JP2016202106A - Starch decomposition product, and powdery candy, syrup and food and drink prepared therewith - Google Patents

Starch decomposition product, and powdery candy, syrup and food and drink prepared therewith Download PDF

Info

Publication number
JP2016202106A
JP2016202106A JP2015089703A JP2015089703A JP2016202106A JP 2016202106 A JP2016202106 A JP 2016202106A JP 2015089703 A JP2015089703 A JP 2015089703A JP 2015089703 A JP2015089703 A JP 2015089703A JP 2016202106 A JP2016202106 A JP 2016202106A
Authority
JP
Japan
Prior art keywords
starch
decomposition product
degradation product
solid content
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015089703A
Other languages
Japanese (ja)
Other versions
JP6470099B2 (en
Inventor
敦 寺田
Atsushi Terada
敦 寺田
圭 野村
Kei Nomura
圭 野村
雄治 松本
Yuji Matsumoto
雄治 松本
昌希 菊川
Masaki Kikukawa
昌希 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Sangyo Co Ltd
Original Assignee
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Sangyo Co Ltd filed Critical Showa Sangyo Co Ltd
Priority to JP2015089703A priority Critical patent/JP6470099B2/en
Publication of JP2016202106A publication Critical patent/JP2016202106A/en
Application granted granted Critical
Publication of JP6470099B2 publication Critical patent/JP6470099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a novel starch decomposition product that resists getting cloudy, has a low viscosity, is rich, and shows an excellent aftertaste.SOLUTION: The present invention provides a starch decomposition product in which a content x of DP 1-2, a content y of molecular weights 1500-14000, and a content z of molecular weights 80000-900000 satisfy the followings (1)-(3): (1) x≤4.0; (2) 5.0≤y≤25.0 and (3) z≤-2.2x+9.8.SELECTED DRAWING: None

Description

本発明は、澱粉分解物、並びに該澱粉分解物を用いた粉飴、シラップ及び飲食品に関する。   The present invention relates to a starch decomposition product, and powdered meal, syrup and food and drink using the starch decomposition product.

従来から、食品分野においては、甘味料、味質調整、浸透圧調整、保湿剤、粉末化基材などの用途に、澱粉分解物が利用されている。また、澱粉分解物は、医療分野においても、経腸栄養剤の炭水化物源や薬剤の賦形剤などの用途に利用されている。更に、化粧品分野においては、澱粉分解物は、化粧品を固形化する際の結合剤やクリーム状の化粧品の粘度調整などの用途にも利用されている。   Conventionally, in the food field, starch degradation products have been used for applications such as sweeteners, taste adjustment, osmotic pressure adjustment, humectants, and powdered substrates. In addition, starch degradation products are also used in the medical field for applications such as carbohydrate sources for enteral nutrients and excipients for drugs. Furthermore, in the cosmetics field, starch degradation products are also used for applications such as binders for solidifying cosmetics and viscosity adjustment of creamy cosmetics.

このように、澱粉分解物は、その甘味度、味質、浸透圧、粘度、吸湿性等の基本的物性に合わせて上記のような様々な用途に利用される。例えば、甘味度の高いものは甘味料として用いることに適し、逆に甘味度の低いものは味質調整剤、浸透圧調整剤、粉末化基材等に適する。また、澱粉分解物自体の吸湿性、粘度なども用途を選択する上で、重要な要素となる。例えば、澱粉分解物の吸湿性が高すぎると、菓子などの甘味料として適さない場合もあり、粉末化基材としても不適である。また、澱粉分解物の粘度が高すぎても、作業性が悪くなり、粉末化基材、経腸栄養剤などへは適さない。   Thus, the starch degradation product is utilized for various uses as described above in accordance with the basic physical properties such as sweetness, taste, osmotic pressure, viscosity, and hygroscopicity. For example, those having a high degree of sweetness are suitable for use as sweeteners, and conversely, those having a low degree of sweetness are suitable for taste modifiers, osmotic pressure regulators, powdered substrates, and the like. In addition, the hygroscopicity and viscosity of the starch degradation product itself are important factors in selecting the application. For example, if the hydrolyzate of the starch decomposition product is too high, it may not be suitable as a sweetener such as confectionery, and is also unsuitable as a powdered substrate. In addition, if the viscosity of the starch decomposition product is too high, the workability is deteriorated and it is not suitable for a powdered base material, enteral nutrient, and the like.

澱粉分解物の甘味度、味質、浸透圧、粘度、吸湿性等の基本的物性は、構成成分であるグルコースの重合度(DP)によって左右されるといわれている。例えば、グルコース重合度(DP)の低いものを多く含む澱粉分解物は、甘味度が高くなる。逆にグルコース重合度(DP)の高いものを多く含む澱粉分解物は、粘度が高くなる。   It is said that basic physical properties such as sweetness, taste, osmotic pressure, viscosity, hygroscopicity, etc. of starch degradation products depend on the degree of polymerization (DP) of glucose as a constituent component. For example, a starch degradation product containing a large amount of glucose polymerization degree (DP) is high in sweetness. On the contrary, the starch decomposition product containing many things with high glucose polymerization degree (DP) becomes high in viscosity.

また、澱粉分解物の基本的物性をコントロールする指標として、DE値(dextrose equivalent)を求めることも多い。「DE(dextrose equivalent)」とは、デキストロース当量とも称され、還元糖をグルコースとして測定し、その全固形分に対する割合(数式1参照)を示す値である。このDE値は、澱粉の加水分解の程度(分解度)、即ち糖化の進行の程度を示す指標である。   Moreover, DE value (dextrose equivalent) is often calculated | required as a parameter | index which controls the basic physical property of a starch decomposition product. “DE (dextrose equivalent)” is also referred to as dextrose equivalent, and is a value obtained by measuring reducing sugar as glucose and indicating the ratio to the total solid content (see Formula 1). This DE value is an index indicating the degree of hydrolysis (degradation degree) of starch, that is, the degree of progress of saccharification.

Figure 2016202106
Figure 2016202106

一般に、DE値が高いほど、甘味度、浸透圧、吸湿性が高く、逆に粘度は低くなる。逆に、DE値が低いほど、デキストリン特有の風味が強くなり、濁りやすく、粘度も高くなる。例えば、非特許文献1には、DEが低いほど粘度が高く、溶解性が低いことが記載されている。   In general, the higher the DE value, the higher the sweetness, osmotic pressure, and hygroscopicity, and the lower the viscosity. Conversely, the lower the DE value, the stronger the dextrin-specific flavor, the greater the turbidity, and the higher the viscosity. For example, Non-Patent Document 1 describes that the lower the DE, the higher the viscosity and the lower the solubility.

近年、用途に合わせて、澱粉分解物の基本的物性をコントロールするために、澱粉分解物中の糖組成を操作する技術が開発されている。例えば、特許文献1では、デンプン又はデンプン誘導体の水溶液を、高温高圧下で処理した後、分枝酵素で処理することにより目的のグルコース分枝化ポリマーを製造する方法が開示されている。   In recent years, a technique for manipulating the sugar composition in a starch degradation product has been developed to control the basic physical properties of the starch degradation product in accordance with the application. For example, Patent Document 1 discloses a method for producing a target glucose-branched polymer by treating an aqueous solution of starch or starch derivative under high temperature and high pressure and then treating with a branching enzyme.

また、特許文献2では、澱粉液化液に枝付け酵素を作用させることによって、分解度が低く、なおかつ冷蔵により白濁を生じない液状デキストリン製品を製造する技術が開示されている。   Patent Document 2 discloses a technique for producing a liquid dextrin product having a low degree of degradation and causing no white turbidity by refrigeration by allowing a branching enzyme to act on the starch liquefaction solution.

更に、特許文献3には、所定の組成の原料澱粉を、酸存在下で加熱処理して白度80以上、DE3〜6、冷水可溶部90質量%超、分岐成分30〜45質量%、及びたんぱく質含量0.1質量%以下の白色デキストリンとなし、次いでα−アミラーゼを作用させることにより、低甘味、低粘度で老化による白濁を生じない特性を有する白色デキストリンを製造する技術が開示されている。   Furthermore, in Patent Document 3, a raw material starch having a predetermined composition is heat-treated in the presence of an acid to obtain a whiteness of 80 or more, DE 3-6, cold water soluble part over 90% by mass, branching component 30-45% by mass, And a white dextrin having a protein content of 0.1% by mass or less, followed by the action of α-amylase, thereby producing a white dextrin having low sweetness, low viscosity, and no turbidity due to aging. Yes.

特表2002−543248号公報JP-T-2002-543248 特開2003−144187号公報JP 2003-144187 A 特開2006−204207号公報JP 2006-204207 A

月刊フードケミカル2000-10Monthly food chemical 2000-10

デキストリン(DE20以下)などのDEの低い澱粉分解物は、飲料のボディ感付与、粉末化基剤、浸透圧調整などに用いられている。しかし、前述の通り、澱粉分解物は、DEが低くなるほど濁りやすくなり、濁りが多いと、風味が悪くなる、飲食品に使用した時に、得られた飲食品が白濁し外観が悪くなるといった問題があった。また、イオン精製が困難になるといった製造上の問題もあった。更に、澱粉分解物は、DEが低くなるほど、粘度が高くなり、特に、液状品のハンドリングが悪くなるといった問題もあった。   Starch-degraded products having a low DE such as dextrin (DE20 or less) are used for imparting a body feeling to a beverage, a powdered base, and adjusting an osmotic pressure. However, as described above, the starch degradation product becomes more turbid as the DE becomes lower. When the turbidity increases, the flavor deteriorates, and when used for food or drink, the obtained food or drink becomes cloudy and the appearance is deteriorated. was there. In addition, there is a manufacturing problem that ion purification becomes difficult. Furthermore, the starch degradation product has a problem that the lower the DE, the higher the viscosity, and in particular, the handling of the liquid product becomes worse.

そこで、本発明では、濁りにくく、低粘度で、コクがあり、後味が良好な新規澱粉分解物を提供することを主目的とする。   Therefore, the main object of the present invention is to provide a novel starch degradation product that is less turbid, has low viscosity, is rich, and has a good aftertaste.

デキストリンはDEが低い(分解の程度が低い)ほど濁りやすく粘度が高いことから、従来は、デキストリンの高分子量画分の方が、デキストリンの濁り易さや粘度上昇にあたえる影響が大きいと考えられていた。しかし、本願発明者らは、澱粉分解物中の糖組成について鋭意研究を行った結果、この常識から発想を一転し、実際には、中分子量画分(分子量1500〜14000の成分)の割合が、濁りに大きく影響することを見出し、本発明を完成させるに至った。   Since dextrin has a lower DE (lower degree of degradation) and is more turbid and has a higher viscosity, conventionally, the high molecular weight fraction of dextrin has been thought to have a greater effect on dextrin turbidity and viscosity increase. It was. However, as a result of earnest research on the sugar composition in the starch degradation product, the inventors of the present application changed the idea from this common sense, and in fact, the proportion of the medium molecular weight fraction (component having a molecular weight of 1500 to 14000) was changed. As a result, the present inventors have found that the turbidity is greatly influenced and completed the present invention.

即ち、本発明では、DP1〜2の含有量(質量%)x、分子量1500〜14000の含有量(質量%)y、及び、分子量80000〜900000の含有量(質量%)zが、下記(1)〜(3)を満たす澱粉分解物を提供する。
(1)x≦4.0
(2)5.0≦y≦25.0
(3)z≦−2.2x+9.8
本発明に係る澱粉分解物において、前記zは、下記(3’)を満たしていてもよい。
(3’)z≦−1.3x+6.2
また、前記yは、下記(2’)を満たしていてもよい。
(2’)5.0≦y≦23.0
本発明に係る澱粉分解物は、ヨウ素液を混合したときの660nmの吸光度vが、下記(4)を満たしていてもよい。
(4)v≦0.6
また、前記vが、下記(4’)を満たしていてもよい。
(4’)v≦0.5
本発明に係る澱粉分解物は、初期濁度が0.2以下であり、かつ、7日保存後の濁度の増加が2.0以下であってもよい。
That is, in the present invention, the content (mass%) x of DP1 to 2, the content (mass%) y of molecular weight 1500 to 14000, and the content (mass%) z of molecular weight 80000 to 900,000 are the following (1 ) To (3) are provided.
(1) x ≦ 4.0
(2) 5.0 ≦ y ≦ 25.0
(3) z ≦ −2.2x + 9.8
In the starch decomposition product according to the present invention, z may satisfy the following (3 ′).
(3 ′) z ≦ −1.3x + 6.2
The y may satisfy the following (2 ′).
(2 ′) 5.0 ≦ y ≦ 23.0
In the starch decomposition product according to the present invention, the absorbance v at 660 nm when the iodine solution is mixed may satisfy the following (4).
(4) v ≦ 0.6
The v may satisfy the following (4 ′).
(4 ′) v ≦ 0.5
The starch degradation product according to the present invention may have an initial turbidity of 0.2 or less, and an increase in turbidity after storage for 7 days may be 2.0 or less.

本発明に係る澱粉分解物は、粉飴、シラップ及び飲食品などに用いることができる。
より具体的には、本発明では、本発明に係る澱粉分解物を粉末化した粉飴、本発明に係る澱粉分解物を含むシラップ及び飲食品を提供する。
The starch degradation product according to the present invention can be used in flour meal, syrup, food and drink, and the like.
More specifically, in this invention, the mash which pulverized the starch decomposition product which concerns on this invention, the syrup containing the starch decomposition product which concerns on this invention, and food-drinks are provided.

本発明によれば、濁りにくく、低粘度で、コクがあり、後味が良好な新規澱粉分解物を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the novel starch degradation product which is hard to become cloudy, is low-viscosity, has richness, and has a good aftertaste.

以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.

<澱粉分解物>
本発明に係る澱粉分解物は、DP1〜2の含有量(質量%)x、分子量1500〜14000の含有量(質量%)y、及び、分子量80000〜900000の含有量(質量%)zが、下記(1)〜(3)を満たす澱粉分解物である。
(1)x≦4.0
(2)5.0≦y≦25.0
(3)z≦−2.2x+9.8
<Starch degradation product>
The starch degradation product according to the present invention has a DP1-2 content (mass%) x, a molecular weight 1500-14000 content (mass%) y, and a molecular weight 80000-900000 content (mass%) z. It is a starch decomposition product satisfying the following (1) to (3).
(1) x ≦ 4.0
(2) 5.0 ≦ y ≦ 25.0
(3) z ≦ −2.2x + 9.8

本発明に係る澱粉分解物は、中分子量画分(分子量1500〜14000)の割合が、前記(2)に示す通り、5.0〜25.0質量%であることを特徴とする。本願発明者らは、分子量1500〜14000の含有量がこの範囲外となると、後述する実施例で示す通り、濁りやすくなることを見出した。   The starch degradation product according to the present invention is characterized in that the proportion of the medium molecular weight fraction (molecular weight 1500 to 14000) is 5.0 to 25.0 mass% as shown in (2) above. The inventors of the present application have found that when the content of the molecular weight of 1500 to 14000 is out of this range, it becomes turbid as shown in the examples described later.

しかしながら、本願発明者らは、分子量1500〜14000の含有量が5.0〜25.0質量%であったとしても、DP1〜2の含有量が4.0質量%を超えると、甘味度が上昇するため、添加した食品などの風味に影響を与えることも見出した。   However, even if the content of the molecular weight 1500-14000 is 5.0-25.0% by mass, the inventors of the present application have a sweetness degree when the content of DP1-2 exceeds 4.0% by mass. It has also been found to affect the flavor of added foods and the like because of the increase.

更に、本願発明者らは、分子量1500〜14000の含有量が5.0〜25.0質量%で、DP1〜2の含有量が4.0質量%以下であったとしても、高分子量画分(分子量80000〜900000)の含有量と、DP1〜2の含有量との関係が、前記(3)を満たさない場合にも、粘度が増加し、経時的な濁度の増加が認められることを見出した。   Furthermore, the inventors of the present application have a high molecular weight fraction even if the content of the molecular weight 1500-14000 is 5.0-25.0 mass% and the content of DP1-2 is 4.0 mass% or less. Even when the relationship between the content of (molecular weight 80000-900000) and the content of DP1-2 does not satisfy the above (3), the viscosity increases and the increase in turbidity over time is observed. I found it.

このように、経時的にも濁りにくく、低粘度である澱粉分解物の条件としては、前記(1)〜(3)の全てを満たす必要がある。   Thus, it is necessary to satisfy | fill all the said (1)-(3) as conditions of the starch decomposition product which is hard to become cloudy also with time and is low-viscosity.

本発明に係る澱粉分解物において、分子量1500〜14000の含有量は、5.0〜25.0質量%の範囲内であれば特に限定されないが、本発明では特に、5.0〜23.0質量%とすることがより好ましく、5.0〜22.0質量%とすることがさらに好ましい。22.0質量%以下とすることで、澱粉分解物のDEに関わらず、濁り難くなるといった効果が生じる。   In the starch decomposition product according to the present invention, the content of the molecular weight of 1500 to 14000 is not particularly limited as long as it is in the range of 5.0 to 25.0 mass%, but in the present invention, it is particularly 5.0 to 23.0. It is more preferable to set it as the mass%, and it is still more preferable to set it as 5.0-22.0 mass%. By setting it as 22.0 mass% or less, the effect that it becomes difficult to become cloudy arises irrespective of DE of a starch decomposition product.

また、DP1〜2の含有量と分子量80000〜900000の含有量との関係は、前記(3)を満たしていればよいが、本発明では特に、下記(3’)を満たすことがより好ましい。DP1〜2の含有量と分子量80000〜900000の含有量との関係が、下記(3’)を満たすことで、経時的な濁度の増加をより確実に防止することができる。
(3’)z≦−1.3x+6.2
Moreover, although the relationship between content of DP1-2 and content of molecular weight 80000-900000 should just satisfy | fill said (3), it is more preferable to satisfy | fill following (3 ') especially in this invention. When the relationship between the content of DP1-2 and the content of molecular weight 80000-900000 satisfies the following (3 ′), an increase in turbidity with time can be more reliably prevented.
(3 ′) z ≦ −1.3x + 6.2

本発明に係る澱粉分解物は、ヨウ素液を混合したときの660nmの吸光度vが、下記(4)を満たすことが好ましく、下記(4’)を満たすことがより好ましい。
(4)v≦0.6
(4’)v≦0.5
なお、ヨウ素呈色値は、分岐構造含有量の程度を示し、濁りやすさと相関があると考えられる。
In the starch degradation product according to the present invention, the absorbance v at 660 nm when the iodine solution is mixed preferably satisfies the following (4), and more preferably satisfies the following (4 ′).
(4) v ≦ 0.6
(4 ′) v ≦ 0.5
The iodine coloration value indicates the degree of branch structure content, and is considered to have a correlation with turbidity.

本発明に係る澱粉分解物は、初期濁度が0.2以下であり、かつ、7日保存後の濁度の増加が2.0以下であることが好ましい。   The starch degradation product according to the present invention preferably has an initial turbidity of 0.2 or less, and an increase in turbidity after storage for 7 days is 2.0 or less.

なお、本願において、濁度は、下記の条件で測定した濁度とした。
固形分濃度55%となるように調製した糖液を、沸騰浴中で10分間加熱したものを、固形分30%となるように希釈して、100mm幅のガラスセルに入れ、分光光度計UV−1600(株式会社島津製作所製)を用いて、720nmにおける吸光度を測定した値を、濁度とした。
In addition, in this application, turbidity was taken as the turbidity measured on condition of the following.
A sugar solution prepared to a solid content concentration of 55%, heated in a boiling bath for 10 minutes, diluted to a solid content of 30%, placed in a glass cell with a width of 100 mm, and a spectrophotometer UV A value obtained by measuring absorbance at 720 nm using -1600 (manufactured by Shimadzu Corporation) was defined as turbidity.

また、保存は、固形分濃度55%となるように調製した糖液を、沸騰浴中で10分間加熱したものを、密封容器に入れて、4℃の条件下で行った。更に、保存後の濁度は、保存後の糖液を、固形分30%となるように希釈して、100mm幅のガラスセルに入れ、分光光度計UV−1600(株式会社島津製作所製)を用いて、720nmにおける吸光度を測定した値を、濁度とした。   In addition, storage was carried out under conditions of 4 ° C., in which a sugar solution prepared so as to have a solid content concentration of 55% was heated in a boiling bath for 10 minutes in a sealed container. Furthermore, the turbidity after storage is obtained by diluting the sugar solution after storage to a solid content of 30%, placing it in a 100 mm wide glass cell, and using a spectrophotometer UV-1600 (manufactured by Shimadzu Corporation). The value obtained by measuring the absorbance at 720 nm was defined as turbidity.

本発明に係る澱粉分解物の具体的な粘度は特に限定されないが、固形分濃度55%となるように調製した糖液の50℃での粘度(mPa・s)wが下記(5−1)又は(5−2)を満たすことが好ましい。前記粘度を下記(5−1)又は(5−2)を満たすように設定することで、本発明に係る澱粉分解物を液状品とした場合にハンドリングが良好になり、高濃度の液状品とした場合でも、製造時、流通時、及び使用時において、取扱いがし易いという効果が生じる。
DP1〜2の含有量(質量%)xが、0.5≦x≦2.2のとき、
(5−1)w≦−400x+1200
DP1〜2の含有量(質量%)xが、2.2<x≦4.0のとき、
(5−2)w≦−65x+463
Although the specific viscosity of the starch decomposition product which concerns on this invention is not specifically limited, the viscosity (mPa * s) w in 50 degreeC of the sugar liquid prepared so that it may become solid content concentration 55% is the following (5-1). Or it is preferable to satisfy (5-2). By setting the viscosity so as to satisfy the following (5-1) or (5-2), when the starch decomposition product according to the present invention is a liquid product, handling becomes good, and a high-concentration liquid product Even in this case, there is an effect that it is easy to handle during manufacture, distribution, and use.
When the content (mass%) x of DP1-2 is 0.5 ≦ x ≦ 2.2,
(5-1) w ≦ −400x + 1200
When the content (mass%) x of DP1-2 is 2.2 <x ≦ 4.0,
(5-2) w ≦ −65x + 463

<澱粉分解物の製造方法>
本発明に係る澱粉分解物は、その組成自体が新規であって、その収得の方法については特に限定されることはない。例えば、澱粉原料を、一般的な酸や酵素を用いた処理や、各種クロマトグラフィー、膜分離、エタノール沈殿等の所定操作を適宜、組み合わせて行うことによって得ることができる。
<Method for producing starch degradation product>
The starch degradation product according to the present invention has a novel composition itself, and the method for obtaining it is not particularly limited. For example, the starch raw material can be obtained by appropriately combining predetermined operations such as treatment using general acids and enzymes, various chromatography, membrane separation, ethanol precipitation, and the like.

本発明に係る澱粉分解物を得るために原料となり得る澱粉原料としては、公知の澱粉分解物の原料となり得る澱粉原料を1種又は2種以上自由に選択して用いることができる。例えば、コーンスターチ、米澱粉、小麦澱粉などの澱粉(地上系澱粉)、馬鈴薯、タピオカ、甘藷などのような地下茎または根由来の澱粉(地下系澱粉)を挙げることができる。   As a starch raw material that can be used as a raw material for obtaining the starch decomposition product according to the present invention, one or more starch raw materials that can be used as a raw material for known starch decomposition products can be freely selected and used. Examples thereof include starches such as corn starch, rice starch, and wheat starch (terrestrial starch), starches derived from rhizomes such as potato, tapioca, and sweet potato (subterranean starch).

本発明に係る澱粉分解物を効率的に得る方法として、澱粉原料を、酸を用いて液化した後、枝作り酵素を作用させる方法がある。この場合、本発明に係る澱粉分解物の製造に用いることができる酸の種類は特に限定されず、澱粉の酸液化が可能な酸であれば、公知の酸を1種又は2種以上、自由に選択して用いることができる。例えば、塩酸、シュウ酸等を用いることができる。   As a method for efficiently obtaining a starch degradation product according to the present invention, there is a method in which a starch raw material is liquefied using an acid and then a branching enzyme is allowed to act. In this case, the kind of acid that can be used for the production of the starch degradation product according to the present invention is not particularly limited, and one or two or more known acids can be freely used as long as the acid can liquefy starch. Can be selected and used. For example, hydrochloric acid, oxalic acid, or the like can be used.

また、澱粉原料の酸液化の前後や、枝つくり酵素を作用させる前後に、他の分解酵素(例えば、αアミラーゼ等)による処理を自由に組み合わせることも可能である。例えば、澱粉原料を、酸を用いて液化した後、枝作り酵素を作用させ、更に、他の分解酵素(例えば、αアミラーゼ等)による処理を行う方法を採用することも可能である。このように、酸液化、枝作り酵素による作用の後に、分解酵素を作用させることで、澱粉分解物の分解度を所望の範囲に調整することが容易になる。   Further, it is possible to freely combine treatments with other degrading enzymes (for example, α-amylase) before and after acid liquefaction of the starch raw material and before and after allowing the branch-forming enzyme to act. For example, it is also possible to employ a method in which starch raw materials are liquefied using an acid, a branching enzyme is allowed to act, and a treatment with another degrading enzyme (for example, α-amylase) is performed. Thus, it becomes easy to adjust the degradation degree of a starch degradation product to a desired range by making a decomposing enzyme act after the action by acid liquefaction and the branching enzyme.

ここで、枝作り酵素(branching enzyme)とは、α−1,4−グルコシド結合でつながった直鎖グルカンに作用して、α−1,4−グルコシド結合を切断してα−1,6−グルコシド結合による枝分かれを形成させる働きを持った酵素の総称である。本発明に係る澱粉分解物の製造で枝作り酵素を用いる場合、その種類は特に限定されず、公知の枝作り酵素を1種又は2種以上、自由に選択して用いることができる。例えば、動物や細菌などから精製したもの、又は、馬鈴薯、イネ種実、トウモロコシ種実などの植物から精製したもの等を用いることができる。   Here, the branching enzyme acts on a linear glucan linked by α-1,4-glucoside bonds to cleave the α-1,4-glucoside bonds and α-1,6- A generic term for enzymes that have the function of forming branches by glucoside bonds. When the branching enzyme is used in the production of the starch degradation product according to the present invention, the kind thereof is not particularly limited, and one or more known branching enzymes can be freely selected and used. For example, those purified from animals, bacteria, or the like, or those purified from plants such as potato, rice seed, and corn seed can be used.

なお、本発明に係る澱粉分解物は、澱粉原料の酸液化及び枝作り酵素処理を行わなくても、各種クロマトグラフィー、膜分離等の所定操作を行うことで、製造することも可能である。   The starch degradation product according to the present invention can also be produced by performing various operations such as various chromatography and membrane separation without performing acid liquefaction and branching enzyme treatment of the starch raw material.

また、本発明に係る澱粉分解物は、澱粉原料の酸液化を行わず、澱粉原料をαアミラーゼ等の分解酵素を用いて分解し、次いで、枝作り酵素を用いた処理を行った後、更に、αアミラーゼ等の分解酵素を用いて分解することによっても、製造することができる。   Moreover, the starch degradation product according to the present invention does not liquefy the starch raw material, decomposes the starch raw material using a degrading enzyme such as α-amylase, and then performs a treatment using a branching enzyme, It can also be produced by decomposing using a degrading enzyme such as α-amylase.

以上のように、本発明に係る澱粉分解物は、様々な方法を用いて製造することができるが、これらの方法の中でも、澱粉原料の酸液化及び枝作り酵素処理を行う方法が好ましい。この方法を用いれば、経時的な濁度の増加がより少ない澱粉分解物を得ることができる。また、クロマトグラフィーや膜分離等の操作を行うことなく、本発明の澱粉分解物を得られるため、本発明の澱粉分解物を安価にかつ、工業的に製造する場合に好適である。   As described above, the starch degradation product according to the present invention can be produced using various methods, and among these methods, a method of performing acid liquefaction of starch raw materials and branching enzyme treatment is preferable. If this method is used, a starch degradation product with less increase in turbidity with time can be obtained. Moreover, since the starch decomposition product of the present invention can be obtained without performing operations such as chromatography and membrane separation, the starch decomposition product of the present invention is suitable for inexpensive and industrial production.

また、本発明では、目的の澱粉分解物となるように各種処理を行った後に、活性炭脱色、イオン精製等を行い、不純物を除去することも可能であり、不純物を除去することが好ましい。本発明に係る澱粉分解物は、濁りにくいため、イオン精製がし易いといったメリットもある。   Moreover, in this invention, after performing various processes so that it may become the target starch decomposition product, activated carbon decoloring, ion refinement | purification, etc. can be performed and an impurity can be removed, It is preferable to remove an impurity. Since the starch degradation product according to the present invention is less turbid, there is also an advantage that ion purification is easy.

更に、固形分30〜80%に濃縮してシラップにすることや、真空乾燥や噴霧乾燥により脱水乾燥することで粉末化することも可能である。   Furthermore, it can be pulverized by concentrating to a solid content of 30 to 80% to form syrup, or by dehydrating and drying by vacuum drying or spray drying.

<澱粉分解物の用途>
本発明に係る澱粉分解物は、濁りにくく、低粘度であるため、イオン精製し易く、また、高濃度のまま噴霧することが可能であるといった特徴がある。そこで、本発明に係る澱粉分解物は、粉末化して粉飴として適用したり、液状にしてシラップとして適用したりすることができる。本発明に係る粉飴やシラップの用途としては、例えば、食品などの増量剤、粉末化基材、味質調整剤、浸透圧調整剤等に用いることができる。
<Uses of starch degradation products>
The starch degradation product according to the present invention is characterized by being less turbid and having a low viscosity, so that it can be easily ion-purified and sprayed with a high concentration. Therefore, the starch degradation product according to the present invention can be pulverized and applied as powder cake, or can be liquefied and applied as syrup. As an application of the powder cake and syrup according to the present invention, for example, it can be used for a bulking agent such as food, a powdered base material, a taste modifier, an osmotic pressure regulator and the like.

また、本発明に係る澱粉分解物は、濁りにくく、低粘度で、コクがあり、後味が良好であるため、あらゆる飲食品に含有することが可能である。   Moreover, since the starch degradation product according to the present invention is less turbid, has a low viscosity, is rich, and has a good aftertaste, it can be contained in any food or drink.

本発明に係る澱粉分解物を含有することができる飲食品は、特に限定されず、例えば、ジュース、スポーツ飲料、お茶、コーヒー、紅茶などの飲料、醤油などの調味料、スープ類、クリーム類、各種乳製品類、アイスクリームなどの冷菓、各種粉末食品(飲料を含む)、保存用食品、冷凍食品、パン類、菓子類などの加工食品など、あらゆる飲食物に含有することができる。また、保健機能食品(特定保健機能食品、栄養機能食品、飲料を含む)や、いわゆる健康食品(飲料を含む)、濃厚栄養剤、流動食、乳児・幼児食にも含有することができる。   The food and drink that can contain the starch degradation product according to the present invention is not particularly limited. For example, juices, sports drinks, beverages such as tea, coffee, and tea, seasonings such as soy sauce, soups, creams, Various dairy products, frozen desserts such as ice cream, various powdered foods (including beverages), foods for preservation, frozen foods, processed foods such as breads and confectionery can be contained in all foods and drinks. It can also be contained in health functional foods (including specified health functional foods, nutritional functional foods, and beverages), so-called health foods (including beverages), concentrated nutrients, liquid foods, and infant / infant foods.

さらに、本発明に係る澱粉分解物は、牛、馬、豚などの家畜用哺乳類、鶏、ウズラなどの家禽類、爬虫類、鳥類あるいは小型哺乳類などのペット類、養殖魚類などの飼料にも含有することが可能である。   Furthermore, the starch degradation product according to the present invention is also contained in feed for mammals for domestic animals such as cattle, horses and pigs, poultry such as chickens and quails, pets such as reptiles, birds and small mammals, and cultured fish. It is possible.

加えて、本発明に係る澱粉分解物は、あらゆる薬剤に適用することも可能である。例えば、散剤、顆粒剤などの剤形成形のための粉末化基材、さらに錠剤のための賦形剤、経腸栄養剤等の炭水化物源などに適用することが可能である。特に、本発明に係る澱粉分解物は、低粘度であるため、高濃度にした時のハンドリングがよく、濃厚栄養剤、経腸栄養に適している。また、本発明に係る澱粉分解物は、低粘度という特性を生かして高濃度溶液を調製できるので、粉末化の効率がよく、粉末化基剤として用いることに適している。   In addition, the starch degradation product according to the present invention can be applied to all drugs. For example, it can be applied to powdered substrates for dosage forms such as powders and granules, excipients for tablets, carbohydrate sources such as enteral nutrients, and the like. In particular, since the starch degradation product according to the present invention has a low viscosity, it is easy to handle at a high concentration, and is suitable for concentrated nutrients and enteral nutrition. In addition, since the starch degradation product according to the present invention can be used to prepare a high-concentration solution by taking advantage of its low viscosity, it is suitable for use as a powdered base because of its high powdering efficiency.

以下、実施例に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, the present invention will be described in more detail based on examples. In addition, the Example demonstrated below shows an example of the typical Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.

<実験例1>
実験例1では、澱粉分解物の具体的な糖組成が、濁度や粘度にどのように影響するかを検討した。
<Experimental example 1>
In Experimental Example 1, it was examined how the specific sugar composition of the starch degradation product affects turbidity and viscosity.

(1)試験方法
[枝作り酵素]
本実験例では、枝作り酵素の一例として、Eur. J. Biochem. 59, p615-625 (1975)の方法に則って、精製した馬鈴薯由来の酵素(以下「馬鈴薯由来枝作り酵素」とする)と、WO00/58445の方法に則って、精製したRhodothermus obamensis由来の酵素(以下「細菌由来枝作り酵素」とする)を用いた。
(1) Test method [branching enzyme]
In this experimental example, as an example of a branching enzyme, an enzyme derived from potato purified in accordance with the method of Eur. J. Biochem. 59, p615-625 (1975) (hereinafter referred to as “potato-derived branching enzyme”). According to the method of WO 00/58445, a purified enzyme derived from Rhodothermus obamensis (hereinafter referred to as “bacterial branching enzyme”) was used.

なお、枝作り酵素の活性測定は、以下の方法で行った。
基質溶液として、0.1M酢酸 緩衝液(pH5.2)にアミロース(Sigma社製,A0512)を0.1重量%溶解したアミロース溶液を用いた。
50μLの基質液に50μLの酵素液を添加し、30℃で30分間反応させた後、ヨウ素-ヨウ化カリウム溶液(0.39mMヨウ素−6mMヨウ化カリウム−3.8mM塩酸混合用液)を2mL加え反応を停止させた。ブランク溶液として、酵素液の代わりに水を添加したものを調製した。反応停止から15分後に660nmの吸光度を測定した。枝作り酵素の酵素活性量1単位は、上記の条件で試験する時、660nmの吸光度を1分間に1%低下させる酵素活性量とした。
The activity of branching enzyme was measured by the following method.
As a substrate solution, an amylose solution in which 0.1% by weight of amylose (manufactured by Sigma, A0512) was dissolved in 0.1 M acetic acid buffer (pH 5.2) was used.
50 μL of the enzyme solution is added to 50 μL of the substrate solution and reacted at 30 ° C. for 30 minutes, and then 2 mL of iodine-potassium iodide solution (0.39 mM iodine-6 mM potassium iodide-3.8 mM hydrochloric acid mixing solution) is added. In addition, the reaction was stopped. A blank solution was prepared by adding water instead of the enzyme solution. Absorbance at 660 nm was measured 15 minutes after stopping the reaction. One unit of the enzyme activity of the branching enzyme was defined as the amount of enzyme activity that decreased the absorbance at 660 nm by 1% per minute when tested under the above conditions.

[膜分離]
セラミッククロスフローろ過装置Membralox(日本ポール株式会社製)を使用した。孔径1nmのセラミックフィルターを使用し、固形分10%になるように調整した糖液を供して、膜分離を行った。分画して得られた糖液を、所定の組成となるように混合した。
[Membrane separation]
A ceramic crossflow filtration device Membralox (manufactured by Nippon Pole Co., Ltd.) was used. Using a ceramic filter having a pore diameter of 1 nm, membrane separation was performed using a sugar solution adjusted to a solid content of 10%. The sugar solution obtained by fractionation was mixed so as to have a predetermined composition.

[ゲルろ過]
固形分濃度10%になるように調整した糖液を、3種類のゲルろ過用樹脂(TOYOPEARL HW-65、TOYOPEARL HW-55、TOYOPEARL HW-50、全て各樹脂容量400mL)を3本連結したものに供し、溶離液:水、流速:0.5mL、カラム温度:60℃の条件でクロマト分離を行った。フラクションコレクターで回収した糖液を、所定の組成となるように混合した。
[Gel filtration]
Three sugar solutions (TOYOPEARL HW-65, TOYOPEARL HW-55, and TOYOPEARL HW-50, each with a resin capacity of 400 mL) connected to a sugar solution adjusted to a solid content of 10% The chromatographic separation was performed under the conditions of eluent: water, flow rate: 0.5 mL, column temperature: 60 ° C. The sugar solution collected by the fraction collector was mixed so as to have a predetermined composition.

[DE]
「澱粉糖関連工業分析法」(澱粉糖技術部会編)のレインエイノン法に従って算出した。
[DE]
It was calculated according to the Rain Ainon method of “Starch Sugar Related Industrial Analysis Method” (edited by Starch Sugar Technical Committee).

[分子量]
下記の表1に示す条件で、ゲルろ過クロマトグラフィーにて分析を行った。
分子量スタンダードとして、ShodexスタンダードGFC(水系GPC)カラム用Standard P-82(昭和電工株式会社製)を使用し、分子量スタンダードの溶出時間と分子量の相関から算出される検量線に基づいて、試作品の分子量を測定した。
[Molecular weight]
Analysis was performed by gel filtration chromatography under the conditions shown in Table 1 below.
As a molecular weight standard, Shodex standard GFC (aqueous GPC) column Standard P-82 (manufactured by Showa Denko KK) is used, and based on a calibration curve calculated from the correlation between molecular weight standard elution time and molecular weight, The molecular weight was measured.

Figure 2016202106
Figure 2016202106

[DP1〜2の含有量]
下記の表2に示す条件で液体クロマトグラフィーにて分析を行い、保持時間に基づいて、DP1およびDP2の含量を測定した。
[Content of DP1-2]
Analysis was performed by liquid chromatography under the conditions shown in Table 2 below, and the contents of DP1 and DP2 were measured based on the retention time.

Figure 2016202106
Figure 2016202106

[ヨウ素呈色値]
5mLの水に対し、澱粉分解物を固形分25mgとなるように加えて混合した。さらに、100μLのヨウ素−ヨウ化カリウム溶液(0.2w/v%ヨウ素、2w/v%ヨウ化カリウム)を加えて混合し、30℃の恒温槽で20分間保持した。この溶液の660nmにおける吸光度を、10mm幅のガラスセル、分光光度計UV−1600(株式会社島津製作所製)を用いて測定し、サンプル測定値から、ブランク測定値(水5mLと100μLのヨウ素−ヨウ化カリウム溶液を混合したものの測定値)を差し引いた値をヨウ素呈色値とした。
[Iodine coloration value]
The starch decomposition product was added to 5 mL of water so as to have a solid content of 25 mg and mixed. Furthermore, 100 μL of iodine-potassium iodide solution (0.2 w / v% iodine, 2 w / v% potassium iodide) was added and mixed, and kept in a thermostatic bath at 30 ° C. for 20 minutes. The absorbance at 660 nm of this solution was measured using a glass cell having a width of 10 mm and a spectrophotometer UV-1600 (manufactured by Shimadzu Corporation). From the sample measurement values, blank measurement values (5 mL water and 100 μL iodine-iodine) The value obtained by subtracting the measured value of the mixture of the potassium halide solution was defined as the iodine coloration value.

[粘度]
固形分濃度55%となるように調整した糖液を、測定温度:50℃、パラレルプレート:40mm、トルク:一定 30μN・mの条件でレオメータ(AR1000型、ティー・エイ・インスツルメント社製)を用いて、粘度を測定した。
[viscosity]
A rheometer (AR1000 type, manufactured by TA Instruments Inc.) under the conditions of measuring temperature: 50 ° C., parallel plate: 40 mm, torque: constant 30 μN · m, sugar solution adjusted to a solid content concentration of 55% Was used to measure the viscosity.

[濁度]
〔初期濁度〕
固形分濃度55%となるように調製した糖液を、沸騰浴中で10分間加熱したものを、固形分30%となるように希釈して、100mm幅のガラスセルに入れ、分光光度計UV−1600(株式会社島津製作所製)を用いて、720nmにおける吸光度を測定した値を、初期濁度とした。
[Turbidity]
[Initial turbidity]
A sugar solution prepared to a solid content concentration of 55%, heated in a boiling bath for 10 minutes, diluted to a solid content of 30%, placed in a glass cell with a width of 100 mm, and a spectrophotometer UV A value obtained by measuring absorbance at 720 nm using -1600 (manufactured by Shimadzu Corporation) was defined as initial turbidity.

〔7日保存後の濁度の増加量〕
固形分濃度55%となるように調製した糖液を、沸騰浴中で10分間加熱したものを、密封容器に入れ、4℃で7日間保管した。その後、固形分30%となるように希釈して、初期濁度と同様に、吸光度を測定した値から、初期濁度の値を差し引いたものを、7日保存後の濁度の増加量とした。
[Increase in turbidity after 7 days storage]
A sugar solution prepared so as to have a solid concentration of 55%, heated in a boiling bath for 10 minutes, was put in a sealed container and stored at 4 ° C. for 7 days. Then, after diluting to a solid content of 30%, the value obtained by subtracting the value of the initial turbidity from the value measured for the absorbance in the same manner as the initial turbidity is the amount of increase in turbidity after storage for 7 days. did.

[味評価]
10人の専門パネルにて、以下の3種類の試験を行い、平均点を総合評価とした。
(1)澱粉分解物溶液の甘味
実施例または比較例の澱粉分解物を、固形分5質量%になるように水に溶解した。この溶液について、甘味が最も低いと感じるものを5点、最も高いと感じるものを1点とし、5点満点で評価を行った。評価は、10人の専門パネルの平均点とした。
[Taste evaluation]
The following three types of tests were conducted on 10 specialist panels, and the average score was taken as the overall evaluation.
(1) Sweetness of starch degradation product solution The starch degradation products of Examples or Comparative Examples were dissolved in water so as to have a solid content of 5% by mass. This solution was evaluated on a 5-point scale, with 5 being the least sweet and 1 being the most sweet. Evaluation was made into the average score of 10 expert panels.

(2)中華スープに添加したときのコク
市販の中華スープ100gに、実施例または比較例の澱粉分解物を、固形分5質量%になるように溶解した。この澱粉分解物添加中華スープについて、最もコクがあると感じるものを5点、最もコクがないと感じるものを1点として、5点満点で評価を行った。評価は、10人の専門パネルの平均点とした。
(2) Richness when added to Chinese soup In 100 g of commercially available Chinese soup, the starch decomposition products of Examples or Comparative Examples were dissolved so as to have a solid content of 5% by mass. About this Chinese soup containing starch decomposition products, evaluation was performed on a 5-point scale, with 5 being the most rich and 1 being the least. Evaluation was made into the average score of 10 expert panels.

(3)オレンジジュースに添加した時の後味
市販の果汁100%のオレンジジュース100gに、実施例または比較例の澱粉分解物を、固形分5質量%になるように溶解した。この澱粉分解物添加オレンジジュースについて、最も後味がよいと感じるものを5点、最も後味が悪いと感じるものを1点として、5点満点で評価を行った。評価は、10人の専門パネルの平均点とした。
(3) Aftertaste when added to orange juice The starch decomposition products of Examples or Comparative Examples were dissolved in 100 g of orange juice of 100% commercially available fruit juice so as to have a solid content of 5% by mass. About this orange juice added with starch degradation products, the evaluation was made on a 5-point scale, with 5 points indicating the best aftertaste and 1 point indicating the worst aftertaste. Evaluation was made into the average score of 10 expert panels.

(2)実施例・比較例の製法
[実施例1]
10%塩酸にてpH2.5に調整した30質量%のコーンスターチスラリーを、140℃の温度条件でDE6まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを6.0に調整した後、細菌由来枝作り酵素を、固形分(g)当たり1000ユニット添加し、65℃で12時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度40質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例1の澱粉分解物を得た。
(2) Manufacturing method of Examples and Comparative Examples [Example 1]
A 30% by mass corn starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE6 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 6.0, and then 1000 units of bacterially-derived branching enzyme were added per solid content (g). , And reacted at 65 ° C. for 12 hours. The starch decomposition product solution was decolorized by activated carbon and ion purified, and concentrated to a solid content of 40% by mass. Furthermore, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 1.

[実施例2]
10%塩酸にてpH2.5に調整した30質量%のタピオカスターチスラリーを、140℃の温度条件でDE6まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、95℃で反応を行い、経時的にDEを測定して、DEが8になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、馬鈴薯由来枝作り酵素を固形分(g)当たり5000ユニット添加し、35℃で10時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分40質量%)して、実施例2の澱粉分解物を得た。
[Example 2]
A 30 mass% tapioca starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE6 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 5.8, and then α-amylase (Termamyl Mill, manufactured by Novozymes Japan Ltd.) 0.02% per g) was added, the reaction was carried out at 95 ° C., DE was measured over time, and when DE reached 8, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. After adjusting the pH of the sugar solution to 6.0, 5000 units of potato-derived branching enzyme was added per solid content (g) and reacted at 35 ° C. for 10 hours. The starch decomposition product solution was decolorized by activated carbon, ion purified, and concentrated (solid content: 40% by mass) to obtain the starch decomposition product of Example 2.

[実施例3]
10%塩酸にてpH2.5に調整した30重量%のコーンスターチスラリーを、140℃の温度条件でDE8まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.02%添加し、95℃で反応を行い、経時的にDEを測定して、DEが10になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり500ユニット添加し、65℃で24時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分55質量%)して、実施例3の澱粉分解物を得た。
[Example 3]
A 30% by weight corn starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE8 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 5.8, and then α-amylase (Chrytase T10S, manufactured by Amano Enzyme Co., Ltd.) 0.02% per (g) was added, the reaction was carried out at 95 ° C., DE was measured over time, and when DE reached 10, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. After adjusting the pH of the sugar solution to 6.0, 500 units of bacterially-derived branching enzyme was added per solid (g) and reacted at 65 ° C. for 24 hours. The starch decomposition product solution was subjected to activated carbon decolorization, ion purification, and concentration (solid content 55% by mass) to obtain the starch decomposition product of Example 3.

[実施例4]
10%塩酸にてpH2.5に調整した30重量%のコーンスターチスラリーを、140℃の温度条件でDE6まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを6.0に調整した後、馬鈴薯由来枝作り酵素を固形分(g)当たり4000ユニット添加し、35℃で12時間反応させた。この糖液のpHを5.8に調整した後、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、80℃で反応を行い、経時的にDEを測定して、DEが12になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度45質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例4の澱粉分解物を得た。
[Example 4]
A 30 wt% corn starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE6 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 6.0, and then 4000 units of potato-derived branching enzyme was added per solid content (g). The reaction was carried out at 35 ° C. for 12 hours. After adjusting the pH of the sugar solution to 5.8, α-amylase (Lycozyme Supra, Novozymes Japan Co., Ltd.) was added at 0.02% per solid content (g) and reacted at 80 ° C. The DE was measured, and when DE reached 12, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. This starch decomposition product solution was decolorized by activated carbon, purified by ion, and concentrated to a solid content of 45% by mass. Furthermore, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 4.

[実施例5]
10%塩酸にてpH2.5に調整した30重量%のコーンスターチスラリーを、140℃の温度条件でDE9まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.02%添加し、95℃で反応を行い、経時的にDEを測定して、DEが12になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、馬鈴薯由来枝作り酵素を固形分(g)当たり3000ユニット添加し、35℃で16時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度55質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例5の澱粉分解物を得た。
[Example 5]
A 30% by weight corn starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE9 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 5.8, and then α-amylase (Chrytase T10S, manufactured by Amano Enzyme Co., Ltd.) 0.02% was added per (g), the reaction was carried out at 95 ° C., DE was measured over time, and when DE reached 12, the pH was adjusted to 4 with hydrochloric acid and the reaction was stopped by boiling. After adjusting the pH of this sugar solution to 6.0, 3000 units of potato-derived branch-forming enzymes were added per solid (g), and reacted at 35 ° C. for 16 hours. This starch decomposition product solution was decolorized with activated carbon and ion purified, and concentrated to a solid content concentration of 55% by mass. Furthermore, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 5.

[実施例6]
10%塩酸にてpH2.5に調整した30重量%のワキシーコーンスターチスラリーを、140℃の温度条件でDE10まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを6.0に調整した後、馬鈴薯由来枝作り酵素を固形分(g)当たり2000ユニット添加し、35℃で12時間反応させた。この糖液のpHを5.8に調整した後、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、80℃で反応を行い、経時的にDEを測定して、DEが15になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分75質量%)して、実施例6の澱粉分解物を得た。
[Example 6]
A 30% by weight waxy corn starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE 10 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 6.0, and then 2000 units of potato-derived branch-forming enzyme was added per solid content (g). The reaction was carried out at 35 ° C. for 12 hours. After adjusting the pH of the sugar solution to 5.8, α-amylase (Lycozyme Supra, Novozymes Japan Co., Ltd.) was added at 0.02% per solid content (g) and reacted at 80 ° C. The DE was measured, and when the DE reached 15, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. The starch decomposition product solution was subjected to activated carbon decolorization, ion purification, and concentration (solid content: 75% by mass) to obtain the starch decomposition product of Example 6.

[実施例7]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温して、経時的にDEを測定して、DE18になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製を行った。次に、前述した条件で膜分離を行い、分画して得られた糖液を混合、濃縮(固形分濃度40質量%)し、スプレードライヤーで粉末化し、実施例7の澱粉分解物を得た。
[Example 7]
To 30 wt% corn starch slurry adjusted to pH 5.8 with 10 wt% slaked lime, α-amylase (Lycozyme Supra, manufactured by Novozymes Japan Co., Ltd.) was added 0.2% per solid content (g), and jet cooker The solution was liquefied at a temperature of 110 ° C. This liquefied liquid was kept at 95 ° C., DE was measured over time, and when DE18 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. The starch decomposition product solution was subjected to activated carbon decolorization and ion purification. Next, membrane separation was performed under the conditions described above, and the sugar solution obtained by fractionation was mixed, concentrated (solid content concentration 40% by mass), and powdered with a spray dryer to obtain a starch decomposition product of Example 7 It was.

[実施例8]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温して、経時的にDEを測定して、DE20になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製を行った。次に、前述した条件でゲルろ過を行い、フラクションコレクターで回収した糖液を混合、濃縮(固形分40質量%)して、実施例8の澱粉分解物を得た。
[Example 8]
To 30% by weight of corn starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, 0.2% of α-amylase (Termamyl Mill, manufactured by Novozymes Japan Co., Ltd.) per solid content (g) was added, and a jet cooker ( Liquefaction at a temperature of 110 ° C. This liquefied liquid was kept at 95 ° C., DE was measured over time, and when DE20 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. The starch decomposition product solution was subjected to activated carbon decolorization and ion purification. Next, gel filtration was performed under the conditions described above, and the sugar solution collected by the fraction collector was mixed and concentrated (solid content: 40% by mass) to obtain a starch decomposition product of Example 8.

[実施例9]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化して、この液化液を95℃で保温して、経時的にDEを測定して、DE5になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり750ユニット添加し、65℃で6時間反応させた。この糖液を90℃に昇温して、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、DE8になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度45質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例9の澱粉分解物を得た。
[Example 9]
To 30% by weight of corn starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, 0.2% of α-amylase (Termamyl Mill, manufactured by Novozymes Japan Co., Ltd.) per solid content (g) was added, and a jet cooker ( The temperature of the liquefied solution was kept at 95 ° C., and DE was measured over time. When DE5 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. After adjusting the pH of the sugar solution to 6.0, 750 units of bacterially-derived branching enzyme was added per solid content (g) and reacted at 65 ° C. for 6 hours. The sugar solution was heated to 90 ° C., and α-amylase (Termamyl Mill, manufactured by Novozymes Japan Ltd.) was added at 0.02% per solid content (g). When DE8 was reached, the pH was adjusted to pH 4 with hydrochloric acid. The reaction was adjusted and stopped by boiling. This starch decomposition product solution was decolorized by activated carbon, purified by ion, and concentrated to a solid content of 45% by mass. Furthermore, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 9.

[実施例10]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化して、この液化液を95℃で保温して、経時的にDEを測定して、DE10になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり500ユニット添加し、65℃で4時間反応させた。この糖液を90℃に昇温して、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.02%添加し、DE14になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分70質量%)して、実施例10の澱粉分解物を得た。
[Example 10]
To 30% by weight of corn starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, 0.2% of α-amylase (Termamyl Mill, manufactured by Novozymes Japan Co., Ltd.) per solid content (g) was added, and a jet cooker ( The liquefied liquid was liquefied at a temperature of 110 ° C., and the liquefied liquid was kept at 95 ° C., and DE was measured over time. When DE10 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. After adjusting the pH of this sugar solution to 6.0, 500 units of bacterially-derived branching enzyme was added per solid content (g) and reacted at 65 ° C. for 4 hours. The sugar solution was heated to 90 ° C., and α-amylase (Chrytase T10S, Amano Enzyme Co., Ltd.) was added in an amount of 0.02% per solid content (g). The reaction was stopped by boiling. This starch decomposition product solution was decolorized with activated carbon, ion purified and concentrated (solid content: 70% by mass) to obtain the starch decomposition product of Example 10.

[実施例11]
10重量%消石灰にてpH5.8に調整した30重量%の甘藷澱粉スラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化して、この液化液を95℃で保温して、経時的にDEを測定して、DE4になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり750ユニット添加し、65℃で5時間反応させた。この糖液を90℃に昇温して、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、DE7になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分30質量%)して、実施例11の澱粉分解物を得た。
[Example 11]
To 30% by weight of sweet potato starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, α-amylase (Lycozyme Supra, manufactured by Novozymes Japan Co., Ltd.) was added at 0.2% per solid content (g), and jet Liquefied in a cooker (temperature 110 ° C), kept this liquefied liquid at 95 ° C, measured DE over time, adjusted to pH 4 with hydrochloric acid when DE4 was reached, and stopped reaction by boiling did. After the pH of the sugar solution was adjusted to 6.0, 750 units of bacterially-derived branching enzyme were added per solid content (g) and reacted at 65 ° C. for 5 hours. The sugar solution was heated to 90 ° C., and α-amylase (Lycozyme Supra, manufactured by Novozymes Japan Co., Ltd.) was added in an amount of 0.02% per solid content (g). The reaction was stopped by boiling. This starch decomposition product solution was decolorized with activated carbon, ion purified, and concentrated (solid content 30% by mass) to obtain the starch decomposition product of Example 11.

[比較例1]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化して、この液化液を95℃で保温して、経時的にDEを測定して、DE8になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり750ユニット添加し、65℃で6時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度45質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例1の澱粉分解物を得た。
[Comparative Example 1]
To 30% by weight of corn starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, 0.2% of α-amylase (Termamyl Mill, manufactured by Novozymes Japan Co., Ltd.) per solid content (g) was added, and a jet cooker ( The liquid was liquefied at a temperature of 110 ° C., and this liquefied liquid was kept at 95 ° C., and DE was measured over time. When DE8 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. After adjusting the pH of the sugar solution to 6.0, 750 units of bacterially-derived branching enzyme was added per solid content (g) and reacted at 65 ° C. for 6 hours. This starch decomposition product solution was decolorized by activated carbon, purified by ion, and concentrated to a solid content of 45% by mass. Furthermore, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 1.

[比較例2]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化して、この液化液を95℃で保温して、経時的にDEを測定して、DE14になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり500ユニット添加し、65℃で4時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分65質量%)して、比較例2の澱粉分解物を得た。
[Comparative Example 2]
To 30% by weight of corn starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, α-amylase (Chrytase T10S, manufactured by Amano Enzyme Co., Ltd.) is added at 0.2% per solid content (g). (The temperature was 110 ° C.), and this liquefied solution was kept at 95 ° C., and DE was measured over time. When DE 14 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. . After adjusting the pH of this sugar solution to 6.0, 500 units of bacterially-derived branching enzyme was added per solid content (g) and reacted at 65 ° C. for 4 hours. This starch decomposition product solution was decolorized by activated carbon, ion purified, and concentrated (solid content 65% by mass) to obtain a starch decomposition product of Comparative Example 2.

[比較例3]
10重量%消石灰にてpH5.8に調整した30重量%の甘藷澱粉スラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化して、この液化液を95℃で保温して、経時的にDEを測定して、DE7になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この糖液のpHを6.0に調整した後、細菌由来枝作り酵素を固形分(g)当たり750ユニット添加し、65℃で5時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分30質量%)して、比較例3の澱粉分解物を得た。
[Comparative Example 3]
To 30% by weight of sweet potato starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, α-amylase (Lycozyme Supra, manufactured by Novozymes Japan Co., Ltd.) was added at 0.2% per solid content (g), and jet Liquefied in a cooker (temperature 110 ° C), kept this liquefied liquid at 95 ° C, measured DE over time, adjusted to pH 4 with hydrochloric acid when DE7 was reached, and stopped reaction by boiling did. After the pH of the sugar solution was adjusted to 6.0, 750 units of bacterially-derived branching enzyme were added per solid content (g) and reacted at 65 ° C. for 5 hours. The starch decomposition product solution was decolorized by activated carbon, ion purified, and concentrated (solid content 30% by mass) to obtain a starch decomposition product of Comparative Example 3.

[比較例4]
10%塩酸にてpH2.5に調整した30重量%のタピオカスターチスラリーを、140℃の温度条件でDE3まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、95℃で反応を行い、経時的にDEを測定して、DE10になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度55質量%に濃縮した。濃縮液はスプレードライヤーで粉末化し、比較例4の澱粉分解物を得た。
[Comparative Example 4]
A 30 wt% tapioca starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE3 under a temperature condition of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralizing with slaked lime was adjusted to 5.8, and then α-amylase (Termamyl Mill, manufactured by Novozymes Japan Ltd.) 0.02% per g) was added, the reaction was carried out at 95 ° C., DE was measured over time, and when DE10 was reached, the pH was adjusted to 4 with hydrochloric acid and the reaction was stopped by boiling. This starch decomposition product solution was decolorized with activated carbon and ion purified, and concentrated to a solid content concentration of 55% by mass. The concentrated solution was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 4.

[比較例5]
10%塩酸にてpH2.5に調整した30重量%のタピオカスターチスラリーを、140℃の温度条件でDE2まで分解した。常圧に戻した後、消石灰を用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.02%添加し、95℃で反応を行い、経時的にDEを測定して、DE14になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度55質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例5の澱粉分解物を得た。
[Comparative Example 5]
A 30 wt% tapioca starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE2 at a temperature of 140 ° C. After returning to normal pressure, the pH of the sugar solution whose reaction was stopped by neutralization with slaked lime was adjusted to 5.8, and then α-amylase (Lycozyme Supra, manufactured by Novozymes Japan Ltd.) 0.02% per (g) was added, the reaction was carried out at 95 ° C., DE was measured over time, and when DE14 was reached, the pH was adjusted to 4 with hydrochloric acid and the reaction was stopped by boiling. This starch decomposition product solution was decolorized with activated carbon and ion purified, and concentrated to a solid content concentration of 55% by mass. Further, the concentrated solution was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 5.

[比較例6]
10重量%消石灰にてpH5.8に調整した30重量%のワキシーコーンスターチスラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温して、経時的にDEを測定して、DE13になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製、濃縮(固形分60質量%)して、比較例6の澱粉分解物を得た。
[Comparative Example 6]
To 30 wt% waxy corn starch slurry adjusted to pH 5.8 with 10 wt% slaked lime, α-amylase (Lycozyme Supra, manufactured by Novozymes Japan Ltd.) was added 0.2% per solid content (g), and jet Liquefied with a cooker (temperature 110 ° C.). This liquefied liquid was kept at 95 ° C., DE was measured over time, and when DE13 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. The starch degradation product solution was decolorized by activated carbon, ion purified, and concentrated (solid content 60% by mass) to obtain a starch degradation product of Comparative Example 6.

[比較例7]
10重量%消石灰にてpH5.8に調整した30重量%のコーンスターチスラリーに、αアミラーゼ(ターマミルSC、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温して、経時的にDEを測定して、DE16になった時点で、塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製を行った。次に、前述した条件でゲルろ過を行い、フラクションコレクターで回収した糖液を混合し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例7の澱粉分解物を得た。
[Comparative Example 7]
To 30% by weight of corn starch slurry adjusted to pH 5.8 with 10% by weight slaked lime, 0.2% of α-amylase (Termamyl Mill, manufactured by Novozymes Japan Co., Ltd.) per solid content (g) was added, and a jet cooker ( Liquefaction at a temperature of 110 ° C. This liquefied liquid was kept at 95 ° C., DE was measured over time, and when DE16 was reached, the pH was adjusted to 4 with hydrochloric acid, and the reaction was stopped by boiling. The starch decomposition product solution was subjected to activated carbon decolorization and ion purification. Next, gel filtration was performed under the conditions described above, and the sugar solution collected by the fraction collector was mixed and concentrated to a solid content concentration of 50% by mass. Furthermore, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 7.

(3)測定
前記で得られた実施例1〜11及び比較例1〜7について、それぞれ、DE、分子量、DP1〜2の含有量、ヨウ素呈色値、粘度、濁度を、前述した方法で測定した。また、官能評価として、前述した方法で味の評価も行った。結果を下記の表3に示す。
(3) Measurement For Examples 1 to 11 and Comparative Examples 1 to 7 obtained above, DE, molecular weight, DP1-2 content, iodine color value, viscosity, and turbidity were measured by the methods described above. It was measured. Moreover, taste evaluation was also performed by the method mentioned above as sensory evaluation. The results are shown in Table 3 below.

Figure 2016202106
Figure 2016202106

表3に示す通り、実施例1〜11は、初期濁度が低く、7日保存後の濁度の増加量が、全ての比較例1〜7に比べて、低い結果であった。
また、粘度に関しては、粘度そのものの数値を比べると、実施例と比較例に大きな差はないように思えるが、DP1〜2の含有量と粘度との関係を考慮すると、実施例1〜11の粘度は、全て、式(5−1)又は(5−2)を満たすものであった。
更に、味の総合評価についても、実施例1〜11は、全ての比較例1〜7に比べて、良好な結果であった。
As shown in Table 3, Examples 1 to 11 had low initial turbidity, and the increase in turbidity after 7 days of storage was lower than all Comparative Examples 1 to 7.
Moreover, regarding the viscosity, it seems that there is no great difference between the examples and the comparative examples when comparing the numerical values of the viscosity itself, but considering the relationship between the contents of DP1-2 and the viscosity, All the viscosities satisfy the formula (5-1) or (5-2).
Furthermore, also about the comprehensive evaluation of taste, Examples 1-11 were a favorable result compared with all the comparative examples 1-7.

一方、分子量1500〜14000の含有量(y)が25.0質量%を超える比較例4〜7は、7日保存後の濁度の増加量が非常に高く、味の総合評価も劣る結果であった。
比較例2は、分子量1500〜14000の含有量(y)としては、25.0質量%以下であるが、DP1〜2の含有量が4質量%を超えているために、味の総合評価が劣る結果であった。また、7日保存後の濁度の増加量も高かった。
比較例1及び3のDP1〜2の含有量(x)と分子量1500〜14000の含有量(y)は本発明の範囲内であったが、DP1〜2の含有量と分子量80000〜900000の含有量との関係が式(3)を満たしていないために、7日保存後の濁度の増加量が高く、味の総合評価も劣る結果であった。また、DP1〜2の含有量と粘度との関係も、式(5−1)を満たさない結果であった。
On the other hand, Comparative Examples 4 to 7 in which the content (y) of the molecular weight 1500 to 14000 exceeds 25.0% by mass have a very high increase in turbidity after storage for 7 days, resulting in poor overall evaluation of taste. there were.
Although the comparative example 2 is 25.0 mass% or less as content (y) of molecular weight 1500-14000, since content of DP1-2 exceeds 4 mass%, comprehensive evaluation of a taste is carried out. The result was inferior. In addition, the increase in turbidity after storage for 7 days was also high.
In Comparative Examples 1 and 3, the DP1-2 content (x) and the molecular weight 1500-14000 content (y) were within the scope of the present invention, but the DP1-2 content and the molecular weight 80000-900000 content. Since the relationship with the amount did not satisfy the formula (3), the increase in turbidity after storage for 7 days was high, and the overall evaluation of the taste was also poor. Further, the relationship between the content of DP1 and DP2 and the viscosity was also a result of not satisfying the formula (5-1).

これらの結果から、濁りにくく、低粘度で、コクがあり、後味が良好な澱粉分解物の条件としては、前記(1)〜(3)を全て満たす必要があることが分かった。   From these results, it was found that it is necessary to satisfy all of the above (1) to (3) as the conditions of the starch degradation product that is less turbid, has low viscosity, has a rich body, and has a good aftertaste.

実施例内の結果で検討すると、比較的DEが大きな澱粉分解物(DE13以上)では、分子量1500〜14000の含有量(y)が23.0質量%を超える実施例10と、yが23.0質量%以下である実施例6を比較すると、実施例6の方が濁りにくい傾向が見受けられた。一方、比較的DEが小さな澱粉分解物(DE13未満)では、分子量1500〜14000の含有量(y)が23.0質量%を超える実施例3と、yが23.0質量%以下である実施例2を比較しても、濁りにくさに差は認められなかった。
また、DP1〜2の含有量と分子量80000〜900000の含有量との関係が式(3’)を満たしていない実施例9〜11に比べ、式(3’)を満たしている実施例1〜8の方が、濁りにくいことが分かった。
更に、製造方法で比較すると、澱粉原料の酸液化及び枝作り酵素処理を行って製造された実施例1〜6が、更に、濁りにくいことが分かった。
Considering the results in the examples, in the case of a starch degradation product having a relatively large DE (DE13 or more), the content (y) having a molecular weight of 1500 to 14000 exceeds 23.0% by mass, and y is 23.3%. When Example 6 which is 0 mass% or less was compared, Example 6 showed a tendency to be less turbid. On the other hand, in a starch degradation product having a relatively small DE (less than DE13), Example 3 in which the content (y) having a molecular weight of 1500 to 14000 exceeds 23.0% by mass and that in which y is 23.0% by mass or less Even when Example 2 was compared, no difference in turbidity was observed.
Moreover, compared with Examples 9-11 in which the relationship between content of DP1-2 and content of molecular weight 80000-900000 does not satisfy | fill Formula (3 '), Examples 1-1 which satisfy | fill Formula (3'). 8 was found to be less turbid.
Furthermore, when compared by the manufacturing method, it turned out that Examples 1-6 manufactured by performing the acid liquefaction of the starch raw material and the branching enzyme process were further less turbid.

<実験例2>
実験例2では、前記実験例1で製造した澱粉分解物を、実際の食品に適用した場合の風味、後味又はコクについて、検証した。
なお、風味、後味及びコクの評価は、10名の専門パネルが、各項目に5〜1点の5段階で評価し、その平均点を評価点とした。
<Experimental example 2>
In Experimental Example 2, the starch degradation product produced in Experimental Example 1 was verified with respect to the flavor, aftertaste or richness when applied to an actual food.
In addition, the evaluation of flavor, aftertaste, and richness was evaluated by 5 expert grades of 5 to 1 for each item, and the average score was used as the evaluation score.

(1)スポーツ飲料
食塩:0.5g、ビタミンC:0.03g、ビタミンB1ソーダ:0.03g、塩化マグネシウム:0.2g、乳酸カルシウム:0.2g、クエン酸:2.4g、クエン酸ソーダ:1.7g、フレーバー:2g、ぶどう糖:80g、果糖:13g、水:1500gに、実施例1、4、9又は比較例1、4の澱粉分解物を60gを混合し、加熱殺菌してスポーツ飲料を製造した。製造した澱粉分解物含有スポーツ飲料について、風味及び後味を評価した。結果を表4に示す。
(1) Sports drink Salt: 0.5g, Vitamin C: 0.03g, Vitamin B1 soda: 0.03g, Magnesium chloride: 0.2g, Calcium lactate: 0.2g, Citric acid: 2.4g, Sodium citrate 1.7 g, flavor: 2 g, glucose: 80 g, fructose: 13 g, water: 1500 g mixed with 60 g of the starch degradation product of Examples 1, 4, 9 or Comparative Examples 1 and 4 and sterilized by heating. A beverage was produced. About the manufactured starch decomposition product containing sports drink, flavor and aftertaste were evaluated. The results are shown in Table 4.

Figure 2016202106
Figure 2016202106

表4に示す通り、比較例1又は4を用いた澱粉分解物含有スポーツ飲料に比べ、実施例1、4又は9を用いた澱粉分解物含有スポーツ飲料の方が、全ての評価について良好であった。   As shown in Table 4, the starch degradation product-containing sports beverage using Example 1, 4 or 9 was better for all evaluations than the starch degradation product-containing sports beverage using Comparative Example 1 or 4. It was.

(2)経腸栄養剤
乳カゼイン:34g、分離大豆たんぱく質:23g、実施例5又は比較例1、4の澱粉分解物:150g、大豆油:12.2g、塩化カリウム:1.5g、塩化カルシウム:750mg、グルコン酸第一鉄:325mg、β-カロテン:1.8mg、ビタミンB1:1.6mg、ビタミンB2:1.8mg、大豆レシチン:1.5g、グリセリン脂肪酸エステル:0.75gを混合し、全量が1000mLになるように加水した。これを70℃に加温した状態で、高圧ホモジナイザーで乳化させた。次に、乳化させた経腸栄養剤200gをアルミパウチに充填し、レトルトを用いて121℃の温度で15分間レトルト殺菌を行ったのち、常温まで冷却して経腸栄養剤を製造した。
(2) Enteral nutritional milk casein: 34 g, isolated soy protein: 23 g, starch degradation product of Example 5 or Comparative Example 1, 4: 150 g, soybean oil: 12.2 g, potassium chloride: 1.5 g, calcium chloride : 750 mg, ferrous gluconate: 325 mg, β-carotene: 1.8 mg, vitamin B1: 1.6 mg, vitamin B2: 1.8 mg, soybean lecithin: 1.5 g, glycerin fatty acid ester: 0.75 g Water was added so that the total amount became 1000 mL. This was emulsified with a high-pressure homogenizer while being heated to 70 ° C. Next, 200 g of the emulsified enteral nutrient was filled in an aluminum pouch, sterilized with retort at a temperature of 121 ° C. for 15 minutes, and then cooled to room temperature to produce an enteral nutrient.

製造した澱粉分解物含有経腸栄養剤について、測定温度:50℃、パラレルプレート:40mm、トルク:一定 30μN・mの条件でレオメータ(AR1000型、ティー・エイ・インスツルメント社製)を用いて、粘度を測定した。結果を表5に示す。   About the manufactured starch decomposition product containing enteral nutrient, using a rheometer (AR1000 type, manufactured by TA Instruments Inc.) under the conditions of measurement temperature: 50 ° C., parallel plate: 40 mm, torque: constant 30 μN · m The viscosity was measured. The results are shown in Table 5.

Figure 2016202106
Figure 2016202106

表5に示す通り、比較例1又は比較例4を用いた澱粉分解物含有経腸栄養剤に比べ、実施例5を用いた澱粉分解物含有経腸栄養剤の粘度の方が、低い結果であった。
実際に、チューブで送液したときの通液性についても、比較例1又は比較例4を用いた澱粉分解物含有経腸栄養剤に比べ、実施例5を用いた澱粉分解物含有経腸栄養剤の方が、良好であった。
As shown in Table 5, the viscosity of the starch degradation product-containing enteral nutrient using Example 5 is lower than the starch degradation product-containing enteral nutrition using Comparative Example 1 or Comparative Example 4. there were.
Actually, the liquid permeability when the solution is fed through a tube is also compared with the starch degradation product-containing enteral nutrient using Comparative Example 1 or Comparative Example 4, and the starch degradation product-containing enteral nutrition using Example 5 is used. The agent was better.

(3)粉末茶
脱イオン水:4000mLに、実施例1又は比較例1、4の澱粉分解物を、固形分100gとなるように添加し溶解させた。この溶液を80℃に昇温させ、市販の緑茶葉40gを添加し、2分間撹拌して抽出を行った。この緑茶抽出液をNo.5Cのろ紙でろ過し、ロータリーエバポレーターで全量が400mLになるまで濃縮した。この濃縮液をスプレードライヤーにて噴霧乾燥し、粉末茶を製造した。製造した澱粉分解物含有粉末茶2.5gに、80℃に昇温した脱イオン水100mLを添加して溶解させたものについて、風味及び後味の評価を行った。結果を表6に示す。
(3) Powdered tea Deionized water: The starch degradation product of Example 1 or Comparative Examples 1 and 4 was added to 4000 mL so as to have a solid content of 100 g and dissolved. This solution was heated to 80 ° C., 40 g of commercially available green tea leaves were added, and the mixture was stirred for 2 minutes for extraction. This green tea extract was filtered with No. 5C filter paper and concentrated with a rotary evaporator until the total amount became 400 mL. This concentrated liquid was spray-dried with a spray dryer to produce powdered tea. Flavor and aftertaste were evaluated about what was dissolved by adding 100 mL of deionized water heated to 80 ° C. to 2.5 g of the produced starch decomposed product-containing powder tea. The results are shown in Table 6.

Figure 2016202106
Figure 2016202106

表6に示す通り、比較例1又は4を用いた澱粉分解物含有粉末茶に比べ、実施例1を用いた澱粉分解物含有粉末茶の方が、全ての評価について良好であった。   As shown in Table 6, the starch decomposed product-containing powder tea using Example 1 was better in all evaluations than the starch decomposed product-containing powder tea using Comparative Example 1 or 4.

(4)焼肉のタレ
濃口醤油:240g、砂糖:200g、リンゴペースト:45g、ガーリックペースト:45g、生姜ペースト:45g、ごま油:10g、実施例2又は比較例2、6の澱粉分解物を固形分として100g添加し、合計1000gになるように加水した。これを混合して、焼き肉のタレを製造した。製造した澱粉分解物含有焼肉のタレについて、風味、コク及び後味の評価を行った。結果を表7に示す。
(4) Sauce of Yakiniku Concentrated soy sauce: 240 g, Sugar: 200 g, Apple paste: 45 g, Garlic paste: 45 g, Ginger paste: 45 g, Sesame oil: 10 g, Example 2 or Comparative Examples 2 and 6 100 g was added and watered to a total of 1000 g. This was mixed to produce a grilled meat sauce. About the sauce of the manufactured starch decomposition product containing grilled meat, flavor, richness, and aftertaste were evaluated. The results are shown in Table 7.

Figure 2016202106
Figure 2016202106

表7に示す通り、比較例2又は6を用いた澱粉分解物含有焼肉のタレに比べ、実施例2を用いた澱粉分解物含有焼肉のタレの方が、全ての評価について良好であった。   As shown in Table 7, the sauce of the starch decomposed product-containing yakiniku using Example 2 was better for all evaluations than the sauce of the starch decomposed product-containing grilled meat using Comparative Example 2 or 6.

(5)食パン
小麦粉:350g、砂糖:15g、乾燥酵母:30g、イーストフード:1.5g、食塩:10g、脱脂粉乳:15g、水:200gを混合した。更に、実施例2又は比較例2、6の澱粉分解物を固形分換算で33g添加した後、ミキサーで15分混捏した。次に、混捏したパン生地を分割して丸め、中間生地を製造した。次に、中間生地をポリエチレンの袋に入れ、急速冷凍後、−30℃の冷凍庫に一週間保管した。一週間の冷凍保管の後、ドウコンディショナーを用いて、解凍・発酵した。そして、発酵させた生地を成形し、ホイロで再発酵させた後、焼成して食パンを製造した。製造した澱粉分解物含有食パンについて、風味及び後味の評価を行った。結果を表8に示す。
(5) Bread Wheat flour: 350 g, sugar: 15 g, dry yeast: 30 g, yeast food: 1.5 g, salt: 10 g, skim milk powder: 15 g, water: 200 g were mixed. Furthermore, after adding 33 g of the starch degradation product of Example 2 or Comparative Examples 2 and 6 in terms of solid content, the mixture was kneaded with a mixer for 15 minutes. Next, the mixed dough was divided and rolled to produce an intermediate dough. Next, the intermediate dough was put in a polyethylene bag, rapidly frozen, and stored in a freezer at -30 ° C for one week. After freezing for one week, it was thawed and fermented using a dough conditioner. Then, the fermented dough was formed, re-fermented with a proofer, and then baked to produce bread. About the manufactured starch decomposition product containing bread, flavor and aftertaste were evaluated. The results are shown in Table 8.

Figure 2016202106
Figure 2016202106

表8に示す通り、比較例2又は6を用いた澱粉分解物含有食パンに比べ、実施例2を用いた澱粉分解物含有食パンの方が、全ての評価について良好であった。   As shown in Table 8, the starch decomposed product-containing bread using Example 2 was better in all evaluations than the starch decomposed product-containing bread using Comparative Example 2 or 6.

(6)カスタードクリーム
ボールに水:51.3gにて水戻しした乾燥卵黄:26.7gと、砂糖:36.0g、実施例1又は比較例1、4の澱粉分解物:36gを入れ、泡だて器で混ぜ合わせた。篩った小麦粉:16.0gを加えて、更に泡だて器で混ぜ合わせた。これに、50℃に温めた牛乳:200gを少しずつ加えて、ときのばし、裏ごし器を通した後、中火でクリーム状になるまで掻き混ぜて、カスタードクリームを製造した。製造した澱粉分解物含有カスタードクリームについて、風味、コク及び後味の評価を行った。結果を表9に示す。
(6) Custard cream Dried egg yolk reconstituted with water: 51.3 g: 26.7 g, sugar: 36.0 g, starch decomposition product of Example 1 or Comparative Example 1, 4: 36 g, foam I mixed it with a stove. Sifted flour: 16.0 g was added and further mixed with a frothing device. To this, 200 g of milk warmed to 50 ° C. was added little by little, and after passing through a back strainer, it was stirred until it became creamy on medium heat to produce a custard cream. About the manufactured starch decomposition product containing custard cream, flavor, richness, and aftertaste were evaluated. The results are shown in Table 9.

Figure 2016202106
Figure 2016202106

表9に示す通り、比較例1又は4を用いた澱粉分解物含有カスタードクリームに比べ、実施例1を用いた澱粉分解物含有カスタードクリームの方が、全ての評価について良好であった。   As shown in Table 9, the starch degradation product-containing custard cream using Example 1 was better in all evaluations than the starch degradation product-containing custard cream using Comparative Example 1 or 4.

Claims (9)

DP1〜2の含有量(質量%)x、分子量1500〜14000の含有量(質量%)y、及び、分子量80000〜900000の含有量(質量%)zが、下記(1)〜(3)を満たす澱粉分解物。
(1)x≦4.0
(2)5.0≦y≦25.0
(3)z≦−2.2x+9.8
The content (mass%) x of DP 1-2, the content (mass%) y of molecular weight 1500-14000, and the content (mass%) z of molecular weight 80000-90000 are the following (1) to (3). Filled starch degradation product.
(1) x ≦ 4.0
(2) 5.0 ≦ y ≦ 25.0
(3) z ≦ −2.2x + 9.8
前記zが、下記(3’)を満たす請求項1記載の澱粉分解物。
(3’)z≦−1.3x+6.2
The starch degradation product according to claim 1, wherein the z satisfies the following (3 ').
(3 ′) z ≦ −1.3x + 6.2
前記yが、下記(2’)を満たす請求項1又は2に記載の澱粉分解物。
(2’)5.0≦y≦23.0
The starch degradation product according to claim 1 or 2, wherein the y satisfies the following (2 ').
(2 ′) 5.0 ≦ y ≦ 23.0
ヨウ素液を混合したときの660nmの吸光度vが、下記(4)を満たす請求項1から3のいずれか一項に記載の澱粉分解物。
(4)v≦0.6
The starch degradation product according to any one of claims 1 to 3, wherein the absorbance v at 660 nm when the iodine solution is mixed satisfies the following (4).
(4) v ≦ 0.6
前記vが、下記(4’)を満たす請求項4記載の澱粉分解物。
(4’)v≦0.5
The starch degradation product according to claim 4, wherein the v satisfies the following (4 ').
(4 ′) v ≦ 0.5
初期濁度が0.2以下であり、かつ、7日保存後の濁度の増加が2.0以下である請求項1から5のいずれか一項に記載の澱粉分解物。   The starch degradation product according to any one of claims 1 to 5, wherein the initial turbidity is 0.2 or less and the increase in turbidity after storage for 7 days is 2.0 or less. 請求項1から6のいずれか一項に記載の澱粉分解物を粉末化した粉飴。   Powdered meal obtained by pulverizing the starch degradation product according to any one of claims 1 to 6. 請求項1から6のいずれか一項に記載の澱粉分解物を含むシラップ。   A syrup comprising the starch degradation product according to any one of claims 1 to 6. 請求項1から6のいずれか一項に記載の澱粉分解物を含む飲食品。   Food-drinks containing the starch degradation product as described in any one of Claims 1-6.
JP2015089703A 2015-04-24 2015-04-24 Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product Active JP6470099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089703A JP6470099B2 (en) 2015-04-24 2015-04-24 Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089703A JP6470099B2 (en) 2015-04-24 2015-04-24 Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product

Publications (2)

Publication Number Publication Date
JP2016202106A true JP2016202106A (en) 2016-12-08
JP6470099B2 JP6470099B2 (en) 2019-02-13

Family

ID=57487851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089703A Active JP6470099B2 (en) 2015-04-24 2015-04-24 Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product

Country Status (1)

Country Link
JP (1) JP6470099B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042113A (en) * 2015-08-27 2017-03-02 昭和産業株式会社 Dry food
JP6298210B1 (en) * 2017-11-14 2018-03-20 松谷化学工業株式会社 Novel starch degradation product and method for producing the same
WO2019235142A1 (en) * 2018-06-08 2019-12-12 昭和産業株式会社 Crystalline starch degradation product; food/beverage product composition, food/beverage product, medicinal product, cosmetic, industrial product, feed, medium, and fertilizer employing said crystalline starch degradation product, and modifier therefor; and method for manufacturing said crystalline starch degradation product, food/beverage product composition, food/beverage product, medicinal product, cosmetic, industrial product, feed, medium, and fertilizer
WO2020217849A1 (en) * 2019-04-26 2020-10-29 サントリーホールディングス株式会社 Powder composition
JPWO2020230238A1 (en) * 2019-05-13 2020-11-19
WO2022038978A1 (en) * 2020-08-19 2022-02-24 株式会社荏原製作所 Method and apparatus for cleaning washing tool, substrate washing device, and method for manufacturing washing tool

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747500A (en) * 1980-09-03 1982-03-18 Nikken Chemicals Co Ltd New high molecular dextrin and method
JPS57129667A (en) * 1981-02-05 1982-08-11 Sato Shokuhin Kogyo Kk Pulverization of seasoning liquid containing acetic acid
JPH09272702A (en) * 1996-02-05 1997-10-21 Ezaki Glico Co Ltd Lowly viscous solution
JPH108026A (en) * 1996-06-19 1998-01-13 Ezaki Glico Co Ltd Starch gelatinized liquid having high transparency
JP2000001502A (en) * 1998-04-27 2000-01-07 Roquette Freres Production of low-de starch hydrolyzate by nano- filtration fractionation, product obtained thereby, and use of such product
JP2001011101A (en) * 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2001294601A (en) * 2000-04-11 2001-10-23 Akita Prefecture Highly branched starch and method for producing the same
JP2002543248A (en) * 1999-04-30 2002-12-17 ロケット・フルーレ Soluble branched polymer of glucose and method for producing the same
JP2003002901A (en) * 2001-06-22 2003-01-08 Ina Food Ind Co Ltd Method for lowering viscosity of polysaccharide, viscosity-lowering agent for polysaccharide and polysaccharide lowered in viscosity
JP2003144187A (en) * 2001-11-15 2003-05-20 Sanmatsu Kogyo Ltd Method for producing liquid state branched dextrin
JP2005213496A (en) * 2003-12-19 2005-08-11 Roquette Freres Soluble highly branched glucose polymer
JP2006204207A (en) * 2005-01-28 2006-08-10 Matsutani Chem Ind Ltd Method for producing starch decomposition product and white dextrin
JP2007182563A (en) * 2005-12-09 2007-07-19 Showa Sangyo Co Ltd Glucose polymer, eatables and drinkables, and method for producing glucose polymer
JP2008222822A (en) * 2007-03-12 2008-09-25 Sanwa Denpun Kogyo Kk Dextrin and its use
JP2010095701A (en) * 2008-09-18 2010-04-30 Nippon Shokuhin Kako Co Ltd New branched glucan, method for producing the same and application of the same
JP2010226988A (en) * 2009-03-26 2010-10-14 Showa Sangyo Co Ltd Starch decomposition product, and food additive, food and drink and drug containing the starch decomposition product, and method for producing the starch decomposition product
JP2012120471A (en) * 2010-12-07 2012-06-28 Ezaki Glico Co Ltd Method for producing branched glucan with cyclic structure
JP2014080518A (en) * 2012-10-17 2014-05-08 Matsutani Chem Ind Ltd Branched dextrin and its use

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747500A (en) * 1980-09-03 1982-03-18 Nikken Chemicals Co Ltd New high molecular dextrin and method
JPS57129667A (en) * 1981-02-05 1982-08-11 Sato Shokuhin Kogyo Kk Pulverization of seasoning liquid containing acetic acid
JPH09272702A (en) * 1996-02-05 1997-10-21 Ezaki Glico Co Ltd Lowly viscous solution
JPH108026A (en) * 1996-06-19 1998-01-13 Ezaki Glico Co Ltd Starch gelatinized liquid having high transparency
JP2000001502A (en) * 1998-04-27 2000-01-07 Roquette Freres Production of low-de starch hydrolyzate by nano- filtration fractionation, product obtained thereby, and use of such product
JP2002543248A (en) * 1999-04-30 2002-12-17 ロケット・フルーレ Soluble branched polymer of glucose and method for producing the same
JP2001011101A (en) * 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2001294601A (en) * 2000-04-11 2001-10-23 Akita Prefecture Highly branched starch and method for producing the same
JP2003002901A (en) * 2001-06-22 2003-01-08 Ina Food Ind Co Ltd Method for lowering viscosity of polysaccharide, viscosity-lowering agent for polysaccharide and polysaccharide lowered in viscosity
JP2003144187A (en) * 2001-11-15 2003-05-20 Sanmatsu Kogyo Ltd Method for producing liquid state branched dextrin
JP2005213496A (en) * 2003-12-19 2005-08-11 Roquette Freres Soluble highly branched glucose polymer
JP2006204207A (en) * 2005-01-28 2006-08-10 Matsutani Chem Ind Ltd Method for producing starch decomposition product and white dextrin
JP2007182563A (en) * 2005-12-09 2007-07-19 Showa Sangyo Co Ltd Glucose polymer, eatables and drinkables, and method for producing glucose polymer
JP2008222822A (en) * 2007-03-12 2008-09-25 Sanwa Denpun Kogyo Kk Dextrin and its use
JP2010095701A (en) * 2008-09-18 2010-04-30 Nippon Shokuhin Kako Co Ltd New branched glucan, method for producing the same and application of the same
JP2010226988A (en) * 2009-03-26 2010-10-14 Showa Sangyo Co Ltd Starch decomposition product, and food additive, food and drink and drug containing the starch decomposition product, and method for producing the starch decomposition product
JP2012120471A (en) * 2010-12-07 2012-06-28 Ezaki Glico Co Ltd Method for producing branched glucan with cyclic structure
JP2014080518A (en) * 2012-10-17 2014-05-08 Matsutani Chem Ind Ltd Branched dextrin and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高田洋樹: "プロダクトイノベーション ブランチングエンザイムの実用化と食品原料クラスター デキストリンの開発", 化学と生物, vol. 45(6), JPN7019000024, 2007, pages 430 - 434, ISSN: 0003953814 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042113A (en) * 2015-08-27 2017-03-02 昭和産業株式会社 Dry food
JP6298210B1 (en) * 2017-11-14 2018-03-20 松谷化学工業株式会社 Novel starch degradation product and method for producing the same
JP2019089932A (en) * 2017-11-14 2019-06-13 松谷化学工業株式会社 Novel decomposed starch and method for producing the same
JP7404233B2 (en) 2018-06-08 2023-12-25 昭和産業株式会社 Crystalline starch decomposition products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, fertilizers, and modifiers thereof, and the crystalline starch decomposition products using the crystalline starch decomposition products. Methods for producing products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, and fertilizers
WO2019235142A1 (en) * 2018-06-08 2019-12-12 昭和産業株式会社 Crystalline starch degradation product; food/beverage product composition, food/beverage product, medicinal product, cosmetic, industrial product, feed, medium, and fertilizer employing said crystalline starch degradation product, and modifier therefor; and method for manufacturing said crystalline starch degradation product, food/beverage product composition, food/beverage product, medicinal product, cosmetic, industrial product, feed, medium, and fertilizer
CN112292042B (en) * 2018-06-08 2024-03-01 昭和产业株式会社 Crystalline starch decomposition product and application thereof
CN112292042A (en) * 2018-06-08 2021-01-29 昭和产业株式会社 Crystalline amylolysis product, composition for food and drink, pharmaceutical, cosmetic, industrial product, feed, culture medium, fertilizer, and modifier thereof using the crystalline amylolysis product, and method for producing the crystalline amylolysis product, composition for food and drink, pharmaceutical, cosmetic, industrial product, feed, culture medium, and fertilizer
JPWO2019235142A1 (en) * 2018-06-08 2021-07-08 昭和産業株式会社 Crystalline starch decomposition products, food and drink compositions using the crystalline starch decomposition products, foods and drinks, pharmaceuticals, cosmetics, industrial products, feeds, media, fertilizers, modifiers thereof, and the crystalline starch decomposition products. Manufacturing method of foods, food and drink compositions, foods and drinks, pharmaceuticals, cosmetics, industrial products, feeds, media, and fertilizers
WO2020217849A1 (en) * 2019-04-26 2020-10-29 サントリーホールディングス株式会社 Powder composition
WO2020230238A1 (en) * 2019-05-13 2020-11-19 昭和産業株式会社 Modifier, modification composition comprising said modifier, food and beverage, drug, cosmetic, industrial product, feed, medium or fertilizer using same, and method for modifying said products
JP7354237B2 (en) 2019-05-13 2023-10-02 昭和産業株式会社 Modifiers, modification compositions containing the modifiers, foods and drinks, pharmaceuticals, cosmetics, industrial products, feeds, culture media, or fertilizers using these, and methods for modifying these products
JPWO2020230238A1 (en) * 2019-05-13 2020-11-19
WO2022038978A1 (en) * 2020-08-19 2022-02-24 株式会社荏原製作所 Method and apparatus for cleaning washing tool, substrate washing device, and method for manufacturing washing tool

Also Published As

Publication number Publication date
JP6470099B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6470099B2 (en) Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product
Igoe Dictionary of food ingredients
CN103443112B (en) Saccharide condensation polymer, its manufacture method and application thereof
EP3714700A1 (en) Low-calorie hot sauce
JP4973454B2 (en) Maltooligosaccharide composition
JP7404233B2 (en) Crystalline starch decomposition products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, fertilizers, and modifiers thereof, and the crystalline starch decomposition products using the crystalline starch decomposition products. Methods for producing products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, and fertilizers
CN106659203A (en) Improved sweetener
KR20220108798A (en) High-fiber, low-sugar-soluble dietary fiber, products comprising same, and methods of making and using same
EP3814517A1 (en) Soluble flour and methods of manufacturing same
JP6962674B2 (en) Branched α-glucan mixture syrup and its uses
JP2010226988A (en) Starch decomposition product, and food additive, food and drink and drug containing the starch decomposition product, and method for producing the starch decomposition product
JP6298210B1 (en) Novel starch degradation product and method for producing the same
JP7001057B2 (en) Starch-containing food loosening improver
JP5507105B2 (en) Novel starch degradation product, food additive, food and drink, and drug containing the starch degradation product
JP6512997B2 (en) Dried food
TW202027614A (en) Resistant starch and production method thereof
JP7285052B2 (en) Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink
JP7354237B2 (en) Modifiers, modification compositions containing the modifiers, foods and drinks, pharmaceuticals, cosmetics, industrial products, feeds, culture media, or fertilizers using these, and methods for modifying these products
JP4443491B2 (en) Method for improving and maintaining texture or flavor, use of glucose polymer, glucose polymer, and food and drink
JP2021088623A (en) Novel starch decomposition product and method for manufacturing the same
JP2020186337A (en) Starch decomposition product, as well as composition for foods using starch decomposition product, foods, rich enhancer, manufacturing method of foods, and rich enhancing method
JP6762100B2 (en) Emulsion stabilizer and food and drink using the emulsion stabilizer
JP2022077882A (en) Modifier containing starch decomposition product and thickening gelling agent
JP2022167684A (en) Physical property stabilizer
JP5864854B2 (en) Method for producing starch-containing beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6470099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250