JP7285052B2 - Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink - Google Patents

Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink Download PDF

Info

Publication number
JP7285052B2
JP7285052B2 JP2018141467A JP2018141467A JP7285052B2 JP 7285052 B2 JP7285052 B2 JP 7285052B2 JP 2018141467 A JP2018141467 A JP 2018141467A JP 2018141467 A JP2018141467 A JP 2018141467A JP 7285052 B2 JP7285052 B2 JP 7285052B2
Authority
JP
Japan
Prior art keywords
starch
mass
starch hydrolyzate
food
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018141467A
Other languages
Japanese (ja)
Other versions
JP2020015871A (en
Inventor
敦 寺田
政泰 樋口
洋則 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Sangyo Co Ltd
Original Assignee
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Sangyo Co Ltd filed Critical Showa Sangyo Co Ltd
Priority to JP2018141467A priority Critical patent/JP7285052B2/en
Publication of JP2020015871A publication Critical patent/JP2020015871A/en
Application granted granted Critical
Publication of JP7285052B2 publication Critical patent/JP7285052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Grain Derivatives (AREA)
  • General Preparation And Processing Of Foods (AREA)

Description

本技術は、澱粉分解物、並びに該澱粉分解物を用いた飲食品用組成物、及び飲食品に関する。 TECHNICAL FIELD The present technology relates to a starch hydrolyzate, a composition for food and drink using the starch hydrolyzate, and a food and drink.

従来から、食品分野においては、甘味料、味質調整、浸透圧調整、保湿剤、粉末化基材などの用途に、澱粉分解物が利用されている。また、澱粉分解物は、医療分野においても、経腸栄養剤の炭水化物源や薬剤の賦形剤などの用途に利用されている。更に、化粧品分野においては、澱粉分解物は、化粧品を固形化する際の結合剤やクリーム状の化粧品の粘度調整などの用途にも利用されている。 BACKGROUND ART Conventionally, in the field of foods, starch hydrolysates have been used for applications such as sweeteners, taste adjustment, osmotic pressure adjustment, moisturizing agents, and powdered base materials. In the medical field, starch hydrolyzate is also used as a carbohydrate source for enteral nutrition and as an excipient for pharmaceuticals. Furthermore, in the field of cosmetics, the starch hydrolyzate is also used as a binder for solidifying cosmetics and for adjusting the viscosity of creamy cosmetics.

このように、澱粉分解物は、その甘味度、味質、浸透圧、粘度、吸湿性等の基本的物性を調整することで上記のような様々な用途に利用される。例えば、甘味度の高いものは甘味料として用いることに適し、逆に甘味度の低いものは味質調整剤、浸透圧調整剤、粉末化基材等に適する。また、澱粉分解物の粘度に関しては、例えば、澱粉分解物の粘度が低すぎると、粘度付与のための用途には適さず、逆に澱粉分解物の粘度が高すぎる場合、粘度増加が好ましくない用途には適さない。また、澱粉分解物の吸湿性に関しては、澱粉分解物の吸湿性が高すぎると、保存や流通の際に固結したり、べたつきが発生することがあり、粉末化基材等の用途には適さない。 Thus, the starch hydrolyzate can be used for various purposes as described above by adjusting its basic physical properties such as sweetness, taste, osmotic pressure, viscosity, and hygroscopicity. For example, those with high sweetness are suitable for use as sweeteners, while those with low sweetness are suitable for taste modifiers, osmotic pressure modifiers, powdered base materials, and the like. Regarding the viscosity of the starch hydrolyzate, for example, if the viscosity of the starch hydrolyzate is too low, it is not suitable for use in imparting viscosity. Not suitable for use. Regarding the hygroscopicity of the starch hydrolyzate, if the hydrolysate of the starch hydrolyzate is too hygroscopic, it may caking or become sticky during storage or distribution. Not suitable.

澱粉分解物の甘味度、味質、浸透圧、粘度、吸湿性等の基本的物性は、構成成分であるグルコースの重合度(DP)によって左右されるといわれている。例えば、グルコース重合度(DP)の低いものを多く含む澱粉分解物は、甘味度が高くなる一方で、粘度は低くなる。逆にグルコース重合度(DP)の高いものを多く含む澱粉分解物は、甘味度が低くなる一方で、粘度は高くなる。 Basic physical properties such as sweetness, taste, osmotic pressure, viscosity, and hygroscopicity of starch hydrolysates are said to be influenced by the degree of polymerization (DP) of the constituent glucose. For example, a starch hydrolyzate containing a large amount of glucose with a low degree of polymerization (DP) has a high degree of sweetness but a low viscosity. Conversely, a starch hydrolyzate containing a large amount of glucose having a high degree of polymerization (DP) has a low sweetness but a high viscosity.

また、澱粉分解物の基本的物性をコントロールする指標として、DE値(dextrose equivalent)を求めることも多い。「DE(dextrose equivalent)」とは、デキストロース当量とも称され、還元糖をグルコースとして測定し、その全固形分に対する割合(数1参照)を示す値である。このDE値は、澱粉の加水分解の程度(分解度)、即ち糖化の進行の程度を示す指標である。 Also, as an index for controlling the basic physical properties of starch hydrolysates, the DE value (dextrose equivalent) is often obtained. "DE (dextrose equivalent)" is also called dextrose equivalent, and is a value indicating the proportion of reducing sugar as glucose to the total solid content (see Equation 1). This DE value is an index indicating the degree of hydrolysis (decomposition degree) of starch, that is, the degree of progress of saccharification.

Figure 0007285052000001
Figure 0007285052000001

一般に、DE値が高いほど、甘味度、浸透圧、吸湿性が高く、粘度は低くなる。逆に、DE値が低いほど、デキストリン特有の風味が強くなり、濁りやすく、粘度も高くなる。例えば、非特許文献1には、DEが低いほど粘度が高く、溶解性が低いことが記載されている。 In general, the higher the DE value, the higher the sweetness, osmotic pressure, hygroscopicity, and lower viscosity. Conversely, the lower the DE value, the stronger the flavor peculiar to dextrin, the easier it is to become cloudy, and the higher the viscosity. For example, Non-Patent Document 1 describes that the lower the DE, the higher the viscosity and the lower the solubility.

近年、用途に合わせて、澱粉分解物の基本的物性を調整するために、澱粉分解物中の糖組成を操作する技術が開発されている。例えば、特許文献1では、デンプン分解物を含有する糖液に、サッカロマイセス属の酵母菌体を添加し、糖液中のマルトトリオース以下の低分子オリゴ糖を資化させることにより、甘味がなく、その糖液の経時安定性に優れた、マルトテトラオース以上を含有するデンプン分解物を製造する技術が開示されている。 In recent years, in order to adjust the basic physical properties of the starch hydrolyzate according to the application, techniques have been developed to manipulate the sugar composition in the starch hydrolyzate. For example, in Patent Document 1, yeast cells of the genus Saccharomyces are added to a sugar solution containing a starch degradation product, and low-molecular-weight oligosaccharides below maltotriose in the sugar solution are assimilated, resulting in no sweetness. , discloses a technique for producing a starch hydrolyzate containing maltotetraose or more, which is excellent in the stability of its sugar solution over time.

また、特許文献2では、固形あたりマルトトリオース40~60%、マルトース15~35%及びその他の糖から成るマルトトリオース液を、強酸性陽イオン交換樹脂によってクロマト分離することにより、固形あたりマルトトリオース65%以上及びマルトース25%以下含有する、低甘味性、吸湿性等の特性に優れ、多分野の用途に利用し得るマルトトリオース高含有組成物を得る技術が開示されている。 Further, in Patent Document 2, a maltotriose liquid consisting of 40 to 60% maltotriose, 15 to 35% maltose and other sugars per solid is chromatographically separated by a strongly acidic cation exchange resin to obtain malt per solid. A technique for obtaining a maltotriose-rich composition containing 65% or more triose and 25% or less maltose, which is excellent in properties such as low sweetness and hygroscopicity, and which can be used in various fields is disclosed.

特開平09-143191号公報JP-A-09-143191 特開平04-108356号公報JP-A-04-108356

月刊フードケミカル2000-10Monthly Food Chemical 2000-10

デキストリン(DE20以下)などのDEの低い澱粉分解物は、粘度が高く甘味度が低いことから、食品の増粘、ボディ感付与などに利用されている。しかしながら、澱粉分解物はDEが低くなるほど特有の穀物臭、糊っぽさが生じ、この澱粉分解物を使用した食品の風味を損ねるという問題がある。逆に、DEが高い澱粉分解物においては、穀物臭は低減するが、粘度の低下、甘味の増加といった別の問題が生じる。 Low DE starch decomposition products such as dextrin (DE 20 or less) have high viscosity and low sweetness, so they are used for thickening foods and imparting body feeling. However, the lower the DE of a starch hydrolyzate, the more characteristic grainy odor and gummyness are produced, which impairs the flavor of foods using this starch hydrolyzate. Conversely, a starch hydrolyzate with a high DE reduces grain odor, but causes other problems such as a decrease in viscosity and an increase in sweetness.

そこで、本技術では、粘度付与効果を有し、且つ、風味の良好な新規の澱粉分解物を提供することを主目的とする。 Therefore, the main object of the present technology is to provide a novel starch hydrolyzate that has a viscosity-imparting effect and a good flavor.

本願発明者らは、高い粘度付与効果を有しつつ、風味の良好な澱粉分解物の組成について鋭意研究を行った結果、マルトトリオ―ス及びマルトテトラオースの含有量が特定の範囲であって、該含有量と粘度との関係が一定の条件を満たすと、穀物臭や糊っぽさの発生が抑制されることを見出し、本技術を完成させるに至った。 The inventors of the present application have conducted intensive research on the composition of a starch hydrolyzate that has a high viscosity imparting effect and a good flavor. As a result, the content of maltotriose and maltotetraose is within a specific range, When the relationship between the content and the viscosity satisfies a certain condition, the inventors have found that grain odor and gummy taste can be suppressed, and have completed the present technology.

即ち、本技術では、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たす澱粉分解物を提供する。
(1)10≦x≦20のとき、y≧-2.7x+65
(2)20<x≦40のとき、y≧-0.2x+15
本技術に係る澱粉分解物は、前記xと、前記yとを、下記(1’)を満たすようにすることもできる。
(1’)10≦x≦20のとき、y≧-4.1x+93
本技術に係る澱粉分解物は、前記xと、前記yとを、下記(1’’)又は(2’)を満たすようにすることもできる。
(1’’)10≦x≦20のとき、y≧-5.0x+115
(2’)20<x≦40のとき、y≧-0.2x+19
本技術に係る澱粉分解物は、前記xと、前記澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))とを、下記(3)を満たすようにすることもできる。
(3)10≦x≦40のとき、15≦z
That is, in the present technology, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) are as follows. To provide a starch hydrolyzate that satisfies (1) or (2).
(1) When 10≤x≤20, y≥-2.7x+65
(2) y≧−0.2x+15 when 20<x≦40
In the starch hydrolyzate according to the present technology, x and y may satisfy the following (1′).
(1′) when 10≦x≦20, y≧−4.1x+93
In the starch hydrolyzate according to the present technology, x and y may satisfy the following (1'') or (2').
(1'') when 10≤x≤20, y≥-5.0x+115
(2′) when 20<x≦40, y≧−0.2x+19
In the starch hydrolyzate according to the present technology, the x and the content (z (mass%)) having a molecular weight of 2000 to 30000 after the starch hydrolyzate is treated with isoamylase are adjusted so as to satisfy the following (3). You can also
(3) 15≤z when 10≤x≤40

本技術に係る澱粉分解物は、飲食品用組成物及び飲食品などに用いることができる。 The starch hydrolyzate according to the present technology can be used for food and drink compositions, food and drink, and the like.

本技術によれば、粘度付与効果を有し、且つ、風味の良好な新規の澱粉分解物を提供することが可能である。 According to the present technology, it is possible to provide a novel starch hydrolyzate that has a viscosity-imparting effect and a good flavor.

以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 A preferred embodiment for implementing the present technology will be described below. It should be noted that the embodiments described below are examples of representative embodiments of the present technology, and the scope of the present technology should not be construed narrowly.

<澱粉分解物>
本技術に係る澱粉分解物は、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たす澱粉分解物である。
(1)10≦x≦20のとき、y≧-2.7x+65
(2)20<x≦40のとき、y≧-0.2x+15
<Starch degradation product>
The starch degradation product according to the present technology has a content (x (mass%)) with a degree of glucose polymerization (DP) of 3 to 4, and a viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. is a starch decomposition product that satisfies the following (1) or (2).
(1) When 10≤x≤20, y≥-2.7x+65
(2) y≧−0.2x+15 when 20<x≦40

本技術に係る澱粉分解物において、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))は、上記(1)又は(2)を満たせば特に限定されないが、本技術では特に、下記(1’)を満たすことが好ましい。
(1’)10≦x≦20のとき、y≧-4.1x+93
In the starch hydrolyzate according to the present technology, the content of glucose polymerization degree (DP) 3 to 4 (x (mass%)) and the viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. , is not particularly limited as long as it satisfies the above (1) or (2), but in the present technology, it is particularly preferable to satisfy the following (1′).
(1′) when 10≦x≦20, y≧−4.1x+93

上記(1’)を満たすことで、穀物臭や糊っぽさの発生をより効果的に抑制することができ、本技術に係る澱粉分解物を用いた飲食品の風味をより向上させることができる。 By satisfying the above (1′), it is possible to more effectively suppress the occurrence of grain odor and gummyness, and it is possible to further improve the flavor of food and drink using the starch decomposition product according to the present technology. can.

また、本技術では、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))が、下記(1’’)又は(2’)を満たすことがより好ましい。
(1’’)10≦x≦20のとき、y≧-5.0x+115
(2’)20<x≦40のとき、y≧-0.2x+19
In addition, in the present technology, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) are as follows ( 1'') or (2') is more preferably satisfied.
(1'') when 10≤x≤20, y≥-5.0x+115
(2′) when 20<x≦40, y≧−0.2x+19

上記(1’’)又は(2’)を満たすことで、本技術に係る澱粉分解物を用いた飲食品のとろみ、コク味、食感、ほぐれ性等を、より向上させることができる。 By satisfying (1'') or (2') above, it is possible to further improve the thickness, richness, texture, looseness, etc. of food and drink using the starch hydrolyzate according to the present technology.

更に、本技術では、グルコース重合度(DP)3~4の含有量(x(質量%))と、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))とが、下記(3)を満たすことが好ましい。
(3)10≦x≦40のとき、15≦z
Furthermore, in the present technology, the content of glucose polymerization degree (DP) 3 to 4 (x (mass%)) and the content of molecular weight 2000 to 30000 after treating the starch degradation product with isoamylase (z (mass% )) preferably satisfies the following (3).
(3) 15≤z when 10≤x≤40

澱粉分解物をイソアミラーゼで処理することにより、澱粉分解物の分子中に存在するα-1,6グルコシド結合が加水分解され、直鎖状の構造となったものが残る。即ち、グルコース重合度(DP)3~4の含有量(x(質量%))が上記(3)で示す範囲であり、かつ、イソアミラーゼ処理後に直鎖状の構造となるものの含有量が15質量%以上であることが更に好ましい。この範囲内とすることにより、本技術に係る澱粉分解物を用いた飲食品の風味や食感をより向上させることができる。 By treating the starch hydrolyzate with isoamylase, the α-1,6 glucoside bonds present in the molecule of the starch hydrolyzate are hydrolyzed, leaving a linear structure. That is, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 is within the range shown in (3) above, and the content of the linear structure after isoamylase treatment is 15. % by mass or more is more preferable. By setting it within this range, the flavor and texture of the food and drink using the starch hydrolyzate according to the present technology can be further improved.

加えて、上記(3)において、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))の上限は、特に限定されないが、25質量%以下であることがより好ましい。この範囲内とすることにより、本技術に係る澱粉分解物を用いた飲食品の風味をより向上させることができる。 In addition, in the above (3), the upper limit of the content (z (% by mass)) having a molecular weight of 2000 to 30000 after treating the starch degradation product with isoamylase is not particularly limited, but it is 25% by mass or less. is more preferred. By setting it within this range, the flavor of the food and drink using the starch hydrolyzate according to the present technology can be further improved.

<澱粉分解物の製造方法>
本技術に係る澱粉分解物は、その組成自体が新規であって、その収得の方法については特に限定されることはない。例えば、澱粉原料を、一般的な酸や酵素を用いた処理や、各種クロマトグラフィー、膜分離、エタノール沈殿等の所定操作を適宜、組み合わせて行うことによって得ることができる。
<Method for producing starch hydrolyzate>
The starch hydrolyzate according to the present technology is novel in its composition itself, and the method for obtaining it is not particularly limited. For example, a starch raw material can be obtained by appropriately combining predetermined operations such as general acid or enzyme treatment, various types of chromatography, membrane separation, ethanol precipitation, and the like.

本技術に係る澱粉分解物を得るために原料となり得る澱粉原料としては、公知の澱粉分解物の原料となり得る澱粉原料を1種又は2種以上自由に選択して用いることができる。例えば、コーンスターチ、ワキシーコーンスターチ、米澱粉、ワキシー米澱粉、小麦澱粉、ワキシー小麦澱粉などの澱粉(地上系澱粉)、馬鈴薯澱粉、ワキシー馬鈴薯澱粉、タピオカ澱粉、ワキシータピオカ澱粉、甘藷澱粉、ワキシー甘藷澱粉などのような地下茎または根由来の澱粉(地下系澱粉)を挙げることができる。 As the starch raw material that can be used as a raw material for obtaining the starch hydrolyzate according to the present technology, one or more kinds of known starch raw materials that can be used as raw materials for the starch hydrolyzate can be freely selected and used. For example, starch (ground starch) such as corn starch, waxy corn starch, rice starch, waxy rice starch, wheat starch, waxy wheat starch, potato starch, waxy potato starch, tapioca starch, waxy tapioca starch, sweet potato starch, waxy sweet potato starch, etc. and starch derived from underground stems or roots (basement starch).

本技術に係る澱粉分解物を効率的に得る方法として、澱粉原料を液化した後、マルトトリオース生成酵素及び/又はマルトテトラオース生成酵素を作用させる方法がある。この場合、本技術に係る澱粉分解物の製造に用いることができるマルトトリオース生成酵素及び/又はマルトテトラオース生成酵素の種類は特に限定されないが、エキソ型マルトトリオース生成酵素及び/又はエキソ型マルトテトラオース生成酵素を用いることが好ましい。 As a method of efficiently obtaining the starch hydrolyzate according to the present technology, there is a method of liquefying the raw starch material and then reacting the maltotriose synthase and/or the maltotetraose synthase. In this case, the types of the maltotriose synthase and/or the maltotetraose synthase that can be used for the production of the starch hydrolyzate according to the present technology are not particularly limited. It is preferred to use a maltotetraose synthase.

エンド型マルトトリオース生成酵素及び/又はエンド型マルトテトラオース生成酵素を用いた場合は、澱粉分子をランダムに分解して低分子化するのに対し、エキソ型マルトトリオース生成活性を有する酵素及び/又はエキソ型マルトテトラオース生成活性を有する酵素を用いた場合は、澱粉分子を非還元末端から分解するため、同じDE値の澱粉分解物と比較して、高分子成分を多く残存させることができ、当該高分子成分は、直鎖状の構造を多く含んでいることが特徴となる。その結果、本技術に係る澱粉分解物を用いた飲食品の風味や食感をより向上させることができる。 When an endo-type maltotriose synthase and/or an endo-type maltotetraose synthase is used, starch molecules are randomly decomposed into low-molecular-weight starch molecules, whereas enzymes having exo-maltotriose synthase activity and / Or when an enzyme having exo-type maltotetraose-generating activity is used, starch molecules are degraded from the non-reducing end, so compared to starch hydrolysates with the same DE value, more high-molecular components can be left. The polymer component is characterized by containing many linear structures. As a result, it is possible to further improve the flavor and texture of food and drink using the starch hydrolyzate according to the present technology.

本技術に係る澱粉分解物に用いることができるマルトトリオース生成酵素の種類は特に限定されず、公知のマルトトリオース生成酵素を1種又は2種以上、自由に選択して用いることができる。具体例としては、Microbacterium属微生物由来のマルトトリオース生成酵素(例えば、Microbacterium imperiale由来のマルトトリオース生成酵素(例えば、製品名「AMT1.2L」天野エンザイム株式会社製)、Microbacterium sp.由来のマルトトリオース生成酵素(例えば、特開平3-251173号公報に記載の方法に則って精製されたMicrobacterium sp. AM-9581由来のマルトトリオース生成酵素)等)が挙げられる。 The type of maltotriose-generating enzyme that can be used in the starch hydrolyzate according to the present technology is not particularly limited, and one or more known maltotriose-generating enzymes can be freely selected and used. Specific examples include maltotriose synthase derived from Microbacterium genus microorganisms (e.g., maltotriose synthase derived from Microbacterium imperiale (e.g., product name "AMT1.2L" manufactured by Amano Enzyme Co., Ltd.), maltotriose derived from Microbacterium sp. and triose synthase (for example, maltotriose synthase derived from Microbacterium sp. AM-9581 purified according to the method described in JP-A-3-251173).

本技術に係る澱粉分解物に用いることができるマルトテトラオース生成酵素の種類も特に限定されず、公知のマルトテトラオース生成酵素を1種又は2種以上、自由に選択して用いることができる。具体例としては、Pseudomonas属微生物由来のマルトテトラオース生成酵素(例えば、Pseudomonas saccharophila由来のマルトテトラオース生成酵素(例えば、製品名「Optimalt4G」ジェネンコア社製)、Pseudomonas stutzeri由来のマルトテトラオース生成酵素(例えば、特公平7-89916号公報公報に記載の方法に則って精製されたマルトテトラオース生成酵素)等)が挙げられる。 The type of maltotetraose synthase that can be used in the starch hydrolyzate according to the present technology is also not particularly limited, and one or more known maltotetraose synthases can be freely selected and used. Specific examples include maltotetraose-generating enzymes derived from Pseudomonas microorganisms (e.g., maltotetraose-generating enzymes derived from Pseudomonas saccharophila (e.g., product name “Optimalt4G” manufactured by Genencore), maltotetraose-generating enzymes derived from Pseudomonas stutzeri ( For example, maltotetraose synthase purified according to the method described in Japanese Patent Publication No. 7-89916, etc.).

また、澱粉原料の液化の前後又は同時や、マルトトリオース生成酵素及び/又はマルトテトラオース生成酵素を作用させる前後又は同時に、他の分解酵素(例えば、αアミラーゼ等)や枝作り酵素による処理を自由に組み合わせることも可能である。このように、液化、マルトトリオース生成酵素及び/又はマルトテトラオース生成酵素による作用の前後に、分解酵素や枝作り酵素を作用させることで、澱粉分解物の分解度を所望の範囲に調整することが容易になる。 In addition, treatment with other degrading enzymes (eg, α-amylase, etc.) or branching enzymes may be performed before, after, or simultaneously with the liquefaction of the raw starch material, or before, after, or simultaneously with the action of the maltotriose synthase and/or the maltotetraose synthase. It is also possible to freely combine them. In this way, before and after the action of liquefaction, maltotriose synthase and/or maltotetraose synthase, a degrading enzyme or a branching enzyme is allowed to act, thereby adjusting the degree of degradation of the starch hydrolyzate to a desired range. becomes easier.

なお、本技術に係る澱粉分解物は、澱粉原料にマルトトリオース生成酵素及び/又はマルトテトラオース生成酵素処理を行わなくても、各種クロマトグラフィー、膜分離、エタノール沈殿等の所定操作を行うことで、製造することも可能である。 In addition, the starch hydrolyzate according to the present technology can be subjected to predetermined operations such as various chromatography, membrane separation, ethanol precipitation, etc., without treating the starch raw material with a maltotriose synthase and/or a maltotetraose synthase. and can be manufactured.

以上のように、本技術に係る澱粉分解物は、様々な方法を用いて製造することができるが、これらの方法の中でも、澱粉原料にマルトトリオース生成酵素及び/又はマルトテトラオース生成酵素処理を行う方法が好ましい。この方法を用いれば、クロマトグラフィーや膜分離等の操作を行うことなく、本技術の澱粉分解物を得られるため、本技術の澱粉分解物を安価にかつ、工業的に製造する場合に好適である。 As described above, the starch hydrolyzate according to the present technology can be produced using various methods. is preferred. By using this method, the starch hydrolyzate of the present technology can be obtained without performing operations such as chromatography and membrane separation, so it is suitable for industrially producing the starch hydrolyzate of the present technology at a low cost. be.

また、本技術では、目的の澱粉分解物となるように各種処理を行った後に、活性炭脱色、イオン精製等を行い、不純物を除去することも可能であり、不純物を除去することが好ましい。 In addition, in the present technology, after performing various treatments to obtain the desired starch decomposition product, it is possible to remove impurities by performing activated carbon decolorization, ion purification, etc., and it is preferable to remove impurities.

更に、固形分濃度30~80%に濃縮してシラップにすることや、真空乾燥や噴霧乾燥等により脱水乾燥することで粉末化することも可能である。 Furthermore, it is also possible to concentrate to a solid content concentration of 30 to 80% to make a syrup, or to powderize by dehydration drying such as vacuum drying or spray drying.

<澱粉分解物の用途>
本技術に係る澱粉分解物は、粘度付与効果を有し、且つ、風味が良好であるため、飲食品の増粘(とろみ付け)や、コク味つけ、食感付与等の目的で用いることができる。
<Application of starch hydrolyzate>
Since the starch hydrolyzate according to the present technology has a viscosity-imparting effect and a good flavor, it can be used for purposes such as increasing the viscosity (thickening) of food and drink, adding richness, and imparting texture. .

本技術に係る澱粉分解物を含有することができる飲食品は、特に限定されず、例えば、ジュース、スポーツ飲料、お茶、コーヒー、紅茶などの飲料、醤油、ソースなどの調味料、スープ類、クリーム類、各種乳製品類、アイスクリームなどの冷菓、各種粉末食品(飲料用を含む)、保存用食品、冷凍食品、パン類、菓子類、米飯、麺類、水練り製品、畜肉製品などの加工食品などが挙げられる。また、保健機能食品(特定保健用食品、栄養機能食品、機能性表示食品)や、いわゆる健康食品、濃厚栄養剤、流動食、乳児・幼児食(何れも飲料の形態を含む)にも含有させることができる。 The food and drink that can contain the starch hydrolyzate according to the present technology is not particularly limited. various dairy products, frozen desserts such as ice cream, various powdered foods (including beverages), preserved foods, frozen foods, breads, confectionery, rice, noodles, water kneaded products, processed foods such as meat products, etc. is mentioned. In addition, it is included in foods with health claims (foods for specified health uses, foods with nutrient function claims, foods with function claims), so-called health foods, concentrated nutritional supplements, liquid diets, and infant and toddler foods (both in the form of beverages). be able to.

本技術に係る澱粉分解物を飲食品に用いる場合、飲食品用の組成物として流通させる形態を採用することもできる。具体的には、例えば、各種食品用ミックス(ホットケーキミックス、ベーカリー用ミックス、菓子用ミックス、麺皮類用ミックス等)、各種食品用粉(天ぷら粉、から揚げ粉、お好み焼き粉、たこ焼き粉等)、各種食品用の素(菓子の素、ドーナツの素、ケーキの素、アイスクリームの素、スープの素、飲料の素等)、各種食品品質改良剤(麺皮類改良剤、米飯改良剤、ベーカリー改良剤等)等が挙げられる。 When the starch hydrolyzate according to the present technology is used in food and drink, it may be distributed as a composition for food and drink. Specifically, for example, various food mixes (hot cake mix, bakery mix, confectionery mix, noodle skin mix, etc.), various food powders (tempura powder, fried chicken powder, okonomiyaki powder, takoyaki powder, etc.) ), various food ingredients (confectionery ingredients, donut ingredients, cake ingredients, ice cream ingredients, soup ingredients, beverage ingredients, etc.), various food quality improvers (noodle crust improvers, cooked rice improvers) , bakery improvers, etc.).

さらに、本技術に係る澱粉分解物は、牛、馬、豚などの家畜用哺乳類、鶏、ウズラなどの家禽類、爬虫類、鳥類あるいは小型哺乳類などのペット類、養殖魚類、昆虫などの飼料にも含有させることが可能である。また、肥料に含有させることも可能である。 Furthermore, the starch hydrolyzate according to the present technology can also be used as feed for livestock mammals such as cattle, horses, and pigs, poultry such as chickens and quails, pets such as reptiles, birds, and small mammals, farmed fish, and insects. can be included. It can also be contained in fertilizer.

加えて、本技術に係る澱粉分解物は、あらゆる薬剤に適用することも可能である。例えば、散剤、顆粒剤などの剤形成形のための粉末化基材、さらに錠剤のための賦形剤や、経腸栄養剤等の炭水化物源などに適用することが可能である。特に、本技術に係る澱粉分解物は、粘度付与効果があるため、嚥下困難者用の栄養剤や薬剤等にも好適に用いることができる。 In addition, the starch hydrolyzate according to the present technology can also be applied to any drug. For example, it can be applied to powdered base materials for dosage forms such as powders and granules, excipients for tablets, carbohydrate sources such as enteral nutrition, and the like. In particular, since the starch hydrolyzate according to the present technology has a viscosity-imparting effect, it can be suitably used as nutritional supplements, medicines, and the like for people with difficulty swallowing.

以下、実施例に基づいて本技術を更に詳細に説明する。なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 Hereinafter, the present technology will be described in further detail based on examples. It should be noted that the embodiments described below are examples of representative embodiments of the present technology, and the scope of the present technology should not be interpreted narrowly.

(1)試験方法
[マルトトリオース生成酵素]
本実施例では、マルトトリオース生成酵素の一例として、Microbacterium imperiale由来の酵素(「AMT1.2L」天野エンザイム株式会社製)を用いた。
(1) Test method [maltotriose synthase]
In this example, an enzyme derived from Microbacterium imperiale (“AMT1.2L” manufactured by Amano Enzyme Co., Ltd.) was used as an example of a maltotriose synthase.

なお、マルトトリオース生成酵素の活性測定は、以下の方法で行った。
0.1Mリン酸緩衡液(pH6.0)に溶解した2.0質量%可溶性澱粉0.5mLに、適量の酵素を加え、全量1.0mLで、温度40℃で酵素反応を行い、生成するマルトトリオース及びその他還元糖をソモギー・ネルソン法で定量した。この条件で、1分間に1μmoLのグルコースに相当する還元糖を生成する酵素活性量を、酵素活性量1単位とした。
In addition, the activity measurement of the maltotriose synthase was performed by the following method.
An appropriate amount of enzyme is added to 0.5 mL of 2.0% by mass soluble starch dissolved in 0.1 M phosphate buffer (pH 6.0), and the total volume is 1.0 mL. Maltotriose and other reducing sugars were quantified by the Somogyi-Nelson method. Under these conditions, the amount of enzymatic activity that produces reducing sugars equivalent to 1 μmol of glucose per minute was defined as 1 unit of enzymatic activity.

[マルトテトラオース生成酵素]
本実施例では、マルトテトラオース生成酵素の一例として、Pseudomonas saccharophila由来の酵素(「Optimalt4G」ジェネンコア社製)を用いた。
[Maltotetraose synthase]
In this example, an enzyme derived from Pseudomonas saccharophila (“Optimalt 4G” manufactured by Genencor) was used as an example of a maltotetraose synthase.

なお、マルトテトラオース生成酵素の活性測定は、以下の方法で行った。
0.1Mリン酸緩衡液(pH7.0)に溶解した2.0質量%可溶性澱粉0.5mLに、適量の酵素を加え、全量1.0mLで、温度40℃で酵素反応を行い、生成するマルトテトラオース及びその他還元糖をソモギー・ネルソン法で定量する。この条件で、1分間に1μmoLのグルコースに相当する還元糖を生成する酵素活性量を、酵素活性量1単位とした。
The activity of maltotetraose synthase was measured by the following method.
An appropriate amount of enzyme is added to 0.5 mL of 2.0% by mass soluble starch dissolved in 0.1 M phosphate buffer (pH 7.0), and the total volume is 1.0 mL. Maltotetraose and other reducing sugars are quantified by the Somogyi-Nelson method. Under these conditions, the amount of enzymatic activity that produces reducing sugars equivalent to 1 μmol of glucose per minute was defined as 1 unit of enzymatic activity.

[DE]
「澱粉糖関連工業分析法」(澱粉糖技術部会編)のレインエイノン法に従って算出した。
[DE]
It was calculated according to the Rein-Eynon method of "Starch-sugar-related industrial analysis methods" (edited by the Starch-sugar Technical Committee).

[DP3~4の含有量]
Brix5%に調整した澱粉分解物溶液について、下記表1に示す条件で液体クロマトグラフィーにて分析を行い、保持時間に基づいて、DP3~4の含有量を測定した。
[Content of DP3-4]
The starch degradation product solution adjusted to Brix 5% was analyzed by liquid chromatography under the conditions shown in Table 1 below, and the content of DP3-4 was measured based on the retention time.

Figure 0007285052000002
Figure 0007285052000002

[粘度]
固形分40%になるように調製した糖液を、測定温度:50℃、パラレルプレート:50mm、トルク:一定 30μN・mの条件でレオメータ(MCR102型、アントンパール社製)を用いて、粘度を測定した。
[viscosity]
A sugar solution prepared to have a solid content of 40% was measured using a rheometer (MCR102 type, manufactured by Anton Paar) under the conditions of measurement temperature: 50°C, parallel plate: 50 mm, torque: constant 30 μN m, and the viscosity was measured. It was measured.

[枝切り酵素処理後の澱粉分解物中の分子量2000~30000の画分の含有量]
Brix5%に調整した澱粉分解物溶液500μLに、1M酢酸緩衝液(pH5.0)を2μL、イソアミラーゼ(Pseudomonas sp.由来、Megazyme製)を固形分(g)当たり250ユニット添加した。これを40℃で72時間酵素反応させた後、煮沸により反応を停止した。これに500μLの水を加え、12000rpmにて5分間遠心分離を行った。上清900μLを脱塩、フィルター処理し、下記の表2に示す条件で、ゲルろ過クロマトグラフィーにて分析を行った。分子量スタンダードとして、ShodexスタンダードGFC(水系GPC)カラム用Standard P-82(昭和電工株式会社製)を使用し、分子量スタンダードの溶出時間と分子量の相関から算出される検量線に基づいて、澱粉分解物中の分子量2000~30000の画分の含有量を算出した。
[Content of fraction with a molecular weight of 2000 to 30000 in starch hydrolyzate after debranching enzyme treatment]
To 500 μL of the starch hydrolyzate solution adjusted to 5% Brix, 2 μL of 1 M acetate buffer (pH 5.0) and 250 units of isoamylase (derived from Pseudomonas sp., manufactured by Megazyme) were added per solid content (g). After enzymatic reaction was carried out at 40° C. for 72 hours, the reaction was terminated by boiling. 500 μL of water was added thereto, and centrifugation was performed at 12000 rpm for 5 minutes. 900 μL of the supernatant was desalted and filtered, and analyzed by gel filtration chromatography under the conditions shown in Table 2 below. As a molecular weight standard, Shodex standard GFC (aqueous GPC) column Standard P-82 (manufactured by Showa Denko Co., Ltd.) is used. The content of the fraction having a molecular weight of 2,000 to 30,000 was calculated.

Figure 0007285052000003
Figure 0007285052000003

(2)実施例・比較例の製法
参考例1]
10質量%消石灰にてpH5.8に調整した20質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE13になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、参考例1の澱粉分解物を得た。
(2) Production methods of Examples and Comparative Examples [ Reference Example 1]
To a 20% by mass cornstarch slurry adjusted to pH 5.8 with 10% slaked lime, α-amylase (Spitase HK, manufactured by Nagase ChemteX Corporation) was added at 0.2% by mass per solid content (g), Liquefy in a jet cooker (temperature 110°C), keep the liquefied liquid at 95°C and measure DE over time. When DE reaches 9, adjust pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped. After adjusting the pH of the sugar solution in which the reaction had been stopped to 6.0, 2 units of maltotriose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 13, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Reference Example 1.

参考例2]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE23になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、参考例2の澱粉分解物を得た。
[ Reference example 2]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), followed by jet cooker ( The liquid is liquefied at a temperature of 110°C), the liquefied liquid is kept at 95°C, and the DE is measured over time. When the DE reaches 9, the pH is adjusted to 4.0 with 10% hydrochloric acid, and the reaction is stopped by boiling. bottom. After adjusting the pH of the sugar solution in which the reaction had been stopped to 6.0, 2 units of maltotriose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 23, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Reference Example 2.

[実施例3]
10質量%消石灰にてpH5.8に調整した20質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE13になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例3の澱粉分解物を得た。
[Example 3]
To a 20% by mass cornstarch slurry adjusted to pH 5.8 with 10% slaked lime, α-amylase (Spitase HK, manufactured by Nagase ChemteX Corporation) was added at 0.2% by mass per solid content (g), Liquefy in a jet cooker (temperature 110°C), keep the liquefied liquid at 95°C and measure DE over time. When DE reaches 9, adjust pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped. After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 13, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 3.

[実施例4]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE20になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例4の澱粉分解物を得た。
[Example 4]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), followed by jet cooker ( The liquid is liquefied at a temperature of 110°C), the liquefied liquid is kept at 95°C, and the DE is measured over time. When the DE reaches 9, the pH is adjusted to 4.0 with 10% hydrochloric acid, and the reaction is stopped by boiling. bottom. After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 20, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 4.

参考例5]
10質量%消石灰にてpH5.8に調整した20質量%のワキシーコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE4になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE16になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、参考例5の澱粉分解物を得た。
[ Reference Example 5]
After adding 0.2% by mass of α-amylase (Kleistase T10S, Amano Enzyme Co., Ltd.) per solid content (g) to 20% by mass of waxy corn starch slurry adjusted to pH 5.8 with 10% by mass of slaked lime. , liquefy with a jet cooker (temperature 110 ° C.), keep the liquefied solution at 95 ° C. and measure the DE over time. When the DE reaches 4, adjust the pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped by After adjusting the pH of the sugar solution in which the reaction had been stopped to 6.0, 2 units of maltotriose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 16, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Reference Example 5.

参考例6]
10質量%消石灰にてpH5.8に調整した30質量%の甘藷澱粉スラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE16になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、参考例6の澱粉分解物を得た。
[ Reference Example 6]
0.2% by mass of α-amylase (Termamyl 120L, manufactured by Novozymes) was added to 30% by mass of sweet potato starch slurry adjusted to pH 5.8 with 10% by mass of slaked lime, and then the jet cooker was added. (Temperature 110° C.), the liquefied solution was kept at 95° C. and the DE was measured over time. stopped. After adjusting the pH of the sugar solution in which the reaction had been stopped to 6.0, 2 units of maltotriose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 16, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Reference Example 6.

[実施例7]
10質量%消石灰にてpH5.8に調整した20質量%の甘藷澱粉スラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE10になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例7の澱粉分解物を得た。
[Example 7]
After adding 0.2% by mass of α-amylase (Kleistase T10S, manufactured by Amano Enzyme Co., Ltd.) per solid content (g) to a 20% by mass sweet potato starch slurry adjusted to pH 5.8 with 10% by mass of slaked lime. , liquefy in a jet cooker (temperature 110 ° C.), keep the liquefied solution at 95 ° C. and measure the DE over time. When the DE reaches 8, adjust the pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped by After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 10, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 7.

参考例8]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE20になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度5質量%に調整した。この溶液を分画分子量50000の限外濾過膜(マイクローザUFペンシル型モジュール、旭化成株式会社製)に供して、高分子画分を得た。一方、10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE33になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液に対し、活性炭脱色、イオン精製し固形分濃度20質量%になるように調整した。この溶液をゲルろ過用樹脂(Bio-Gel P2、バイオ・ラッド社製、樹脂容量500mL)を2本連結したものに供し、溶離液:水、流速:0.5mL/min、カラム温度:60℃、の分離条件で低分子画分を得た。上記高分子画分と低分子画分を混合し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、参考例8の澱粉分解物を得た。
[ Reference Example 8]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), followed by jet cooker ( The liquid is liquefied at a temperature of 110°C), the liquefied liquid is kept at 95°C, and the DE is measured over time. When the DE reaches 20, the pH is adjusted to 4.0 with 10% hydrochloric acid, and the reaction is stopped by boiling. bottom. This starch hydrolyzate solution was decolorized with activated charcoal, ion-purified, and adjusted to a solid concentration of 5% by mass. This solution was applied to an ultrafiltration membrane with a molecular weight cutoff of 50,000 (Microza UF pencil type module, manufactured by Asahi Kasei Corp.) to obtain a high molecular weight fraction. On the other hand, 0.2% by mass of α-amylase (Termamyl 120L, manufactured by Novozymes) was added to a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass of slaked lime, and then jet Liquefy in a cooker (temperature 110°C), keep the liquefied liquid at 95°C and measure the DE over time. When the DE reaches 33, adjust the pH to 4.0 with 10% hydrochloric acid and boil to react. stopped. This starch decomposition product solution was decolorized with activated carbon and ion-purified to adjust the solid content concentration to 20% by mass. This solution was subjected to two gel filtration resins (Bio-Gel P2, manufactured by Bio-Rad, resin volume 500 mL) connected, eluent: water, flow rate: 0.5 mL / min, column temperature: 60 ° C. A low-molecular-weight fraction was obtained under the separation conditions of . The high-molecular-weight fraction and the low-molecular-weight fraction were mixed and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Reference Example 8.

参考例9]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE11になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE16になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、参考例9の澱粉分解物を得た。
[ Reference Example 9]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), followed by jet cooker ( The liquid is liquefied at a temperature of 110°C, and the liquefied liquid is kept at 95°C and the DE is measured over time. When the DE reaches 11, the pH is adjusted to 4.0 with 10% hydrochloric acid, and the reaction is stopped by boiling. bottom. After adjusting the pH of the sugar solution in which the reaction had been stopped to 6.0, 2 units of maltotriose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 16, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Reference Example 9.

[実施例10]
10%塩酸にてpH2.5に調整した20質量%のコーンスターチスラリーを、130℃の温度条件でDE9まで分解した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE15になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例10の澱粉分解物を得た。
[Example 10]
A 20% by mass cornstarch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE9 under a temperature condition of 130°C. After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 15, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Example 10.

[実施例11]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE13になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE18になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例11の澱粉分解物を得た。
[Example 11]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% slaked lime, α-amylase (Spitase HK, manufactured by Nagase ChemteX Corporation) was added at 0.2% by mass per solid content (g), Liquefy in a jet cooker (temperature 110°C), keep the liquefied liquid at 95°C and measure DE over time. When DE reaches 13, adjust pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped. After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 18, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 11.

[実施例12]
10質量%消石灰にてpH5.8に調整した30質量%のタピオカスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE22になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例12の澱粉分解物を得た。
[Example 12]
After adding 0.2% by mass of α-amylase (Kleistase T10S, manufactured by Amano Enzyme Co., Ltd.) to a 30% by mass tapioca starch slurry adjusted to pH 5.8 with 10% by mass of slaked lime per solid content (g) , liquefy in a jet cooker (temperature 110 ° C.), keep the liquefied solution at 95 ° C. and measure the DE over time. When the DE reaches 9, adjust the pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped by After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 22, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 12.

[比較例1]
10質量%消石灰にてpH5.8に調整した20質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE6になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例1の澱粉分解物を得た。
[Comparative Example 1]
To a 20% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), followed by jet cooker ( The liquid is liquefied at a temperature of 110°C, and the liquefied liquid is kept at 95°C and the DE is measured over time. When the DE reaches 6, the pH is adjusted to 4.0 with 10% hydrochloric acid, and the reaction is stopped by boiling. bottom. After adjusting the pH of the sugar solution in which the reaction had been stopped to 6.0, 2 units of maltotriose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 8, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 1.

[比較例2]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE25になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例2の澱粉分解物を得た。
[Comparative Example 2]
After adding 0.2% by mass of α-amylase (Kleistase T10S, Amano Enzyme Co., Ltd.) to a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass of slaked lime, per solid content (g), Liquefy in a jet cooker (temperature 110°C), keep the liquefied liquid at 95°C and measure DE over time. When DE reaches 9, adjust pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped. After adjusting the pH of the sugar solution in which the reaction was terminated to 6.0, 2 units of maltotetraose synthase per solid content (g) were added and reacted at 55°C. The DE was measured over time, and when the DE reached 25, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 2.

[比較例3]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE20になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例3の澱粉分解物を得た。
[Comparative Example 3]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% slaked lime, α-amylase (Spitase HK, manufactured by Nagase ChemteX Corporation) was added at 0.2% by mass per solid content (g), Liquefy in a jet cooker (temperature 110°C), keep the liquefied liquid at 95°C and measure DE over time. When DE reaches 20, adjust pH to 4.0 with 10% hydrochloric acid and boil. The reaction was stopped. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 3.

[比較例4]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE33になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例4の澱粉分解物を得た。
[Comparative Example 4]
To a 30% by mass cornstarch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), followed by jet cooker ( The liquid is liquefied at a temperature of 110°C), the liquefied liquid is kept at 95°C, and the DE is measured over time. When the DE reaches 33, the pH is adjusted to 4.0 with 10% hydrochloric acid, and the reaction is stopped by boiling. bottom. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 4.

[比較例5]
10質量%消石灰にてpH5.8に調整した20質量%の甘藷澱粉スラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例5の澱粉分解物を得た。
[Comparative Example 5]
To 20% by mass of sweet potato starch slurry adjusted to pH 5.8 with 10% by mass of slaked lime, 0.2% by mass of α-amylase (Termamyl 120L, manufactured by Novozymes) was added to the solid content (g), and then the jet cooker was added. (Temperature 110° C.), the liquefied solution was kept at 95° C. and the DE was measured over time. stopped. This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrate was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 5.

(3)物性の測定
前記で得られた参考例1、2、5、6、8、9、実施例3、4、7、10~12及び比較例1~5について、それぞれ、DE、DP3~4の含有量(x(質量%))、粘度(y(mPa・s))、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))を、前述した方法で測定した。結果を下記の表3及び4に示す。
(3) Measurement of physical properties For Reference Examples 1 , 2, 5, 6, 8, 9, Examples 3, 4, 7, 10 to 12 and Comparative Examples 1 to 5 obtained above, DE, DP3 to 4 content (x (mass%)), viscosity (y (mPa s)), content of molecular weight 2000 to 30000 after treating starch degradation product with isoamylase (z (mass%)), It was measured by the method. The results are shown in Tables 3 and 4 below.

Figure 0007285052000004
Figure 0007285052000004

Figure 0007285052000005
Figure 0007285052000005

(4)穀物臭評価
前記で得られた参考例1、2、5、6、8、9、実施例3、4、7、10~12について、澱粉分解物水溶液の穀物臭評価を行った。具体的には、参考例1、2、5、6、8、9、実施例3、4、7、10~12の澱粉分解物を、固形分5質量%になるように水に溶解し、澱粉分解物水溶液を製造した。製造した澱粉分解物水溶液に対して10名の専門パネルが穀物臭の評価を行った。その結果、全ての参考例1、2、5、6、8、9、実施例3、4、7、10~12は、同等のDE値を有する既存の澱粉分解物に比べて、穀物臭が感じられず味質は良好であった。
(4) Grain Odor Evaluation Grain odor evaluation of the starch hydrolyzate aqueous solution was performed for Reference Examples 1 , 2, 5, 6, 8, 9 and Examples 3, 4, 7, 10 to 12 obtained above. Specifically, the starch decomposition products of Reference Examples 1 , 2, 5, 6, 8, 9 and Examples 3, 4, 7, 10 to 12 were dissolved in water so that the solid content was 5% by mass, An aqueous starch hydrolyzate solution was produced. A panel of 10 experts evaluated the grain odor of the produced starch hydrolyzate aqueous solution. As a result, all Reference Examples 1 , 2, 5, 6, 8, 9, Examples 3, 4, 7, 10-12 had a grainy odor compared to existing starch hydrolysates with equivalent DE values. It was not felt and the taste was good.

(5)食品への使用
前記で得られた参考例1、2、5、6、8、9、実施例3、4、7、10~12及び比較例1~5の澱粉分解物を、以下に示す食品へ使用した場合について、各効果を検討した。なお、各効果は、10名の専門パネルが下記の評価基準に従って、1~5点の5段階で評価し、その平均値を評価点とした。また、総合評価は各評価の合計点とし、各評価が3点以上、かつ総合評価点が評価項目2つの場合で7点以上、評価項目3つの場合で11点以上を合格品とした。
(5) Use in foods The starch decomposition products of Reference Examples 1 , 2, 5, 6, 8, 9, Examples 3, 4, 7, 10 to 12 and Comparative Examples 1 to 5 obtained above were treated as follows. Each effect was examined when used for the food shown in . Each effect was evaluated by a panel of 10 specialists according to the following evaluation criteria on a scale of 1 to 5, and the average value was used as the evaluation score. In addition, the overall evaluation is the total score of each evaluation, and if each evaluation is 3 points or more and the total evaluation point is 7 points or more when there are 2 evaluation items, and 11 points or more when there are 3 evaluation items, the product is accepted.

[風味]
5:良好
4:やや良好
3:許容できる範囲
2:やや悪い
1:悪い
[Flavor]
5: Good 4: Slightly good 3: Acceptable range 2: Slightly bad 1: Bad

[とろみ]
5:適度なとろみがあり、良好
4:とろみが感じられ、やや良好
3:許容できる範囲
2:とろみがやや弱く、やや悪い
1:とろみが弱く、悪い
[thickness]
5: Moderate thickening, good 4: Thickening felt, somewhat good 3: Acceptable range 2: Slightly weak thickening, slightly bad 1: Weak thickening, bad

[コク味]
5:コクが非常にあり、良好
4:コクがあり、やや良好
3:ややコクがあり、普通
2:コクが弱く、やや悪い
1:コクがなく、悪い
[Kokumi]
5: Very rich and good 4: Rich and somewhat good 3: Slightly rich and normal 2: Weak and slightly bad 1: No rich and bad

[食感]
5:良好
4:やや良好
3:普通
2:やや悪い
1:悪い
[Texture]
5: Good 4: Slightly good 3: Fair 2: Slightly bad 1: Bad

[口溶け]
5:良好
4:やや良好
3:許容できる範囲
2:やや悪い
1:悪い
[Melting in the mouth]
5: Good 4: Slightly good 3: Acceptable range 2: Slightly bad 1: Bad

[生地の成形性]
5:良好
4:やや良好
3:許容できる範囲
2:やや悪い
1:悪い
[Fabric formability]
5: Good 4: Slightly good 3: Acceptable range 2: Slightly bad 1: Bad

[ほぐれ性]
5:大変ほぐれやすく、良好
4:適度にほぐれやすく、やや良好
3:許容できる範囲
2:ほぐれにくく、やや悪い
1:全体が塊状になりほぐれない
[Unraveling]
5: Very easy to unravel, good 4: Moderately easy to unravel, somewhat good 3: Acceptable range 2: Hard to unravel, somewhat poor 1: The whole is clumped and cannot be unraveled

<コーンポタージュスープ>
コーンクリーム缶190g、牛乳300g、顆粒コンソメ5g、胡椒0.5g、参考例1、実施例4、参考例5、実施例10又は比較例2、5の澱粉分解物50gを鍋に入れ混ぜ合わせた。撹拌しながら中火で加熱し、煮立たせた後弱火で5分間加熱し、コーンポタージュスープを製造した。製造した澱粉分解物含有コーンポタージュスープについて、風味、とろみの評価を行った。結果を下記の表5に示す。
<Corn potage soup>
190 g of canned corn cream, 300 g of milk, 5 g of consommé granules, 0.5 g of pepper, and 50 g of the starch hydrolyzate of Reference Example 1, Example 4, Reference Example 5, Example 10 or Comparative Examples 2 and 5 were mixed in a pan. . The mixture was heated over medium heat while stirring, brought to a boil, and then heated over low heat for 5 minutes to produce a corn potage soup. Flavor and thickness of the produced corn potage soup containing starch hydrolyzate were evaluated. The results are shown in Table 5 below.

Figure 0007285052000006
Figure 0007285052000006

表5に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))が40質
量%を超える比較例2の澱粉分解物を用いたコーンポタージュスープ、及び、10質量%未満の比較例5の澱粉分解物を用いたコーンポタージュスープに比べて、参考例1、実施例4、参考例5及び実施例10の澱粉分解物を用いたコーンポタージュスープは、総合評価の結果が良好であった。
As shown in Table 5, the content of glucose polymerization degree (DP) 3 to 4 (x (mass%)) is more than 40% by mass Corn potage soup using the starch hydrolyzate of Comparative Example 2, and 10% by mass Compared to the corn potage soup using the starch hydrolyzate of Comparative Example 5, which is less than was good.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が、25質量%を超える参考例1及び参考例5の澱粉分解物を用いたコーンポタージュスープに比べ、15≦z≦25の範囲内の実施例4及び10の澱粉分解物を用いたコーンポタージュスープの方が、風味がより良好であった。
When compared among the examples, the content of molecular weight 2000 to 30000 (z (% by mass)) after treating the starch degradation product with isoamylase is more than 25% by mass. Decomposed starches of Reference Examples 1 and 5. Compared to the corn potage soup using the product, the corn potage soup using the starch decomposition products of Examples 4 and 10 within the range of 15 ≤ z ≤ 25 had a better flavor.

<照り焼きソース>
水20g、醤油15g、みりん20g、酒20g、砂糖10g、参考例2、実施例3、参考例6、8、実施例11又は比較例1、4の澱粉分解物10gを鍋に入れ混ぜ合わせた。撹拌しながら弱火で加熱し、煮立たせた後加熱を止め、照り焼きソースを製造した。製造した澱粉分解物含有照り焼きソースについて、風味、とろみの評価を行った。結果を下記の表6に示す。
<Teriyaki sauce>
20 g of water, 15 g of soy sauce, 20 g of mirin, 20 g of sake, 10 g of sugar, and 10 g of the starch decomposition products of Reference Example 2, Example 3, Reference Examples 6 and 8, Example 11 or Comparative Examples 1 and 4 were put in a pot and mixed. . The mixture was heated over low heat while stirring, brought to a boil, and then stopped heating to produce a teriyaki sauce. The produced teriyaki sauce containing starch hydrolyzate was evaluated for flavor and thickness. The results are shown in Table 6 below.

Figure 0007285052000007
Figure 0007285052000007

表6に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いた照り焼きソース、及び、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2)を満たさない比較例4の澱粉分解物を用いた照り焼きソースに比べて、参考例2、実施例3、参考例6、8及び実施例11の澱粉分解物を用いた照り焼きソースは、総合評価の結果が良好であった。
As shown in Table 6, teriyaki sauce using the starch hydrolyzate of Comparative Example 1 with a glucose polymerization degree (DP) 3 to 4 content (x (mass%)) of less than 10% by mass, and a glucose polymerization degree A comparative example in which the content of (DP) 3-4 (x (mass%)) and the viscosity (y (mPa s) at a solid content concentration of 40% at 50°C) do not satisfy the formula (2) Compared to the teriyaki sauce using the starch decomposition product of 4, the teriyaki sauce using the starch decomposition products of Reference Examples 2, 3, 6 , 8 and 11 had good overall evaluation results. Met.

実施例の中で比較すると、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない参考例8の澱粉分解物を用いた照り焼きソースに比べて、前記式(1’)を満たす参考例6の澱粉分解物を用いた照り焼きソースの方が、風味がより良好であった。
When compared in the examples, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. , Compared to the teriyaki sauce using the starch hydrolyzate of Reference Example 8 that does not satisfy the formula (1'), the teriyaki sauce using the starch hydrolyzate of Reference Example 6 that satisfies the formula (1') but the flavor was better.

また、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が25質量%を超える実施例3及び参考例6の澱粉分解物を用いた照り焼きソース、及び、15質量%未満の実施例11の澱粉分解物を用いた照り焼きソースに比べ、15≦z≦25の範囲内の参考例2の澱粉分解物を用いた照り焼きソースの方が、風味が更に良好であった。
Teriyaki sauce using the starch hydrolyzate of Example 3 and Reference Example 6, in which the content (z (mass%)) of molecular weight 2000 to 30000 after treating the starch hydrolyzate with isoamylase exceeds 25 wt%. , and, compared to the teriyaki sauce using the starch decomposition product of Example 11 of less than 15% by mass, the teriyaki sauce using the starch decomposition product of Reference Example 2 within the range of 15 ≤ z ≤ 25, The flavor was even better.

<ブルーベリーソース>
フライパンに解凍した冷凍ブルーベリー100g、砂糖40g、参考例2、実施例3、参考例8、9、又は比較例3、5の澱粉分解物20gを入れ、中火で溶け残りが無いように混ぜ合わせながら煮立たせた。火を止めて、レモン汁2gを加え、中火で再度煮立たせた。これをガラス容器に移し室温で冷ますことでブルーベリーソースを製造した。製造したブルーベリーソースについて、風味、とろみの評価を行った。結果を表7に示す。
<Blueberry sauce>
Put 100 g of thawed frozen blueberries, 40 g of sugar, and 20 g of the starch decomposition product of Reference Example 2, Example 3, Reference Examples 8 and 9, or Comparative Examples 3 and 5 in a frying pan, and mix over medium heat so that there is no undissolved residue. I brought it to a boil. The heat was turned off, 2 g of lemon juice was added, and the mixture was boiled again over medium heat. The blueberry sauce was manufactured by transferring this to a glass container and cooling at room temperature. The produced blueberry sauce was evaluated for flavor and thickness. Table 7 shows the results.

Figure 0007285052000008
Figure 0007285052000008

表7に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いたブルーベリーソース、及び、グルコース重合度(DP)3~4の含有量(x(質量%))が10質量%未満の比較例5の澱粉分解物を用いたブルーベリーソースに比べて、前記式(1)又は前記式(2)を満たす実施例参考例2、実施例3、参考例8及び9の澱粉分解物を用いたブルーベリーソースの方が、総合評価の結果が良好であった。
As shown in Table 7, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) Blueberry sauce using the starch degradation product of Comparative Example 3 that does not satisfy the formula (1), and Comparative Example 5 in which the content (x (mass%)) of glucose polymerization degrees (DP) 3 to 4 is less than 10% by mass. Compared to the blueberry sauce using the starch hydrolyzate of Example Reference Examples 2, 3 , 8 and 9 that satisfy the above formula (1) or the above formula (2) Blueberry sauce using the starch hydrolyzate The result of comprehensive evaluation was better for

実施例の中で比較すると、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない参考例8の澱粉分解物を用いたブルーベリーソースに比べて、前記式(1’)を満たす参考例9の澱粉分解物を用いたブルーベリーソースの方が、風味がより良好であった。
When compared in the examples, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. , Compared to the blueberry sauce using the starch hydrolyzate of Reference Example 8 that does not satisfy the formula (1′), the blueberry sauce using the starch hydrolyzate of Reference Example 9 that satisfies the formula (1′) is Flavor was better.

また、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’’)を満たさない参考例9の澱粉分解物を用いたブルーベリーソースに比べて、前記式(2’)を満たす参考例2及び実施例3の澱粉分解物を用いたブルーベリーソースの方が、総合評価の結果が良好であった。
Further, the content (x (mass%)) of the glucose polymerization degree (DP) 3-4 and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) are expressed by the above formula (1'') Compared to the blueberry sauce using the starch hydrolyzate of Reference Example 9 that does not satisfy the above formula (2'), the blueberry sauce using the starch hydrolyzate of Reference Examples 2 and 3 that satisfies the above formula (2') is more comprehensive The evaluation result was good.

更に、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が25質量%を超える実施例3の澱粉分解物を用いたブルーベリーソースに比べ、15≦z≦25の範囲内の参考例2及び9の澱粉分解物を用いたブルーベリーソースの方が、風味が良好であった。
Furthermore, compared to the blueberry sauce using the starch hydrolyzate of Example 3 in which the content (z (mass%)) with a molecular weight of 2000 to 30000 after treating the starch hydrolyzate with isoamylase exceeds 25 wt%, 15 ≤ The blueberry sauces using the starch hydrolysates of Reference Examples 2 and 9 within the range of z≦25 had better flavor.

<カスタードクリーム>
ボウルに水50gにて水戻しした乾燥卵黄27gと、砂糖36g、参考例1、2、実施例7、参考例9、実施例12又は比較例3、5の澱粉分解物36gを入れ、泡だて器で混ぜ合わせた。篩った薄力粉16gを加えて、更に泡だて器で混ぜ合わせた。これに、50℃に温めた牛乳200gを少しずつ加えて、溶きのばし、裏ごし器を通した後、中火でクリーム状になるまで掻き混ぜて、カスタードクリームを製造した。製造した澱粉分解物含有カスタードクリームについて、風味、コク味の評価を行った。結果を表8に示す。
<Custard cream>
In a bowl, 27 g of dried egg yolk rehydrated with 50 g of water, 36 g of sugar, and 36 g of the starch decomposition product of Reference Examples 1, 2, 7, 9, and 12 or Comparative Examples 3 and 5 were added, and foamed. Mixed in a bowl. 16 g of sieved cake flour was added and further mixed with a whisk. To this, 200 g of milk warmed to 50° C. was added little by little, and the mixture was spread out, passed through a puree, and then stirred over medium heat until creamy, to produce a custard cream. The produced starch hydrolyzate-containing custard cream was evaluated for flavor and richness. Table 8 shows the results.

Figure 0007285052000009
Figure 0007285052000009

表8に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いたカスタードクリーム、及び、グルコース重合度(DP)3~4の含有量(x(質量%))が10質量%未満の比較例5の澱粉分解物を用いたカスタードクリームに比べて、前記式(1)又は前記式(2)を満たす参考例1、2、実施例7、参考例9及び実施例12の澱粉分解物を用いたカスタードクリームの方が、総合評価が良好であった。
As shown in Table 8, the content of glucose polymerization degree (DP) 3 to 4 (x (mass%)) and the viscosity (y (mPa s) at 50 ° C. at a solid content concentration of 40%) Custard cream using the starch decomposition product of Comparative Example 3 that does not satisfy the formula (1), and Comparative Example 5 in which the content (x (mass%)) of glucose polymerization degrees (DP) 3 to 4 is less than 10% by mass Compared to the custard cream using the starch hydrolyzate, the starch hydrolysates of Reference Examples 1, 2 , 7 , 9 and 12 satisfying the formula (1) or (2) were used. The custard cream gave a better overall evaluation.

実施例の中で比較すると、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない実施例7の澱粉分解物を用いたカスタードクリームに比べて、前記式(1’)を満たす参考例1及び9の澱粉分解物を用いたカスタードクリームの方が、風味がより良好であった。
When compared in the examples, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. , Compared to the custard cream using the starch hydrolyzate of Example 7 that does not satisfy the formula (1′), the custard cream using the starch hydrolyzate of Reference Examples 1 and 9 that satisfies the formula (1′) but the flavor was better.

また、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’’)を満たさない参考例9の澱粉分解物を用いたカスタードクリーム、及び、前記式(2’)を満たさない実施例12の澱粉分解物を用いたカスタードクリームに比べて、前記式(1’’)又は前記式(2’)を満たす参考例1及び2の澱粉分解物を用いたカスタードクリームの方が、総合評価の結果が良好であった。
Further, the content (x (mass%)) of the glucose polymerization degree (DP) 3-4 and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) are expressed by the above formula (1'') Compared to the custard cream using the starch hydrolyzate of Reference Example 9 that does not satisfy the formula (2') and the custard cream using the starch hydrolyzate of Example 12 that does not satisfy the formula (2'), the formula (1'') or the custard cream using the starch hydrolyzate of Reference Examples 1 and 2 satisfying the formula (2') gave better results in the comprehensive evaluation.

更に、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が25質量%を超える参考例1の澱粉分解物を用いたカスタードクリームに比べ、15≦z≦25の範囲内の参考例2及び9の澱粉分解物を用いたカスタードクリームの方が、風味が良好であった。
Furthermore, compared to the custard cream using the starch hydrolyzate of Reference Example 1, in which the content (z (mass%)) of molecular weight 2000 to 30000 after treating the starch hydrolyzate with isoamylase exceeds 25 wt%, 15 ≤ The custard creams using the starch hydrolyzate of Reference Examples 2 and 9 in the range of z≦25 had better flavor.

<ホットケーキ>
ボウルに篩った薄力粉150g、砂糖40g、ベーキングパウダー10g、実施例3、4、参考例6、実施例10、12又は比較例1、3の澱粉分解物15gを加えて混ぜ合わせた。これに全卵50g、牛乳140gを加え、ダマがなくなるまで更に泡だて器で混ぜ合わせ、ホットケーキ生地を調製した。フライパンを中火で熱した後、濡れ布巾の上に置いて熱を取り、再び弱火にかけ、フライパンより20cmの高さからホットケーキ生地60gを流し込み、3分間焼き、裏返して更に2分間焼いてホットケーキを製造した。製造した澱粉分解物含有ホットケーキについて、風味と、食感の軟らかさの評価を行った。食感は、軟らかさがあることを良好とした。結果を表9に示す。
<Hot cake>
150 g of sifted soft flour, 40 g of sugar, 10 g of baking powder, and 15 g of the starch decomposition products of Examples 3 and 4, Reference Example 6, Examples 10 and 12, or Comparative Examples 1 and 3 were added and mixed. To this, 50 g of whole egg and 140 g of milk were added and further mixed with a whisk until lumps disappeared to prepare hot cake dough. After heating the frying pan over medium heat, place it on a wet cloth to remove the heat, put it on low heat again, pour 60 g of pancake dough from a height of 20 cm from the frying pan, bake for 3 minutes, turn it over and bake for another 2 minutes to make it hot. made a cake. The produced starch hydrolyzate-containing hotcakes were evaluated for flavor and softness of texture. As for texture, softness was evaluated as good. Table 9 shows the results.

Figure 0007285052000010
Figure 0007285052000010

表9に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いたホットケーキ、及び、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いたホットケーキに比べて、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)又は前記式(2)を満たす実施例3、4、参考例6、実施例10、及び12の澱粉分解物を用いたホットケーキの方が、総合評価が良好であった。
As shown in Table 9, a hot cake using the starch hydrolyzate of Comparative Example 1 with a glucose polymerization degree (DP) 3-4 content (x (mass%)) of less than 10% by mass, and a glucose polymerization degree ( DP) 3 to 4 content (x (mass%)) and viscosity (y (mPa s) at 50 ° C. at a solid content concentration of 40%) do not satisfy the above formula (1) Comparative Example 3 Compared to the hot cake using the starch decomposition product, the content of glucose polymerization degree (DP) 3 to 4 (x (mass%)) and the viscosity at 40% solid concentration at 50 ° C. (y (mPa ・s)) is the hot cake using the starch decomposition products of Examples 3, 4, Reference Example 6, Example 10, and 12 that satisfy the formula (1) or the formula (2) is comprehensively evaluated was good.

実施例の中で比較すると、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2’)を満たさない実施例12の澱粉分解物を用いたホットケーキに比べて、前記式(1’’)又は前記式(2’)を満たす実施例3、4、参考例6及び実施例10の澱粉分解物を用いたホットケーキの方が、食感が軟らかく、より良好であった。
When compared in the examples, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. , Examples 3 and 4 that satisfy the formula (1'') or the formula (2'), compared to the hot cake using the starch decomposition product of Example 12 that does not satisfy the formula (2'), Reference Example The hot cakes using the starch hydrolyzate of Example 6 and Example 10 had a softer texture and were better.

また、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が25質量%を超える実施例3及び参考例6の澱粉分解物を用いたホットケーキに比べ、15≦z≦25の範囲内の実施例4及び10の澱粉分解物を用いたホットケーキの方が、風味が更に良好であった。
In addition, the hot cake using the starch hydrolyzate of Example 3 and Reference Example 6 in which the content (z (mass%)) of molecular weight 2000 to 30000 after treating the starch hydrolyzate with isoamylase exceeds 25 wt% In comparison, the hotcakes using the starch decomposition products of Examples 4 and 10 within the range of 15≦z≦25 had a better flavor.

<食パン>
強力粉250g、ドライイースト3g、グラニュー糖17g、食塩5g、脱脂粉乳6g、実施例4、参考例5、実施例7、11、又は比較例1、4の澱粉分解物15g、水180gの原料配合で、ホームベーカリー(「SD-BT113」パナソニック株式会社製)にて、食パンを製造した。製造した澱粉分解物含有食パンについて、風味と食感の軟らかさの評価を行った。食感は、軟らかさがあることを良好とした。結果を表10に示す。
<Bread>
250 g of strong flour, 3 g of dry yeast, 17 g of granulated sugar, 5 g of salt, 6 g of skimmed milk powder, 15 g of the starch decomposition product of Example 4, Reference Example 5, Examples 7 and 11, or Comparative Examples 1 and 4, and 180 g of water. , at a home bakery (“SD-BT113” manufactured by Panasonic Corporation), bread was produced. The produced starch hydrolyzate-containing bread was evaluated for flavor and softness of texture. As for texture, softness was evaluated as good. Table 10 shows the results.

Figure 0007285052000011
Figure 0007285052000011

表10に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いた食パン、及び、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2)を満たさない比較例4の澱粉分解物を用いた食パンに比べて、前記式(1)又は前記式(2)を満たす実施例4、参考例5、実施例7、及び11の澱粉分解物を用いた食パンの方が、総合評価が良好であった。
As shown in Table 10, the content of glucose polymerization degree (DP) 3-4 (x (mass%)) is less than 10% by mass bread using the starch hydrolyzate of Comparative Example 1, and glucose polymerization degree (DP ) The content of 3 to 4 (x (mass%)) and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) of Comparative Example 4 that does not satisfy the above formula (2) Compared to the bread using the starch decomposition product, the bread using the starch decomposition product of Example 4, Reference Example 5, Example 7, and 11 that satisfies the formula (1) or the formula (2) is Overall evaluation was good.

実施例の中で比較すると、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない実施例7の澱粉分解物を用いた食パンに比べて、前記式(2’)を満たす実施例4、参考例5、及び実施例11の澱粉分解物を用いた食パンの方が、風味及び食感が共により良好であった。
When compared in the examples, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s)) at a solid content concentration of 40% at 50 ° C. , Compared to the bread using the starch hydrolyzate of Example 7 that does not satisfy the formula (1'), the starch hydrolyzates of Example 4, Reference Example 5, and Example 11 that satisfy the formula (2') The bread used had better flavor and texture.

また、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が、25質量%を超える実施例5の澱粉分解物を用いた食パン及び、15質量%未満の実施例11の澱粉分解物を用いた食パンに比べ、15≦z≦25の範囲内の実施例4の澱粉分解物を用いた食パンの方が、風味が更に良好であった。 In addition, the content of molecular weight 2000 to 30000 (z (mass%)) after treating the starch hydrolyzate with isoamylase is more than 25 wt% bread using the starch hydrolyzate of Example 5 and 15 wt% Compared to the bread using the starch decomposition product of Example 11 with less than 15 ≤ z ≤ 25, the bread using the starch decomposition product of Example 4 had a better flavor.

<クッキー>
ボウルに常温で柔らかくしたバター50g、砂糖20g、実施例10、12、又は比較例2、3の澱粉分解物20gを加え混ぜ合わせた後、全卵30gを加え更に混ぜ合わせた。これに篩った薄力粉90gを加え、全体がそぼろ状になるまで混ぜ合わせた後、一つにまとめてラップで包み、クッキー生地を調製した。これを4℃で1時間静置した後、麺棒にて厚さ3mmに伸ばし、4cm平方に型抜きし、160℃で28分間焼成して澱粉分解物含有クッキーを製造した。製造した澱粉分解物含有クッキーについて、風味、口溶け、生地の成形性の評価を行った。結果を表11に示す。
<cookie>
In a bowl, 50 g of butter softened at room temperature, 20 g of sugar, and 20 g of the starch decomposition products of Examples 10 and 12 or Comparative Examples 2 and 3 were added and mixed, then 30 g of whole eggs were added and further mixed. 90 g of sifted soft flour was added to this, and the mixture was mixed until the whole was crumbly. After standing at 4° C. for 1 hour, the dough was stretched to a thickness of 3 mm with a rolling pin, punched into a 4 cm square, and baked at 160° C. for 28 minutes to produce a starch decomposition product-containing cookie. The produced starch hydrolyzate-containing cookies were evaluated for flavor, meltability in the mouth, and moldability of dough. Table 11 shows the results.

Figure 0007285052000012
Figure 0007285052000012

表11に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))が40質量%を超える比較例2の澱粉分解物を用いたクッキー、及び、前記式(1)を満たさない比較例3の澱粉分解物を用いたクッキーに比べて、前記式(1)又は前記式(2)を満たす実施例10、及び12の澱粉分解物を用いたクッキーは、総合評価が良好であった。 As shown in Table 11, the content of glucose polymerization degree (DP) 3-4 (x (mass%)) exceeds 40 mass% Cookie using the starch hydrolyzate of Comparative Example 2, and the formula (1) Compared to the cookies using the starch hydrolyzate of Comparative Example 3, which does not satisfy the above formula (1) or (2), the cookies using the starch hydrolyzates of Examples 10 and 12 have an overall evaluation of It was good.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が15質量%未満の実施例12の澱粉分解物を用いたクッキーに比べ、15≦z≦25の範囲内の実施例10の澱粉分解物を用いたクッキーの方が、風味が良好であった。 When compared among the examples, the content of molecular weight 2000 to 30000 (z (mass%)) after treating the starch hydrolyzate with isoamylase is less than 15% by mass. Cookies using the starch hydrolyzate of Example 12 Compared to , the cookie using the starch hydrolyzate of Example 10 within the range of 15 ≤ z ≤ 25 had a better flavor.

<米飯>
生米800gを水1160gに40分間浸漬した後、参考例1、実施例4、又は比較例1、4の澱粉分解物12gを添加して炊飯し、25分間蒸らして、米飯を製造した。製造した澱粉分解物含有米飯を真空冷却器で25℃に調温した後、蓋付き容器に詰めて20℃で24時間保存し、風味、食感の弾力性、及びほぐれ性の評価を行った。食感は、弾力があることを良好とした。結果を表12に示す。
<Rice>
After immersing 800 g of uncooked rice in 1160 g of water for 40 minutes, 12 g of the starch hydrolyzate of Reference Example 1, Example 4, or Comparative Examples 1 and 4 was added, cooked, and steamed for 25 minutes to produce cooked rice. After adjusting the temperature of the produced starch hydrolyzate-containing boiled rice to 25°C with a vacuum cooler, it was packed in a lidded container and stored at 20°C for 24 hours, and flavor, elasticity of texture, and loosening property were evaluated. . The food texture was judged to be good when it had elasticity. Table 12 shows the results.

Figure 0007285052000013
Figure 0007285052000013

表12に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いた米飯、及び、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2)を満たさない比較例4の澱粉分解物を用いた米飯に比べて、前記式(1)又は前記式(2)を満たす参考例1、及び実施例4の澱粉分解物を用いた米飯は、総合評価が良好であった。
As shown in Table 12, the content of glucose polymerization degree (DP) 3 to 4 (x (mass%)) is less than 10% by mass. ) The content of 3 to 4 (x (mass%)) and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) of Comparative Example 4 that does not satisfy the above formula (2) Compared to the cooked rice using the starch hydrolyzate, the cooked rice using the starch hydrolyzate of Reference Example 1 and Example 4 satisfying the above formula (1) or the above formula (2) had good overall evaluation.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が25質量%を超える参考例1の澱粉分解物を用いた米飯に比べ、15≦z≦25の範囲内の実施例4の澱粉分解物を用いた米飯の方が、風味が良好であった。
When compared among the examples, the content of molecular weight 2000 to 30000 (z (mass%)) after treating the starch hydrolyzate with isoamylase exceeds 25 wt%. Rice using the starch hydrolyzate of Reference Example 1 Compared to , the cooked rice using the starch decomposition product of Example 4 within the range of 15 ≤ z ≤ 25 had a better flavor.

<麺類>
各種澱粉分解物15g、水85gを溶解混合し、澱粉分解物含有麺用ほぐし剤を製造した。中力粉800g、タピオカ澱粉200g、食塩30g、水400gの配合で、減圧下にてミキシングし、通常のロール製麺により生うどんを製造した(切刃角10番:麺厚2.0mm)。これを沸騰水で8分間茹でた後、およそ12℃の水で十分水洗し、水切りをしてうどんを製造した。このうどん200gに対し澱粉分解物含有麺用ほぐし剤6gを添加し、うどん全体に均一に馴染ませた。こうして得られたうどんを密閉容器にて、4℃で24時間静置した後、風味、食感の弾力性、及びほぐれ性の評価を行った。食感は、弾力があることを良好とした。結果を表13に示す。
<Noodles>
15 g of various starch hydrolyzates and 85 g of water were dissolved and mixed to produce a starch hydrolyzate-containing noodle loosening agent. A mixture of 800 g of all-purpose flour, 200 g of tapioca starch, 30 g of salt and 400 g of water was mixed under reduced pressure to produce raw udon noodles by normal roll noodle making (cutting edge angle No. 10: noodle thickness 2.0 mm). After boiling this in boiling water for 8 minutes, it was thoroughly washed with water of about 12° C. and drained to produce udon. To 200 g of this udon, 6 g of a starch decomposed product-containing noodle loosening agent was added, and the whole udon was uniformly blended. The udon noodles thus obtained were allowed to stand at 4° C. for 24 hours in a closed container, and then evaluated for flavor, elasticity of texture, and loosening property. The food texture was judged to be good when it had elasticity. The results are shown in Table 13.

Figure 0007285052000014
Figure 0007285052000014

表13に示す通り、グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いた麺類に比べて、前記式(2)を満たす参考例2、及び実施例3の澱粉分解物を用いた麺類の方が、総合評価が良好であった。
As shown in Table 13, the content (x (mass%)) of the degree of glucose polymerization (DP) 3 to 4 and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) Compared to the noodles using the starch decomposition product of Comparative Example 3 that does not satisfy the formula (1), the noodles using the starch decomposition products of Reference Example 2 and Example 3 that satisfy the formula (2) are more comprehensive Evaluation was good.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))が25質量%を超える実施例3の澱粉分解物を用いた麺類に比べ、15≦z≦25の範囲内の参考例2の澱粉分解物を用いた麺類の方が、風味が良好であった。
When compared among the examples, the content of molecular weight 2000 to 30000 (z (mass%)) after treating the starch hydrolyzate with isoamylase exceeds 25 wt% Noodles using the starch hydrolyzate of Example 3. Compared to , the noodles using the starch decomposition product of Reference Example 2 within the range of 15 ≤ z ≤ 25 had a better flavor.

Claims (7)

グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たし、前記粘度が40.0mPa・s以下であり、液化澱粉原料のマルトテトラオース生成酵素処理生成物である、澱粉分解物。
(1)10≦x≦20のとき、y≧-2.7x+65
(2)20<x≦40のとき、y≧-0.2x+15
The content of glucose polymerization degree (DP) 3-4 (x (mass%)) and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) are the following (1) or (2 ), has a viscosity of 40.0 mPa·s or less, and is a maltotetraose-generating enzyme-treated product of a liquefied starch raw material.
(1) When 10≤x≤20, y≥-2.7x+65
(2) y≧−0.2x+15 when 20<x≦40
前記澱粉分解物が、DE10~22である、請求項1に記載の澱粉分解物。 The starch hydrolyzate according to claim 1, wherein the starch hydrolyzate has a DE of 10-22. 前記xと、前記澱粉分解物をイソアミラーゼで処理した後の分子量2000~30000の含有量(z(質量%))とが、下記(3)を満たす、請求項1又は2に記載の澱粉分解物。
(3)10≦x≦40のとき、15≦z
The starch degradation according to claim 1 or 2, wherein x and the content (z (% by mass)) having a molecular weight of 2000 to 30000 after treating the starch degradation product with isoamylase satisfy the following (3). thing.
(3) 15≤z when 10≤x≤40
液化した澱粉原料をマルトテトラオース生成酵素で処理する工程を含む、
グルコース重合度(DP)3~4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たし、前記粘度が40.0mPa・s以下である澱粉分解物の製造方法。
(1)10≦x≦20のとき、y≧-2.7x+65
(2)20<x≦40のとき、y≧-0.2x+15
A step of treating the liquefied starch raw material with a maltotetraose synthase,
The content of glucose polymerization degree (DP) 3-4 (x (mass%)) and the viscosity (y (mPa s) at a solid content concentration of 40% at 50 ° C.) are the following (1) or (2 ) and having a viscosity of 40.0 mPa·s or less.
(1) When 10≤x≤20, y≥-2.7x+65
(2) y≧−0.2x+15 when 20<x≦40
前記澱粉分解物が、DE10~22である、請求項4に記載の澱粉分解物の製造方法。 The method for producing a starch hydrolyzate according to claim 4, wherein the starch hydrolyzate has a DE of 10 to 22. 請求項4又は5に記載の製造方法を用いて製造された澱粉分解物を用いて飲食品組成物を製造する工程を含む、飲食品組成物の製造方法。 A method for producing a food and drink composition, comprising the step of producing a food and drink composition using the starch hydrolyzate produced by using the production method according to claim 4 or 5. 請求項4又は5に記載の製造方法を用いて製造された澱粉分解物、又は、請求項6に記載の製造方法を用いて製造された飲食品組成物を用いて飲食品を製造する工程を含む、飲食品の製造方法。 A step of producing a food or drink using a starch hydrolyzate produced using the production method according to claim 4 or 5 or a food or drink composition produced using the production method according to claim 6 A method of manufacturing a food or drink product, including;
JP2018141467A 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink Active JP7285052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141467A JP7285052B2 (en) 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141467A JP7285052B2 (en) 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink

Publications (2)

Publication Number Publication Date
JP2020015871A JP2020015871A (en) 2020-01-30
JP7285052B2 true JP7285052B2 (en) 2023-06-01

Family

ID=69580110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141467A Active JP7285052B2 (en) 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink

Country Status (1)

Country Link
JP (1) JP7285052B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118102886A (en) * 2021-11-25 2024-05-28 天野酶株式会社 Method for producing plant food and drink and enzyme agent for reducing saccharide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011101A (en) 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2004211097A (en) 2004-01-26 2004-07-29 Hayashibara Biochem Lab Inc Maltohexaose and maltoheptaose producing amylase and its preparation process and application
JP2012016309A (en) 2010-07-08 2012-01-26 Hayashibara Biochem Lab Inc Maltotriose-forming amylase, production method and use thereof
JP2014005447A (en) 2012-05-31 2014-01-16 Nippon Shokuhin Kako Co Ltd Starch decomposition product, taste quality improving agent for food and drink, and usage thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533239B2 (en) * 1994-03-01 2004-05-31 株式会社林原生物化学研究所 Maltohexaose / maltoheptaose-forming amylase, method for producing the same and use thereof
JP3821568B2 (en) * 1998-02-23 2006-09-13 株式会社ニッシ Method for producing maltotriose liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011101A (en) 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2004211097A (en) 2004-01-26 2004-07-29 Hayashibara Biochem Lab Inc Maltohexaose and maltoheptaose producing amylase and its preparation process and application
JP2012016309A (en) 2010-07-08 2012-01-26 Hayashibara Biochem Lab Inc Maltotriose-forming amylase, production method and use thereof
JP2014005447A (en) 2012-05-31 2014-01-16 Nippon Shokuhin Kako Co Ltd Starch decomposition product, taste quality improving agent for food and drink, and usage thereof

Also Published As

Publication number Publication date
JP2020015871A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP5978418B2 (en) Cellulose composition
JP6073265B2 (en) Fiber-containing carbohydrate composition
CN103068260B (en) Carbohydrate composition
JP7411558B2 (en) Method for producing resistant pea dextrin
AU2004275851B2 (en) Bulking agents for baked goods
JP6470099B2 (en) Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product
JP7404233B2 (en) Crystalline starch decomposition products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, fertilizers, and modifiers thereof, and the crystalline starch decomposition products using the crystalline starch decomposition products. Methods for producing products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, and fertilizers
KR20220108798A (en) High-fiber, low-sugar-soluble dietary fiber, products comprising same, and methods of making and using same
JP2014100091A (en) Rare sugar-containing powder
JP2009112212A (en) Maltooligosaccharide composition
CN101720797A (en) Grain powder composition
JPWO2019163965A1 (en) High fiber content starch suitable for food and drink
JP2018186771A (en) Low-sugar bread food material and low-sugar bread
KR101512679B1 (en) syrup powder And manufacturing method thereof
JP7285052B2 (en) Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink
JP7486288B2 (en) Starch hydrolyzate, and composition for food and drink, food and drink, richness imparting agent, method for producing food and drink, and method for imparting richness using the starch hydrolyzate
JP4994336B2 (en) Bread
JP2017055710A (en) Food product having improved odor of protein
JP6512519B2 (en) Moldy food
CN113811197A (en) Modifier, composition for modification containing the modifier, and food, drink, pharmaceutical product, cosmetic, industrial product, feed, culture medium or fertilizer using the same, and method for modifying the same
JP2021122209A (en) Production method of enzymatically decomposed starch-containing plant raw material
JP2014108090A (en) Bakery product and method for producing the same
JP2022167684A (en) Physical property stabilizer
JP2022077882A (en) Modifier containing starch decomposition product and thickening gelling agent
JP2023064843A (en) Food containing grain-saccharification solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150