JP2020015871A - Decomposed starch, and composition for food and drink including decomposed starch, and food and drink - Google Patents

Decomposed starch, and composition for food and drink including decomposed starch, and food and drink Download PDF

Info

Publication number
JP2020015871A
JP2020015871A JP2018141467A JP2018141467A JP2020015871A JP 2020015871 A JP2020015871 A JP 2020015871A JP 2018141467 A JP2018141467 A JP 2018141467A JP 2018141467 A JP2018141467 A JP 2018141467A JP 2020015871 A JP2020015871 A JP 2020015871A
Authority
JP
Japan
Prior art keywords
starch
mass
starch hydrolyzate
content
hydrolyzate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018141467A
Other languages
Japanese (ja)
Other versions
JP7285052B2 (en
Inventor
敦 寺田
Atsushi Terada
敦 寺田
政泰 樋口
Masayasu Higuchi
政泰 樋口
洋則 吉田
Hironori Yoshida
洋則 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Sangyo Co Ltd
Original Assignee
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Sangyo Co Ltd filed Critical Showa Sangyo Co Ltd
Priority to JP2018141467A priority Critical patent/JP7285052B2/en
Publication of JP2020015871A publication Critical patent/JP2020015871A/en
Application granted granted Critical
Publication of JP7285052B2 publication Critical patent/JP7285052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a novel decomposed starch having a viscosity imparting effect and a good flavor.SOLUTION: The present invention provides a decomposed starch in which content (x(mass%)) of glucose polymerization level (DP) 3-4 and viscosity (y(mPa s)) in solid content concentration 40% at 50°C satisfy the following (1) and (2): (1) when 10≤x≤20, y≥-2.7x+65 and (2) when 20<x≤40, y≥-0.2x+15.SELECTED DRAWING: None

Description

本技術は、澱粉分解物、並びに該澱粉分解物を用いた飲食品用組成物、及び飲食品に関する。   The present technology relates to a starch hydrolyzate, a composition for food and drink using the starch hydrolyzate, and food and drink.

従来から、食品分野においては、甘味料、味質調整、浸透圧調整、保湿剤、粉末化基材などの用途に、澱粉分解物が利用されている。また、澱粉分解物は、医療分野においても、経腸栄養剤の炭水化物源や薬剤の賦形剤などの用途に利用されている。更に、化粧品分野においては、澱粉分解物は、化粧品を固形化する際の結合剤やクリーム状の化粧品の粘度調整などの用途にも利用されている。   2. Description of the Related Art In the field of foods, starch degradation products have been used for sweeteners, taste control, osmotic pressure control, humectants, powdered base materials, and the like. In addition, starch degradation products are also used in the medical field for applications such as carbohydrate sources for enteral nutritional supplements and pharmaceutical excipients. Furthermore, in the cosmetics field, the starch hydrolyzate is also used for applications such as a binder for solidifying cosmetics and viscosity adjustment of creamy cosmetics.

このように、澱粉分解物は、その甘味度、味質、浸透圧、粘度、吸湿性等の基本的物性を調整することで上記のような様々な用途に利用される。例えば、甘味度の高いものは甘味料として用いることに適し、逆に甘味度の低いものは味質調整剤、浸透圧調整剤、粉末化基材等に適する。また、澱粉分解物の粘度に関しては、例えば、澱粉分解物の粘度が低すぎると、粘度付与のための用途には適さず、逆に澱粉分解物の粘度が高すぎる場合、粘度増加が好ましくない用途には適さない。また、澱粉分解物の吸湿性に関しては、澱粉分解物の吸湿性が高すぎると、保存や流通の際に固結したり、べたつきが発生することがあり、粉末化基材等の用途には適さない。   As described above, the starch hydrolyzate is used in various applications as described above by adjusting its basic properties such as sweetness, taste, osmotic pressure, viscosity and hygroscopicity. For example, those with a high degree of sweetness are suitable for use as sweeteners, and those with a low degree of sweetness are suitable for taste modifiers, osmotic pressure regulators, powdered base materials and the like. With respect to the viscosity of the starch hydrolyzate, for example, if the viscosity of the starch hydrolyzate is too low, it is not suitable for use for imparting viscosity, and if the viscosity of the starch hydrolyzate is too high, viscosity increase is not preferable. Not suitable for use. In addition, regarding the hygroscopicity of the starch hydrolyzate, if the hygroscopicity of the starch hydrolyzate is too high, it may solidify during storage or distribution, or may cause stickiness. Not suitable.

澱粉分解物の甘味度、味質、浸透圧、粘度、吸湿性等の基本的物性は、構成成分であるグルコースの重合度(DP)によって左右されるといわれている。例えば、グルコース重合度(DP)の低いものを多く含む澱粉分解物は、甘味度が高くなる一方で、粘度は低くなる。逆にグルコース重合度(DP)の高いものを多く含む澱粉分解物は、甘味度が低くなる一方で、粘度は高くなる。   It is said that basic properties such as sweetness, taste, osmotic pressure, viscosity, hygroscopicity and the like of starch hydrolyzate are affected by the degree of polymerization (DP) of glucose as a component. For example, a starch hydrolyzate containing a large amount of glucose having a low degree of polymerization (DP) has a high degree of sweetness and a low viscosity. Conversely, a starch hydrolyzate containing a high content of glucose having a high degree of polymerization (DP) has a low sweetness and a high viscosity.

また、澱粉分解物の基本的物性をコントロールする指標として、DE値(dextrose equivalent)を求めることも多い。「DE(dextrose equivalent)」とは、デキストロース当量とも称され、還元糖をグルコースとして測定し、その全固形分に対する割合(数1参照)を示す値である。このDE値は、澱粉の加水分解の程度(分解度)、即ち糖化の進行の程度を示す指標である。   In addition, a DE value (dextrose equivalent) is often obtained as an index for controlling the basic physical properties of the starch hydrolyzate. The “DE (dextrose equivalent)” is also referred to as dextrose equivalent, and is a value indicating the ratio of reducing sugar to total solid content (see Equation 1) measured as glucose. The DE value is an index indicating the degree of hydrolysis (degree of decomposition) of starch, that is, the degree of progress of saccharification.

Figure 2020015871
Figure 2020015871

一般に、DE値が高いほど、甘味度、浸透圧、吸湿性が高く、粘度は低くなる。逆に、DE値が低いほど、デキストリン特有の風味が強くなり、濁りやすく、粘度も高くなる。例えば、非特許文献1には、DEが低いほど粘度が高く、溶解性が低いことが記載されている。   In general, the higher the DE value, the higher the sweetness, osmotic pressure, hygroscopicity and lower the viscosity. Conversely, the lower the DE value, the stronger the flavor unique to dextrin, the more turbid, and the higher the viscosity. For example, Non-Patent Document 1 describes that the lower the DE, the higher the viscosity and the lower the solubility.

近年、用途に合わせて、澱粉分解物の基本的物性を調整するために、澱粉分解物中の糖組成を操作する技術が開発されている。例えば、特許文献1では、デンプン分解物を含有する糖液に、サッカロマイセス属の酵母菌体を添加し、糖液中のマルトトリオース以下の低分子オリゴ糖を資化させることにより、甘味がなく、その糖液の経時安定性に優れた、マルトテトラオース以上を含有するデンプン分解物を製造する技術が開示されている。   In recent years, a technique for manipulating the sugar composition in a starch hydrolyzate has been developed in order to adjust the basic physical properties of the starch hydrolyzate according to the application. For example, in Patent Document 1, by adding yeast cells of the genus Saccharomyces to a sugar solution containing a starch decomposed product and assimilating low-molecular-weight oligosaccharides of maltotriose or less in the sugar solution, there is no sweetness. A technology for producing a starch hydrolyzate containing maltotetraose or more, which is excellent in stability over time of the sugar solution, is disclosed.

また、特許文献2では、固形あたりマルトトリオース40〜60%、マルトース15〜35%及びその他の糖から成るマルトトリオース液を、強酸性陽イオン交換樹脂によってクロマト分離することにより、固形あたりマルトトリオース65%以上及びマルトース25%以下含有する、低甘味性、吸湿性等の特性に優れ、多分野の用途に利用し得るマルトトリオース高含有組成物を得る技術が開示されている。   Further, in Patent Document 2, maltotriose solution composed of 40 to 60% of maltotriose, 15 to 35% of maltose, and other sugars per solid is chromatographed with a strongly acidic cation exchange resin to obtain a maltotriose solution per solid. There is disclosed a technique for obtaining a maltotriose-rich composition containing 65% or more of triose and 25% or less of maltose and having excellent properties such as low sweetness and hygroscopicity, and which can be used for various fields.

特開平09−143191号公報JP 09-143191 A 特開平04−108356号公報JP 04-108356 A

月刊フードケミカル2000-10Monthly Food Chemical 2000-10

デキストリン(DE20以下)などのDEの低い澱粉分解物は、粘度が高く甘味度が低いことから、食品の増粘、ボディ感付与などに利用されている。しかしながら、澱粉分解物はDEが低くなるほど特有の穀物臭、糊っぽさが生じ、この澱粉分解物を使用した食品の風味を損ねるという問題がある。逆に、DEが高い澱粉分解物においては、穀物臭は低減するが、粘度の低下、甘味の増加といった別の問題が生じる。   Starch decomposed products having a low DE such as dextrin (DE20 or less) have high viscosity and low sweetness, and are therefore used for thickening foods and imparting a feeling of body. However, the starch degradation product has a problem that a lower DE results in a specific grain odor and a sticky taste, which impairs the flavor of foods using the starch degradation product. Conversely, starch degradation products with a high DE reduce grain odor, but pose other problems such as reduced viscosity and increased sweetness.

そこで、本技術では、粘度付与効果を有し、且つ、風味の良好な新規の澱粉分解物を提供することを主目的とする。   Then, in this art, it is a main objective to provide a novel starch hydrolyzate having a viscosity imparting effect and a good flavor.

本願発明者らは、高い粘度付与効果を有しつつ、風味の良好な澱粉分解物の組成について鋭意研究を行った結果、マルトトリオ―ス及びマルトテトラオースの含有量が特定の範囲であって、該含有量と粘度との関係が一定の条件を満たすと、穀物臭や糊っぽさの発生が抑制されることを見出し、本技術を完成させるに至った。   The inventors of the present application, while having a high viscosity imparting effect, as a result of intensive research on the composition of a good-tasting starch hydrolyzate, the content of maltotriose and maltotetraose is in a specific range, It has been found that when the relationship between the content and the viscosity satisfies certain conditions, the generation of grain odor and stickiness is suppressed, and the present technology has been completed.

即ち、本技術では、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たす澱粉分解物を提供する。
(1)10≦x≦20のとき、y≧−2.7x+65
(2)20<x≦40のとき、y≧−0.2x+15
本技術に係る澱粉分解物は、前記xと、前記yとを、下記(1’)を満たすようにすることもできる。
(1’)10≦x≦20のとき、y≧−4.1x+93
本技術に係る澱粉分解物は、前記xと、前記yとを、下記(1’’)又は(2’)を満たすようにすることもできる。
(1’’)10≦x≦20のとき、y≧−5.0x+115
(2’)20<x≦40のとき、y≧−0.2x+19
本技術に係る澱粉分解物は、前記xと、前記澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))とを、下記(3)を満たすようにすることもできる。
(3)10≦x≦40のとき、15≦z
That is, in the present technology, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are as follows: A starch hydrolyzate satisfying (1) or (2) is provided.
(1) When 10 ≦ x ≦ 20, y ≧ −2.7x + 65
(2) When 20 <x ≦ 40, y ≧ −0.2x + 15
In the starch degradation product according to the present technology, the x and the y may satisfy the following (1 ′).
(1 ′) When 10 ≦ x ≦ 20, y ≧ −4.1x + 93
In the starch degradation product according to the present technology, x and y can also satisfy the following (1 ″) or (2 ′).
(1 ″) When 10 ≦ x ≦ 20, y ≧ −5.0x + 115
(2 ′) When 20 <x ≦ 40, y ≧ −0.2x + 19
The starch hydrolyzate according to the present technology is configured so that x and the content (z (% by mass)) of the molecular weight of 2000 to 30,000 after treating the starch hydrolyzate with isoamylase satisfy the following (3). You can also.
(3) When 10 ≦ x ≦ 40, 15 ≦ z

本技術に係る澱粉分解物は、飲食品用組成物及び飲食品などに用いることができる。   The starch hydrolyzate according to the present technology can be used for food and drink compositions, food and drink products, and the like.

本技術によれば、粘度付与効果を有し、且つ、風味の良好な新規の澱粉分解物を提供することが可能である。   According to the present technology, it is possible to provide a novel starch hydrolyzate having a viscosity imparting effect and good flavor.

以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。   Hereinafter, a preferred embodiment for carrying out the present technology will be described. The embodiment described below is an example of a typical embodiment of the present technology, and the range of the present technology is not interpreted as being narrow.

<澱粉分解物>
本技術に係る澱粉分解物は、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たす澱粉分解物である。
(1)10≦x≦20のとき、y≧−2.7x+65
(2)20<x≦40のとき、y≧−0.2x+15
<Starch degradation product>
The starch hydrolyzate according to the present technology has a content of glucose polymerization degree (DP) of 3 to 4 (x (% by mass)), a viscosity at 50 ° C at a solid content concentration of 40% (y (mPa · s)). Is a starch hydrolyzate satisfying the following (1) or (2).
(1) When 10 ≦ x ≦ 20, y ≧ −2.7x + 65
(2) When 20 <x ≦ 40, y ≧ −0.2x + 15

本技術に係る澱粉分解物において、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))は、上記(1)又は(2)を満たせば特に限定されないが、本技術では特に、下記(1’)を満たすことが好ましい。
(1’)10≦x≦20のとき、y≧−4.1x+93
In the starch hydrolyzate according to the present technology, the content (x (mass%)) of glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C are: Although there is no particular limitation as long as the above (1) or (2) is satisfied, it is particularly preferable that the present technology satisfies the following (1 ′).
(1 ′) When 10 ≦ x ≦ 20, y ≧ −4.1x + 93

上記(1’)を満たすことで、穀物臭や糊っぽさの発生をより効果的に抑制することができ、本技術に係る澱粉分解物を用いた飲食品の風味をより向上させることができる。   By satisfying the above (1 ′), generation of grain odor and pastiness can be more effectively suppressed, and the flavor of food and drink using the starch hydrolyzate according to the present technology can be further improved. it can.

また、本技術では、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))が、下記(1’’)又は(2’)を満たすことがより好ましい。
(1’’)10≦x≦20のとき、y≧−5.0x+115
(2’)20<x≦40のとき、y≧−0.2x+19
Further, in the present technology, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are as follows: It is more preferable to satisfy 1 ″) or (2 ′).
(1 ″) When 10 ≦ x ≦ 20, y ≧ −5.0x + 115
(2 ′) When 20 <x ≦ 40, y ≧ −0.2x + 19

上記(1’’)又は(2’)を満たすことで、本技術に係る澱粉分解物を用いた飲食品のとろみ、コク味、食感、ほぐれ性等を、より向上させることができる。   By satisfying the above (1 '') or (2 '), it is possible to further improve the thickness, richness, texture, looseness, and the like of food and drink using the starch hydrolyzate according to the present technology.

更に、本技術では、グルコース重合度(DP)3〜4の含有量(x(質量%))と、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))とが、下記(3)を満たすことが好ましい。
(3)10≦x≦40のとき、15≦z
Furthermore, in the present technology, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the content (z (mass%) of the molecular weight of 2000 to 30000 after treating the starch degradation product with isoamylase )) Preferably satisfy the following (3).
(3) When 10 ≦ x ≦ 40, 15 ≦ z

澱粉分解物をイソアミラーゼで処理することにより、澱粉分解物の分子中に存在するα−1,6グルコシド結合が加水分解され、直鎖状の構造となったものが残る。即ち、グルコース重合度(DP)3〜4の含有量(x(質量%))が上記(3)で示す範囲であり、かつ、イソアミラーゼ処理後に直鎖状の構造となるものの含有量が15質量%以上であることが更に好ましい。この範囲内とすることにより、本技術に係る澱粉分解物を用いた飲食品の風味や食感をより向上させることができる。   By treating the starch hydrolyzate with isoamylase, α-1,6 glucosidic bonds present in the molecules of the starch hydrolyzate are hydrolyzed, leaving a linear structure. That is, the content (x (% by mass)) of the glucose polymerization degree (DP) of 3 to 4 is in the range shown in the above (3), and the content of those having a linear structure after the isoamylase treatment is 15%. More preferably, it is not less than mass%. When the content is within this range, the flavor and texture of food and drink using the starch hydrolyzate according to the present technology can be further improved.

加えて、上記(3)において、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))の上限は、特に限定されないが、25質量%以下であることがより好ましい。この範囲内とすることにより、本技術に係る澱粉分解物を用いた飲食品の風味をより向上させることができる。   In addition, in the above (3), the upper limit of the content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch degradation product with isoamylase is not particularly limited, but is not more than 25% by mass. Is more preferred. When the content is within this range, the flavor of food and drink using the starch hydrolyzate according to the present technology can be further improved.

<澱粉分解物の製造方法>
本技術に係る澱粉分解物は、その組成自体が新規であって、その収得の方法については特に限定されることはない。例えば、澱粉原料を、一般的な酸や酵素を用いた処理や、各種クロマトグラフィー、膜分離、エタノール沈殿等の所定操作を適宜、組み合わせて行うことによって得ることができる。
<Production method of starch degradation product>
The starch hydrolyzate according to the present technology is novel in its composition itself, and the method for obtaining the same is not particularly limited. For example, a starch raw material can be obtained by appropriately combining predetermined operations such as treatment with a common acid or enzyme, various types of chromatography, membrane separation, and ethanol precipitation.

本技術に係る澱粉分解物を得るために原料となり得る澱粉原料としては、公知の澱粉分解物の原料となり得る澱粉原料を1種又は2種以上自由に選択して用いることができる。例えば、コーンスターチ、ワキシーコーンスターチ、米澱粉、ワキシー米澱粉、小麦澱粉、ワキシー小麦澱粉などの澱粉(地上系澱粉)、馬鈴薯澱粉、ワキシー馬鈴薯澱粉、タピオカ澱粉、ワキシータピオカ澱粉、甘藷澱粉、ワキシー甘藷澱粉などのような地下茎または根由来の澱粉(地下系澱粉)を挙げることができる。   As a starch raw material that can be used as a raw material for obtaining the starch hydrolyzate according to the present technology, one or more kinds of known starch raw materials that can be used as raw materials for starch hydrolyzate can be freely selected and used. For example, starch (ground starch) such as corn starch, waxy corn starch, rice starch, waxy rice starch, wheat starch, waxy wheat starch, potato starch, waxy potato starch, tapioca starch, waxy tapioca starch, sweet potato starch, waxy sweet potato starch, etc. And starch derived from the rhizome or root (underground starch).

本技術に係る澱粉分解物を効率的に得る方法として、澱粉原料を液化した後、マルトトリオース生成酵素及び/又はマルトテトラオース生成酵素を作用させる方法がある。この場合、本技術に係る澱粉分解物の製造に用いることができるマルトトリオース生成酵素及び/又はマルトテトラオース生成酵素の種類は特に限定されないが、エキソ型マルトトリオース生成酵素及び/又はエキソ型マルトテトラオース生成酵素を用いることが好ましい。   As a method for efficiently obtaining the starch hydrolyzate according to the present technology, there is a method in which a starch raw material is liquefied and then a maltotriose-forming enzyme and / or a maltotetraose-forming enzyme are allowed to act. In this case, the kind of the maltotriose-forming enzyme and / or the maltotetraose-forming enzyme that can be used for producing the starch hydrolyzate according to the present technology is not particularly limited, but the exo-type maltotriose-forming enzyme and / or the exo-type It is preferable to use maltotetraose producing enzyme.

エンド型マルトトリオース生成酵素及び/又はエンド型マルトテトラオース生成酵素を用いた場合は、澱粉分子をランダムに分解して低分子化するのに対し、エキソ型マルトトリオース生成活性を有する酵素及び/又はエキソ型マルトテトラオース生成活性を有する酵素を用いた場合は、澱粉分子を非還元末端から分解するため、同じDE値の澱粉分解物と比較して、高分子成分を多く残存させることができ、当該高分子成分は、直鎖状の構造を多く含んでいることが特徴となる。その結果、本技術に係る澱粉分解物を用いた飲食品の風味や食感をより向上させることができる。   When the endo-type maltotriose-forming enzyme and / or the endo-type maltotetraose-forming enzyme is used, an enzyme having an exo-type maltotriose-forming activity, In the case where an enzyme having exo-type maltotetraose-forming activity is used, starch molecules are decomposed from the non-reducing end, so that a larger amount of the polymer component can be left as compared with starch decomposed products having the same DE value. The polymer component is characterized in that it contains a large number of linear structures. As a result, it is possible to further improve the flavor and texture of food and drink using the starch hydrolyzate according to the present technology.

本技術に係る澱粉分解物に用いることができるマルトトリオース生成酵素の種類は特に限定されず、公知のマルトトリオース生成酵素を1種又は2種以上、自由に選択して用いることができる。具体例としては、Microbacterium属微生物由来のマルトトリオース生成酵素(例えば、Microbacterium imperiale由来のマルトトリオース生成酵素(例えば、製品名「AMT1.2L」天野エンザイム株式会社製)、Microbacterium sp.由来のマルトトリオース生成酵素(例えば、特開平3−251173号公報に記載の方法に則って精製されたMicrobacterium sp. AM-9581由来のマルトトリオース生成酵素)等)が挙げられる。   The type of maltotriose-forming enzyme that can be used in the starch hydrolyzate according to the present technology is not particularly limited, and one or more known maltotriose-forming enzymes can be freely selected and used. Specific examples include maltotriose-forming enzymes derived from microorganisms belonging to the genus Microbacterium (eg, maltotriose-forming enzymes derived from Microbacterium imperiale (eg, product name “AMT1.2L” manufactured by Amano Enzyme Co., Ltd.), and maltotriose derived from Microbacterium sp. Triose-forming enzyme (for example, maltotriose-forming enzyme derived from Microbacterium sp. AM-9581 purified according to the method described in JP-A-3-251173) and the like.

本技術に係る澱粉分解物に用いることができるマルトテトラオース生成酵素の種類も特に限定されず、公知のマルトテトラオース生成酵素を1種又は2種以上、自由に選択して用いることができる。具体例としては、Pseudomonas属微生物由来のマルトテトラオース生成酵素(例えば、Pseudomonas saccharophila由来のマルトテトラオース生成酵素(例えば、製品名「Optimalt4G」ジェネンコア社製)、Pseudomonas stutzeri由来のマルトテトラオース生成酵素(例えば、特公平7−89916号公報公報に記載の方法に則って精製されたマルトテトラオース生成酵素)等)が挙げられる。   The type of maltotetraose-forming enzyme that can be used in the starch hydrolyzate according to the present technology is not particularly limited, and one or more known maltotetraose-forming enzymes can be freely selected and used. Specific examples include maltotetraose-forming enzyme derived from a microorganism of the genus Pseudomonas (for example, maltotetraose-forming enzyme derived from Pseudomonas saccharophila (for example, product name “Optimalt4G” manufactured by Genencor Corporation), maltotetraose-forming enzyme derived from Pseudomonas stutzeri ( For example, a maltotetraose-forming enzyme purified according to the method described in Japanese Patent Publication No. 7-89916) and the like) can be mentioned.

また、澱粉原料の液化の前後又は同時や、マルトトリオース生成酵素及び/又はマルトテトラオース生成酵素を作用させる前後又は同時に、他の分解酵素(例えば、αアミラーゼ等)や枝作り酵素による処理を自由に組み合わせることも可能である。このように、液化、マルトトリオース生成酵素及び/又はマルトテトラオース生成酵素による作用の前後に、分解酵素や枝作り酵素を作用させることで、澱粉分解物の分解度を所望の範囲に調整することが容易になる。   In addition, before or after or simultaneously with liquefaction of the starch raw material, before or after or simultaneously with the action of maltotriose-forming enzyme and / or maltotetraose-forming enzyme, treatment with another degrading enzyme (for example, α-amylase or the like) or a branching enzyme is performed. Any combination is possible. In this way, the degradation degree of the starch hydrolyzate is adjusted to a desired range by allowing the decomposing enzyme or the branching enzyme to act before and after the liquefaction and the action by the maltotriose-forming enzyme and / or the maltotetraose-forming enzyme. It becomes easier.

なお、本技術に係る澱粉分解物は、澱粉原料にマルトトリオース生成酵素及び/又はマルトテトラオース生成酵素処理を行わなくても、各種クロマトグラフィー、膜分離、エタノール沈殿等の所定操作を行うことで、製造することも可能である。   The starch hydrolyzate according to the present technology can be obtained by performing various operations such as chromatography, membrane separation, and ethanol precipitation without performing maltotriose-forming enzyme and / or maltotetraose-forming enzyme treatment on the starch raw material. It is also possible to manufacture.

以上のように、本技術に係る澱粉分解物は、様々な方法を用いて製造することができるが、これらの方法の中でも、澱粉原料にマルトトリオース生成酵素及び/又はマルトテトラオース生成酵素処理を行う方法が好ましい。この方法を用いれば、クロマトグラフィーや膜分離等の操作を行うことなく、本技術の澱粉分解物を得られるため、本技術の澱粉分解物を安価にかつ、工業的に製造する場合に好適である。   As described above, the starch hydrolyzate according to the present technology can be produced using various methods. Among these methods, the starch raw material is treated with a maltotriose-forming enzyme and / or a maltotetraose-forming enzyme. Is preferred. By using this method, the starch hydrolyzate of the present technology can be obtained without performing operations such as chromatography and membrane separation, so that the starch hydrolyzate of the present technology is inexpensive and suitable for industrial production. is there.

また、本技術では、目的の澱粉分解物となるように各種処理を行った後に、活性炭脱色、イオン精製等を行い、不純物を除去することも可能であり、不純物を除去することが好ましい。   Further, in the present technology, it is possible to remove impurities by performing activated carbon decolorization, ion purification and the like after performing various treatments to obtain a target starch hydrolyzate, and it is preferable to remove impurities.

更に、固形分濃度30〜80%に濃縮してシラップにすることや、真空乾燥や噴霧乾燥等により脱水乾燥することで粉末化することも可能である。   Furthermore, it is also possible to concentrate to a solid content concentration of 30 to 80% to make a syrup, or to make a powder by dehydrating and drying by vacuum drying, spray drying or the like.

<澱粉分解物の用途>
本技術に係る澱粉分解物は、粘度付与効果を有し、且つ、風味が良好であるため、飲食品の増粘(とろみ付け)や、コク味つけ、食感付与等の目的で用いることができる。
<Uses of starch degradation products>
The starch hydrolyzate according to the present technology has a viscosity-imparting effect and a good flavor, and thus can be used for the purpose of thickening (thickening), richness, and texture imparting of foods and drinks. .

本技術に係る澱粉分解物を含有することができる飲食品は、特に限定されず、例えば、ジュース、スポーツ飲料、お茶、コーヒー、紅茶などの飲料、醤油、ソースなどの調味料、スープ類、クリーム類、各種乳製品類、アイスクリームなどの冷菓、各種粉末食品(飲料用を含む)、保存用食品、冷凍食品、パン類、菓子類、米飯、麺類、水練り製品、畜肉製品などの加工食品などが挙げられる。また、保健機能食品(特定保健用食品、栄養機能食品、機能性表示食品)や、いわゆる健康食品、濃厚栄養剤、流動食、乳児・幼児食(何れも飲料の形態を含む)にも含有させることができる。   Foods and beverages that can contain the starch hydrolyzate according to the present technology are not particularly limited, for example, juices, sports drinks, tea, coffee, beverages such as tea, soy sauce, seasonings such as sauces, soups, creams , Dairy products, frozen desserts such as ice cream, various powdered foods (including beverages), preservative foods, frozen foods, breads, confectionery, cooked rice, noodles, water paste products, processed foods such as meat products, etc. Is mentioned. In addition, it is contained in health functional foods (foods for specified health use, nutritional functional foods, functional foods), so-called health foods, concentrated nutrients, liquid foods, and infant and infant foods (all of which include beverages). be able to.

本技術に係る澱粉分解物を飲食品に用いる場合、飲食品用の組成物として流通させる形態を採用することもできる。具体的には、例えば、各種食品用ミックス(ホットケーキミックス、ベーカリー用ミックス、菓子用ミックス、麺皮類用ミックス等)、各種食品用粉(天ぷら粉、から揚げ粉、お好み焼き粉、たこ焼き粉等)、各種食品用の素(菓子の素、ドーナツの素、ケーキの素、アイスクリームの素、スープの素、飲料の素等)、各種食品品質改良剤(麺皮類改良剤、米飯改良剤、ベーカリー改良剤等)等が挙げられる。   When the starch hydrolyzate according to the present technology is used in foods and drinks, a form that is distributed as a composition for foods and drinks may be adopted. Specifically, for example, various food mixes (hot cake mix, bakery mix, confectionery mix, noodle skin mix, etc.), various food powders (tempura flour, fried powder, okonomiyaki flour, takoyaki flour, etc.) ), Various food ingredients (confectionery ingredients, donut ingredients, cake ingredients, ice cream ingredients, soup ingredients, beverage ingredients, etc.), and various food quality improvers (noodle skin improver, cooked rice improver) Bakery improvers, etc.).

さらに、本技術に係る澱粉分解物は、牛、馬、豚などの家畜用哺乳類、鶏、ウズラなどの家禽類、爬虫類、鳥類あるいは小型哺乳類などのペット類、養殖魚類、昆虫などの飼料にも含有させることが可能である。また、肥料に含有させることも可能である。   Furthermore, the starch hydrolyzate according to the present technology can also be used for feed for mammals such as cattle, horses and pigs, poultry such as chickens and quails, pets such as reptiles, birds or small mammals, cultured fish and insects. It can be contained. Moreover, it is also possible to make it contain in fertilizer.

加えて、本技術に係る澱粉分解物は、あらゆる薬剤に適用することも可能である。例えば、散剤、顆粒剤などの剤形成形のための粉末化基材、さらに錠剤のための賦形剤や、経腸栄養剤等の炭水化物源などに適用することが可能である。特に、本技術に係る澱粉分解物は、粘度付与効果があるため、嚥下困難者用の栄養剤や薬剤等にも好適に用いることができる。   In addition, the starch hydrolyzate according to the present technology can be applied to any drug. For example, it can be applied to powdered bases for dosage forms such as powders and granules, excipients for tablets, and carbohydrate sources such as enteral nutrition. In particular, the starch hydrolyzate according to the present technology has a viscosity-imparting effect, and thus can be suitably used as a nutrient or a drug for a person having difficulty in swallowing.

以下、実施例に基づいて本技術を更に詳細に説明する。なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。   Hereinafter, the present technology will be described in more detail based on embodiments. The embodiment described below is an example of a typical embodiment of the present technology, and the range of the present technology is not construed as being narrow.

(1)試験方法
[マルトトリオース生成酵素]
本実施例では、マルトトリオース生成酵素の一例として、Microbacterium imperiale由来の酵素(「AMT1.2L」天野エンザイム株式会社製)を用いた。
(1) Test method [Malt triose-forming enzyme]
In the present example, an enzyme derived from Microbacterium imperiale ("AMT1.2L" manufactured by Amano Enzyme Co., Ltd.) was used as an example of the maltotriose-forming enzyme.

なお、マルトトリオース生成酵素の活性測定は、以下の方法で行った。
0.1Mリン酸緩衡液(pH6.0)に溶解した2.0質量%可溶性澱粉0.5mLに、適量の酵素を加え、全量1.0mLで、温度40℃で酵素反応を行い、生成するマルトトリオース及びその他還元糖をソモギー・ネルソン法で定量した。この条件で、1分間に1μmoLのグルコースに相当する還元糖を生成する酵素活性量を、酵素活性量1単位とした。
The activity of the maltotriose synthase was measured by the following method.
An appropriate amount of enzyme was added to 0.5 mL of 2.0% by mass soluble starch dissolved in 0.1 M phosphoric acid buffer solution (pH 6.0), and an enzyme reaction was carried out at a total volume of 1.0 mL at a temperature of 40 ° C. Maltotriose and other reducing sugars were determined by the Somogyi-Nelson method. Under these conditions, the amount of enzyme activity that produces a reducing sugar corresponding to 1 μmol of glucose per minute was defined as 1 unit of enzyme activity.

[マルトテトラオース生成酵素]
本実施例では、マルトテトラオース生成酵素の一例として、Pseudomonas saccharophila由来の酵素(「Optimalt4G」ジェネンコア社製)を用いた。
[Malttetraose producing enzyme]
In this example, an enzyme derived from Pseudomonas saccharophila ("Optimalt4G" manufactured by Genencor Corporation) was used as an example of the maltotetraose-generating enzyme.

なお、マルトテトラオース生成酵素の活性測定は、以下の方法で行った。
0.1Mリン酸緩衡液(pH7.0)に溶解した2.0質量%可溶性澱粉0.5mLに、適量の酵素を加え、全量1.0mLで、温度40℃で酵素反応を行い、生成するマルトテトラオース及びその他還元糖をソモギー・ネルソン法で定量する。この条件で、1分間に1μmoLのグルコースに相当する還元糖を生成する酵素活性量を、酵素活性量1単位とした。
The activity of maltotetraose synthase was measured by the following method.
An appropriate amount of enzyme was added to 0.5 mL of a 2.0% by mass soluble starch dissolved in a 0.1 M phosphoric acid buffer solution (pH 7.0), and an enzyme reaction was carried out at a total volume of 1.0 mL at a temperature of 40 ° C. Maltotetraose and other reducing sugars are determined by the Somogyi Nelson method. Under these conditions, the amount of enzyme activity that produces a reducing sugar corresponding to 1 μmol of glucose per minute was defined as 1 unit of enzyme activity.

[DE]
「澱粉糖関連工業分析法」(澱粉糖技術部会編)のレインエイノン法に従って算出した。
[DE]
It was calculated according to the Rain Aynon method of "Analytical Method for Starch Sugar Related Industry" (edited by the Starch Sugar Technical Committee).

[DP3〜4の含有量]
Brix5%に調整した澱粉分解物溶液について、下記表1に示す条件で液体クロマトグラフィーにて分析を行い、保持時間に基づいて、DP3〜4の含有量を測定した。
[Content of DP3-4]
The starch hydrolyzate solution adjusted to Brix 5% was analyzed by liquid chromatography under the conditions shown in Table 1 below, and the DP3-4 content was measured based on the retention time.

Figure 2020015871
Figure 2020015871

[粘度]
固形分40%になるように調製した糖液を、測定温度:50℃、パラレルプレート:50mm、トルク:一定 30μN・mの条件でレオメータ(MCR102型、アントンパール社製)を用いて、粘度を測定した。
[viscosity]
The viscosity of the sugar solution prepared so as to have a solid content of 40% was measured using a rheometer (MCR102, manufactured by Anton Paar) under the conditions of a measurement temperature: 50 ° C., a parallel plate: 50 mm, and a torque: 30 μN · m. It was measured.

[枝切り酵素処理後の澱粉分解物中の分子量2000〜30000の画分の含有量]
Brix5%に調整した澱粉分解物溶液500μLに、1M酢酸緩衝液(pH5.0)を2μL、イソアミラーゼ(Pseudomonas sp.由来、Megazyme製)を固形分(g)当たり250ユニット添加した。これを40℃で72時間酵素反応させた後、煮沸により反応を停止した。これに500μLの水を加え、12000rpmにて5分間遠心分離を行った。上清900μLを脱塩、フィルター処理し、下記の表2に示す条件で、ゲルろ過クロマトグラフィーにて分析を行った。分子量スタンダードとして、ShodexスタンダードGFC(水系GPC)カラム用Standard P−82(昭和電工株式会社製)を使用し、分子量スタンダードの溶出時間と分子量の相関から算出される検量線に基づいて、澱粉分解物中の分子量2000〜30000の画分の含有量を算出した。
[Content of the fraction having a molecular weight of 2,000 to 30,000 in the starch hydrolyzate after the debranching enzyme treatment]
To 500 μL of a starch hydrolyzate solution adjusted to Brix 5%, 2 μL of a 1 M acetate buffer (pH 5.0) and 250 units of solid content (g) of isoamylase (derived from Pseudomonas sp., Manufactured by Megazyme) were added. This was subjected to an enzyme reaction at 40 ° C. for 72 hours, and then the reaction was stopped by boiling. 500 μL of water was added thereto, and centrifugation was performed at 12,000 rpm for 5 minutes. 900 μL of the supernatant was desalted and filtered, and analyzed by gel filtration chromatography under the conditions shown in Table 2 below. Using a standard P-82 for Shodex Standard GFC (aqueous GPC) column (manufactured by Showa Denko KK) as a molecular weight standard, based on a calibration curve calculated from the correlation between the elution time of the molecular weight standard and the molecular weight, the starch degradation product was used. The content of the fraction having a molecular weight of 2,000 to 30,000 was calculated.

Figure 2020015871
Figure 2020015871

(2)実施例・比較例の製法
[実施例1]
10質量%消石灰にてpH5.8に調整した20質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE13になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例1の澱粉分解物を得た。
(2) Production method of Examples and Comparative Examples [Example 1]
After adding α-amylase (Spytase HK, manufactured by Nagase ChemteX Corporation) to a 20% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, 0.2% by mass per solid content (g) was added, The liquid was liquefied by a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and the DE was measured continuously. When the DE reached 9, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. The reaction was stopped. After adjusting the pH of the sugar solution after stopping the reaction to 6.0, 2 units of maltotriose-forming enzyme were added per solid (g), and the mixture was reacted at 55 ° C. The DE was measured over time, and when it became DE13, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray drier to obtain the starch hydrolyzate of Example 1.

[実施例2]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE23になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例2の澱粉分解物を得た。
[Example 2]
To a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker ( Liquefaction at 110 ° C), keeping the liquefied liquid at 95 ° C and measuring DE over time. When DE9 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and stop the reaction by boiling. did. After adjusting the pH of the sugar solution after stopping the reaction to 6.0, 2 units of maltotriose-forming enzyme were added per solid (g), and the mixture was reacted at 55 ° C. The DE was measured over time, and when it became DE23, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray drier to obtain a starch hydrolyzate of Example 2.

[実施例3]
10質量%消石灰にてpH5.8に調整した20質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE13になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例3の澱粉分解物を得た。
[Example 3]
After adding α-amylase (Spytase HK, manufactured by Nagase ChemteX Corporation) to a 20% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, 0.2% by mass per solid content (g) was added, The liquid was liquefied by a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and the DE was measured continuously. When the DE reached 9, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. The reaction was stopped. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time, and when it became DE13, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Example 3.

[実施例4]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE20になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例4の澱粉分解物を得た。
[Example 4]
To a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker ( Liquefaction at 110 ° C), keeping the liquefied liquid at 95 ° C and measuring DE over time. When DE9 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and stop the reaction by boiling. did. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time. When the DE reached 20, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 4.

[実施例5]
10質量%消石灰にてpH5.8に調整した20質量%のワキシーコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE4になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE16になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例5の澱粉分解物を得た。
[Example 5]
After adding α-amylase (Kristase T10S, manufactured by Amano Enzyme Co., Ltd.) to a 20% by mass waxy corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, 0.2% by mass per solid content (g) was added. The liquid was liquefied in a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and the DE was continuously measured. When the DE reached 4, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. To stop the reaction. After adjusting the pH of the sugar solution after stopping the reaction to 6.0, 2 units of maltotriose-forming enzyme were added per solid (g), and the mixture was reacted at 55 ° C. The DE was measured over time, and when it became DE16, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 5.

[実施例6]
10質量%消石灰にてpH5.8に調整した30質量%の甘藷澱粉スラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE16になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例6の澱粉分解物を得た。
[Example 6]
To a 30% by mass sweet potato starch slurry adjusted to a pH of 5.8 with 10% by mass slaked lime, α-amylase (Termamyl 120L, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker was added. (Temperature of 110 ° C.), keeping the liquefied liquid at 95 ° C. and measuring DE over time, and when DE8 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and boil the reaction. Stopped. After adjusting the pH of the sugar solution after stopping the reaction to 6.0, 2 units of maltotriose-forming enzyme were added per solid (g), and the mixture was reacted at 55 ° C. The DE was measured over time, and when it became DE16, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray drier to obtain a starch hydrolyzate of Example 6.

[実施例7]
10質量%消石灰にてpH5.8に調整した20質量%の甘藷澱粉スラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE10になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例7の澱粉分解物を得た。
[Example 7]
To a 20% by mass sweet potato starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Kristase T10S, manufactured by Amano Enzyme Co., Ltd.) was added at 0.2% by mass per solid (g). The liquid was liquefied in a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and the DE was measured continuously. When the DE reached 8, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. To stop the reaction. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time, and when it became DE10, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 7.

[実施例8]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE20になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度5質量%に調整した。この溶液を分画分子量50000の限外濾過膜(マイクローザUFペンシル型モジュール、旭化成株式会社製)に供して、高分子画分を得た。一方、10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE33になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液に対し、活性炭脱色、イオン精製し固形分濃度20質量%になるように調整した。この溶液をゲルろ過用樹脂(Bio−Gel P2、バイオ・ラッド社製、樹脂容量500mL)を2本連結したものに供し、溶離液:水、流速:0.5mL/min、カラム温度:60℃、の分離条件で低分子画分を得た。上記高分子画分と低分子画分を混合し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例8の澱粉分解物を得た。
Example 8
To a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid content (g), and then jet cooker ( Liquefaction at 110 ° C), keeping the liquefied liquid at 95 ° C and measuring DE over time. When DE20 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and stop the reaction by boiling. did. The solution of the starch hydrolyzate was decolorized with activated carbon and ion-purified to adjust the solid content to 5% by mass. This solution was applied to an ultrafiltration membrane having a molecular weight cutoff of 50,000 (Microza UF pencil type module, manufactured by Asahi Kasei Corporation) to obtain a polymer fraction. On the other hand, α-amylase (Termamyl 120L, manufactured by Novozymes) was added to 30% by mass of corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, and 0.2% by mass per solid content (g) was added. The liquid was liquefied in a cooker (temperature: 110 ° C), the liquefied liquid was kept at 95 ° C, and the DE was continuously measured. When the DE reached 33, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was conducted by boiling. Stopped. The solution of the starch decomposition product was decolorized with activated carbon and ion-purified to adjust the solid content to 20% by mass. This solution is applied to two gel-filtration resins (Bio-Gel P2, manufactured by Bio-Rad Co., Ltd., resin volume: 500 mL) connected to each other. Eluent: water, flow rate: 0.5 mL / min, column temperature: 60 ° C. A low-molecular-weight fraction was obtained under the following separation conditions. The high molecular fraction and the low molecular fraction were mixed and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 8.

[実施例9]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE11になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE16になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例9の澱粉分解物を得た。
[Example 9]
To a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker ( Liquefaction at 110 ° C), keeping the liquefied liquid at 95 ° C and measuring DE over time. When DE11 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and stop the reaction by boiling. did. After adjusting the pH of the sugar solution after stopping the reaction to 6.0, 2 units of maltotriose-forming enzyme were added per solid (g), and the mixture was reacted at 55 ° C. The DE was measured over time, and when it became DE16, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Example 9.

[実施例10]
10%塩酸にてpH2.5に調整した20質量%のコーンスターチスラリーを、130℃の温度条件でDE9まで分解した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE15になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例10の澱粉分解物を得た。
[Example 10]
A 20% by mass corn starch slurry adjusted to pH 2.5 with 10% hydrochloric acid was decomposed to DE9 at a temperature of 130 ° C. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time. When the DE became 15, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 10.

[実施例11]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE13になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE18になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例11の澱粉分解物を得た。
[Example 11]
After adding α-amylase (Spytase HK, manufactured by Nagase ChemteX Corporation) to a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, 0.2% by mass per solid content (g) was added, The liquid was liquefied by a jet cooker (temperature: 110 ° C.), and the liquefied liquid was kept at 95 ° C., and the DE was continuously measured. When the DE reached 13, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. The reaction was stopped. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time, and when it became DE18, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch hydrolyzate of Example 11.

[実施例12]
10質量%消石灰にてpH5.8に調整した30質量%のタピオカスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE22になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、実施例12の澱粉分解物を得た。
[Example 12]
To a 30% by mass tapioca starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Kristase T10S, manufactured by Amano Enzyme Co., Ltd.) was added at 0.2% by mass per solid (g). The liquid was liquefied in a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and the DE was continuously measured. When the DE reached 9, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. To stop the reaction. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time, and when it became DE22, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Example 12.

[比較例1]
10質量%消石灰にてpH5.8に調整した20質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE6になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトトリオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例1の澱粉分解物を得た。
[Comparative Example 1]
To a 20% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L of Termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker ( Liquefaction at 110 ° C), keeping the liquefied liquid at 95 ° C and measuring DE over time. When DE6 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and stop the reaction by boiling. did. After adjusting the pH of the sugar solution after stopping the reaction to 6.0, 2 units of maltotriose-forming enzyme were added per solid (g), and the mixture was reacted at 55 ° C. The DE was measured over time. When the DE became 8, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 1.

[比較例2]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE9になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを6.0に調整した後、マルトテトラオース生成酵素を固形分(g)当たり2単位添加し、55℃で反応させた。経時的にDEを測定して、DE25になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例2の澱粉分解物を得た。
[Comparative Example 2]
To a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (Kristase T10S, manufactured by Amano Enzyme Co., Ltd.) was added at 0.2% by mass per solid content (g). The liquid was liquefied by a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and the DE was measured continuously. When the DE reached 9, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. The reaction was stopped. After adjusting the pH of the sugar solution after the reaction was stopped to 6.0, 2 units of maltotetraose-forming enzyme were added per solid (g), and reacted at 55 ° C. The DE was measured over time, and when it became DE25, the pH was adjusted to 4.0 with 10% hydrochloric acid, and the reaction was stopped by boiling. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 2.

[比較例3]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(スピターゼHK、ナガセケムテックス株式会社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE20になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例3の澱粉分解物を得た。
[Comparative Example 3]
After adding α-amylase (Spytase HK, manufactured by Nagase ChemteX Corporation) to a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, 0.2% by mass per solid content (g) was added, The mixture was liquefied by a jet cooker (temperature: 110 ° C.), the liquefied liquid was kept at 95 ° C., and DE was continuously measured. When the DE reached 20, the pH was adjusted to pH 4.0 with 10% hydrochloric acid, and the mixture was boiled. The reaction was stopped. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 3.

[比較例4]
10質量%消石灰にてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE33になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例4の澱粉分解物を得た。
[Comparative Example 4]
To a 30% by mass corn starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker ( Liquefaction at 110 ° C), keeping the liquefied liquid at 95 ° C and measuring DE over time. When DE33 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and stop the reaction by boiling. did. The solution of this starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 50% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 4.

[比較例5]
10質量%消石灰にてpH5.8に調整した20質量%の甘藷澱粉スラリーに、αアミラーゼ(ターマミル120L、ノボザイムズ社製)を、固形分(g)当たり0.2質量%添加した後、ジェットクッカー(温度110℃)で液化し、この液化液を95℃で保温して継時的にDEを測定し、DE8になった時点で、10%塩酸でpH4.0に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度30質量%に濃縮した。更に濃縮液をスプレードライヤーで粉末化し、比較例5の澱粉分解物を得た。
[Comparative Example 5]
To a 20% by mass sweet potato starch slurry adjusted to pH 5.8 with 10% by mass slaked lime, α-amylase (120 L of Termamyl, manufactured by Novozymes) was added at 0.2% by mass per solid (g), and then jet cooker was added. (Temperature of 110 ° C.), keeping the liquefied liquid at 95 ° C. and measuring DE over time, and when DE8 is reached, adjust the pH to 4.0 with 10% hydrochloric acid and boil the reaction. Stopped. The solution of the starch hydrolyzate was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 30% by mass. Further, the concentrated liquid was pulverized with a spray dryer to obtain a starch decomposition product of Comparative Example 5.

(3)物性の測定
前記で得られた実施例1〜12及び比較例1〜5について、それぞれ、DE、DP3〜4の含有量(x(質量%))、粘度(y(mPa・s))、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))を、前述した方法で測定した。結果を下記の表3及び4に示す。
(3) Measurement of Physical Properties Regarding Examples 1 to 12 and Comparative Examples 1 to 5 obtained above, the content (x (mass%)) and viscosity (y (mPa · s)) of DE and DP 3 to 4, respectively. ), The content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch hydrolyzate with isoamylase was measured by the method described above. The results are shown in Tables 3 and 4 below.

Figure 2020015871
Figure 2020015871

Figure 2020015871
Figure 2020015871

(4)穀物臭評価
前記で得られた実施例1〜12について、澱粉分解物水溶液の穀物臭評価を行った。具体的には、実施例1〜12の澱粉分解物を、固形分5質量%になるように水に溶解し、澱粉分解物水溶液を製造した。製造した澱粉分解物水溶液に対して10名の専門パネルが穀物臭の評価を行った。その結果、全ての実施例1〜12は、同等のDE値を有する既存の澱粉分解物に比べて、穀物臭が感じられず味質は良好であった。
(4) Grain odor evaluation For Examples 1 to 12 obtained above, the cereal odor of the starch hydrolyzate aqueous solution was evaluated. Specifically, the starch hydrolyzate of Examples 1 to 12 was dissolved in water so as to have a solid content of 5% by mass to produce a starch hydrolyzate aqueous solution. Ten expert panels evaluated the odor of the cereal with respect to the produced starch hydrolyzate aqueous solution. As a result, in all of Examples 1 to 12, no taste of cereal was felt and taste was good as compared with the existing starch hydrolyzate having the same DE value.

(5)食品への使用
前記で得られた実施例1〜12及び比較例1〜5の澱粉分解物を、以下に示す食品へ使用した場合について、各効果を検討した。なお、各効果は、10名の専門パネルが下記の評価基準に従って、1〜5点の5段階で評価し、その平均値を評価点とした。また、総合評価は各評価の合計点とし、各評価が3点以上、かつ総合評価点が評価項目2つの場合で7点以上、評価項目3つの場合で11点以上を合格品とした。
(5) Use in Foods The effects of the starch hydrolyzates obtained in Examples 1 to 12 and Comparative Examples 1 to 5 obtained above were examined for the following foods. Each effect was evaluated by a professional panel of 10 persons on a scale of 1 to 5 according to the following evaluation criteria, and the average value was used as the evaluation point. In addition, the comprehensive evaluation was a total score of each evaluation, and each evaluation was 3 or more, and the total evaluation score was 7 or more when there were two evaluation items, and 11 or more when there were three evaluation items, and the products were acceptable.

[風味]
5:良好
4:やや良好
3:許容できる範囲
2:やや悪い
1:悪い
[Flavor]
5: good 4: somewhat good 3: acceptable range 2: somewhat bad 1: bad

[とろみ]
5:適度なとろみがあり、良好
4:とろみが感じられ、やや良好
3:許容できる範囲
2:とろみがやや弱く、やや悪い
1:とろみが弱く、悪い
[Thorami]
5: Moderate thickness, good 4: Good thickness, somewhat good 3: Acceptable range 2: Somewhat weak, slightly bad 1: Bad thick, bad

[コク味]
5:コクが非常にあり、良好
4:コクがあり、やや良好
3:ややコクがあり、普通
2:コクが弱く、やや悪い
1:コクがなく、悪い
[Kokumi]
5: Very rich and good 4: Rich and slightly good 3: Somewhat rich and normal 2: Weak and slightly poor 1: Not rich and bad

[食感]
5:良好
4:やや良好
3:普通
2:やや悪い
1:悪い
[Texture]
5: good 4: somewhat good 3: normal 2: somewhat bad 1: bad

[口溶け]
5:良好
4:やや良好
3:許容できる範囲
2:やや悪い
1:悪い
[Mouth melting]
5: good 4: somewhat good 3: acceptable range 2: somewhat bad 1: bad

[生地の成形性]
5:良好
4:やや良好
3:許容できる範囲
2:やや悪い
1:悪い
[Dough formability]
5: good 4: somewhat good 3: acceptable range 2: somewhat bad 1: bad

[ほぐれ性]
5:大変ほぐれやすく、良好
4:適度にほぐれやすく、やや良好
3:許容できる範囲
2:ほぐれにくく、やや悪い
1:全体が塊状になりほぐれない
[Unraveling]
5: Very easy to loosen, good 4: Moderately easy to loose, somewhat good 3: Acceptable range 2: Hard to loosen, somewhat bad 1: The whole becomes clumpy and does not loosen

<コーンポタージュスープ>
コーンクリーム缶190g、牛乳300g、顆粒コンソメ5g、胡椒0.5g、実施例1、4、5、10又は比較例2、5の澱粉分解物50gを鍋に入れ混ぜ合わせた。撹拌しながら中火で加熱し、煮立たせた後弱火で5分間加熱し、コーンポタージュスープを製造した。製造した澱粉分解物含有コーンポタージュスープについて、風味、とろみの評価を行った。結果を下記の表5に示す。
<Corn potage soup>
190 g of canned corn cream, 300 g of milk, 5 g of granule consomme, 0.5 g of pepper, and 50 g of the starch hydrolyzate of Examples 1, 4, 5, 10 or Comparative Examples 2, 5 were put in a pot and mixed. The mixture was heated over medium heat with stirring, boiled, and then heated over low heat for 5 minutes to produce corn potage soup. The corn potage soup containing starch hydrolyzate produced was evaluated for flavor and thickening. The results are shown in Table 5 below.

Figure 2020015871
Figure 2020015871

表5に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))が40質量%を超える比較例2の澱粉分解物を用いたコーンポタージュスープ、及び、10質量%未満の比較例5の澱粉分解物を用いたコーンポタージュスープに比べて、実施例1、4、5及び10の澱粉分解物を用いたコーンポタージュスープは、総合評価の結果が良好であった。   As shown in Table 5, a corn potage soup using the starch degradation product of Comparative Example 2 in which the content of glucose polymerization degree (DP) 3 to 4 (x (% by mass)) exceeds 40% by mass, and 10% by mass Compared with the corn potage soup using the starch hydrolyzate of Comparative Example 5 which is less than the corn potage soup using the starch hydrolyzate of Examples 1, 4, 5, and 10, the results of the comprehensive evaluation were better.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が、25質量%を超える実施例1及び5の澱粉分解物を用いたコーンポタージュスープに比べ、15≦z≦25の範囲内の実施例4及び10の澱粉分解物を用いたコーンポタージュスープの方が、風味がより良好であった。   In comparison among the examples, the starch decomposed products of Examples 1 and 5 in which the content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch decomposed product with isoamylase exceeds 25% by mass were obtained. Compared with the used corn potage soup, the corn potage soup using the starch degradation products of Examples 4 and 10 in the range of 15 ≦ z ≦ 25 had a better flavor.

<照り焼きソース>
水20g、醤油15g、みりん20g、酒20g、砂糖10g、実施例2、3、6、8、11又は比較例1、4の澱粉分解物10gを鍋に入れ混ぜ合わせた。撹拌しながら弱火で加熱し、煮立たせた後加熱を止め、照り焼きソースを製造した。製造した澱粉分解物含有照り焼きソースについて、風味、とろみの評価を行った。結果を下記の表6に示す。
<Teriyaki sauce>
20 g of water, 15 g of soy sauce, 20 g of mirin, 20 g of sake, 10 g of sugar, and 10 g of the starch hydrolyzate of Examples 2, 3, 6, 8, 11 or Comparative Examples 1 and 4 were put in a pot and mixed. The mixture was heated over a low heat with stirring. After boiling, the heating was stopped to produce a teriyaki sauce. The flavor and thickness of the manufactured teriyaki sauce containing starch hydrolyzate were evaluated. The results are shown in Table 6 below.

Figure 2020015871
Figure 2020015871

表6に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いた照り焼きソース、及び、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2)を満たさない比較例4の澱粉分解物を用いた照り焼きソースに比べて、実施例2、3、6、8及び11の澱粉分解物を用いた照り焼きソースは、総合評価の結果が良好であった。   As shown in Table 6, the teriyaki sauce using the starch decomposition product of Comparative Example 1 in which the content (x (% by mass)) of the glucose polymerization degree (DP) 3 to 4 was less than 10% by mass, and the glucose polymerization degree Comparative Example in which the content (x (mass%)) of (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. do not satisfy the above formula (2). The teriyaki sauce using the starch decomposition products of Examples 2, 3, 6, 8 and 11 had better overall evaluation results than the teriyaki sauce using the starch decomposition product of No. 4.

実施例の中で比較すると、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない実施例8の澱粉分解物を用いた照り焼きソースに比べて、前記式(1’)を満たす実施例6の澱粉分解物を用いた照り焼きソースの方が、風味がより良好であった。   When compared in the examples, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are different. The teriyaki sauce using the starch decomposition product of Example 6 that satisfies the above formula (1 ′) is better than the teriyaki sauce using the starch decomposition product of Example 8 that does not satisfy the above formula (1 ′). However, the flavor was better.

また、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が25質量%を超える実施例3及び6の澱粉分解物を用いた照り焼きソース、及び、15質量%未満の実施例11の澱粉分解物を用いた照り焼きソースに比べ、15≦z≦25の範囲内の実施例2の澱粉分解物を用いた照り焼きソースの方が、風味が更に良好であった。   Further, a teriyaki sauce using the starch degradation products of Examples 3 and 6 in which the content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch degradation products with isoamylase exceeds 25% by mass, and Teriyaki sauce using the starch degradation product of Example 2 in the range of 15 ≦ z ≦ 25 has a flavor that is lower than that of the teriyaki sauce using the starch degradation product of Example 11 in an amount of less than 15% by mass. It was even better.

<ブルーベリーソース>
フライパンに解凍した冷凍ブルーベリー100g、砂糖40g、実施例2、3、8、9、又は比較例3、5の澱粉分解物20gを入れ、中火で溶け残りが無いように混ぜ合わせながら煮立たせた。火を止めて、レモン汁2gを加え、中火で再度煮立たせた。これをガラス容器に移し室温で冷ますことでブルーベリーソースを製造した。製造したブルーベリーソースについて、風味、とろみの評価を行った。結果を表7に示す。
<Blueberry sauce>
100 g of frozen blueberries thawed in a frying pan, 40 g of sugar, and 20 g of the starch hydrolyzate of Examples 2, 3, 8, 9 or Comparative Examples 3, 5 were put in a medium heat and boiled while mixing so that there was no remaining undissolved. . The heat was stopped, 2 g of lemon juice was added, and the mixture was boiled again over medium heat. This was transferred to a glass container and cooled at room temperature to produce a blueberry sauce. The flavor and thickness of the produced blueberry sauce were evaluated. Table 7 shows the results.

Figure 2020015871
Figure 2020015871

表7に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いたブルーベリーソース、及び、グルコース重合度(DP)3〜4の含有量(x(質量%))が10質量%未満の比較例5の澱粉分解物を用いたブルーベリーソースに比べて、前記式(1)又は前記式(2)を満たす実施例2、3、8及び9の澱粉分解物を用いたブルーベリーソースの方が、総合評価の結果が良好であった。   As shown in Table 7, the content (x (% by mass)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are as described above. Blueberry sauce using the starch hydrolyzate of Comparative Example 3 that does not satisfy the formula (1), and Comparative Example 5 in which the content of glucose polymerization degree (DP) 3 to 4 (x (% by mass)) is less than 10% by mass. Compared with the blueberry sauce using the starch hydrolyzate of Example 2, the blueberry sauce using the starch hydrolyzate of Examples 2, 3, 8, and 9 that satisfies the formula (1) or the formula (2) is more comprehensively evaluated. Was good.

実施例の中で比較すると、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない実施例8の澱粉分解物を用いたブルーベリーソースに比べて、前記式(1’)を満たす実施例9の澱粉分解物を用いたブルーベリーソースの方が、風味がより良好であった。   When compared in the examples, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are different. Compared with the blueberry sauce using the starch hydrolyzate of Example 8 that does not satisfy the formula (1 ′), the blueberry sauce using the starch hydrolyzate of Example 9 that satisfies the formula (1 ′) is: The flavor was better.

また、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’’)を満たさない実施例9の澱粉分解物を用いたブルーベリーソースに比べて、前記式(2’)を満たす実施例2及び3の澱粉分解物を用いたブルーベリーソースの方が、総合評価の結果が良好であった。   Further, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are represented by the above formula (1 ′). Compared with the blueberry sauce using the starch hydrolyzate of Example 9 which does not satisfy '), the blueberry sauce using the starch hydrolyzate of Examples 2 and 3 which satisfies the above formula (2') has a higher overall evaluation. The results were good.

更に、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が25質量%を超える実施例3の澱粉分解物を用いたブルーベリーソースに比べ、15≦z≦25の範囲内の実施例2及び9の澱粉分解物を用いたブルーベリーソースの方が、風味が良好であった。   Furthermore, compared with the blueberry sauce using the starch degradation product of Example 3 in which the content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch degradation product with isoamylase exceeds 25% by mass, The blueberry sauce using the starch hydrolyzate of Examples 2 and 9 in the range of z ≦ 25 had better flavor.

<カスタードクリーム>
ボウルに水50gにて水戻しした乾燥卵黄27gと、砂糖36g、実施例1、2、7、9、12又は比較例3、5の澱粉分解物36gを入れ、泡だて器で混ぜ合わせた。篩った薄力粉16gを加えて、更に泡だて器で混ぜ合わせた。これに、50℃に温めた牛乳200gを少しずつ加えて、溶きのばし、裏ごし器を通した後、中火でクリーム状になるまで掻き混ぜて、カスタードクリームを製造した。製造した澱粉分解物含有カスタードクリームについて、風味、コク味の評価を行った。結果を表8に示す。
<Custard cream>
In a bowl, 27 g of dried egg yolk rehydrated with 50 g of water, 36 g of sugar and 36 g of the starch hydrolyzate of Examples 1, 2, 7, 9, 12 or Comparative Examples 3, 5 were put and mixed with a whisk. . 16 g of the sieved flour was added and further mixed with a whisk. To this, 200 g of milk heated to 50 ° C. was added little by little, melted and spread, passed through a strainer, and then stirred over a medium heat until creamy to produce a custard cream. The produced starch-degraded product-containing custard cream was evaluated for flavor and body taste. Table 8 shows the results.

Figure 2020015871
Figure 2020015871

表8に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いたカスタードクリーム、及び、グルコース重合度(DP)3〜4の含有量(x(質量%))が10質量%未満の比較例5の澱粉分解物を用いたカスタードクリームに比べて、前記式(1)又は前記式(2)を満たす実施例1、2、7、9及び12の澱粉分解物を用いたカスタードクリームの方が、総合評価が良好であった。   As shown in Table 8, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are as described above. Custard cream using the starch hydrolyzate of Comparative Example 3 which does not satisfy the formula (1), and Comparative Example 5 in which the content of glucose polymerization degree (DP) 3 to 4 (x (% by weight)) is less than 10% by weight. The custard cream using the starch degradation products of Examples 1, 2, 7, 9 and 12 satisfying the formula (1) or the formula (2) as compared with the custard cream using the starch degradation product of The overall evaluation was good.

実施例の中で比較すると、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない実施例7の澱粉分解物を用いたカスタードクリームに比べて、前記式(1’)を満たす実施例1及び9の澱粉分解物を用いたカスタードクリームの方が、風味がより良好であった。   When compared in the examples, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are different. In comparison with the custard cream using the starch hydrolyzate of Example 7 which does not satisfy the formula (1 ′), the custard cream using the starch hydrolyzate of Examples 1 and 9 satisfying the above formula (1 ′) However, the flavor was better.

また、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’’)を満たさない実施例9の澱粉分解物を用いたカスタードクリーム、及び、前記式(2’)を満たさない実施例12の澱粉分解物を用いたカスタードクリームに比べて、前記式(1’’)又は前記式(2’)を満たす実施例1及び2の澱粉分解物を用いたカスタードクリームの方が、総合評価の結果が良好であった。   Further, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are represented by the above formula (1 ′). Compared with the custard cream using the starch hydrolyzate of Example 9 that does not satisfy ') and the custard cream using the starch hydrolyzate of Example 12 that does not satisfy the formula (2'), the formula (1 ') ') Or the custard cream using the starch hydrolyzate of Examples 1 and 2 satisfying the formula (2') had better overall evaluation results.

更に、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が25質量%を超える実施例1の澱粉分解物を用いたカスタードクリームに比べ、15≦z≦25の範囲内の実施例2及び9の澱粉分解物を用いたカスタードクリームの方が、風味が良好であった。   Furthermore, the content (z (mass%)) of the molecular weight of 2,000 to 30,000 after treatment of the starch hydrolyzate with isoamylase exceeds 25 mass%, compared with the custard cream using the starch hydrolyzate of Example 1 which is 15 ≦ The custard cream using the starch hydrolyzate of Examples 2 and 9 in the range of z ≦ 25 had better flavor.

<ホットケーキ>
ボウルに篩った薄力粉150g、砂糖40g、ベーキングパウダー10g、実施例3、4、6、10、12又は比較例1、3の澱粉分解物15gを加えて混ぜ合わせた。これに全卵50g、牛乳140gを加え、ダマがなくなるまで更に泡だて器で混ぜ合わせ、ホットケーキ生地を調製した。フライパンを中火で熱した後、濡れ布巾の上に置いて熱を取り、再び弱火にかけ、フライパンより20cmの高さからホットケーキ生地60gを流し込み、3分間焼き、裏返して更に2分間焼いてホットケーキを製造した。製造した澱粉分解物含有ホットケーキについて、風味と、食感の軟らかさの評価を行った。食感は、軟らかさがあることを良好とした。結果を表9に示す。
<Hot cake>
150 g of soft flour sieved in a bowl, 40 g of sugar, 10 g of baking powder, and 15 g of the starch hydrolyzate of Examples 3, 4, 6, 10, 12 or Comparative Examples 1, 3 were added and mixed. 50 g of whole eggs and 140 g of milk were added thereto, and the mixture was further mixed with a whisk until the lumps disappeared to prepare a hot cake dough. Heat the frying pan over medium heat, put it on a wet cloth to remove the heat, put it on low heat again, pour 60 g of hot cake dough from a height of 20 cm from the frying pan, bake it for 3 minutes, turn it over and bake it for another 2 minutes. A cake was made. The flavor and softness of the texture were evaluated for the manufactured starch cake containing the hydrolyzed starch. The texture was determined to be good when there was softness. Table 9 shows the results.

Figure 2020015871
Figure 2020015871

表9に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いたホットケーキ、及び、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いたホットケーキに比べて、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)又は前記式(2)を満たす実施例3、4、6、10、及び12の澱粉分解物を用いたホットケーキの方が、総合評価が良好であった。   As shown in Table 9, the content of the glucose polymerization degree (DP) 3 to 4 (x (% by mass)) is less than 10% by mass, and the hot cake using the starch decomposition product of Comparative Example 1 and the glucose polymerization degree ( Comparative Example 3 in which the content (x (mass%)) of DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. do not satisfy the above formula (1). Compared to a hot cake using a starch hydrolyzate, the content of glucose polymerization degree (DP) 3 to 4 (x (% by mass)) and the viscosity (y (mPa · s)), the hot cakes using the starch hydrolyzates of Examples 3, 4, 6, 10, and 12 satisfying the formula (1) or the formula (2) had better overall evaluation. Was.

実施例の中で比較すると、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2’)を満たさない実施例12の澱粉分解物を用いたホットケーキに比べて、前記式(1’’)又は前記式(2’)を満たす実施例3、4、6及び10の澱粉分解物を用いたホットケーキの方が、食感が軟らかく、より良好であった。   When compared in the examples, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are different. As compared with the hot cake using the starch hydrolyzate of Example 12 which does not satisfy the above formula (2 ′), Examples 3, 4, 6, and 5 satisfying the above formula (1 ″) or the above formula (2 ′) The hot cake using the starch hydrolyzate of No. 10 had a softer texture and was better.

また、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が25質量%を超える実施例3及び6の澱粉分解物を用いたホットケーキに比べ、15≦z≦25の範囲内の実施例4及び10の澱粉分解物を用いたホットケーキの方が、風味が更に良好であった。   Further, compared to the hot cake using the starch hydrolyzate of Examples 3 and 6 in which the content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch hydrolyzate with isoamylase exceeds 25% by mass, The hot cake using the starch hydrolyzate of Examples 4 and 10 in the range of 15 ≦ z ≦ 25 had a more favorable flavor.

<食パン>
強力粉250g、ドライイースト3g、グラニュー糖17g、食塩5g、脱脂粉乳6g、実施例4、5、7、11、又は比較例1、4の澱粉分解物15g、水180gの原料配合で、ホームベーカリー(「SD−BT113」パナソニック株式会社製)にて、食パンを製造した。製造した澱粉分解物含有食パンについて、風味と食感の軟らかさの評価を行った。食感は、軟らかさがあることを良好とした。結果を表10に示す。
<Bread>
A home bakery blended with 250 g of strong powder, 3 g of dry yeast, 17 g of granulated sugar, 5 g of salt, 6 g of skim milk powder, 15 g of the starch hydrolyzate of Examples 4, 5, 7, 11 or Comparative Examples 1 and 4, and 180 g of water. SD-BT113 "(manufactured by Panasonic Corporation) to produce bread. With respect to the produced starch-degraded-product-containing bread, the flavor and the softness of the texture were evaluated. The texture was determined to be good when there was softness. Table 10 shows the results.

Figure 2020015871
Figure 2020015871

表10に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いた食パン、及び、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2)を満たさない比較例4の澱粉分解物を用いた食パンに比べて、前記式(1)又は前記式(2)を満たす実施例4、5、7、及び11の澱粉分解物を用いた食パンの方が、総合評価が良好であった。   As shown in Table 10, the bread using the starch decomposition product of Comparative Example 1 in which the content (x (% by mass)) of the glucose polymerization degree (DP) 3 to 4 was less than 10% by mass, and the glucose polymerization degree (DP) ) Of Comparative Example 4 in which the content (x (% by mass)) of 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. do not satisfy the above formula (2). Compared to the bread using the starch hydrolyzate, the bread using the starch hydrolyzates of Examples 4, 5, 7, and 11 satisfying the formula (1) or the formula (2) has a better overall evaluation. Met.

実施例の中で比較すると、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1’)を満たさない実施例7の澱粉分解物を用いた食パンに比べて、前記式(2’)を満たす実施例4、5、及び11の澱粉分解物を用いた食パンの方が、風味及び食感が共により良好であった。   When compared in the examples, the content (x (mass%)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are different. In comparison with the bread using the starch hydrolyzate of Example 7 which does not satisfy the formula (1 ′), the bread using the starch hydrolyzate of Examples 4, 5 and 11 satisfying the formula (2 ′) Both had better flavor and texture.

また、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が、25質量%を超える実施例5の澱粉分解物を用いた食パン及び、15質量%未満の実施例11の澱粉分解物を用いた食パンに比べ、15≦z≦25の範囲内の実施例4の澱粉分解物を用いた食パンの方が、風味が更に良好であった。   The bread using the starch hydrolyzate of Example 5 whose content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch hydrolyzate with isoamylase exceeds 25% by mass, and 15% by mass The bread using the starch hydrolyzate of Example 4 within the range of 15 ≦ z ≦ 25 had a more favorable flavor than the bread using the starch hydrolyzate of Example 11 below.

<クッキー>
ボウルに常温で柔らかくしたバター50g、砂糖20g、実施例10、12、又は比較例2、3の澱粉分解物20gを加え混ぜ合わせた後、全卵30gを加え更に混ぜ合わせた。これに篩った薄力粉90gを加え、全体がそぼろ状になるまで混ぜ合わせた後、一つにまとめてラップで包み、クッキー生地を調製した。これを4℃で1時間静置した後、麺棒にて厚さ3mmに伸ばし、4cm平方に型抜きし、160℃で28分間焼成して澱粉分解物含有クッキーを製造した。製造した澱粉分解物含有クッキーについて、風味、口溶け、生地の成形性の評価を行った。結果を表11に示す。
<Cookie>
50 g of butter and 20 g of sugar softened at room temperature, 20 g of sugar, and 20 g of the starch hydrolyzate of Examples 10, 12 or Comparative Examples 2 and 3 were added to a bowl and mixed, and then 30 g of whole eggs were added and further mixed. 90 g of sieved flour was added to the mixture, mixed until the whole became ragged, and then wrapped together in a wrap to prepare a cookie dough. This was allowed to stand at 4 ° C. for 1 hour, stretched to a thickness of 3 mm with a rolling pin, punched out into a square of 4 cm, and baked at 160 ° C. for 28 minutes to produce a starch-decomposed product-containing cookie. The produced starch-decomposed-product-containing cookie was evaluated for flavor, dissolution in the mouth, and dough moldability. Table 11 shows the results.

Figure 2020015871
Figure 2020015871

表11に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))が40質量%を超える比較例2の澱粉分解物を用いたクッキー、及び、前記式(1)を満たさない比較例3の澱粉分解物を用いたクッキーに比べて、前記式(1)又は前記式(2)を満たす実施例10、及び12の澱粉分解物を用いたクッキーは、総合評価が良好であった。   As shown in Table 11, a cookie using the starch hydrolyzate of Comparative Example 2 in which the content of glucose polymerization degree (DP) 3 to 4 (x (% by mass)) exceeds 40% by mass, and the formula (1) Compared to the cookie using the starch hydrolyzate of Comparative Example 3 which does not satisfy the above, the cookie using the starch hydrolyzate of Examples 10 and 12 satisfying the above formula (1) or the above formula (2) has a comprehensive evaluation. It was good.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が15質量%未満の実施例12の澱粉分解物を用いたクッキーに比べ、15≦z≦25の範囲内の実施例10の澱粉分解物を用いたクッキーの方が、風味が良好であった。   In comparison among Examples, the cookie using the starch degradation product of Example 12 having a content (z (% by mass)) of a molecular weight of 2,000 to 30,000 after treating the starch degradation product with isoamylase is less than 15% by mass. Cookies using the starch hydrolyzate of Example 10 within the range of 15 ≦ z ≦ 25 had a better flavor as compared with.

<米飯>
生米800gを水1160gに40分間浸漬した後、実施例1、4、又は比較例1、4の澱粉分解物12gを添加して炊飯し、25分間蒸らして、米飯を製造した。製造した澱粉分解物含有米飯を真空冷却器で25℃に調温した後、蓋付き容器に詰めて20℃で24時間保存し、風味、食感の弾力性、及びほぐれ性の評価を行った。食感は、弾力があることを良好とした。結果を表12に示す。
<Rice>
After 800 g of unpolished rice was immersed in 1160 g of water for 40 minutes, 12 g of the starch hydrolyzate of Examples 1, 4 or Comparative Examples 1, 4 was added and cooked and steamed for 25 minutes to produce cooked rice. The manufactured starch-containing rice containing the hydrolyzed starch was adjusted to 25 ° C. with a vacuum cooler, packed in a lidded container, stored at 20 ° C. for 24 hours, and evaluated for flavor, texture elasticity, and looseness. . The texture was determined to be good when it had elasticity. Table 12 shows the results.

Figure 2020015871
Figure 2020015871

表12に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))が10質量%未満の比較例1の澱粉分解物を用いた米飯、及び、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(2)を満たさない比較例4の澱粉分解物を用いた米飯に比べて、前記式(1)又は前記式(2)を満たす実施例1、及び4の澱粉分解物を用いた米飯は、総合評価が良好であった。   As shown in Table 12, cooked rice using the starch decomposition product of Comparative Example 1 in which the content (x (% by mass)) of the glucose polymerization degree (DP) 3 to 4 was less than 10% by mass, and the glucose polymerization degree (DP) ) Of Comparative Example 4 in which the content (x (% by mass)) of 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. do not satisfy the above formula (2). Compared with cooked rice using the starch hydrolyzate, the cooked rice using the starch hydrolyzate of Examples 1 and 4 satisfying the formula (1) or the formula (2) had a better overall evaluation.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が25質量%を超える実施例1の澱粉分解物を用いた米飯に比べ、15≦z≦25の範囲内の実施例4の澱粉分解物を用いた米飯の方が、風味が良好であった。   In comparison among the examples, cooked rice using the starch-decomposed product of Example 1 having a molecular weight of 2,000 to 30,000 (z (% by mass)) exceeding 25% by mass after treating the starch-decomposed product with isoamylase In comparison, the rice cooked using the starch hydrolyzate of Example 4 in the range of 15 ≦ z ≦ 25 had a better flavor.

<麺類>
各種澱粉分解物15g、水85gを溶解混合し、澱粉分解物含有麺用ほぐし剤を製造した。中力粉800g、タピオカ澱粉200g、食塩30g、水400gの配合で、減圧下にてミキシングし、通常のロール製麺により生うどんを製造した(切刃角10番:麺厚2.0mm)。これを沸騰水で8分間茹でた後、およそ12℃の水で十分水洗し、水切りをしてうどんを製造した。このうどん200gに対し澱粉分解物含有麺用ほぐし剤6gを添加し、うどん全体に均一に馴染ませた。こうして得られたうどんを密閉容器にて、4℃で24時間静置した後、風味、食感の弾力性、及びほぐれ性の評価を行った。食感は、弾力があることを良好とした。結果を表13に示す。
<Noodles>
15 g of various starch hydrolysates and 85 g of water were dissolved and mixed to prepare a starch hydrolyzate-containing loosening agent for noodles. A mixture of 800 g of medium flour, 200 g of tapioca starch, 30 g of salt, and 400 g of water was mixed under reduced pressure to produce a raw udon using ordinary roll noodles (cutting edge angle No. 10: noodle thickness 2.0 mm). This was boiled in boiling water for 8 minutes, washed thoroughly with water at about 12 ° C., and drained to produce udon. To 200 g of this udon was added 6 g of a noodle-releasing agent containing a starch-decomposed product, so that the whole udon was uniformly blended. The udon thus obtained was allowed to stand in a closed container at 4 ° C. for 24 hours, and then evaluated for flavor, texture elasticity, and looseness. The texture was determined to be good when it had elasticity. Table 13 shows the results.

Figure 2020015871
Figure 2020015871

表13に示す通り、グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、前記式(1)を満たさない比較例3の澱粉分解物を用いた麺類に比べて、前記式(2)を満たす実施例2、及び3の澱粉分解物を用いた麺類の方が、総合評価が良好であった。   As shown in Table 13, the content (x (% by mass)) of the glucose polymerization degree (DP) 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are as described above. Compared with the noodles using the starch hydrolyzate of Comparative Example 3 which does not satisfy the formula (1), the overall evaluation of the noodles using the starch hydrolyzate of Examples 2 and 3 satisfying the formula (2) is better. It was good.

実施例の中で比較すると、澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))が25質量%を超える実施例3の澱粉分解物を用いた麺類に比べ、15≦z≦25の範囲内の実施例2の澱粉分解物を用いた麺類の方が、風味が良好であった。   Comparison among Examples, noodles using the starch degradation product of Example 3 in which the content (z (% by mass)) of the molecular weight of 2,000 to 30,000 after treating the starch degradation product with isoamylase exceeds 25% by mass In comparison with the noodles using the starch hydrolyzate of Example 2 within the range of 15 ≦ z ≦ 25, the flavor was better.

Claims (6)

グルコース重合度(DP)3〜4の含有量(x(質量%))と、50℃における固形分濃度40%での粘度(y(mPa・s))とが、下記(1)又は(2)を満たす澱粉分解物。
(1)10≦x≦20のとき、y≧−2.7x+65
(2)20<x≦40のとき、y≧−0.2x+15
The content (x (% by mass)) of the glucose polymerization degree (DP) of 3 to 4 and the viscosity (y (mPa · s)) at a solid content concentration of 40% at 50 ° C. are as shown in the following (1) or (2). Starch degradation product that satisfies).
(1) When 10 ≦ x ≦ 20, y ≧ −2.7x + 65
(2) When 20 <x ≦ 40, y ≧ −0.2x + 15
前記xと、前記yとが、下記(1’)を満たす、請求項1記載の澱粉分解物。
(1’)10≦x≦20のとき、y≧−4.1x+93
The starch decomposition product according to claim 1, wherein the x and the y satisfy the following (1 ').
(1 ′) When 10 ≦ x ≦ 20, y ≧ −4.1x + 93
前記xと、前記yとが、下記(1’’)又は(2’)を満たす、請求項1又は2に記載の澱粉分解物。
(1’’)10≦x≦20のとき、y≧−5.0x+115
(2’)20<x≦40のとき、y≧−0.2x+19
The starch degradation product according to claim 1 or 2, wherein the x and the y satisfy the following (1 '') or (2 ').
(1 ″) When 10 ≦ x ≦ 20, y ≧ −5.0x + 115
(2 ′) When 20 <x ≦ 40, y ≧ −0.2x + 19
前記xと、前記澱粉分解物をイソアミラーゼで処理した後の分子量2000〜30000の含有量(z(質量%))とが、下記(3)を満たす、請求項1〜3のいずれか一項に記載の澱粉分解物。
(3)10≦x≦40のとき、15≦z
The said x and the content (z (mass%)) of molecular weight 2000-30000 after the said starch degradation product is treated with isoamylase satisfy | fills following (3), The any one of Claims 1-3. 3. The starch hydrolyzate according to item 1.
(3) When 10 ≦ x ≦ 40, 15 ≦ z
請求項1から4のいずれか一項に記載の澱粉分解物を含有する飲食品用組成物。   A composition for food and drink, comprising the starch hydrolyzate according to any one of claims 1 to 4. 請求項1から4のいずれか一項に記載の澱粉分解物、又は、請求項5記載の飲食品用組成物を含有する、飲食品。   A food or drink comprising the starch hydrolyzate according to any one of claims 1 to 4 or the food and drink composition according to claim 5.
JP2018141467A 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink Active JP7285052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141467A JP7285052B2 (en) 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141467A JP7285052B2 (en) 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink

Publications (2)

Publication Number Publication Date
JP2020015871A true JP2020015871A (en) 2020-01-30
JP7285052B2 JP7285052B2 (en) 2023-06-01

Family

ID=69580110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141467A Active JP7285052B2 (en) 2018-07-27 2018-07-27 Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink

Country Status (1)

Country Link
JP (1) JP7285052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095840A1 (en) * 2021-11-25 2023-06-01 天野エンザイム株式会社 Production method for vegetable beverage and food, and enzymatic agent for lessening sugars

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236478A (en) * 1994-03-01 1995-09-12 Hayashibara Biochem Lab Inc Amylase producing maltohexaose and maltoheptaose and production thereof
JPH11235193A (en) * 1998-02-23 1999-08-31 Nippon Shiryo Kogyo Kk Production of maltotriose solution
JP2001011101A (en) * 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2004211097A (en) * 2004-01-26 2004-07-29 Hayashibara Biochem Lab Inc Maltohexaose and maltoheptaose producing amylase and its preparation process and application
JP2012016309A (en) * 2010-07-08 2012-01-26 Hayashibara Biochem Lab Inc Maltotriose-forming amylase, production method and use thereof
JP2014005447A (en) * 2012-05-31 2014-01-16 Nippon Shokuhin Kako Co Ltd Starch decomposition product, taste quality improving agent for food and drink, and usage thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236478A (en) * 1994-03-01 1995-09-12 Hayashibara Biochem Lab Inc Amylase producing maltohexaose and maltoheptaose and production thereof
JPH11235193A (en) * 1998-02-23 1999-08-31 Nippon Shiryo Kogyo Kk Production of maltotriose solution
JP2001011101A (en) * 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2004211097A (en) * 2004-01-26 2004-07-29 Hayashibara Biochem Lab Inc Maltohexaose and maltoheptaose producing amylase and its preparation process and application
JP2012016309A (en) * 2010-07-08 2012-01-26 Hayashibara Biochem Lab Inc Maltotriose-forming amylase, production method and use thereof
JP2014005447A (en) * 2012-05-31 2014-01-16 Nippon Shokuhin Kako Co Ltd Starch decomposition product, taste quality improving agent for food and drink, and usage thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095840A1 (en) * 2021-11-25 2023-06-01 天野エンザイム株式会社 Production method for vegetable beverage and food, and enzymatic agent for lessening sugars

Also Published As

Publication number Publication date
JP7285052B2 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP5978418B2 (en) Cellulose composition
Moore et al. Applications of starches in foods
JP7411558B2 (en) Method for producing resistant pea dextrin
US11896038B2 (en) Inhibited waxy starches and methods of using them
JP4973454B2 (en) Maltooligosaccharide composition
EP1811863B1 (en) Process for the production of maltodextrins
JP6470099B2 (en) Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product
JP7404233B2 (en) Crystalline starch decomposition products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, fertilizers, and modifiers thereof, and the crystalline starch decomposition products using the crystalline starch decomposition products. Methods for producing products, food and drink compositions, food and drink products, pharmaceuticals, cosmetics, industrial products, feeds, culture media, and fertilizers
CN105163604A (en) Fiber-containing carbohydrate composition
JP6962674B2 (en) Branched α-glucan mixture syrup and its uses
Nakamura et al. Palatable and bio-functional wheat/rice products developed from pre-germinated brown rice of super-hard cultivar EM10
US20220000155A1 (en) Soluble Flour For Use In Food Applications
JP2014100091A (en) Rare sugar-containing powder
EP3814517A1 (en) Soluble flour and methods of manufacturing same
JP2019089932A (en) Novel decomposed starch and method for producing the same
JP7285052B2 (en) Starch hydrolyzate, composition for food and drink using the starch hydrolyzate, and food and drink
CN114761574A (en) Sugar composition containing cyclic tetrasaccharide, use thereof, and production method thereof
JP2017042113A (en) Dry food
JP5005880B2 (en) Saccharide and sugar composition and foods containing these
JP2020186337A (en) Starch decomposition product, as well as composition for foods using starch decomposition product, foods, rich enhancer, manufacturing method of foods, and rich enhancing method
JP4995051B2 (en) Lactic acid fermented food of rice and method for producing the same
JP2022167684A (en) Physical property stabilizer
JP2022077882A (en) Modifier containing starch decomposition product and thickening gelling agent
JP6723167B2 (en) Starch aging control method
WO2023152823A1 (en) Oil-in-water emulsion composition and food item using oil-in-water emulsion composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150