the coating apparatus 210, film thickness meters 245a and 245b serving as film thickness measuring means are provided, and the film thickness of the coating film on the support on which the coating film is formed and conveyed is measured. The film thickness meter 245a measures the wet film thickness immediately after application, that is, before drying, and the film thickness meter 245b measures the dry film thickness after drying by the drying device 50. The measurement data is sent to the calculation unit 242.

なお、本実施の形態では、塗布液濃度は、塗布液の単位質量当たりの、固形分の質量の比率(パーセント)で表す。即ち、前記塗布液濃度は、質量パーセント濃度とする。また、蒸発量、送液量、補給量は、質量で表す。前記蒸発量、送液量、補給量の質量は容積に換算することもできる。   In the present embodiment, the concentration of the coating solution is represented by the ratio (percentage) of the mass of the solid content per unit mass of the coating solution. That is, the concentration of the coating solution is a mass percent concentration. Further, the evaporation amount, the liquid feeding amount, and the replenishment amount are represented by mass. The mass of the evaporation amount, the liquid supply amount, and the replenishment amount can be converted into a volume.

次に、溶媒の補給について説明する。   Next, replenishment of the solvent will be described.

前述のように、塗布装置210において、塗布液溜部211の空気と接している部分から逐次溶媒が蒸発し塗布液溜部211の塗布液の濃度が上昇する。このため、結果的に塗膜の膜厚が経時的に変化する。   As described above, in the coating apparatus 210, the solvent is sequentially evaporated from the portion of the coating liquid reservoir 211 that is in contact with the air, and the concentration of the coating liquid in the coating liquid reservoir 211 increases. For this reason, as a result, the film thickness of the coating film changes with time.

これに対し本発明では、塗布液の濃度上昇を抑制するため、溶媒の蒸発量に相当する溶媒の補給が行われる。溶媒の蒸発量は、シミュレーション手段の機能を有する演算部242でのシミュレーションで算出される。   On the other hand, in the present invention, in order to suppress an increase in the concentration of the coating solution, a solvent corresponding to the evaporation amount of the solvent is supplied. The amount of evaporation of the solvent is calculated by simulation in the calculation unit 242 having the function of simulation means.

前記シミュレーションで、塗布液に含まれる各溶媒成分の蒸気圧を算出し、そこから単位時間当たりの各溶媒の蒸発量を算出する。   In the simulation, the vapor pressure of each solvent component contained in the coating solution is calculated, and the evaporation amount of each solvent per unit time is calculated therefrom.

前記シミュレーションでは、具体的には、先ず、数1式に示すアントワン(Antoine)式を用いて塗布液が含有する溶媒毎の蒸気圧を算出する。   Specifically, in the simulation, first, the vapor pressure for each solvent contained in the coating liquid is calculated using the Antoine equation shown in Equation 1.

数1
Pn=rn×10(a−b/(T+c))
数1式において、Pnはn溶媒の蒸気圧(パスカル、Pa)、rnはn溶媒の塗布液におけるモル分率、Tは温度である。本実施の形態の例では、塗布液はA溶媒及びB溶媒の2種の溶媒を含有するため、n=A、Bとなる。a、b、cは、アントワン定数である。
Number 1
Pn = rn × 10 ( ab− (T + c))
In Equation 1, Pn is the vapor pressure (pascal, Pa) of the n solvent, rn is the molar fraction in the coating solution of the n solvent, and T is the temperature. In the example of the present embodiment, since the coating liquid contains two types of solvents, A solvent and B solvent, n = A and B. a, b, and c are Antoine constants.

次に、溶媒毎の単位面積当たりの蒸発量を算出する。前記蒸発量は、数2に示す式により算出される。   Next, the evaporation amount per unit area for each solvent is calculated. The evaporation amount is calculated by the equation shown in Formula 2.

数2
Wn=(h×Mn×Pn)/(0.45×Mair×(1.0132×10−Pn))
数2式において、Wnはn溶媒の蒸発量、hは液体と気体(空気)間の熱移動のし易さを表す境膜伝熱係数、Mnはn溶媒の分子量、Mairは空気の分子量である。
Number 2
Wn = (h × Mn × Pn) / (0.45 × Mair × (1.0132 × 10 5 −Pn))
In Equation 2, Wn is the evaporation amount of the n solvent, h is a film heat transfer coefficient indicating the ease of heat transfer between the liquid and the gas (air), Mn is the molecular weight of the n solvent, and Mair is the molecular weight of the air. is there.

次に、数2式で算出された溶媒毎の単位面積当たりの蒸発量を塗布液溜部211の空気と接している部分の面積に換算することにより、塗布液溜部211から蒸発する溶媒毎の、単位時間当たりの蒸発量(総蒸発量)が算出される。   Next, by converting the amount of evaporation per unit area for each solvent calculated by Equation 2 into the area of the portion of the coating liquid reservoir 211 that is in contact with the air, each solvent that evaporates from the coating liquid reservoir 211. The amount of evaporation per unit time (total amount of evaporation) is calculated.

前記シミュレーションにおいては、塗布液溜部211の物質収支を考慮して溶媒蒸発量の算出が行われる。   In the simulation, the amount of solvent evaporation is calculated in consideration of the material balance of the coating liquid reservoir 211.

上記シミュレーションで算出された溶媒毎の総蒸発量は、それに相当する溶媒毎の補給量として設定され、補給量データとして演算部242から制御部241に送られる。制御部241は、補給量データに基づき、溶媒毎の総蒸発量に相当する溶媒の量を補給量として、ポンプP2、P3を制御し、溶媒槽232、233から、送液配管234で送液される塗布液に補給する。これにより、塗布液溜部211に送液される塗布液の濃度が変更される。   The total evaporation amount for each solvent calculated in the simulation is set as a replenishment amount for each solvent corresponding to the solvent, and is sent from the calculation unit 242 to the control unit 241 as replenishment amount data. Based on the replenishment amount data, the control unit 241 controls the pumps P2 and P3 using the amount of solvent corresponding to the total evaporation amount for each solvent as the replenishment amount, and sends the liquid from the solvent tanks 232 and 233 via the liquid feed pipe 234. Replenish the applied liquid. Thereby, the density | concentration of the coating liquid sent to the coating liquid storage part 211 is changed.

上記のように、蒸発量のシミュレーションを行い、溶媒毎の蒸発量を算出し、それに相当する溶媒の量を補給量として、即ち溶媒毎の蒸発量の比率を、溶媒毎の補給比率として各溶媒を補給し、送液される塗布液の濃度を変更する。これにより、塗布液溜部211における、複数の溶媒を含有する混合溶媒系塗布液の濃度変化の減少を図ることができる。   As described above, the evaporation amount is simulated, the evaporation amount for each solvent is calculated, and the corresponding solvent amount is used as the replenishment amount, that is, the evaporation amount ratio for each solvent is used as the replenishment ratio for each solvent. To change the concentration of the coating solution to be fed. As a result, it is possible to reduce the concentration change of the mixed solvent coating liquid containing a plurality of solvents in the coating liquid reservoir 211.

ここで、塗布装置210での塗布においては、支持体10の搬送に伴い支持体10の周囲の空気が移動する、所謂同伴空気が生じる。このため、境膜伝熱係数hが変化し前記シミュレーションで算出した蒸発量と実際の蒸発量(実蒸発量)とにズレが生じることがある。このため、塗布液の濃度変化を減少させるためには、実蒸発量を基に前記シミュレーションの結果での溶媒の補給量を補正することが好ましい。   Here, in application | coating with the coating device 210, what is called entrained air which the air around the support body 10 moves with the conveyance of the support body 10 arises. For this reason, the film heat transfer coefficient h changes, and a deviation may occur between the evaporation amount calculated by the simulation and the actual evaporation amount (actual evaporation amount). For this reason, in order to reduce the concentration change of the coating solution, it is preferable to correct the solvent replenishment amount as a result of the simulation based on the actual evaporation amount.

次に、溶媒の補給量の補正について説明する。   Next, correction of the solvent replenishment amount will be described.

先ず、前述のシミュレーションで算出された補給量で各溶媒が補給された塗布液で、支持体10に塗布を行い、塗膜を形成する。   First, coating is performed on the support 10 with a coating solution in which each solvent is replenished with the replenishment amount calculated in the above-described simulation to form a coating film.

次に、支持体10に塗布直後の、即ち乾燥される前のウエット膜厚を膜厚計245a測定し、乾燥装置50で乾燥後のドライ膜厚を膜厚計245bで測定する。本実施の形態では、膜厚計245a、245bには透過型光学系を採用した非接触式の赤外線膜厚計RX−10(倉敷紡績製)を用いたが、この方式に限定されるものではなく、光干渉を利用した方式等でもよい。   Next, the wet film thickness 245a is measured immediately after coating on the support 10, that is, before being dried, and the dry film thickness after drying is measured by the film thickness meter 245b with the drying device 50. In this embodiment, the film thickness meters 245a and 245b are non-contact type infrared film thickness meters RX-10 (manufactured by Kurashiki Boseki Co., Ltd.) adopting a transmission optical system. However, the present invention is not limited to this method. Alternatively, a method using optical interference may be used.

膜厚の測定結果は、演算部242に送られる。前記各溶媒が補給された塗布液の濃度は、前記測定結果を基に、演算部242で算出される。前記濃度の算出は、ウエット膜厚の質量に対するドライ膜厚の質量の比率から算出される。   The measurement result of the film thickness is sent to the calculation unit 242. The concentration of the coating solution supplemented with each of the solvents is calculated by the calculation unit 242 based on the measurement result. The concentration is calculated from the ratio of the dry film thickness to the wet film mass.

次に、予め規定した基準塗布液濃度と前記算出された濃度とを比較し、濃度のズレを算出する。前記濃度のズレを基に検量線グラフのデータに基づき、ズレをなくすために必要な溶媒補給の補正量が算出される。前記補正量の算出は、塗布液に含有する全溶媒を合計して1種の溶媒(例えば、A溶媒)と見なして行うことができる。例えば、塗布液に含有する全溶媒を、溶媒のうち一番モル分率が大きい溶媒(例えば、A溶媒)と見なして行うことができる。   Next, a standard deviation of the reference coating solution is compared with the calculated concentration to calculate a concentration deviation. Based on the calibration curve graph data based on the concentration deviation, a solvent replenishment correction amount necessary to eliminate the deviation is calculated. The correction amount can be calculated by considering all the solvents contained in the coating solution as one type of solvent (for example, A solvent). For example, all the solvents contained in the coating liquid can be regarded as a solvent having the largest molar fraction among the solvents (for example, the A solvent).

前記検量線グラフは、予め実験等により求めた塗布液濃度と溶媒の補給量との関係を表すグラフである。前述のように、塗布液に含有する全溶媒を合計して1種の溶媒と見なした場合には、検量線グラフの溶媒は、1種、例えば前記A溶媒とされる。   The calibration curve graph is a graph representing the relationship between the coating solution concentration and the solvent replenishment amount obtained in advance by experiments or the like. As described above, when all the solvents contained in the coating liquid are regarded as one type of solvent in total, the solvent of the calibration curve graph is one type, for example, the A solvent.

前記補正量に基づき、全溶媒の補給量を合計した合計補給量を補正した合計補給量(補正合計補給量)が算出される。   Based on the correction amount, a total replenishment amount (corrected total replenishment amount) obtained by correcting the total replenishment amount of the total solvent replenishment amounts is calculated.

前記補正合計補給量を単位時間当たりの蒸発量とし、単位面積当たりの蒸発量を逆算し、数2式に当てはめ、境膜伝熱係数hを変数として修正した境膜伝熱係数hsを算出する。境膜伝熱係数hsの算出においては、溶媒は1種、例えば前記A溶媒として行うことができる。   The corrected total replenishment amount is set as the evaporation amount per unit time, the evaporation amount per unit area is calculated backward, and the equation is applied to Equation 2 to calculate the modified film heat transfer coefficient hs using the film heat transfer coefficient h as a variable. . In the calculation of the film heat transfer coefficient hs, the solvent can be one type, for example, the A solvent.

次に、数2式に境膜伝熱係数hsを当てはめ、前述のシミュレーションに準じ、溶媒毎の補正した総蒸発量(補正総蒸発量)を算出する。算出された溶媒毎の補正総蒸発量は、それに相当する溶媒毎の補正された補給量(補正補給量)として設定され、補正補給量データとして演算部242から制御部241に送られる。制御部241は、補正補給量データに基づき、溶媒毎の補正総蒸発量に相当する溶媒の量を補正補給量として、ポンプP2、P3を制御し、溶媒槽232、233から、送液配管234で送液される塗布液に溶媒の補給量を変更して補給を行う。   Next, the film heat transfer coefficient hs is applied to Equation 2, and the corrected total evaporation amount (corrected total evaporation amount) for each solvent is calculated according to the above-described simulation. The calculated corrected total evaporation amount for each solvent is set as a corrected replenishment amount (corrected replenishment amount) for each solvent, and is sent from the calculation unit 242 to the control unit 241 as corrected replenishment amount data. Based on the corrected replenishment amount data, the control unit 241 controls the pumps P2 and P3 with the amount of solvent corresponding to the corrected total evaporation amount for each solvent as the corrected replenishment amount. Then, replenishment is performed by changing the replenishment amount of the solvent to the coating liquid to be fed.

図2は、経過時間に対する塗布液濃度の変化を示す図である。線D1は、塗布液溜部211からの溶媒の蒸発に対し、溶媒の補給を行わない場合の塗布液濃度の変化を示す。時間の経過とともに塗布液濃度が上昇するため、塗膜の膜厚も変化しムラが生じる。   FIG. 2 is a diagram showing changes in the coating solution concentration with respect to elapsed time. A line D1 indicates a change in the concentration of the coating solution when the solvent is not replenished with respect to the evaporation of the solvent from the coating solution reservoir 211. Since the coating solution concentration increases with the passage of time, the film thickness of the coating also changes and unevenness occurs.

線D2は、前述のシミュレーションのみで溶媒の蒸発量を求め、溶媒を補給した場合であり、補給量の補正が行われる前での変化を示す。溶媒が補給されるため、線D1より塗布液濃度の上昇は緩やかであるが、基準塗布液濃度とはズレが生じている。これは、シミュレーションでの蒸発量と実際の系での蒸発量とで差異が生じているからである。   A line D2 is a case where the evaporation amount of the solvent is obtained only by the above-described simulation and the solvent is replenished, and shows a change before the replenishment amount is corrected. Since the solvent is replenished, the coating solution concentration rises more slowly than the line D1, but there is a deviation from the reference coating solution concentration. This is because there is a difference between the evaporation amount in the simulation and the evaporation amount in the actual system.

線D3は、線D2での塗布液で塗布を行い、膜厚を測定し、境膜伝熱係数hをhsに修正して溶媒毎の蒸発量をシミュレーションして塗布液濃度と基準塗布濃度とのずれを修正した場合である。実際の系での蒸発量を基に溶媒の補給量を修正しているため、塗布液濃度を経過時間に対して、予め規定された塗膜の膜厚の許容範囲に対応する濃度範囲内とすることができ、均一な膜厚の塗膜を得ることができる。図中線D3は直線的に図示しているが、許容範囲内で変動が生じることがある。   The line D3 is applied with the coating liquid in the line D2, the film thickness is measured, the boundary film heat transfer coefficient h is corrected to hs, and the evaporation amount for each solvent is simulated to calculate the coating liquid concentration and the reference coating concentration. This is a case where the deviation is corrected. Since the replenishment amount of the solvent is corrected based on the evaporation amount in the actual system, the coating solution concentration is within the concentration range corresponding to the predetermined allowable film thickness range with respect to the elapsed time. And a coating film having a uniform film thickness can be obtained. The line D3 in the figure is shown linearly, but there may be fluctuations within an allowable range.

図3は、境膜伝熱係数hを修正する前と実際の系での蒸発量を基に修正した後での、溶媒毎の蒸発量のシミュレーションの比較を示す図である。線EA1は溶媒Aの、線EB1は溶媒Bの修正前の境膜伝熱係数hを用いて蒸発量のシミュレーションを行った場合の経過時間に対する蒸発量を示す。線EA2は溶媒Aの、線EB2は溶媒Bの修正後の境膜伝熱係数hsを用いて蒸発量のシミュレーションを行った場合の経過時間に対する蒸発量を示す。   FIG. 3 is a diagram showing a comparison of simulations of the evaporation amount for each solvent before the boundary film heat transfer coefficient h is corrected and after the correction based on the evaporation amount in the actual system. A line EA1 indicates the evaporation amount of the solvent A, and a line EB1 indicates the evaporation amount with respect to the elapsed time when the evaporation amount simulation is performed using the film heat transfer coefficient h before the correction of the solvent B. A line EA2 indicates the evaporation amount with respect to the elapsed time when the evaporation amount is simulated using the modified film heat transfer coefficient hs of the solvent A, and a line EB2 indicates the solvent B.

このように、塗布を行い実際の系での蒸発量に基づき、境膜伝熱係数hを補正することにより、実際の系に近似したシミュレーションとすることができ、実際の系に近似した蒸発量(線EA2、線EB2)を求めることができる。従って、以降のシミュレーションを実際の系に即したシミュレーションとすることができ、塗布液濃度の安定化を図ることが容易にできる。   Thus, by applying and correcting the film heat transfer coefficient h based on the evaporation amount in the actual system, it is possible to obtain a simulation that approximates the actual system, and the evaporation amount that approximates the actual system (Line EA2, Line EB2) can be obtained. Therefore, the subsequent simulation can be made in accordance with the actual system, and the coating solution concentration can be easily stabilized.

上記のように、実際の塗布を行い、塗膜の膜厚の実測値を基に塗布液濃度を算出し、シミュレーションで算出された溶媒の補給量を修正することで、経時的に塗布液濃度を基準塗布液濃度に近似させることが可能になる。これにより、膜厚の均一なムラのない塗膜の形成が可能になる。   As described above, the actual coating is performed, the coating solution concentration is calculated based on the actually measured value of the coating film thickness, and the solvent replenishment amount calculated in the simulation is corrected. Can be approximated to the reference coating solution concentration. As a result, it is possible to form a coating film having a uniform thickness.

また、境膜伝熱係数hを実際の系に合わせて修正することで、以降のシミュレーションを実際の系に近いものとすることができる。これにより、塗布液濃度の上昇を防止することが容易になり、膜厚の均一なムラのない塗膜の形成を安定的に行うことができる。   Further, by modifying the film heat transfer coefficient h according to the actual system, the subsequent simulation can be made closer to the actual system. Thereby, it becomes easy to prevent an increase in the concentration of the coating solution, and it is possible to stably form a coating film having a uniform thickness.

<実施例>
図1に示す塗布システム20を用いて、上記のように、塗布液溜部211からの蒸発量のシミュレーションを行い、更に溶媒毎の蒸発量の補正をしたシミュレーションを行い補正した補正補給量に基づき溶媒を補給しながら支持体10に塗布を行い、塗布液の濃度変化と塗膜の変化を評価した。比較例として、溶媒補給を行わない、即ち蒸発に対して対策を行わない場合を評価した。
<Example>
Using the coating system 20 shown in FIG. 1, the evaporation amount from the coating liquid reservoir 211 is simulated as described above, and the simulation is performed by correcting the evaporation amount for each solvent. Coating was performed on the support 10 while replenishing the solvent, and the change in the concentration of the coating solution and the change in the coating film were evaluated. As a comparative example, the case where solvent replenishment was not performed, that is, a measure against evaporation was not evaluated.

(塗布条件)
塗布液初期濃度:固形分20質量%
溶媒:MEK(メチルエチルケトン)、PGME(プロピレングリコールモノメチルエーテル)
溶媒比率:MEK:PGME=30:70
塗布液溜部211の塗布液質量:0.1kg
支持体10全長:330m
支持体10搬送速度:10m/min
塗布ロール214直径:5cm
塗布ロール214周速、回転方向:周速;10m/min、回転方向;支持体10の搬送方向と同方向
(評価)
上記条件で、実施例、比較例とも30分の塗布を行い、塗布開始時と30分後の塗布液濃度と塗膜の膜厚を比較した。塗膜の膜厚は、塗布開始時の膜厚を1として比率で比較した。
(Application conditions)
Initial concentration of coating solution: 20% by mass of solid content
Solvent: MEK (methyl ethyl ketone), PGME (propylene glycol monomethyl ether)
Solvent ratio: MEK: PGME = 30: 70
Coating solution mass in coating solution reservoir 211: 0.1 kg
Support 10 total length: 330 m
Support 10 conveyance speed: 10 m / min
Application roll 214 diameter: 5 cm
Coating roll 214 peripheral speed, rotational direction: peripheral speed; 10 m / min, rotational direction; same direction as transport direction of support 10 (evaluation)
Under the above conditions, both the examples and the comparative examples were applied for 30 minutes, and the coating solution concentrations at the start and after 30 minutes were compared with the film thickness of the coating film. The film thicknesses of the coatings were compared by a ratio with the film thickness at the start of application being 1.

(結果)
表1に結果を示す。
(result)
Table 1 shows the results.

Figure 0005163532
Figure 0005163532

表1に示すように、実施例では塗布液濃度は変化せず、また膜厚も一定で塗布ムラは生じなかった。それに対し、比較例では塗布液濃度が上昇し、膜厚も増加し塗布ムラが生じた。このように、本発明の効果が確認された。   As shown in Table 1, in the examples, the concentration of the coating solution did not change, the film thickness was constant, and no coating unevenness occurred. On the other hand, in the comparative example, the coating solution concentration increased, the film thickness increased, and coating unevenness occurred. Thus, the effect of the present invention was confirmed.

10 支持体
10A 巻き出し部
10B 巻き取り部
20 塗布システム
50 乾燥装置
60 UV照射装置
210 塗布装置
211 塗布液溜部
212 温度制御装置
213 温度センサー
214 塗布ロール
216 ブレード
217a、217b ガイドロール
231 塗布液槽
232、233 溶媒槽
234 送液配管
241 制御部
242 演算部
245a、245b 膜厚計
DESCRIPTION OF SYMBOLS 10 Support body 10A Unwinding part 10B Winding part 20 Coating system 50 Drying apparatus
60 UV irradiation apparatus 210 Coating apparatus 211 Coating liquid reservoir 212 Temperature controller 213 Temperature sensor 214 Coating roll 216 Blade 217a, 217b Guide roll 231 Coating liquid tank 232, 233 Solvent tank 234 Liquid supply piping 241 Control section 242 Calculation section 245a, 245b Film thickness meter

Claims (8)

搬送する長尺の支持体に、種以上の溶媒を含有する溶媒系の塗布液を塗布装置に送液して塗布し、塗膜を形成する塗布方法において、
前記塗布装置からの前記2種以上の溶媒の各々の単位時間の蒸発量と前記蒸発量の総計を、シミュレーション手段を用いたシミュレーションで算出し、
前記2種以上の溶媒の各々について、算出された蒸発量に相当する量の溶媒を、前記塗布装置に送液される前記塗布液に補給し、
前記送液される塗布液の濃度を変更することを特徴とする塗布方法。
In a coating method in which a long coating to be conveyed is applied by feeding a solvent-based coating solution containing two or more solvents to a coating apparatus and applying it.
Calculating the total evaporation amount of each of the two or more types of solvents from the coating apparatus and the evaporation amount by simulation using a simulation means;
Wherein for each of two or more solvents, the solvent in an amount corresponding to the calculated evaporation Hatsuryou, and supplied to the coating liquid which is fed to the coating apparatus,
A coating method comprising changing the concentration of the coating solution to be fed.
前記シミュレーションで算出された量の溶媒が補給された塗布液を用いて塗布を行い、塗布直後と乾燥後の塗膜の膜厚をそれぞれ測定し、その測定結果を基に前記塗布液の濃度を算出し、前記塗布液の濃度と予め規定した基準塗布液濃度との差異及び前記差異に相当する溶媒の補正量を算出し、前記溶媒の補正量を基に前記シミュレーションに基づく溶媒の補給量を変更することを特徴とする請求項1に記載の塗布方法。   Coating is performed using a coating solution supplemented with the amount of solvent calculated in the simulation, and the film thickness of the coating film is measured immediately after coating and after drying, and the concentration of the coating solution is determined based on the measurement result. And calculating a difference between the concentration of the coating liquid and a predetermined reference coating liquid concentration and a solvent correction amount corresponding to the difference, and determining a solvent replenishment amount based on the simulation based on the solvent correction amount. The coating method according to claim 1, wherein the coating method is changed. 前記溶媒の補給での溶媒毎の補給比率は、前記シミュレーションで算出された溶媒毎の蒸発量の比率であることを特徴とする請求項1または2に記載の塗布方法。   3. The coating method according to claim 1, wherein a replenishment ratio for each solvent in replenishing the solvent is a ratio of an evaporation amount for each solvent calculated by the simulation. 搬送する長尺の支持体に、種以上の溶媒を含有する溶媒系の塗布液を塗布装置に送液して塗布し、塗膜を形成する塗布システムにおいて、
前記塗布装置からの前記2種以上の溶媒の各々の単位時間の蒸発量と前記蒸発量の総計を算出するシミュレーションを行うシミュレーション手段と、
前記塗布装置に送液される前記塗布液に、前記2種以上の溶媒を補給する溶媒補給手段と、
前記溶媒補給手段での前記2種以上の溶媒の各々の補給量を制御する制御手段と、を有し、
算出された前記溶媒毎の蒸発量に相当する量の溶媒を送液される前記塗布液に補給し、前記送液される塗布液の濃度を変更することを特徴とする塗布システム。
In a coating system for forming a coating film by feeding a coating solution of a solvent system containing two or more solvents to a coating device and applying it to a long support to be conveyed.
A simulation means for performing a simulation for calculating a total amount of the evaporation amount and the evaporation amount of each of the two or more types of solvents from the coating apparatus;
Solvent replenishing means for replenishing the coating liquid fed to the coating apparatus with the two or more solvents ;
Control means for controlling the replenishment amount of each of the two or more solvents in the solvent replenishing means,
An application system characterized in that an amount of solvent corresponding to the calculated evaporation amount for each solvent is replenished to the applied coating solution, and the concentration of the applied coating solution is changed.
前記シミュレーションで算出された量の溶媒が補給された塗布液を用いた塗布後の、塗布直後と乾燥後の塗膜の膜厚を測定する膜厚測定手段と、
前記測定の結果を基に、塗布液の濃度を算出する濃度算出手段と、
前記塗布液の濃度と予め規定した基準塗布液濃度との差異及び前記差異に相当する溶媒の補正量を算出する溶媒補正量算出手段と、を有し、
前記制御手段は、前記溶媒の補正量を基に、前記シミュレーションに基づく溶媒の補給量を変更することを特徴とする請求項4に記載の塗布システム。
Film thickness measuring means for measuring the film thickness of the coating film immediately after coating and after coating using the coating liquid supplemented with the amount of solvent calculated in the simulation,
Based on the result of the measurement, a concentration calculating means for calculating the concentration of the coating liquid;
A solvent correction amount calculating means for calculating a difference between the concentration of the coating liquid and a predetermined reference coating liquid concentration and a solvent correction amount corresponding to the difference;
The coating system according to claim 4, wherein the control unit changes a replenishment amount of the solvent based on the simulation based on the correction amount of the solvent.
前記溶媒の補給での溶媒毎の補給比率は、前記シミュレーションで算出された溶媒毎の蒸発量の比率であることを特徴とする請求項4または5に記載の塗布システム。   The coating system according to claim 4 or 5, wherein the replenishment ratio for each solvent in the replenishment of the solvent is a ratio of the evaporation amount for each solvent calculated by the simulation. 前記塗布液は、光学フィルム機能性フィルム製造用の塗布液であることを特徴とする請求項4から6の何れか1項に記載の塗布システム。   The coating system according to claim 4, wherein the coating liquid is a coating liquid for producing an optical film functional film. 前記塗布装置は、バー塗布装置、ロール塗布装置、グラビア塗布装置の何れかであることを特徴とする請求項4から7の何れか1項に記載の塗布システム。   The coating system according to any one of claims 4 to 7, wherein the coating device is any one of a bar coating device, a roll coating device, and a gravure coating device.
JP2009037649A 2009-02-20 2009-02-20 Coating liquid coating method and coating system Expired - Fee Related JP5163532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037649A JP5163532B2 (en) 2009-02-20 2009-02-20 Coating liquid coating method and coating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037649A JP5163532B2 (en) 2009-02-20 2009-02-20 Coating liquid coating method and coating system

Publications (2)

Publication Number Publication Date
JP2010188316A JP2010188316A (en) 2010-09-02
JP5163532B2 true JP5163532B2 (en) 2013-03-13

Family

ID=42814955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037649A Expired - Fee Related JP5163532B2 (en) 2009-02-20 2009-02-20 Coating liquid coating method and coating system

Country Status (1)

Country Link
JP (1) JP5163532B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5911768B2 (en) * 2012-07-18 2016-04-27 富士フイルム株式会社 Liquid coating apparatus, ink jet recording apparatus, and maintenance method for liquid coating apparatus
JP6385134B2 (en) * 2014-05-19 2018-09-05 四国化工機株式会社 Disinfectant feeding and atomizing equipment
JPWO2016002168A1 (en) * 2014-06-30 2017-04-27 株式会社Joled INK COMPONENT MANAGEMENT METHOD, INKJET SYSTEM USING THE SAME, AND MANUFACTURING METHOD FOR MANUFACTURING ORGANIC EL DISPLAY DEVICE USING INKJET SYSTEM
US10821466B2 (en) * 2017-07-06 2020-11-03 Nordson Corporation Systems and methods for solvent extraction
JP7221060B2 (en) * 2019-01-18 2023-02-13 株式会社日立産機システム INKJET RECORDING DEVICE AND METHOD OF CONTROLLING INKJET RECORDING DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116562A (en) * 2000-10-10 2002-04-19 Sharp Corp Method and apparatus for producing organic electrophotographic photoreceptor
JP2006181429A (en) * 2004-12-27 2006-07-13 Tomoegawa Paper Co Ltd Coater
JP4520447B2 (en) * 2006-10-23 2010-08-04 日本電信電話株式会社 Gas concentration measuring instrument
JP2008173587A (en) * 2007-01-19 2008-07-31 Fujifilm Corp Coating method and coating system of coating liquid, and optical film

Also Published As

Publication number Publication date
JP2010188316A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5163532B2 (en) Coating liquid coating method and coating system
TW201027291A (en) Material gas concertration control system
JP6588298B2 (en) Tow prepreg manufacturing apparatus and tow prepreg manufacturing method
CN112336200B (en) Method, processor, device and storage medium for a water drinking apparatus
JP2007237127A (en) Coating method and coating device
KR102169997B1 (en) Coating apparatus and method for producing coating film
CN106235401B (en) Machine, method and coating device for producing filter rods for the tobacco processing industry
EP2798965B1 (en) Method for humidifying starting tobacco material
JP2004027365A (en) Source material supply device of chemical vapor deposition process
TWI681821B (en) Coating apparatus and method for producing coating film
JP5888269B2 (en) Application method to substrate
JP2010259986A (en) Coating method and coater
JP2016200694A (en) Sheet humidification device and sheet humidification method
JP2004358804A (en) Method and apparatus for manufacturing ceramic green sheet
JP5302236B2 (en) Resist coating apparatus and resist coating method
WO2001019534A1 (en) Coating method
JP2020112662A (en) Liquid adding device and image forming apparatus
JP2020126886A (en) Substrate processing apparatus, substrate processing method and storage medium
KR101222235B1 (en) Control System for Paint Sticky
JP2008246297A (en) Continuous application method and continuous application equipment
JP2010264398A (en) Coating method
JP2012223917A (en) Antistatic agent applicator
JP5320934B2 (en) Vacuum deposition system
JP3802359B2 (en) Fixing device
JP2006263617A (en) Coating method of coating solution, coating apparatus of coating solution, and optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees