JP2005315812A - Magnetic field sensor - Google Patents

Magnetic field sensor Download PDF

Info

Publication number
JP2005315812A
JP2005315812A JP2004136530A JP2004136530A JP2005315812A JP 2005315812 A JP2005315812 A JP 2005315812A JP 2004136530 A JP2004136530 A JP 2004136530A JP 2004136530 A JP2004136530 A JP 2004136530A JP 2005315812 A JP2005315812 A JP 2005315812A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
field sensor
current
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004136530A
Other languages
Japanese (ja)
Other versions
JP4732705B2 (en
Inventor
Ichiro Sasada
一郎 笹田
Takashi Usui
崇 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004136530A priority Critical patent/JP4732705B2/en
Publication of JP2005315812A publication Critical patent/JP2005315812A/en
Application granted granted Critical
Publication of JP4732705B2 publication Critical patent/JP4732705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field sensor capable of detecting weak magnetic fields with high precision despite of its simple configuration. <P>SOLUTION: The magnetic field sensor is configured such that , while exciting current i consisting of pulsating flow biased to, at least, either of positive or negative is electrified toward a magnetic core 1 winded by detecting coils 21 and 22, and the induced voltages V1 and V2 generated in detecting coils 21 and 22 are offset when the detected magnetic field Hex does not exist to be impressed in the magnetic core 1 and, on the other hand, the induced voltages V1 and V2 induced in detected magnetic field Hex generated in detecting coils 21 and 22 are outputted when the aforementioned detected magnetic field Hex exists. Therefore, weak magnetic fields, the true object to be detected, can be detected without the influence of an unnecessary induced voltage generated depending on property and constitution of the magnetic core and detecting coils, resulting in enhancement of detecting precision and implement of more stable detection. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、検出コイルが巻回された磁性体に電流を流して磁界を検出する直交フラックスゲート型の磁気センサに関し、特に磁性体の磁気異方性に基づく検出精度の低下を防止して微弱磁界を高感度且つ高安定に検出する磁気センサに関する。   The present invention relates to an orthogonal fluxgate type magnetic sensor that detects a magnetic field by passing an electric current through a magnetic body around which a detection coil is wound, and in particular, prevents a decrease in detection accuracy based on the magnetic anisotropy of the magnetic body. The present invention relates to a magnetic sensor that detects a magnetic field with high sensitivity and high stability.

一般に磁気センサは、研界を情報媒体とするセンシング技術の基本となる構成要素であり、アクティブ磁気シールド、磁気による異物検出、環境磁気アセスメント、磁気による交通量計測、磁気非破壊検査、磁気モーションキャプチャ等に利用されている。   In general, a magnetic sensor is a basic component of sensing technology that uses research fields as an information medium. Active magnetic shield, detection of foreign matter by magnetism, environmental magnetic assessment, traffic measurement by magnetism, magnetic nondestructive inspection, magnetic motion capture Etc. are used.

従来、この種の背景技術として特開2003−215220号公報に開示されているものがあり、これを図11に従来の磁界センサの原理回路構成図として示す。同図において従来の磁気センサは、磁性ワイヤ101と磁性ワイヤ101に巻回された検出コイル201を持ち、磁性ワイヤ101に発振器401から出力される極性が交番する電流に直流電源501からのバイアス電流を重畳させる直交フラックスゲート磁界センサであって、前記バイアス電流を直列電源501から供給して第1のスイッチ601によりこのバイアス電流の極性を周期的に切り換えて感度の正負を反転し、その差を求めることによってオフセットがほぼ完全に除去された出力を得る回路構成とし、励磁電流を直流を含むパルス列とし、このパルス列の極性を周期的に反転させるように構成される。   Conventionally, this type of background art is disclosed in Japanese Patent Application Laid-Open No. 2003-215220, and this is shown in FIG. 11 as a principle circuit configuration diagram of a conventional magnetic field sensor. In the figure, the conventional magnetic sensor has a magnetic wire 101 and a detection coil 201 wound around the magnetic wire 101, and a bias current from a DC power source 501 is added to a current in which the polarity output from the oscillator 401 is alternated on the magnetic wire 101. The bias current is supplied from a series power source 501, the polarity of this bias current is periodically switched by the first switch 601, and the sensitivity is reversed. By obtaining the circuit configuration, an output from which the offset is almost completely removed is obtained. The excitation current is a pulse train including a direct current, and the polarity of the pulse train is periodically inverted.

前記構成に基づく従来の磁気センサは、細長い磁性体からなる磁性ワイヤ101に巻回された検出コイル201を持ち、前記細長い磁性体からなる磁性ワイヤ101に極性が交番する電流にバイアス電流を重畳させる直交フラックスゲートの磁界センサとし、前記バイアス電流の極性を切換えて感度の正負を反転できるようにしたことにより、感度は大きさを保ちその極性を反転するが、オフセットはその大きさを保ちながら極性も不変に保つ。これにより、直流バイアス電流を正に設定し励磁磁界Hexに対し得た出力と、次に励磁磁界Hexが変化しない内に直流バイアス電流の極性を反転させ、同じように得た出力の差を取ることにより、オフセットがほぼ完全に除去された出力を得るものである。
特開2003−215220号公報
The conventional magnetic sensor based on the above configuration has a detection coil 201 wound around a magnetic wire 101 made of an elongated magnetic material, and superimposes a bias current on a current whose polarity is alternated on the magnetic wire 101 made of an elongated magnetic material. By using a magnetic flux sensor with an orthogonal flux gate and switching the polarity of the bias current so that the polarity of the sensitivity can be reversed, the sensitivity retains its magnitude and reverses its polarity, but the offset polarizes while maintaining its magnitude. Also keep unchanged. Thereby, the polarity of the DC bias current is set to be positive and the polarity of the DC bias current is inverted while the excitation magnetic field Hex is not changed, and the output obtained in the same way is obtained. Thus, an output from which the offset is almost completely removed is obtained.
JP 2003-215220 A

背景技術に係る従来の磁界センサは以上のように構成されていたことから、被検出磁界が存在しない場合であっても、励磁電流による励磁磁界が存在するときには検出コイル201に誘起電圧が現れ、磁界センサのオフセットを生じる原因となるばかりでなく、温度と共に変動すればドリフトを生じるという課題を有していた。   Since the conventional magnetic field sensor according to the background art is configured as described above, even when the detected magnetic field does not exist, an induced voltage appears in the detection coil 201 when the exciting magnetic field due to the exciting current exists, In addition to causing an offset of the magnetic field sensor, there is a problem that drift occurs if it fluctuates with temperature.

即ち、従来の磁界センサにおける検出コイルの誘起電圧説明図を図12に示し、同図においてKuは磁気異方性の大きさ、Jsはアモルファスワイヤの磁化、Hdcは励磁磁界の直流成分、Hacは交流成分を各々表している。ここで、Ku=0或いは、このKuと外部磁界Hdc+Hacsin(2πft)とのなす角α=0でない時は、Jsは被検出磁界Hex=0であっても、円周方向から角θ傾き、励磁磁界が最大となる時には角θは最小、励磁磁界が最小となる時には角θは最大となって交流励磁の周期で図12中に示す(1)及び(2)のように振動することとなる。   That is, FIG. 12 is a diagram for explaining the induced voltage of the detection coil in the conventional magnetic field sensor, where Ku is the magnitude of magnetic anisotropy, Js is the magnetization of the amorphous wire, Hdc is the DC component of the excitation magnetic field, and Hac is Each AC component is represented. Here, when Ku = 0 or the angle α = 0 between this Ku and the external magnetic field Hdc + Hacsin (2πft), even if the detected magnetic field Hex = 0, Js is inclined by the angle θ from the circumferential direction and excited. When the magnetic field is maximized, the angle θ is minimum, and when the excitation magnetic field is minimum, the angle θ is maximized and vibrates as shown in (1) and (2) in FIG. .

このように被検出磁界Hexがない場合でも、励磁電流を流すと励磁磁界が磁性ワイヤ101の円周方向に発生するために、この磁性ワイヤ101内の磁化が交流電流と同じ周期で磁化容易軸方向と円周方向との間で振動する。この振動の結果、磁性ワイヤ101の長手方向に射影された磁化成分も周期的に変化し、検出コイル201に周期的に変動する磁束鎖交を与え、その時間微分が誘起電圧として検出コイル201の両端子間に現れる。   Even in the absence of the detected magnetic field Hex, when an exciting current is passed, the exciting magnetic field is generated in the circumferential direction of the magnetic wire 101. Therefore, the magnetization in the magnetic wire 101 has the same period as the alternating current and the easy axis of magnetization. Vibrates between the direction and the circumferential direction. As a result of this vibration, the magnetization component projected in the longitudinal direction of the magnetic wire 101 also changes periodically, giving the detection coil 201 a periodically varying magnetic flux linkage, and its time derivative becomes an induced voltage of the detection coil 201. Appears between both terminals.

特に、直流バイアスが極性を反転する時は大きな磁化反転を誘起し、スパイク状の過渡電圧が生じることとなる。これまでの従来技術では、被検出磁化Hexの情報をもった誘起電圧と、前記被検出磁化Hexが0の時に生じる誘起電圧及びスパイク状の電圧とを分離できないという課題を有していた。これによって、検出コイル201の後段に高利得増幅器を接続した場合には、この高利得増幅器を飽和させるのみならずオフセットを発生させ、且つドリフトの増加さらにはスイッチング雑音が生じる等の問題点が有った。   In particular, when the DC bias reverses the polarity, a large magnetization reversal is induced and a spike-like transient voltage is generated. In the conventional techniques so far, there has been a problem that the induced voltage having information on the detected magnetization Hex cannot be separated from the induced voltage generated when the detected magnetization Hex is 0 and the spike-like voltage. As a result, when a high gain amplifier is connected to the subsequent stage of the detection coil 201, there are problems such as not only saturating the high gain amplifier but also generating an offset, increasing drift, and causing switching noise. It was.

本発明は、前記課題を解消するためになされたもので、簡略な構成で微弱磁界を高精度に検出できる磁界センサを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a magnetic field sensor that can detect a weak magnetic field with high accuracy with a simple configuration.

本発明に係る磁界センサは、所定長さの磁性体からなる磁心と、当該磁心に巻回される検出コイルとを備え、前記磁心に励磁電流を流して前記検出コイルに誘起される誘起電圧により微小磁界を検出する直交フラックスゲートに基づく磁界センサにおいて、前記磁心には正又は負の少なくとも一方に直流電流をバイアスされた脈流からなる励磁電流を流し、前記検出コイルは、前記磁心に印加される被検出磁界が存在せず、且つ励磁電流による励磁磁界が存在するときに発生する誘起電圧を相殺し、前記磁心に印加される被検出磁界が存在し、且つ励磁電流による励磁磁界が存在するときに当該被検出磁界で誘起される誘起電圧を出力するものである。   A magnetic field sensor according to the present invention includes a magnetic core made of a magnetic material having a predetermined length and a detection coil wound around the magnetic core, and an induced current is passed through the magnetic core to induce an induced voltage in the detection coil. In a magnetic field sensor based on an orthogonal fluxgate that detects a minute magnetic field, an excitation current consisting of a pulsating current biased with a direct current is applied to at least one of positive and negative in the magnetic core, and the detection coil is applied to the magnetic core. There is no detected magnetic field, and there is an detected voltage applied to the magnetic core that cancels the induced voltage generated when the exciting magnetic field due to the exciting current exists, and there is an exciting magnetic field due to the exciting current. Sometimes an induced voltage induced by the detected magnetic field is output.

このように本発明においては、検出コイルが巻回される磁心に正又は負の少なくとも一方にバイアスされた脈流からなる励磁電流を流し、この磁心に印加される被検出磁界が存在しないときに検出コイルに発生する誘起電圧を相殺し、且つ前記被検出磁界が存在するときに検出コイルに発生する被検出磁界で誘起される誘起電圧を出力するようにしているので、真の検出対象である微弱磁界を磁心及び検出コイルの特性・構成に依存して発生する不用な誘起電圧の影響を受けることなく検出できることとなり、検出精度を向上させ、且つより安定した検出が実行できる。   As described above, in the present invention, when an excitation current consisting of a pulsating current biased to at least one of positive and negative is supplied to the magnetic core around which the detection coil is wound, and there is no detected magnetic field applied to the magnetic core. Since the induced voltage generated in the detection coil is canceled when the induced voltage generated in the detection coil is canceled and the detected magnetic field is present, it is a true detection target. A weak magnetic field can be detected without being affected by an unnecessary induced voltage generated depending on the characteristics and configuration of the magnetic core and the detection coil, so that detection accuracy can be improved and more stable detection can be performed.

本発明に係る磁界センサは必要に応じて、磁心に流れる励磁電流が、脈流の変動周期より長い周期で励磁方向を反転させるものである。
このように本発明においては、磁心に流れる励磁電流を脈流の変動周期より長い周期で励磁方向を反転させるようにしているので、励磁方向を反転する期間における脈流で検出コイルから複数検出される誘起電圧を平均化し、これによりスパイク電圧を抑制しつつオフセットの発生も防止して出力できることとなり、より安定して微弱磁界の検出が可能となる。
The magnetic field sensor according to the present invention reverses the excitation direction at a cycle in which the excitation current flowing in the magnetic core is longer than the fluctuation cycle of the pulsating flow as necessary.
In this way, in the present invention, the excitation current flowing in the magnetic core is reversed in the excitation direction at a period longer than the fluctuation period of the pulsating flow, so that a plurality of detections are detected from the detection coil by the pulsating flow in the period in which the excitation direction is reversed. In this way, the induced voltage is averaged, and the spike voltage can be suppressed and the offset can be prevented from being generated, so that the weak magnetic field can be detected more stably.

本発明に係る磁界センサは必要に応じて、磁心に流れる励磁電流が、脈流の変動周期より長い周期で励磁方向を反転させ、且つ前記検出コイルに誘起される誘起電圧の極性が前記磁心に流れる励磁電流の長い周期に同期して反転させるものである。   In the magnetic field sensor according to the present invention, if necessary, the excitation current flowing in the magnetic core reverses the excitation direction in a cycle longer than the fluctuation cycle of the pulsating flow, and the polarity of the induced voltage induced in the detection coil is in the magnetic core. It reverses in synchronization with the long period of the exciting current that flows.

このように本発明においては、励磁電流の励磁方向を脈流の変動周期より長い周期で反転させると共に、誘起電圧の極性を励磁電流の周期に同期して反転させるようにしているので、励磁方向を反転する期間における脈流で検出コイルから複数検出される誘起電圧を平均化して出力できることとなり、検出コイルの出力直後に誘起電圧を増幅する増幅器を設けた場合には、この増幅器によるオフセットを防止できるので、より安定して微弱磁界の検出が可能となる。   Thus, in the present invention, the excitation direction of the excitation current is reversed at a period longer than the fluctuation period of the pulsating current, and the polarity of the induced voltage is reversed in synchronization with the period of the excitation current. The induced voltage detected from the detection coil can be averaged and output by the pulsating current during the period of reversing the current. If an amplifier that amplifies the induced voltage is provided immediately after the output of the detection coil, offset by this amplifier is prevented. Therefore, a weak magnetic field can be detected more stably.

本発明に係る磁界センサは必要に応じて、磁心が、偶数本の磁性体を平行状態で配設して形成され、検出コイルが、偶数本の各磁性体に巻回して形成され、偶数本の磁性体を2組に分けて当該2組の磁性体に巻回される検出コイルが励磁電流による励磁磁界のないときに発生する誘起電圧を相殺するように接続されるものである。   In the magnetic field sensor according to the present invention, if necessary, the magnetic core is formed by arranging even number of magnetic bodies in parallel and the detection coil is formed by winding the even number of magnetic bodies. The magnetic bodies are divided into two sets, and the detection coils wound around the two sets of magnetic bodies are connected so as to cancel the induced voltage generated when there is no exciting magnetic field due to the exciting current.

このように本発明においては、検出コイルが各々巻回された磁性体を偶数本平行に配設し、この偶数の磁性体を2組に分け、各組毎の検出コイルが励磁電流による励磁磁界のないときに発生する誘起電圧を相殺するように接続されることから、平行に配設された各磁性体の鎖交する磁束が同一条件で均等に透過されることとなり、励磁電流による励磁磁界によって発生する誘起電圧を極力抑制して高精度且つ高安定な検出ができる。   As described above, in the present invention, an even number of magnetic bodies each having a detection coil wound thereon are arranged in parallel, and the even number of magnetic bodies are divided into two sets, and the detection coils of each group are excited magnetic fields generated by an excitation current. Because it is connected so as to cancel the induced voltage generated when there is no current, the magnetic flux interlinked by each magnetic material arranged in parallel is transmitted evenly under the same conditions, and the excitation magnetic field due to the excitation current Can suppress the induced voltage generated as much as possible and perform highly accurate and stable detection.

本発明に係る磁界センサは必要に応じて、磁心が、所定長さの磁性体を略U字状に屈曲形成し、当該略U字状の磁性体の平行部分に各々検出コイルを巻回されるものである。
このように本発明においては、所定長さの磁性体を略U字状に屈曲して磁心を形成し、このU字状の磁性体の平行部分に検出コイルを各々巻回しているので、より磁気異方性の特性が近似する一対の磁性体で形成できることから、励磁磁界のないときに発生する誘起電圧をより確実に相殺できることとなり、高精度且つ高安定な検出ができる。
In the magnetic field sensor according to the present invention, if necessary, a magnetic core is formed by bending a magnetic body having a predetermined length into a substantially U shape, and a detection coil is wound around each parallel portion of the substantially U-shaped magnetic body. Is.
Thus, in the present invention, a magnetic body having a predetermined length is bent into a substantially U shape to form a magnetic core, and the detection coils are wound around the parallel portions of the U shape magnetic body. Since it can be formed by a pair of magnetic bodies having similar magnetic anisotropy characteristics, the induced voltage generated when there is no exciting magnetic field can be canceled more reliably, and highly accurate and stable detection can be performed.

本発明に係る磁界センサは必要に応じて、磁心が、所定長さの磁性体を略U字状に屈曲形成し、当該略U字状の磁性体の平行部分に共通して検出コイルを巻回されるものである。
このように本発明においては、磁心を形成する磁性体を略U字状に屈曲し、このU字状の磁性体を共通して検出コイルを巻回すようにしているので、このU字状の磁性体に各々逆向きの励磁電流が流れ且つ同一方向に被検出磁界が透過させて励磁電流による励磁磁界をより確実に相殺できることとなり、簡略な構成で検出精度を向上させることができる。
In the magnetic field sensor according to the present invention, if necessary, a magnetic core is formed by bending a magnetic body having a predetermined length into a substantially U shape, and a detection coil is wound around a parallel portion of the substantially U-shaped magnetic body. It is to be turned.
In this way, in the present invention, the magnetic body forming the magnetic core is bent into a substantially U shape, and the U-shaped magnetic body is commonly wound around the detection coil. The exciting currents flowing in opposite directions flow through the magnetic bodies and the detected magnetic field is transmitted in the same direction, so that the exciting magnetic field due to the exciting current can be canceled more reliably, and the detection accuracy can be improved with a simple configuration.

本発明に係る磁界センサは必要に応じて、磁心が、断面円形状の磁性体で形成されるものである。このように本発明においては、磁心を形成する磁性体の断面を円形状とすることにより、磁性体の外周を均等に磁化させ、部分的な磁気ヒステリシスの残留を防止して、検出精度を向上させることができる。   In the magnetic field sensor according to the present invention, the magnetic core is formed of a magnetic body having a circular cross section as necessary. As described above, in the present invention, the cross section of the magnetic material forming the magnetic core is circular, so that the outer periphery of the magnetic material is evenly magnetized, and the residual magnetic hysteresis is prevented, thereby improving the detection accuracy. Can be made.

本発明に係る磁界センサは必要に応じて、バイアスされる直流電流の電流値が、前記脈流の振幅の大きさより大きいものである。このように本発明においては、バイアスの直流電流を重畳される脈流の振幅より大きくすることにより、脈流の励磁電流がゼロクロスしなくなり、脈流の2倍の周期で微弱磁界の検出を実行することからより確実に検出精度を向上させることができる。   In the magnetic field sensor according to the present invention, the current value of the DC current to be biased is larger than the amplitude of the pulsating current as necessary. As described above, in the present invention, by making the bias direct current larger than the amplitude of the superimposed pulsating current, the exciting current of the pulsating current does not zero-cross, and the weak magnetic field is detected at a cycle twice that of the pulsating current. Therefore, the detection accuracy can be improved more reliably.

本発明に係る磁界センサは必要に応じて、二組の磁性体に巻回される検出コイルが、各々極性を逆にして直列接続して形成されるものである。このように本発明においては、磁性を逆にして直列接続されるように二組の磁性体に巻回される検出コイルを接続しているので、磁性体に励磁電流を流した場合に励磁磁界が生じても励磁磁界を相殺して検出コイルに誘起電圧を抑制できることとなり、簡略な回路構成のみで検出精度を向上させることができる。   The magnetic field sensor according to the present invention is formed by connecting detection coils wound around two sets of magnetic bodies in series with opposite polarities as necessary. As described above, in the present invention, the detection coils wound around the two sets of magnetic bodies are connected so as to be connected in series with the magnets reversed, so that when an excitation current is passed through the magnetic bodies, the excitation magnetic field Even if this occurs, it is possible to cancel the excitation magnetic field and suppress the induced voltage in the detection coil, and the detection accuracy can be improved with only a simple circuit configuration.

本発明に係る磁界センサは必要に応じて、所定長さの磁性体からなる磁心と、当該磁心に巻回される複数の検出コイルとを備え、前記磁心に励磁電流を流して前記検出コイルに誘起される誘起電圧により微小磁界を検出する直交フラックスゲートに基づく磁界センサにおいて、前記磁心には正又は負の少なくとも一方に直流電流をバイアスされた脈流からなる励磁電流を流し、前記複数の検出コイルは、前記磁心に印加される被検出磁界が存在せず、且つ励磁電流による励磁磁界が存在するときに発生する誘起電圧を各々出力し、当該誘起電圧に対応した信号に基づいて差分を求め、前記磁心に印加される被検出磁界が存在し、且つ励磁電流による励磁磁界が存在するときに当該被検出磁界で誘起される誘起電圧に対応した信号に基づいて差分を出力するものである。   The magnetic field sensor according to the present invention includes a magnetic core made of a magnetic material having a predetermined length and a plurality of detection coils wound around the magnetic core as needed, and an excitation current is passed through the magnetic core to the detection coil. In the magnetic field sensor based on an orthogonal fluxgate that detects a minute magnetic field by an induced voltage, an excitation current consisting of a pulsating current biased with a direct current is applied to the magnetic core at least one of positive and negative, and the plurality of detections Each coil outputs an induced voltage generated when there is no magnetic field to be detected applied to the magnetic core and there is an exciting magnetic field due to an exciting current, and a difference is obtained based on a signal corresponding to the induced voltage. The difference based on the signal corresponding to the induced voltage induced in the detected magnetic field when the detected magnetic field applied to the magnetic core exists and the excited magnetic field due to the excitation current exists. And outputs a.

このように本発明においては、検出コイルが巻回される磁心に正又は負の少なくとも一方にバイアスされた脈流からなる励磁電流を流し、この磁心に印加される被検出磁界が存在しないときに検出コイルに発生する前記励磁電流による誘起電圧に対応した信号に基づいて差分を求め、且つ前記被検出磁界が存在するときに検出コイルに発生する被検出磁界で誘起される誘起電圧に対応する信号に基づいて差分を出力するようにしているので、真の検出対象である微弱磁界を磁心及び検出コイルの特性・構成に依存して発生する不用な誘起電圧の影響を受けることなく検出できることとなり、検出精度を向上させ、且つより安定した検出が実行できる。   As described above, in the present invention, when an excitation current consisting of a pulsating current biased to at least one of positive and negative is supplied to the magnetic core around which the detection coil is wound, and there is no detected magnetic field applied to the magnetic core. A signal corresponding to the induced voltage induced by the detected magnetic field generated in the detection coil when the difference is obtained based on the signal corresponding to the induced voltage caused by the excitation current generated in the detection coil and the detected magnetic field exists. Therefore, the weak magnetic field that is the true detection target can be detected without being affected by the unnecessary induced voltage generated depending on the characteristics and configuration of the magnetic core and the detection coil. The detection accuracy can be improved and more stable detection can be performed.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る磁界センサを図1ないし図5に基づいて説明する。この図1は本実施形態に係る磁界センサの回路構成図、図2は図1における磁界センサの被検出磁界が存在しない場合の各磁界ベクトル態様図、図3は図2における磁界センサの誘起電圧相殺タイミングチャート、図4は図1における磁界センサの被検出磁界が存在する場合の各磁界ベクトル態様図、図5は図4における磁界センサの誘起電圧相殺タイミングチャートを示す。
(First embodiment of the present invention)
Hereinafter, a magnetic field sensor according to a first embodiment of the present invention will be described with reference to FIGS. 1 is a circuit configuration diagram of the magnetic field sensor according to the present embodiment, FIG. 2 is a diagram of each magnetic field vector when there is no detected magnetic field of the magnetic field sensor in FIG. 1, and FIG. 3 is an induced voltage of the magnetic field sensor in FIG. FIG. 4 is a magnetic field vector diagram in the case where the detected magnetic field of the magnetic field sensor in FIG. 1 is present, and FIG. 5 is an induced voltage cancellation timing chart of the magnetic field sensor in FIG.

前記各図において本実施形態に係る磁界センサは、所定長さからなる2本の磁性体11、12を平行に配設され、この磁性体11、12を電線13にて直列に接続して形成される磁心1と、この磁心1の各磁性体11、12に極性を異ならせて巻回される検出コイル21、22からなり、この検出コイル21、22を直列に接続してこの直列接続の各端を出力端子23、24とする検出出力部2と、前記磁性体11、12の直列回路に直列に接続され、この磁性体11、12に対して交流電流ACを直流電流DCでバイアスされた励磁電流iを供給する電源部3とを備える構成である。   In each of the drawings, the magnetic field sensor according to the present embodiment is formed by arranging two magnetic bodies 11 and 12 having a predetermined length in parallel, and connecting these magnetic bodies 11 and 12 in series with an electric wire 13. And the detection coils 21 and 22 wound around the magnetic bodies 11 and 12 of the magnetic core 1 with different polarities. The detection coils 21 and 22 are connected in series, and the series connection is made. The detection output unit 2 having each end as an output terminal 23, 24 is connected in series to the series circuit of the magnetic bodies 11, 12, and the magnetic body 11, 12 is biased with an alternating current AC by a direct current DC. And a power supply unit 3 for supplying the exciting current i.

次に、前記構成に基づく本実施形態の動作について説明する。まず、微弱磁界である被検出磁界Hexが存在しない場合において、前記励磁電流iを磁性体11、12の直列回路に供給すると図2に示すような各磁界ベクトル態様となる。   Next, the operation of the present embodiment based on the above configuration will be described. First, when the detected magnetic field Hex, which is a weak magnetic field, does not exist, when the excitation current i is supplied to the series circuit of the magnetic bodies 11 and 12, each magnetic field vector form as shown in FIG.

同図において、Hexcは前記励磁電流iにより誘起される励磁磁界の方向、Kuは仮定された一軸磁気異方性の大きさ、両側矢頭の線分はその容易軸方向、Jsは磁性体11、12の磁化方向を示す。この磁化JsはこのKuの方向と平行に向くのが最もエネルギー状態が低い、つまり平行になろうとするものである。これらの磁界方向態様は180度対称性がある。   In the figure, Hexc is the direction of the exciting magnetic field induced by the exciting current i, Ku is the magnitude of the assumed uniaxial magnetic anisotropy, the line segment of the arrowhead on both sides is its easy axis direction, Js is the magnetic body 11, 12 magnetization directions are shown. This magnetization Js has the lowest energy state when it is parallel to the direction of Ku, that is, it tries to be parallel. These magnetic field direction aspects have 180 degree symmetry.

前記検出コイル21、22の巻線の方向は、磁性線である磁性体11、12に流れる励磁電流iの方向に磁性体11、12端面から見込めば、右方は反時計方向、左方は時計方向にある。
被検出磁界Hex=0の時は、磁化Jsの磁性線方向の方向成分Jsoは磁性体11、12で各々逆向きである。この方向成分Jsoの大きさが磁性体11、12の中の磁性体11、12の軸方向磁束成分を表す。そして、これらの極性はいずれも、励磁電流iと同一方向であることが解る。このように、図示の方向に誘起電圧を観測すると図3のようになる。
The winding direction of the detection coils 21 and 22 is counterclockwise on the right side and counterclockwise on the left side in the direction of the excitation current i flowing through the magnetic bodies 11 and 12 which are magnetic wires. It is in the clockwise direction.
When the detected magnetic field Hex = 0, the direction components Jso of the magnetization Js in the magnetic line direction are opposite in the magnetic bodies 11 and 12, respectively. The magnitude of the directional component Jso represents the axial magnetic flux component of the magnetic bodies 11 and 12 in the magnetic bodies 11 and 12. It can be seen that these polarities are in the same direction as the excitation current i. In this way, when the induced voltage is observed in the direction shown in the figure, the result is as shown in FIG.

前記図3(A)、(B)に示すように、検出コイル21からは誘起電圧V1が誘起され、検出コイル22からは誘起電圧V2が誘起されることとなる。前記磁心1の磁性体11、12の特性及び検出コイル21、22の巻回条件が一致していると、検出コイル21、22を直列に接続することにより加算され、出力端子23、24からは前記誘起電圧V1、V2が各々相殺されて出力が「0」となる(図3(C)を参照)。   As shown in FIGS. 3A and 3B, the induced voltage V 1 is induced from the detection coil 21, and the induced voltage V 2 is induced from the detection coil 22. When the characteristics of the magnetic bodies 11 and 12 of the magnetic core 1 and the winding conditions of the detection coils 21 and 22 match, the detection coils 21 and 22 are added by connecting them in series, and from the output terminals 23 and 24, The induced voltages V1 and V2 cancel each other, and the output becomes “0” (see FIG. 3C).

また、微弱磁界である被検出磁界Hexが存在する場合において、前記励磁電流iを磁性体11、12の直列回路に供給すると図4に示すような各磁界ベクトル態様となる。同図において被検出磁界Hexが印加されて磁性体11、12に透過すると、この被検出磁界Hexの影響を磁性体11、12の各磁化Jsが受けることとなる。また、この磁性体11、12の軸方向(長手方向)をZ軸とした場合に前記磁化JsのZ軸方向における磁化成分がJs21、Js22である
磁性体11においては、被検出磁界Hexと励磁磁界Hexcとが略直角であり、この略直角の範囲外に一軸磁気異方性の大きさKuが位置することから、励磁磁界Hexcに対して小さい角度θ1で変化する。他方、磁性体12においては被検出磁界Hexと励磁磁界Hexcとが略直角であり、この略直角の範囲内に一軸磁気異方性の大きさKuが位置することから、励磁磁界Hexcに対して大きい角度θ2(θ2>θ1)で変化する。
Further, when the detected magnetic field Hex, which is a weak magnetic field, is present, if the exciting current i is supplied to the series circuit of the magnetic bodies 11 and 12, each magnetic field vector form as shown in FIG. In the figure, when a detected magnetic field Hex is applied and transmitted through the magnetic bodies 11 and 12, the magnetization Js of the magnetic bodies 11 and 12 is affected by the detected magnetic field Hex. Further, when the axial direction (longitudinal direction) of the magnetic bodies 11 and 12 is the Z-axis, the magnetization components in the Z-axis direction of the magnetization Js are Js21 and Js22. Since the magnetic field Hexc is substantially perpendicular, and the magnitude Ku of the uniaxial magnetic anisotropy is located outside this substantially perpendicular range, it changes at a small angle θ1 with respect to the exciting magnetic field Hexc. On the other hand, in the magnetic body 12, the detected magnetic field Hex and the excitation magnetic field Hexc are substantially perpendicular, and the magnitude Ku of uniaxial magnetic anisotropy is located within the substantially perpendicular range. It changes with a large angle θ2 (θ2> θ1).

この磁化Jsの変化する角度θ1と角度θ2との差異により、図5に示すように検出コイル21からは前記角度θ1に応じた誘起電圧V1が出力され(同図(A)を参照)、検出コイル22からは前記角度θ2に応じた誘起電圧V2が出力される(同図(B)を参照)。これらの各誘起電圧V1、V2は検出コイル21、22が直列接続されていることから加算されて同図(C)のような加算結果として出力端子23、24より出力されることとなる。   Due to the difference between the angle θ1 and the angle θ2 at which the magnetization Js changes, an induced voltage V1 corresponding to the angle θ1 is output from the detection coil 21 as shown in FIG. 5 (see FIG. 5A) and detected. An induced voltage V2 corresponding to the angle θ2 is output from the coil 22 (see FIG. 5B). These induced voltages V1 and V2 are added because the detection coils 21 and 22 are connected in series, and are output from the output terminals 23 and 24 as addition results as shown in FIG.

(本発明の第2の実施形態)
図6及び図7に基づいて本実施形態に係る磁界センサを説明する。この図6は本実施形態に係る磁界センサの全体回路構成図、図7は図6に記載の磁界センサにおける誘起電圧相殺タイミングチャートを示す。
前記各図において本実施形態に係る磁界センサは、前記図1記載の第1の実施形態に係る磁界センサと同様に磁性体11、12からなる磁心1と、検出コイル21、22からなる検出出力部2と、電源部3とを備え、前記検出出力部2の検出コイル21、22が直列接続されることなく各々出力端子23a・23b、24a・24bを有し、この各出力端子23a・23b、24a・24bに増幅器41、42及び包絡線演算部51、52を接続し、この包絡線演算部51、52の各出力の差分を求める減算器6を接続する構成である。
(Second embodiment of the present invention)
The magnetic field sensor according to the present embodiment will be described with reference to FIGS. FIG. 6 is an overall circuit configuration diagram of the magnetic field sensor according to this embodiment, and FIG. 7 is an induced voltage cancellation timing chart in the magnetic field sensor shown in FIG.
In each of the drawings, the magnetic field sensor according to the present embodiment is the same as the magnetic field sensor according to the first embodiment shown in FIG. 1, but the detection output including the magnetic core 1 including the magnetic bodies 11 and 12 and the detection coils 21 and 22. Unit 2 and a power source unit 3, and the detection coils 21 and 22 of the detection output unit 2 have output terminals 23 a and 23 b and 24 a and 24 b without being connected in series, and the output terminals 23 a and 23 b , 24a and 24b are connected to amplifiers 41 and 42 and envelope calculation units 51 and 52, and a subtracter 6 for obtaining a difference between outputs of the envelope calculation units 51 and 52 is connected.

次に、前記構成に基づく本実施形態の動作について説明する。まず、前記第1の実施形態と同様に被検出磁界Hexが存在する場合及び存在しない場合のいずれも検出コイル21、22から誘起電圧V1、V2が出力されることとなる(図7(A)、(B)を参照)。   Next, the operation of the present embodiment based on the above configuration will be described. First, as in the first embodiment, the induced voltages V1 and V2 are output from the detection coils 21 and 22 both when the detected magnetic field Hex is present and when it is not present (FIG. 7A). (See (B)).

この出力された誘起電圧V1、V2が増幅器41、42に入力されて所定の増幅率で増幅され、この増幅された誘起電圧V1、V2を包絡線演算部51、52が半波整流して各々包絡線の各直流の誘起電圧V1d、V2d演算する(図7(C)(D)を参照)。この直流の誘起電圧V1d、V2dが減算器6により差分が求められ、被検出磁界Hexの値を直流出力として検出できることとなる。   The output induced voltages V1 and V2 are input to the amplifiers 41 and 42 and amplified with a predetermined amplification factor, and the envelope calculation units 51 and 52 perform half-wave rectification on the amplified induced voltages V1 and V2, respectively. The DC induced voltages V1d and V2d of the envelope are calculated (see FIGS. 7C and 7D). A difference between the DC induced voltages V1d and V2d is obtained by the subtractor 6, and the value of the detected magnetic field Hex can be detected as a DC output.

なお、前記各実施形態においては、検出コイル21、22を直列接続することなく、各出力端子23a・23b、24a・24bから増幅器41、42、包絡線演算部51、52、減算器6から直流出力で得る構成としたが、前記第1の実施形態と同様に検出コイル21、22を直列接続し、この直列回路の端子から出力される交流出力を励磁電流iの交流励磁周波数に同期した同期整流(位相検波)を行うことにより被検出磁界Hexを検出する構成とすることもできる。   In each of the above embodiments, the detection coils 21 and 22 are not connected in series, and the output terminals 23a, 23b, 24a, and 24b are connected to the amplifiers 41 and 42, the envelope calculation units 51 and 52, and the subtractor 6 are connected to the direct current. Although the configuration is obtained by output, the detection coils 21 and 22 are connected in series as in the first embodiment, and the AC output output from the terminal of this series circuit is synchronized with the AC excitation frequency of the excitation current i. It can also be set as the structure which detects the to-be-detected magnetic field Hex by performing a rectification (phase detection).

(本発明の第3の実施形態)
図8ないし図10に基づいて本実施形態に係る磁界センサを説明する。この図8は、本実施形態に係る磁界センサの回路構成図、図9は図8に記載する磁界センサにおける誘起電圧の出力波形図、図10は図8に記載する磁界センサにおける出力誘起電圧の雑音特性図を示す。
(Third embodiment of the present invention)
The magnetic field sensor according to this embodiment will be described with reference to FIGS. 8 is a circuit configuration diagram of the magnetic field sensor according to the present embodiment, FIG. 9 is an output waveform diagram of induced voltage in the magnetic field sensor described in FIG. 8, and FIG. 10 is an output waveform of output induced voltage in the magnetic field sensor described in FIG. A noise characteristic diagram is shown.

前記各図において本実施形態に係る磁界センサは、1本の磁性体10を二つに均等に屈曲して平行な直線部分10a、10bを有するU字形状からなる磁心1と、この磁心1の直線部分10a、10bに逆方向に各々巻回される検出コイル21、22を直列に接続して形成される検出出力部2と、前記磁心1の磁性体10に励磁電流iを直接供給する電源部3とを備える構成である。   In each of the drawings, the magnetic field sensor according to the present embodiment includes a magnetic core 1 having a U-shape having a linear portion 10a, 10b parallel to one magnetic body 10 evenly bent in two, and the magnetic core 1 A detection output unit 2 formed by connecting detection coils 21 and 22 wound in the opposite directions around the straight portions 10a and 10b in series, and a power source for directly supplying an excitation current i to the magnetic body 10 of the magnetic core 1 It is a structure provided with the part 3.

前記磁心1は、断面円形状のCo基アモルファス磁性ワイヤで磁性体10を形成し、この磁性体10の直線部分10a、10bにグラスパイプ10c、10dが装着される構成である。前記検出出力部2の検出コイル21、22は、直線部分10a、10bにグラスパイプ10c、10dを介して巻回される構成である。前記電源部3は、交流電流ACにこの交流電流ACより十分大きな電流値の直流電流DCを重畳して励磁電流iを生成して出力する構成である。   The magnetic core 1 has a configuration in which a magnetic body 10 is formed of a Co-based amorphous magnetic wire having a circular cross section, and glass pipes 10c and 10d are attached to linear portions 10a and 10b of the magnetic body 10. The detection coils 21 and 22 of the detection output unit 2 are configured to be wound around the straight portions 10a and 10b via the glass pipes 10c and 10d. The power source unit 3 is configured to generate and output an excitation current i by superimposing a direct current DC having a current value sufficiently larger than the alternating current AC on the alternating current AC.

次に、前記構成に基づく本実施形態に係る磁界センサの動作について説明する。まず、電源部3から励磁電流iを磁性体10に供給すると、磁心1に流れる励磁電流iが励磁磁界を発生させる。この励磁磁界が検出コイル21、22と鎖交して検出コイル21、22に誘起電圧V1、V2を各々発生(図8中に実線矢印方向)させることとなるが、検出コイル21と検出コイル22とは相互に逆向きに巻回されていることから、各誘起電圧V1、V2が相互に打消し合って相殺されることとなる。   Next, the operation of the magnetic field sensor according to this embodiment based on the above configuration will be described. First, when an excitation current i is supplied from the power supply unit 3 to the magnetic body 10, the excitation current i flowing through the magnetic core 1 generates an excitation magnetic field. This excitation magnetic field is linked to the detection coils 21 and 22 to generate the induced voltages V1 and V2 in the detection coils 21 and 22 (in the direction of solid arrows in FIG. 8). And the induced voltages V1 and V2 cancel each other and cancel each other.

他方、外部に被検出磁界Hexが存在し、この被検出磁界Hexが磁性体11、12に透過するとこの被検出磁界Hexで誘起される誘起電圧V1H、V2Hを各々発生(図8中に破線矢印方向)させることとなり、各誘起電圧V1H、V2Hが加算されて出力することとなるが、この出力には被検出磁界Hexが存在しない(Hex=0)ときの誘起電圧を含ませることなく微弱磁界の被検出磁界Hexを高精度に検出できることとなる。   On the other hand, when a detected magnetic field Hex exists outside and this detected magnetic field Hex passes through the magnetic bodies 11 and 12, induced voltages V1H and V2H induced by the detected magnetic field Hex are respectively generated (broken arrows in FIG. 8). The induced voltages V1H and V2H are added and output, but this output does not include the induced voltage when the detected magnetic field Hex does not exist (Hex = 0), and the weak magnetic field is not included. The detected magnetic field Hex can be detected with high accuracy.

さらに、本実施形態に係る磁界センサの動作を前記図12をも参照して詳細に説明する。この図12に示した関係で被検出磁界Hex=0の時に生じる誘起電圧V1、V2はほぼ同等であるために引き算でほぼキャンセルできる。図9に簡易磁気シールド内での外部磁界を低減して誘起電圧を調べた結果を示す。同図(A)は、検出コイル21、22を接続することなく分離し、一方の検出コイル21から出力される誘起電圧V1を観測したものである。同図(B)はV1+V2となるように結線して観測したものである。この観測において励磁電流iは、50kHzの交流電流に1kHzの振幅の大きな矩形波電流が重畳されており、バイアスする直流電流DCがスイッチングされた場合を示している。正弦波様の誘起電圧の大幅な低減は、図12で説明した被検出磁界Hex=0の時の誘起電圧がキャンセルできていることが解る。また、スパイク状電圧の低減はバイアス切替えに伴う過渡現象の抑制効果を示している。   Further, the operation of the magnetic field sensor according to the present embodiment will be described in detail with reference to FIG. In the relationship shown in FIG. 12, the induced voltages V1 and V2 generated when the detected magnetic field Hex = 0 is substantially equal and can be substantially canceled by subtraction. FIG. 9 shows the result of examining the induced voltage by reducing the external magnetic field in the simple magnetic shield. FIG. 2A shows an observation of the induced voltage V1 output from one of the detection coils 21, with the detection coils 21 and 22 being separated without being connected. FIG. 5B shows the observations made by connecting the wires so that V1 + V2. In this observation, the exciting current i is a case where a rectangular wave current having a large amplitude of 1 kHz is superimposed on an alternating current of 50 kHz, and the biased direct current DC is switched. It can be seen that the significant reduction of the sine wave-like induced voltage cancels the induced voltage when the detected magnetic field Hex = 0 described with reference to FIG. Moreover, the reduction of the spike voltage shows the effect of suppressing the transient phenomenon accompanying the bias switching.

次に、被検出磁界Hexに対する応答は、検出コイル21、22の接続関係によってキャンセルされないことを説明する。この被検出磁界Hexに対する感度の正・負は、バイアスされる直流電流DCの向きと1対1対応であることは、前記従来技術において既に知られている。U字状に曲げられた磁心1の検出コイル21、22が施された直線部分10a、10bに平行な被検出磁界Hexに対して磁気感度を持つので、被検出磁界Hexの方向は直線部分10a、10bと平行なものに限定する。被検出磁界Hexの向きが、検出コイル21、22を巻回された右方の直線部分10aでバイアスの直流電流DCの向きと同一であれば左方の直線部分10bでは正反対となる。   Next, it will be described that the response to the detected magnetic field Hex is not canceled by the connection relationship between the detection coils 21 and 22. It is already known in the prior art that the positive / negative sensitivity to the detected magnetic field Hex has a one-to-one correspondence with the direction of the DC current DC to be biased. Since it has magnetic sensitivity with respect to the detected magnetic field Hex parallel to the linear portions 10a and 10b on which the detection coils 21 and 22 of the magnetic core 1 bent in a U-shape are provided, the direction of the detected magnetic field Hex is the linear portion 10a. 10b. If the direction of the detected magnetic field Hex is the same as the direction of the direct current DC of the bias in the right straight portion 10a around which the detection coils 21 and 22 are wound, the left straight portion 10b is opposite.

従って、右方の直線部分10aで感度が正であれば、左方の直線部分10bで感度は負となる。   Therefore, if the sensitivity is positive in the right straight portion 10a, the sensitivity is negative in the left straight portion 10b.

これによって、検出コイル21、22を各々極性に逆にして直列に結線することによって一個の検出コイル21(又は22)の場合の2倍の出力を得ることができる。即ち、磁界センサとしての動作に悪影響を及ぼす不要な磁束鎖交の影響は、キャンセルされることとなり被検出磁界Hexに起因する有用な磁束変化のみを2倍の感度で検出することができることとなる。   As a result, the detection coils 21 and 22 are connected in series with their polarities reversed, so that it is possible to obtain an output twice that of the single detection coil 21 (or 22). That is, the influence of unnecessary magnetic flux linkage that adversely affects the operation of the magnetic field sensor is canceled, and only a useful magnetic flux change caused by the detected magnetic field Hex can be detected with double sensitivity. .

さらに、本実施形態においては、検出コイル21、22で誘起される誘起電圧を増幅する高利得増幅器を後段に設けた場合に、この高利得増幅器の飽和を回避できるので磁界センサを高感度・低雑音にすることができ、オフセットの要因となる被検出磁界Hex=0の時の誘起電圧を抑制できるので高安定化が図れる。このような作用効果を、図9及び図10に試験データに基づく各特性図として示す。この図9は簡易磁気シールド内で外部磁界を低減して誘起電圧を調べた出力波形図である。同図(A)において、磁性体を分離し、この磁性体に各々検出コイルを巻回し、この検出コイルから出力される誘起電圧V1(又はV2)を同図(A)にその波形図として示す。また同図(B)において、平行に配設された磁性体に各々検出コイルを巻回し、この検出コイルを極性を逆にして直列接続し、この各検出コイルからの誘起電圧(V1+V2)を同図(B)にその波形図として示す。この(A)、(B)の各出力波形を比較すると明らかに、雑音電圧レベル及びスパイク状電圧の影響が減衰されていることが解る。   Furthermore, in the present embodiment, when a high gain amplifier that amplifies the induced voltage induced by the detection coils 21 and 22 is provided in the subsequent stage, saturation of the high gain amplifier can be avoided, so that the magnetic field sensor is highly sensitive and low. Noise can be generated, and the induced voltage when the detected magnetic field Hex = 0, which causes an offset, can be suppressed, so that high stabilization can be achieved. Such effects are shown in FIG. 9 and FIG. 10 as characteristic diagrams based on the test data. FIG. 9 is an output waveform diagram in which the induced voltage is examined by reducing the external magnetic field within the simple magnetic shield. In FIG. 6A, a magnetic material is separated, and a detection coil is wound around each of the magnetic materials, and an induced voltage V1 (or V2) output from the detection coil is shown in FIG. . In FIG. 2B, each detection coil is wound around a magnetic material arranged in parallel, and the detection coils are connected in series with opposite polarities, and the induced voltage (V1 + V2) from each detection coil is the same. The waveform is shown in FIG. When the output waveforms of (A) and (B) are compared, it is apparent that the effects of the noise voltage level and the spike voltage are attenuated.

前記図10(A)、(B)は、約1mV/1nTの高感度にしたときの雑音特性、また、図9(B)に示すようにドリフトは4時間の観測において0.5nT以下である。このように本実施形態によって高感度・高安定な磁界センサが実現できることとなる。   FIGS. 10A and 10B show noise characteristics when the sensitivity is about 1 mV / 1 nT, and the drift is 0.5 nT or less in 4 hours of observation as shown in FIG. 9B. . Thus, a highly sensitive and highly stable magnetic field sensor can be realized by this embodiment.

(本発明の他の実施形態)
本発明の他の実施形態に係る磁界センサの磁心は、薄板状の磁性体(例えばアモルファス磁性薄帯等)を円筒状にロール形成し、このロール形成された磁性体の円筒体に導電線を挿通し、この円筒体及び導電線の間に充填材(例えば、エポキシ樹脂等)を充填して構成することもできる。
(Other embodiments of the present invention)
A magnetic core of a magnetic field sensor according to another embodiment of the present invention is formed by rolling a thin plate-like magnetic body (for example, an amorphous magnetic ribbon) into a cylindrical shape, and providing a conductive wire on the rolled cylindrical body of the magnetic body. It can also be configured by inserting a filler (for example, epoxy resin) between the cylindrical body and the conductive wire.

また、他の実施形態に係る磁界センサの磁心は、導電線(例えば、円柱状の銅線等)の周囲を磁性体(例えば、パーマロイ等)を鍍金して形成することもできる。この磁性体の鍍金以外に、予めパーマロイ等の磁性体を中空円柱状に成形して導電線と一体化して磁心を形成することもできる。   In addition, the magnetic core of the magnetic field sensor according to another embodiment can be formed by plating a magnetic body (for example, permalloy) around a conductive wire (for example, a cylindrical copper wire). In addition to the plating of the magnetic material, a magnetic material such as permalloy can be formed in advance into a hollow cylindrical shape and integrated with the conductive wire to form a magnetic core.

さらに、本発明の他の実施形態に係る磁界センサは、細長い強磁性体とそれに巻回された1つの検出コイルからなる磁心偶数個を互いに平行に(便宜上Z軸に平行とする)配置し、前記磁性体には共通の励磁電流を流し、この磁心を2つのグループに分け、一方のグループの前記磁性体にはZ軸の正方向に励磁電流を流し、他方のグループの前記磁性体にはZ軸の負方向に励磁電流を流し、周期的スイッチングによりバイパス電流の極性を周期的に切替える構成とすることもできる。この細長い磁性体は、アモルファス磁性ワイヤを用いることができる。この細長い磁性体は、大きさや磁気的な性質が対をなすように2つのグループに振分けることもできる。   Furthermore, in a magnetic field sensor according to another embodiment of the present invention, an even number of magnetic cores composed of an elongated ferromagnetic body and one detection coil wound around the ferromagnetic body are arranged in parallel with each other (for convenience, parallel to the Z axis), A common exciting current is passed through the magnetic bodies, the magnetic cores are divided into two groups, an exciting current is passed through the magnetic bodies in one group in the positive direction of the Z axis, and the magnetic bodies in the other group are passed through. A configuration may also be adopted in which an excitation current is passed in the negative direction of the Z-axis and the polarity of the bypass current is periodically switched by periodic switching. An amorphous magnetic wire can be used for the elongated magnetic body. This elongated magnetic body can be divided into two groups so that the size and magnetic properties are paired.

本発明の第1の実施形態に係る磁界センサの回路構成図である。It is a circuit block diagram of the magnetic field sensor which concerns on the 1st Embodiment of this invention. 図1における磁界センサの被検出磁界が存在しない場合の各磁界ベクトル態様図である。It is each magnetic field vector mode figure in case the to-be-detected magnetic field of the magnetic field sensor in FIG. 1 does not exist. 図2における磁界センサの誘起電圧相殺タイミングチャートである。3 is a timing chart for canceling an induced voltage of the magnetic field sensor in FIG. 2. 図1における磁界センサの被検出磁界が存在する場合の各磁界ベクトル態様図である。It is each magnetic field vector mode diagram in case the to-be-detected magnetic field of the magnetic field sensor in FIG. 1 exists. 図4における磁界センサの誘起電圧相殺タイミングチャートである。5 is an induced voltage cancellation timing chart of the magnetic field sensor in FIG. 4. 本発明の第2の実施形態に係る磁界センサの全体回路構成図である。It is a whole circuit block diagram of the magnetic field sensor which concerns on the 2nd Embodiment of this invention. 図6に記載の磁界センサにおける誘起電圧相殺タイミングチャートである。7 is an induced voltage canceling timing chart in the magnetic field sensor shown in FIG. 6. 本発明の第3の実施形態に係る磁界センサの回路構成図である。It is a circuit block diagram of the magnetic field sensor which concerns on the 3rd Embodiment of this invention. 図8に記載する磁界センサにおける誘起電圧の出力波形図である。It is an output waveform figure of the induced voltage in the magnetic field sensor described in FIG. 図10の上の図は従来の磁界センサの雑音特性です.下の図が今回のものです.縦軸は共にnT/√Hzで、1 Hz当たりの雑音出力の実効値です.横軸は周波数です. 図8に記載する磁界センサにおける出力誘起電圧の雑音特性図である。The upper figure in Fig. 10 shows the noise characteristics of a conventional magnetic field sensor. The figure below is this time. Both vertical axes are nT / √Hz, and are the effective values of noise output per 1 Hz. The horizontal axis is frequency. It is a noise characteristic figure of the output induced voltage in the magnetic field sensor described in FIG. 従来の磁界センサの原理回路構成図である。It is a principle circuit block diagram of the conventional magnetic field sensor. 従来の磁界センサにおける検出コイルの誘起電圧説明図である。It is explanatory drawing of the induced voltage of the detection coil in the conventional magnetic field sensor.

符号の説明Explanation of symbols

1 磁心
2 検出出力部
3 電源部
6 減算器
10、11、12 磁性体
10a、10b 直線部分
10c、10d グラスパイプ
21、22 検出コイル
23、24、23a・23b、24a・24b 出力端子
41、42 増幅器
51、52 包絡線演算部
101 磁性ワイヤ
201 検出コイル
401 発振器
501 直流電源
601 スイッチ
i 励磁電流
V1、V2、V1H、V2H 誘起電圧(V1H, V2Hの図示はありません)
V1d、V2d 直流の誘起電圧
DESCRIPTION OF SYMBOLS 1 Magnetic core 2 Detection output part 3 Power supply part 6 Subtractor 10, 11, 12 Magnetic body 10a, 10b Linear part 10c, 10d Glass pipe 21, 22 Detection coil 23, 24, 23a * 23b, 24a * 24b Output terminal 41,42 Amplifier 51, 52 Envelope calculation unit 101 Magnetic wire 201 Detection coil 401 Oscillator 501 DC power supply 601 Switch i Excitation current V1, V2, V1H, V2H Induced voltage (V1H, V2H not shown)
V1d, V2d DC induced voltage

Claims (10)

所定長さの磁性体からなる磁心と、当該磁心に巻回される検出コイルとを備え、前記磁心に励磁電流を流して前記検出コイルに誘起される誘起電圧により微小磁界を検出する直交フラックスゲートに基づく磁界センサにおいて、
前記磁心には正又は負の少なくとも一方に直流電流をバイアスされた脈流からなる励磁電流を流し、
前記検出コイルは、前記磁心に印加される被検出磁界が存在せず、且つ励磁電流による励磁磁界が存在するときに発生する誘起電圧を相殺し、前記磁心に印加される被検出磁界が存在し、且つ励磁電流による励磁磁界が存在するときに当該被検出磁界で誘起される誘起電圧を出力することを
特徴とする磁界センサ。
An orthogonal flux gate comprising a magnetic core made of a magnetic material having a predetermined length and a detection coil wound around the magnetic core, and detecting a minute magnetic field by an induced voltage induced in the detection coil by passing an excitation current through the magnetic core In a magnetic field sensor based on
An excitation current consisting of a pulsating current biased with a direct current is applied to at least one of positive and negative in the magnetic core,
The detection coil cancels the induced voltage generated when there is no detected magnetic field applied to the magnetic core and there is an excited magnetic field due to an excitation current, and there is a detected magnetic field applied to the magnetic core. A magnetic field sensor that outputs an induced voltage induced by the detected magnetic field when an exciting magnetic field due to an exciting current is present.
前記請求項1に記載の磁界センサにおいて、
前記磁心に流れる励磁電流が、脈流の変動周期より長い周期で励磁方向を反転させることを
特徴とする磁界センサ。
The magnetic field sensor according to claim 1,
A magnetic field sensor, wherein an excitation current flowing in the magnetic core reverses an excitation direction at a period longer than a fluctuation period of a pulsating flow.
前記請求項1に記載の磁界センサにおいて、
前記磁心に流れる励磁電流が、脈流の変動周期より長い周期で励磁方向を反転させ、且つ前記検出コイルに誘起される誘起電圧の極性が前記磁心に流れる励磁電流の長い周期に同期して反転させることを
特徴とする磁界センサ。
The magnetic field sensor according to claim 1,
The excitation current flowing in the magnetic core reverses the excitation direction in a cycle longer than the fluctuation cycle of the pulsating flow, and the polarity of the induced voltage induced in the detection coil is reversed in synchronization with the long cycle of the excitation current flowing in the magnetic core. A magnetic field sensor characterized by
前記請求項1ないし3のいずれかに記載の磁界センサにおいて、
前記磁心が、偶数本の磁性体を平行状態で配設して形成され、
前記検出コイルが、偶数本の各磁性体に巻回して形成され、
前記偶数本の磁性体を2組に分けて当該2組の磁性体に巻回される検出コイルが励磁電流による励磁磁界によって発生する誘起電圧を相殺するように接続されることを
特徴とする磁界センサ。
The magnetic field sensor according to any one of claims 1 to 3,
The magnetic core is formed by arranging an even number of magnetic bodies in a parallel state,
The detection coil is formed by winding an even number of magnetic bodies,
The even number of magnetic bodies are divided into two sets, and a detection coil wound around the two sets of magnetic bodies is connected so as to cancel an induced voltage generated by an exciting magnetic field caused by an exciting current. Sensor.
前記請求項4に記載の磁界センサにおいて、
前記磁心の一組の磁性体が、所定長さの磁性体を略U字状に屈曲形成し、当該略U字状の磁性体の平行部分に各々検出コイルを巻回されることを
特徴とする磁界センサ。
The magnetic field sensor according to claim 4, wherein
A set of magnetic bodies of the magnetic core is formed by bending a magnetic body having a predetermined length into a substantially U shape, and a detection coil is wound around each parallel portion of the substantially U-shaped magnetic body. Magnetic field sensor.
前記請求項4に記載の磁界センサにおいて、
前記磁心が、所定長さの磁性体を略U字状に屈曲形成し、当該略U字状の磁性体の平行部分に共通して検出コイルを巻回されることを
特徴とする磁界センサ。
The magnetic field sensor according to claim 4, wherein
A magnetic field sensor, wherein the magnetic core is formed by bending a magnetic body having a predetermined length into a substantially U shape, and a detection coil is wound around a parallel portion of the substantially U-shaped magnetic body.
前記請求項1ないし6のいずれかに記載の磁界センサにおいて、
前記磁心が、断面円形状の磁性体で形成されることを
特徴とする磁界センサ。
The magnetic field sensor according to any one of claims 1 to 6,
The magnetic core is formed of a magnetic body having a circular cross section.
前記請求項1ないし7のいずれかに記載の磁界センサにおいて、
前記バイアスされる直流電流の電流値が、前記脈流の振幅の大きさより大きいことを
特徴とする磁界センサ。
The magnetic field sensor according to any one of claims 1 to 7,
A magnetic field sensor, wherein a current value of the biased direct current is larger than the amplitude of the pulsating current.
前記請求項4、5、7及び8のいずれかに記載の磁界センサにおいて、
前記二組の磁性体に巻回される検出コイルが、各々極性を逆にして直列接続して形成されることを
特徴とする磁界センサ。
The magnetic field sensor according to any one of claims 4, 5, 7, and 8,
A magnetic field sensor, wherein the detection coils wound around the two sets of magnetic bodies are formed in series with opposite polarities.
所定長さの磁性体からなる磁心と、当該磁心に巻回される複数の検出コイルとを備え、前記磁心に励磁電流を流して前記検出コイルに誘起される誘起電圧により微小磁界を検出する直交フラックスゲートに基づく磁界センサにおいて、
前記磁心には正又は負の少なくとも一方に直流電流をバイアスされた脈流からなる励磁電流を流し、
前記複数の検出コイルは、前記磁心に印加される被検出磁界が存在せず、且つ励磁電流による励磁磁界が存在するときに発生する誘起電圧を各々出力し、当該誘起電圧に対応した信号に基づいて差分を求め、前記磁心に印加される被検出磁界が存在し、且つ励磁電流による励磁磁界が存在するときに当該被検出磁界で誘起される誘起電圧に対応した信号に基づいて差分を出力することを
特徴とする磁界センサ。
A quadrature that includes a magnetic core made of a magnetic material of a predetermined length and a plurality of detection coils wound around the magnetic core, and detects a minute magnetic field by an induced voltage induced in the detection coil by passing an excitation current through the magnetic core. In magnetic field sensors based on fluxgates,
An excitation current consisting of a pulsating current biased with a direct current is applied to at least one of positive and negative in the magnetic core,
The plurality of detection coils each output an induced voltage generated when there is no magnetic field to be detected applied to the magnetic core and there is an exciting magnetic field due to an exciting current, and based on a signal corresponding to the induced voltage When the detected magnetic field applied to the magnetic core exists and the excitation magnetic field due to the excitation current exists, the difference is output based on the signal corresponding to the induced voltage induced in the detected magnetic field. Magnetic field sensor characterized by this.
JP2004136530A 2004-04-30 2004-04-30 Magnetic field sensor Expired - Fee Related JP4732705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136530A JP4732705B2 (en) 2004-04-30 2004-04-30 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136530A JP4732705B2 (en) 2004-04-30 2004-04-30 Magnetic field sensor

Publications (2)

Publication Number Publication Date
JP2005315812A true JP2005315812A (en) 2005-11-10
JP4732705B2 JP4732705B2 (en) 2011-07-27

Family

ID=35443389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136530A Expired - Fee Related JP4732705B2 (en) 2004-04-30 2004-04-30 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JP4732705B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196773A (en) * 2010-03-18 2011-10-06 Anritsu Sanki System Co Ltd Metal detector
WO2013035581A1 (en) * 2011-09-09 2013-03-14 国立大学法人九州大学 Magnetic field sensor
WO2013080601A1 (en) * 2011-11-30 2013-06-06 日本航空電子工業株式会社 Geomagnetic sensor
JP2015197401A (en) * 2014-04-02 2015-11-09 国立大学法人九州大学 magnetic field sensor
JP2015200524A (en) * 2014-04-04 2015-11-12 国立大学法人九州大学 magnetic field sensor
CN107315150A (en) * 2017-08-16 2017-11-03 中国地质大学(北京) A kind of orthogonal basic mode fluxgate sensor
WO2018225454A1 (en) * 2017-06-05 2018-12-13 朝日インテック株式会社 Gsr sensor element
JP2019211450A (en) * 2018-06-08 2019-12-12 笹田磁気計測研究所株式会社 Magnetic field sensor
WO2022014438A1 (en) * 2020-07-17 2022-01-20 Tdk株式会社 Gradient magnetic field sensor and magnetic matter detection device
US11789096B2 (en) 2022-02-21 2023-10-17 Kabushiki Kaisha Toshiba Sensor and inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858815A (en) * 1971-11-22 1973-08-17
JPH0432787A (en) * 1990-05-29 1992-02-04 Kawatetsu Techno Res Corp Magnetic field sensor
JPH08285929A (en) * 1995-04-19 1996-11-01 Shimadzu Corp Magnetometer
JP2000098012A (en) * 1998-09-25 2000-04-07 Tdk Corp Magnetic field sensor
JP2003215220A (en) * 2002-01-21 2003-07-30 Sangaku Renkei Kiko Kyushu:Kk Magnetic field sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858815A (en) * 1971-11-22 1973-08-17
JPH0432787A (en) * 1990-05-29 1992-02-04 Kawatetsu Techno Res Corp Magnetic field sensor
JPH08285929A (en) * 1995-04-19 1996-11-01 Shimadzu Corp Magnetometer
JP2000098012A (en) * 1998-09-25 2000-04-07 Tdk Corp Magnetic field sensor
JP2003215220A (en) * 2002-01-21 2003-07-30 Sangaku Renkei Kiko Kyushu:Kk Magnetic field sensor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196773A (en) * 2010-03-18 2011-10-06 Anritsu Sanki System Co Ltd Metal detector
US9285436B2 (en) 2011-09-09 2016-03-15 Kyushu University Magnetic field sensor
WO2013035581A1 (en) * 2011-09-09 2013-03-14 国立大学法人九州大学 Magnetic field sensor
JP2013057645A (en) * 2011-09-09 2013-03-28 Kyushu Univ Magnetic sensor
US9465134B2 (en) 2011-11-30 2016-10-11 Japan Aviation Electronics Industry, Limited Geomagnetic sensor
JP2013113794A (en) * 2011-11-30 2013-06-10 Japan Aviation Electronics Industry Ltd Geomagnetic sensor
WO2013080601A1 (en) * 2011-11-30 2013-06-06 日本航空電子工業株式会社 Geomagnetic sensor
JP2015197401A (en) * 2014-04-02 2015-11-09 国立大学法人九州大学 magnetic field sensor
JP2015200524A (en) * 2014-04-04 2015-11-12 国立大学法人九州大学 magnetic field sensor
WO2018225454A1 (en) * 2017-06-05 2018-12-13 朝日インテック株式会社 Gsr sensor element
JP2018205102A (en) * 2017-06-05 2018-12-27 朝日インテック株式会社 GSR sensor element
US11156676B2 (en) 2017-06-05 2021-10-26 Asahi Intecc Co., Ltd. GSR sensor element
CN107315150A (en) * 2017-08-16 2017-11-03 中国地质大学(北京) A kind of orthogonal basic mode fluxgate sensor
CN107315150B (en) * 2017-08-16 2023-09-19 中国地质大学(北京) Orthogonal fundamental mode fluxgate sensor
JP2019211450A (en) * 2018-06-08 2019-12-12 笹田磁気計測研究所株式会社 Magnetic field sensor
WO2022014438A1 (en) * 2020-07-17 2022-01-20 Tdk株式会社 Gradient magnetic field sensor and magnetic matter detection device
US11789096B2 (en) 2022-02-21 2023-10-17 Kabushiki Kaisha Toshiba Sensor and inspection device

Also Published As

Publication number Publication date
JP4732705B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP6249206B2 (en) Current transducer for measuring current
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
WO2014033904A1 (en) Magnetoresistive sensor and gradiometer
JP2001281308A (en) Magnetic sensor and position detector
JP4732705B2 (en) Magnetic field sensor
JP2015102513A (en) Metallic foreign matter detection device, and eddy current flaw detector
JP2007052018A (en) Magnetometer for torque sensor
JP2014173886A (en) Magnetic detection device
JP2018096690A (en) Magnetic field sensor
JP4565072B2 (en) Magnetic field sensor
JP2011112634A (en) Ring core for flux gate leakage sensor, ring core unit including the ring core, and the flux gate leakage sensor
US11181555B2 (en) Current sensing method and current sensor
JP2004239828A (en) Flux gate magnetic field sensor
JP6014544B2 (en) Inspection circuit for magnetic field detection device and inspection method thereof
WO2016143504A1 (en) Magneto-impedance (mi) magnetic sensor
JP6606698B1 (en) BH curve measuring device for amorphous wire
JP2000266785A (en) Current measuring device
JP2013238500A (en) Inclined core type current sensor
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP2002286821A (en) Magnetic field detection apparatus
JPS6057277A (en) Self-excitation type magnetism detecting method
JP2000266786A (en) Current sensor
JP2008145232A (en) Magnetization evaluation apparatus
TWI717707B (en) Current sensing method and current sensor
JP2011053160A (en) Magnetic detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees