JP2016200415A - Electromagnetic flowmeter and method for measuring flow rate of electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter and method for measuring flow rate of electromagnetic flowmeter Download PDF

Info

Publication number
JP2016200415A
JP2016200415A JP2015078581A JP2015078581A JP2016200415A JP 2016200415 A JP2016200415 A JP 2016200415A JP 2015078581 A JP2015078581 A JP 2015078581A JP 2015078581 A JP2015078581 A JP 2015078581A JP 2016200415 A JP2016200415 A JP 2016200415A
Authority
JP
Japan
Prior art keywords
excitation
electromagnetic
current
coil
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078581A
Other languages
Japanese (ja)
Other versions
JP6458611B2 (en
Inventor
識央 安田
Satohisa Yasuda
識央 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2015078581A priority Critical patent/JP6458611B2/en
Publication of JP2016200415A publication Critical patent/JP2016200415A/en
Application granted granted Critical
Publication of JP6458611B2 publication Critical patent/JP6458611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an electromagnetic flowmeter that attains power-saving, maintains a specific measurement precision, and can do self diagnosis, and a method for measuring the flow rate of the electromagnetic flowmeter.SOLUTION: The electromagnetic flowmeter according to the present application has an improved connection configuration of a current supply line for supplying an excitation current from an excitation circuit to an exciting coil. In the electromagnetic flowmeter, the connection of a current supply line for supplying an excitation current from an excitation circuit to an exciting coil is independent on an exciting coil-by-exciting coil basis.SELECTED DRAWING: Figure 1

Description

本発明は、電磁流量計及び電磁流量計の流量測定方法に関し、所定の測定精度を保持する省電力の、さらに自己診断を行うことのできる電磁流量計及び電磁流量計の流量測定方法に関するものである。 The present invention relates to an electromagnetic flow meter and a flow measurement method of the electromagnetic flow meter, and relates to an electromagnetic flow meter capable of performing self-diagnosis and maintaining a predetermined measurement accuracy and a flow measurement method of the electromagnetic flow meter. is there.

従来の電磁流量計は、対向した双方の励磁コイルに励磁電流を流し、交番磁界を発生させ、流量測定を行っている(例えば、特許文献1(第8図)参照)。  Conventional electromagnetic flowmeters measure the flow rate by flowing an exciting current through both opposing exciting coils to generate an alternating magnetic field (see, for example, Patent Document 1 (FIG. 8)).

図2は、従来の電磁流量計である、電磁流量計21の流量測定部の構成図であり、図3は、その断面図を例示したものである。   FIG. 2 is a configuration diagram of a flow rate measuring unit of an electromagnetic flow meter 21 which is a conventional electromagnetic flow meter, and FIG. 3 illustrates a cross-sectional view thereof.

図2、3において、測定管22の管内には、導電性流体が流れる。励磁コイル23、24は、測定管22の外側に取り付けられており、励磁電流を流すことで交番磁界を発生させる。電極25、26は、交番磁界中を導電性流体が流れることで発生する起電力を検出する。電磁鋼板27は、磁束漏洩を低減し、測定管内の磁束密度を高める。   2 and 3, a conductive fluid flows in the tube of the measurement tube 22. The exciting coils 23 and 24 are attached to the outside of the measuring tube 22 and generate an alternating magnetic field by passing an exciting current. The electrodes 25 and 26 detect an electromotive force generated when a conductive fluid flows in an alternating magnetic field. The electromagnetic steel plate 27 reduces magnetic flux leakage and increases the magnetic flux density in the measuring tube.

図2、3に示すように、電極25、26は、互いに向かい合うように、X軸方向にそれぞれ取り付けられている。励磁コイル23、24は、互いに向かい合うように、Y軸方向にそれぞれ取り付けられている。測定管22の管内を流れる導電性流体の流れの方向は、Z軸方向となる。 As shown in FIGS. 2 and 3, the electrodes 25 and 26 are attached in the X-axis direction so as to face each other. The exciting coils 23 and 24 are respectively attached in the Y-axis direction so as to face each other. The direction of the flow of the conductive fluid flowing through the measurement tube 22 is the Z-axis direction.

電磁流量計21の流量の測定原理について説明する。 The measurement principle of the flow rate of the electromagnetic flow meter 21 will be described.

励磁コイル23、24に、交流である励磁電流を流し、測定管22のY軸方向に磁束密度Bの交番磁界を発生させる。このとき、励磁コイル23、24から発生する磁界方向は、同じ方向である。測定管22の管内(内径D)に導電性流体が流れると、X軸方向に起電力Eが発生する。この起電力Eを、電極25、26で検出することにより、導電性流体の流速vを算出し、流量測定を行う。 An alternating excitation current is passed through the excitation coils 23 and 24 to generate an alternating magnetic field having a magnetic flux density B in the Y-axis direction of the measurement tube 22. At this time, the direction of the magnetic field generated from the excitation coils 23 and 24 is the same direction. When the conductive fluid flows in the measurement tube 22 (inner diameter D), an electromotive force E is generated in the X-axis direction. By detecting the electromotive force E with the electrodes 25 and 26, the flow velocity v of the conductive fluid is calculated, and the flow rate is measured.

これを式で示すと、(1)式に示す関係が成立する。
E=BvD ・・・ (1)
(E:起電力、B:磁束密度、v:導電性流体の流速、D:測定管の内径)
磁束密度B及び流量計の内径Dが一定であれば、起電力Eは、導電性流体の流速vに比例する。
When this is expressed by an equation, the relationship shown by the equation (1) is established.
E = BvD (1)
(E: electromotive force, B: magnetic flux density, v: flow velocity of conductive fluid, D: inner diameter of measuring tube)
If the magnetic flux density B and the inner diameter D of the flow meter are constant, the electromotive force E is proportional to the flow velocity v of the conductive fluid.

図4は、従来の電磁流量計である、電磁流量計21の全体の構成図を例示したものである。
電磁流量計21は、励磁回路28によって供給される励磁電流
を、電流供給線29を介して励磁コイル23、24に与え、励磁コイル23及び24を励磁させる。励磁により、測定管22に流れる導電性流体に磁界が印加され、電磁誘導により発生する起電力を電極25及び26により検出する。検出信号を差動増幅回路30によって増幅し、A/D変換器31でデジタル値に変換し、変換後のデジタル値をCPU32で演算処理し、演算処理後のデータを出力する。
FIG. 4 illustrates an overall configuration diagram of an electromagnetic flow meter 21 which is a conventional electromagnetic flow meter.
The electromagnetic flow meter 21 applies the excitation current supplied from the excitation circuit 28 to the excitation coils 23 and 24 via the current supply line 29 to excite the excitation coils 23 and 24. By excitation, a magnetic field is applied to the conductive fluid flowing through the measuring tube 22, and an electromotive force generated by electromagnetic induction is detected by the electrodes 25 and 26. The detection signal is amplified by the differential amplifier circuit 30, converted into a digital value by the A / D converter 31, the converted digital value is arithmetically processed by the CPU 32, and the data after the arithmetic processing is output.

電磁流量計の測定精度について説明する。
電磁流量計の流量測定において、測定精度は、ノイズに対する起電力Eの大きさに大きく影響を受ける。起電力Eの大きさが、ノイズと比較して大きい場合は、測定精度は相対的に高く、ノイズと比較して起電力Eの大きさが小さい場合は、測定精度は相対的に低い。
The measurement accuracy of the electromagnetic flow meter will be described.
In the flow measurement of the electromagnetic flow meter, the measurement accuracy is greatly influenced by the magnitude of the electromotive force E with respect to noise. When the magnitude of the electromotive force E is large compared to the noise, the measurement accuracy is relatively high, and when the magnitude of the electromotive force E is small compared to the noise, the measurement accuracy is relatively low.

特開昭62−188910公報Japanese Patent Laid-Open No. 62-188910

しかしながら、従来の電磁流量計では、励磁回路から励磁コイルに励磁電流を供給するための電流供給線は、双方の励磁コイルに共通であるため、励磁コイルごとに独立に励磁電流を供給し、励磁電流の大きさを制御することができなかった。例えば、一方の励磁コイルには励磁電流を供給せず、他方の励磁コイルのみに励磁電流を供給し、他方の励磁コイルのみを励磁するということはできなかった。ノイズが小さい環境にあっても、双方の励磁コイルに同じ大きさの励磁電流を供給するため、測定精度を保持する上で必要以上に、双方の励磁コイルに流す励磁電流が大きくなり、その分の電力が無駄になってしまうという問題があった。
また、このように、励磁電流を供給する電流供給線が、励磁コイルごとに独立に配線されていないため、励磁コイルの何れか一方だけに励磁電流を供給することができず、その結果、一方の励磁コイルに供給する励磁電流と、この励磁電流により一方の励磁コイルが励磁することで発生する磁束が、他方の励磁コイルに鎖交することで発生する誘導起電力との相関関係を、電磁流量計の自己診断として使用する電磁流量計が存在しないという問題があった。
However, in the conventional electromagnetic flowmeter, the current supply line for supplying the excitation current from the excitation circuit to the excitation coil is common to both excitation coils. The magnitude of the current could not be controlled. For example, it has not been possible to supply an excitation current to only one excitation coil, supply an excitation current only to the other excitation coil, and excite only the other excitation coil. Even in a low-noise environment, the same magnitude of excitation current is supplied to both excitation coils, so the excitation current that flows through both excitation coils becomes larger than necessary to maintain measurement accuracy. There was a problem that the power of wasted.
In addition, as described above, since the current supply line for supplying the excitation current is not wired independently for each excitation coil, the excitation current cannot be supplied to only one of the excitation coils. The correlation between the excitation current supplied to one excitation coil and the induced electromotive force generated when one excitation coil is excited by this excitation current is linked to the other excitation coil. There was a problem that there was no electromagnetic flow meter used for self-diagnosis of the flow meter.

そこで本発明の目的は、所定の測定精度を保持する省電力の、さらに自己診断を行うことのできる電磁流量計及び電磁流量計の流量測定方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic flow meter and a flow measurement method of an electromagnetic flow meter that can perform self-diagnosis and save power while maintaining a predetermined measurement accuracy.

このような課題を達成するために、請求項1記載の発明は、
電磁流量計の測定管の外側に互いに対向するように配置された励磁コイルと、
前記測定管の内側の壁面に互いに対向するように配置され、対向配置の方向は前記励磁コイル同士の対向配置方向と直行し、前記測定管を導電性流体が流れることによって生じる電磁誘導により発生する流量信号を検出するための電極と、
前記励磁コイルに励磁電流を供給するための励磁回路と、
前記励磁コイル毎に独立に配線され、前記励磁コイルと前記励磁回路とを結び、前記励磁回路から前記励磁コイルに励磁電流を供給する電流供給線と、
を備えたことを特徴とするものである。
In order to achieve such a problem, the invention described in claim 1
An exciting coil arranged to face each other outside the measuring tube of the electromagnetic flow meter;
It arrange | positions so that it may mutually oppose on the inner wall surface of the said measuring tube, the direction of opposing arrangement | positioning is orthogonal to the opposing arrangement | positioning direction of the said excitation coils, and it generate | occur | produces by the electromagnetic induction produced when a conductive fluid flows through the said measuring tube. An electrode for detecting a flow signal;
An excitation circuit for supplying an excitation current to the excitation coil;
A current supply line that is independently wired for each excitation coil, connects the excitation coil and the excitation circuit, and supplies an excitation current from the excitation circuit to the excitation coil;
It is characterized by comprising.

請求項2記載の発明は、請求項1記載の発明において、
電磁誘導により励磁コイルに発生する起電力を蓄電する蓄電体、
を備えたことを特徴とするものである。
The invention according to claim 2 is the invention according to claim 1,
A power storage unit that stores an electromotive force generated in an exciting coil by electromagnetic induction;
It is characterized by comprising.

請求項3記載の発明は、
励磁回路から、電磁流量計の測定管の外側に互いに対向するように配置された励磁コイルの何れか一方に対し、前記励磁コイル毎に独立に配線され前記励磁回路と前記励磁コイルを直接結ぶ電流供給線を介して、励磁電流を供給し、前記測定管を導電性流体が流れることによって生じる起電力を、前記測定管の内側の壁面に互いに対向するように配置され、対向配置の方向は前記励磁コイル同士の対向配置方向と直行するように配置された電極で検出する、
ことを特徴とするものである。
The invention described in claim 3
A current that is independently wired for each excitation coil and directly connects the excitation circuit and the excitation coil to any one of the excitation coils that are arranged so as to face each other outside the measurement pipe of the electromagnetic flow meter from the excitation circuit. An excitation current is supplied via a supply line, and an electromotive force generated by the flow of a conductive fluid through the measurement tube is arranged to face each other on the inner wall surface of the measurement tube, and the direction of the opposite arrangement is Detect with electrodes arranged so as to be perpendicular to the opposing arrangement direction of the excitation coils,
It is characterized by this.

請求項4記載の発明は、請求項3記載の発明において、
前記測定管内を導電性流体が流れることによって生じる電磁誘導により、励磁電流を供給していない他方の前記励磁コイルに発生する起電力を蓄電体に蓄電する、
ことを特徴とするものである。
The invention according to claim 4 is the invention according to claim 3,
The electromotive force generated in the other exciting coil that is not supplying the exciting current is stored in the electric storage body by electromagnetic induction caused by the flow of the conductive fluid in the measuring tube.
It is characterized by this.

請求項5記載の発明は、請求項3記載の発明において、
前記励磁コイルの何れか一方にのみに供給した励磁電流と、電磁誘導により、励磁電流を供給していない他方の前記励磁コイルに発生する起電力の関係を、電磁流量計の自己診断に使用する、
ことを特徴とするものである。
The invention according to claim 5 is the invention according to claim 3,
The relationship between the excitation current supplied to only one of the excitation coils and the electromotive force generated in the other excitation coil not supplied with excitation current due to electromagnetic induction is used for self-diagnosis of the electromagnetic flow meter. ,
It is characterized by this.

請求項6記載の発明は、請求項5記載の発明において、
前記自己診断の結果と、前記自己診断を行った際の励磁電流を流す前記励磁コイルと起電力を生じさせる前記励磁コイルを逆にして、さらに自己診断を行った際の自己診断結果の双方を考慮して、自己診断を行う、
ことを特徴とするものである。
The invention according to claim 6 is the invention according to claim 5,
Both the self-diagnosis result and the self-diagnosis result when the self-diagnosis is performed by reversing the excitation coil that passes the excitation current when the self-diagnosis is performed and the excitation coil that generates an electromotive force are obtained. Take self-diagnosis into consideration,
It is characterized by this.

本発明によれば以下のような効果がある。
励磁回路と励磁コイルを結ぶ、励磁回路から励磁コイルに励磁電流を供給するための供給線が、励磁コイル毎に独立に配線されているので、励磁コイル毎に励磁電流を供給することができる。このため、ノイズが小さい環境では、測定精度を保持する上で十分であれば、一方の励磁コイルにのみ励磁電流を供給すること等が可能であり、この場合は励磁に使用する電力が半分になるため、消費電力を抑えた省電力の、かつ、所定の測定精度を保持する省電力の電磁流量計及び電磁流量計の流量測定方法を提供することができる。
The present invention has the following effects.
Since the supply line for connecting the excitation circuit and the excitation coil to supply the excitation current from the excitation circuit to the excitation coil is wired independently for each excitation coil, the excitation current can be supplied for each excitation coil. For this reason, in an environment with low noise, if it is sufficient to maintain measurement accuracy, it is possible to supply excitation current to only one excitation coil, etc. In this case, the power used for excitation is halved. Therefore, it is possible to provide a power-saving electromagnetic flowmeter that suppresses power consumption and that maintains a predetermined measurement accuracy, and a flow measurement method for the electromagnetic flowmeter.

励磁コイルの何れか一方にのみ励磁電流を供給して一方の励磁コイルのみを励磁した場合には、その励磁した励磁コイルから発生した磁束が、励磁電流を供給していない他方の励磁コイルを鎖交するため、励磁電流が変化すると、電磁誘導により他方の励磁コイルに起電力が生じる。この起電力を蓄電体等に蓄電し、その蓄電した電気を電磁流量計自身の駆動に使用することにより、更に省電力の電磁流量計及び電磁流量計の流量測定方法を提供することができる。   When exciting current is supplied to only one of the exciting coils and only one exciting coil is excited, the magnetic flux generated from the excited exciting coil is chained to the other exciting coil that is not supplying exciting current. Therefore, when the exciting current changes, an electromotive force is generated in the other exciting coil by electromagnetic induction. By storing this electromotive force in a power storage body or the like and using the stored electricity for driving the electromagnetic flow meter itself, it is possible to provide a further power saving electromagnetic flow meter and a flow measurement method for the electromagnetic flow meter.

励磁コイルの何れか一方にのみに供給した励磁電流と、電磁誘導により、励磁電流を供給していない他方の励磁コイルに発生する起電力の関係が、相関するので、その相関関係を電磁流量計の自己診断に使用することにより、自己診断可能な電磁流量計及び電磁流量計の流量測定方法を提供することができる。その相関関係を、定期的に記録、監視等することにより、励磁コイルや電磁鋼板のズレ、脱落、測定管内の付着などの発生の可能性を診断することができる。 The relationship between the excitation current supplied to only one of the excitation coils and the electromotive force generated in the other excitation coil that is not supplying the excitation current due to electromagnetic induction is correlated. By using it for self-diagnosis, it is possible to provide an electromagnetic flow meter capable of self-diagnosis and a flow measurement method of the electromagnetic flow meter. By periodically recording and monitoring the correlation, it is possible to diagnose the possibility of occurrence of deviation, dropout, adhesion in the measurement tube, etc. of the excitation coil and the electromagnetic steel sheet.

当該自己診断の結果と、当該自己診断を行った際の励磁電流を供給する励磁コイルと起電力が発生する励磁コイルを逆にしてさらに自己診断を行った際の自己診断の結果を組み合わせることにより、自己診断の精度をさらに向上させることができる。これにより、自己診断の精度がさらに向上した電磁流量計及び電磁流量計の流量測定方法を提供することができる。 By combining the result of self-diagnosis with the result of self-diagnosis when the self-diagnosis is performed by reversing the excitation coil that supplies the excitation current and the excitation coil that generates electromotive force. The accuracy of self-diagnosis can be further improved. As a result, it is possible to provide an electromagnetic flow meter and a flow measurement method of the electromagnetic flow meter with further improved self-diagnosis accuracy.

本発明の実施例を示した電磁流量計の構成図である。It is a block diagram of the electromagnetic flowmeter which showed the Example of this invention. 従来の電磁流量計の流量測定部の構成図の例である。It is an example of the block diagram of the flow measurement part of the conventional electromagnetic flowmeter. 従来の電磁流量計の流量測定部の断面図(X−Y断面図)の例である。It is an example of sectional drawing (XY sectional drawing) of the flow measurement part of the conventional electromagnetic flowmeter. 従来の電磁流量計の構成図の例である。It is an example of the block diagram of the conventional electromagnetic flowmeter.

図1は、本発明の実施例を示した、電磁流量計1の構成図である。電磁流量計1は、励磁回路2によって供給される励磁電流を、電流供給線3又は/及び4を介して励磁コイル5又は/及び6に与え、励磁コイル5又は/及び6を励磁させる。励磁により、測定管7を流れる導電性流体に磁界が印加され、電磁誘導により発生する起電力を電極8及び9により検出する。検出信号を差動増幅回路10によって増幅し、A/D変換器11でデジタル値に変換し、変換後のデジタル値をCPU12で演算処理し、演算処理後のデータを出力する。蓄電体13は、電磁誘導により励磁コイル5又は6で発生した起電力を蓄電するためのものである。   FIG. 1 is a configuration diagram of an electromagnetic flow meter 1 showing an embodiment of the present invention. The electromagnetic flow meter 1 applies the excitation current supplied by the excitation circuit 2 to the excitation coil 5 or / and 6 via the current supply line 3 or / and 4 to excite the excitation coil 5 or / and 6. By excitation, a magnetic field is applied to the conductive fluid flowing through the measuring tube 7, and an electromotive force generated by electromagnetic induction is detected by the electrodes 8 and 9. The detection signal is amplified by the differential amplifier circuit 10, converted into a digital value by the A / D converter 11, the converted digital value is arithmetically processed by the CPU 12, and the data after the arithmetic processing is output. The power storage unit 13 is for storing the electromotive force generated in the excitation coil 5 or 6 by electromagnetic induction.

励磁回路2から励磁コイル5又は/及び6に電磁電流を供給する線3又は/及び4は、励磁コイル毎に分離、独立している。そのため、励磁回路2から励磁コイル5又は/及び6に供給する励磁電流の大きさは励磁コイル5、6毎に制御できる。測定ノイズが小さい環境では、例えば、励磁コイル5だけに励磁電流を流し、励磁コイル6には励磁電流を流さないといった制御ができる。   The lines 3 or / and 4 for supplying an electromagnetic current from the excitation circuit 2 to the excitation coil 5 or / and 6 are separated and independent for each excitation coil. Therefore, the magnitude of the excitation current supplied from the excitation circuit 2 to the excitation coil 5 or / and 6 can be controlled for each of the excitation coils 5 and 6. In an environment where measurement noise is small, for example, control can be performed such that an excitation current is supplied only to the excitation coil 5 and no excitation current is supplied to the excitation coil 6.

また、所定の測定精度を保持しつつ、励磁コイル5及び6の双方に対し、最適、かつ最少の励磁電流を供給するといった制御を行うこともできる。 It is also possible to perform control such that the optimum and minimum exciting current is supplied to both the exciting coils 5 and 6 while maintaining a predetermined measurement accuracy.

このように電磁電流を供給する線3、4を励磁コイル5、6毎に分離したことにより、流量測定において所定の精度以上に必要な起電力が発生しない、すなわち無駄な電力消費が発生しない電磁流量計を実現することができる。 By separating the lines 3 and 4 for supplying the electromagnetic current for each of the exciting coils 5 and 6 in this way, an electromotive force required to exceed a predetermined accuracy is not generated in the flow rate measurement, that is, an electromagnetic that does not cause unnecessary power consumption. A flow meter can be realized.

励磁コイル5、6において、一方の励磁コイルだけに励磁電流を供給し、他方の励磁コイルには励磁電流を供給しない励磁方法の場合では、一方の励磁コイルから発生した磁束が他方の励磁コイルを鎖交することになる。この場合、一方の励磁コイルに供給する励磁電流の大きさが変化すると、励磁電流を供給しない他方の励磁コイルに鎖交する磁束も変化するため、電磁誘導により、他方の励磁コイルに起電力が生じる。この起電力をバッテリーなどの蓄電体13に蓄電し、蓄電した電気を電磁流量計1自身の駆動に使用することにより、電磁流量計1の消費電力をさらに削減することができる。   In an excitation method in which excitation current is supplied to only one excitation coil and excitation current is not supplied to the other excitation coil in the excitation coils 5 and 6, the magnetic flux generated from one excitation coil passes through the other excitation coil. It will be linked. In this case, if the magnitude of the excitation current supplied to one excitation coil changes, the magnetic flux linked to the other excitation coil that does not supply the excitation current also changes. Therefore, an electromotive force is generated in the other excitation coil by electromagnetic induction. Arise. By storing this electromotive force in a power storage unit 13 such as a battery and using the stored electricity for driving the electromagnetic flow meter 1 itself, the power consumption of the electromagnetic flow meter 1 can be further reduced.

励磁コイル5、6において、一方の励磁コイルに供給する励磁電流と、電磁誘導により、励磁電流を供給していない他方の励磁コイルに発生する起電力の関係は、これら二つの励磁コイル5、6及び磁気回路2の幾何学的配置によって決まる。電磁流量計1は、この励磁電流と起電力の相関関係を、定期的に記録、監視等することにより、相関関係が通常と異なる場合には、異常等と判断し、励磁コイルや電磁鋼板に、ズレ、脱落、測定管内の付着等が生じた可能性があるなど、電磁流量計自身の自己診断を行うことができる。   In the excitation coils 5 and 6, the relationship between the excitation current supplied to one excitation coil and the electromotive force generated in the other excitation coil not supplying the excitation current due to electromagnetic induction is determined by the two excitation coils 5 and 6. And the geometry of the magnetic circuit 2. The electromagnetic flow meter 1 periodically records and monitors the correlation between the excitation current and the electromotive force. When the correlation is different from normal, the electromagnetic flow meter 1 determines that the abnormality is abnormal, The self-diagnosis of the electromagnetic flowmeter itself can be performed, such as the possibility of misalignment, dropout, or adhesion in the measuring tube.

励磁コイル5、6において、励磁電流を供給する励磁コイルと起電力が発生する励磁コイルを逆にしても、電磁流量計1はこのような自己診断を行うことができる。最初の自己診断結果と、最初の自己診断を行った際の励磁電流を供給する励磁コイルと起電力が発生する励磁コイルを逆にして、さらに自己診断を行った際の自己診断結果を組み合わせることによって、電磁流量計1の自己診断の精度をさらに向上させることができる。
例えば、最初の自己診断から得られた上記相関関係の相関値と、次に、励磁コイルを上記のように逆にした場合の自己診断から得られた上記相関関係の相関値を組み合わせて考慮し、例えば、双方の相関値の平均値を自己診断に使用すれば、相関値を組み合わせない単独の相関値よりも相関値の誤差が小さくなるので、電磁流量計1の自己診断の精度をさらに向上させることができる。
In the excitation coils 5 and 6, the electromagnetic flow meter 1 can perform such self-diagnosis even if the excitation coil that supplies the excitation current and the excitation coil that generates the electromotive force are reversed. Combine the initial self-diagnosis results and the self-diagnosis results of the self-diagnosis by reversing the excitation coil that supplies the excitation current and the excitation coil that generates the electromotive force when the first self-diagnosis is performed. Thus, the accuracy of the self-diagnosis of the electromagnetic flow meter 1 can be further improved.
For example, the correlation value of the correlation obtained from the first self-diagnosis is combined with the correlation value of the correlation obtained from the self-diagnosis when the excitation coil is reversed as described above. For example, if the average value of both correlation values is used for self-diagnosis, the error of the correlation value becomes smaller than that of a single correlation value that does not combine the correlation values, so the accuracy of the self-diagnosis of the electromagnetic flow meter 1 is further improved. Can be made.

1 電磁流量計
2 励磁回路
3、4 電流供給線
5、6 励磁コイル
7 測定管
8、9 電極
13 蓄電体
DESCRIPTION OF SYMBOLS 1 Electromagnetic flow meter 2 Excitation circuit 3, 4 Current supply line 5, 6 Excitation coil 7 Measuring tube 8, 9 Electrode 13 Accumulator

Claims (6)

電磁流量計の測定管の外側に互いに対向するように配置された励磁コイルと、
前記測定管の内側の壁面に互いに対向するように配置され、対向配置の方向は前記励磁コイル同士の対向配置方向と直行し、前記測定管を導電性流体が流れることによって生じる電磁誘導により発生する流量信号を検出するための電極と、
前記励磁コイルに励磁電流を供給するための励磁回路と、
前記励磁コイル毎に独立に配線され、前記励磁コイルと前記励磁回路とを結び、前記励磁回路から前記励磁コイルに励磁電流を供給する電流供給線と、
を備えたことを特徴とする電磁流量計。
An exciting coil arranged to face each other outside the measuring tube of the electromagnetic flow meter;
It arrange | positions so that it may mutually oppose on the inner wall surface of the said measuring tube, the direction of opposing arrangement | positioning is orthogonal to the opposing arrangement | positioning direction of the said excitation coils, and it generate | occur | produces by the electromagnetic induction produced when a conductive fluid flows through the said measuring tube. An electrode for detecting a flow signal;
An excitation circuit for supplying an excitation current to the excitation coil;
A current supply line that is independently wired for each excitation coil, connects the excitation coil and the excitation circuit, and supplies an excitation current from the excitation circuit to the excitation coil;
An electromagnetic flow meter comprising:
電磁誘導により励磁コイルに発生する起電力を蓄電する蓄電体、
を備えたことを特徴とする請求項1記載の電磁流量計。
A power storage unit that stores an electromotive force generated in an exciting coil by electromagnetic induction;
The electromagnetic flow meter according to claim 1, further comprising:
励磁回路から、電磁流量計の測定管の外側に互いに対向するように配置された励磁コイルの何れか一方に対し、前記励磁コイル毎に独立に配線され前記励磁回路と前記励磁コイルを直接結ぶ電流供給線を介して、励磁電流を供給し、前記測定管を導電性流体が流れることによって生じる電磁誘導により発生する流量信号を、前記測定管の内側の壁面に互いに対向するように配置され、対向配置の方向は前記励磁コイル同士の対向配置方向と直行するように配置された電極で検出する、
ことを特徴とする電磁流量計の流量測定方法。
A current that is independently wired for each excitation coil and directly connects the excitation circuit and the excitation coil to any one of the excitation coils that are arranged so as to face each other outside the measurement pipe of the electromagnetic flow meter from the excitation circuit. An excitation current is supplied via a supply line, and a flow rate signal generated by electromagnetic induction generated by the flow of a conductive fluid through the measurement tube is disposed on the inner wall surface of the measurement tube so as to face each other. The direction of arrangement is detected by electrodes arranged so as to be orthogonal to the opposing arrangement direction of the exciting coils.
A method for measuring a flow rate of an electromagnetic flowmeter.
前記測定管内を導電性流体が流れることによって生じる電磁誘導により、励磁電流を供給していない他方の前記励磁コイルに発生する起電力を蓄電体に蓄電する、
ことを特徴とする請求項3記載の電磁流量計の流量測定方法。
The electromotive force generated in the other exciting coil that is not supplying the exciting current is stored in the electric storage body by electromagnetic induction caused by the flow of the conductive fluid in the measuring tube.
The method for measuring a flow rate of an electromagnetic flowmeter according to claim 3.
前記励磁コイルの何れか一方にのみに供給した励磁電流と、電磁誘導により、励磁電流を供給していない他方の前記励磁コイルに発生する起電力の関係を、電磁流量計の自己診断に使用する、
ことを特徴とする請求項3記載の電磁流量計の流量測定方法。
The relationship between the excitation current supplied to only one of the excitation coils and the electromotive force generated in the other excitation coil not supplied with excitation current due to electromagnetic induction is used for self-diagnosis of the electromagnetic flow meter. ,
The method for measuring a flow rate of an electromagnetic flowmeter according to claim 3.
前記自己診断の結果と、前記自己診断を行った際の励磁電流を流す前記励磁コイルと起電力を生じさせる前記励磁コイルを逆にして、さらに自己診断を行った際の自己診断結果の双方を考慮して、自己診断を行う、
ことを特徴とする請求項5記載の電磁流量計の流量測定方法。
Both the self-diagnosis result and the self-diagnosis result when the self-diagnosis is performed by reversing the excitation coil that passes the excitation current when the self-diagnosis is performed and the excitation coil that generates an electromotive force are obtained. Take self-diagnosis into consideration,
The method for measuring a flow rate of an electromagnetic flowmeter according to claim 5.
JP2015078581A 2015-04-07 2015-04-07 Electromagnetic flow meter and flow measurement method of electromagnetic flow meter Active JP6458611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078581A JP6458611B2 (en) 2015-04-07 2015-04-07 Electromagnetic flow meter and flow measurement method of electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078581A JP6458611B2 (en) 2015-04-07 2015-04-07 Electromagnetic flow meter and flow measurement method of electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JP2016200415A true JP2016200415A (en) 2016-12-01
JP6458611B2 JP6458611B2 (en) 2019-01-30

Family

ID=57422864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078581A Active JP6458611B2 (en) 2015-04-07 2015-04-07 Electromagnetic flow meter and flow measurement method of electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP6458611B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964755A (en) * 2020-07-17 2020-11-20 北方华锦化学工业股份有限公司 Electromagnetic flowmeter repairing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143121A (en) * 1988-11-25 1990-06-01 Shimadzu Corp Electromagnetic flowmeter
JPH05248902A (en) * 1992-03-04 1993-09-28 Aichi Tokei Denki Co Ltd Electromagnetic flow meter
JPH0814967A (en) * 1994-06-29 1996-01-19 Yokogawa Electric Corp Electromagnetic flowmeter
JPH1183571A (en) * 1997-09-12 1999-03-26 Yamatake Honeywell Co Ltd Electromagnetic flowmeter for fast excitation
JPH11325991A (en) * 1998-05-19 1999-11-26 Ricoh Elemex Corp Electromagnetic flowmeter
US20080250866A1 (en) * 2004-11-29 2008-10-16 Endress + Hauser Flowtec Ag Method For Monitoring Function of a Magneto-Inductive Flow Transducer
JP2012122842A (en) * 2010-12-08 2012-06-28 Yokogawa Electric Corp Wireless field apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143121A (en) * 1988-11-25 1990-06-01 Shimadzu Corp Electromagnetic flowmeter
JPH05248902A (en) * 1992-03-04 1993-09-28 Aichi Tokei Denki Co Ltd Electromagnetic flow meter
JPH0814967A (en) * 1994-06-29 1996-01-19 Yokogawa Electric Corp Electromagnetic flowmeter
JPH1183571A (en) * 1997-09-12 1999-03-26 Yamatake Honeywell Co Ltd Electromagnetic flowmeter for fast excitation
JPH11325991A (en) * 1998-05-19 1999-11-26 Ricoh Elemex Corp Electromagnetic flowmeter
US20080250866A1 (en) * 2004-11-29 2008-10-16 Endress + Hauser Flowtec Ag Method For Monitoring Function of a Magneto-Inductive Flow Transducer
JP2012122842A (en) * 2010-12-08 2012-06-28 Yokogawa Electric Corp Wireless field apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964755A (en) * 2020-07-17 2020-11-20 北方华锦化学工业股份有限公司 Electromagnetic flowmeter repairing method

Also Published As

Publication number Publication date
JP6458611B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP5897719B2 (en) Magnetoresistive sensor, gradiometer
JP4386855B2 (en) Operation method of magnetic inductive flow meter
KR20150140630A (en) Magnetic bearing device, and vacuum pump provided with said magnetic bearing device
JP4793473B2 (en) Electromagnetic flow meter
JP6458611B2 (en) Electromagnetic flow meter and flow measurement method of electromagnetic flow meter
JP6183309B2 (en) Flow meter and insulation deterioration diagnosis system
JP2008256084A (en) Magnetic bearing device and magnetic bearing spindle device
JP2005315812A (en) Magnetic field sensor
JP4493010B2 (en) Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
JP5439325B2 (en) Electromagnetic log sensor
JP5726558B2 (en) Electromagnetic flow meter
JP5525808B2 (en) Magnetic pressure oxygen analyzer
JPH05256673A (en) Excitation malfunction detecting means of electromagnetic flowmeter
JP6218342B2 (en) Electromagnetic flow meter
JP6322378B2 (en) Detection device
JP2005207755A (en) Electromagnetic flowmeter
JPH02103418A (en) Insertion type electromagnetic flowmeter
JP7427837B1 (en) Vibration sensor unit, rotating electric machine, and pump device
JP5973897B2 (en) Electromagnetic flow meter
JP2851178B2 (en) Electromagnetic flow meter
JP4052532B2 (en) Electromagnetic flow meter
JP2009156681A (en) Electromagnetic flowmeter
CN106092261B (en) Nested liquid metal level detector
JP2008286540A (en) Electromagnetic flowmeter
JP6303342B2 (en) Magnetic oxygen analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6458611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150