JPH11325991A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPH11325991A
JPH11325991A JP15373998A JP15373998A JPH11325991A JP H11325991 A JPH11325991 A JP H11325991A JP 15373998 A JP15373998 A JP 15373998A JP 15373998 A JP15373998 A JP 15373998A JP H11325991 A JPH11325991 A JP H11325991A
Authority
JP
Japan
Prior art keywords
exciting
flow
reverse
pair
electromagnetic flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15373998A
Other languages
Japanese (ja)
Other versions
JP4052532B2 (en
Inventor
Akira Shimizu
明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP15373998A priority Critical patent/JP4052532B2/en
Publication of JPH11325991A publication Critical patent/JPH11325991A/en
Application granted granted Critical
Publication of JP4052532B2 publication Critical patent/JP4052532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electromagnetic flowmeter capable of making the same signal processing and same arithmetic operation with a single power source whether a fluid to be measured flows forward or reverse. SOLUTION: A flow judging means 10 for judging whether a fluid to be measured flows in a pipe line 1 forward or reverse and exciting means 11 for switching the direction of an exciting current flowing in exciting coils 9a, 9b according to the judging result of the judging means 10 showing the forward or reverse flow are provided. When the potential of one electrode 2a of a pair of electrodes 2a, 2b shows either the forward or reverse flow, it is made also higher than the potential from the other electrode 2b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、励磁コイルによ
り管路内の被測定流体に磁界を印加し、ファラディーの
電磁誘導の法則により発生する流量信号を電極で検出
し、信号処理して流量計測する電磁流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for applying a magnetic field to a fluid to be measured in a pipe by an excitation coil, detecting a flow signal generated by the Faraday's law of electromagnetic induction with an electrode, processing the signal, and performing signal processing. It relates to an electromagnetic flowmeter for measuring.

【0002】[0002]

【従来の技術】図6に示すように、従来の電磁流量計
は、通常、管路51内に一対の電極52を設け、管路5
1外の励磁コイル53に励磁回路54から励磁電流を流
して、磁界を管路51内の被測定流体に印加し、ファラ
ディーの電磁誘導の法則により発生する流速に比例した
流量信号を一対の電極52で検出して増幅回路55に出
力する。増幅回路55では、両流量信号が差(e1−e
2)を取って増幅されるため、被測定流体の正流時(e
1>e2)には増幅回路55の出力が正であるとする
と、逆流(e1<e2)には増幅回路55の出力は負と
なる。
2. Description of the Related Art As shown in FIG. 6, a conventional electromagnetic flowmeter usually has a pair of electrodes 52 provided in a pipe 51 and a pipe 5 provided with a pair of electrodes 52.
An exciting current is applied from the exciting circuit 54 to the outer exciting coil 53 to apply a magnetic field to the fluid to be measured in the conduit 51. It is detected by the electrode 52 and output to the amplifier circuit 55. In the amplifying circuit 55, the difference between the two flow signals is (e1-e).
2), and is amplified, so that when the fluid to be measured flows forward (e
Assuming that the output of the amplifier circuit 55 is positive in 1> e2), the output of the amplifier circuit 55 is negative in reverse flow (e1 <e2).

【0003】従って、被測定流体が正流の場合は、正の
出力をA/D変換器56でデジタル変換して演算回路5
7で演算処理し、また逆流の場合は、負の出力をA/D
変換器56でデジタル変換して演算回路57で演算処理
することになる。その演算結果は出力回路58から出力
される。
Therefore, when the fluid to be measured is a positive flow, the positive output is converted into a digital signal by the A / D converter 56 and the arithmetic circuit 5
7, and in the case of backflow, the negative output is A / D
The digital conversion is performed by the converter 56 and the arithmetic processing is performed by the arithmetic circuit 57. The calculation result is output from the output circuit 58.

【0004】[0004]

【発明が解決しようとする課題】このように従来の電磁
流量計では、正流および逆流の被測定流体を測定可能と
する場合、電極52から得られた流量信号を増幅回路5
5で増幅した出力値は正から負まで幅広い信号処理や演
算処理が必要となる。負の信号処理があると、電源とし
て正負の両方を用意する必要がある。たとえば、電源と
して電池を用いた場合には、通常の設置ではほとんど使
用されていない負電池を正電池と同等の容量で確保しな
ければならないため、電池本数を減らすことができな
い。
As described above, in the conventional electromagnetic flowmeter, when the fluid to be measured can be measured in the forward flow and the reverse flow, the flow signal obtained from the electrode 52 is amplified by the amplification circuit 5.
The output value amplified in step 5 requires a wide range of signal processing and arithmetic processing from positive to negative. With negative signal processing, it is necessary to prepare both positive and negative power supplies. For example, when a battery is used as a power source, a negative battery, which is hardly used in a normal installation, must be secured with the same capacity as the positive battery, so that the number of batteries cannot be reduced.

【0005】この発明の目的は、従来のこのような問題
点に鑑み、被測定流体が正流または逆流のいずれであっ
ても、単電源で同じ信号処理および同じ演算処理が行え
る電磁流量計を提供することにある。
An object of the present invention is to provide an electromagnetic flowmeter capable of performing the same signal processing and the same arithmetic processing with a single power supply, regardless of whether the fluid to be measured is flowing forward or backward. To provide.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
無励磁期間を有する励磁電流を励磁コイル9a・9bに
流し、それによる磁界が管路1内を流れる被測定流体に
印加され、被測定流体に発生する流速に比例した流量信
号を一対の電極2a・2bを介して検出し、信号処理手
段5で信号処理して流量計測する電磁流量計において、
管路1内を流れる被測定流体が正流であるか逆流である
かを判定する正逆判定手段10と、この正逆判定手段1
0の判定結果が正流の場合と逆流の場合とで励磁コイル
9a・9bに流れる励磁電流の向きを切り換える励磁手
段11とを備えたことを特徴とする。
The invention according to claim 1 is
An excitation current having a non-excitation period is applied to the excitation coils 9a and 9b, and a magnetic field due to the excitation current is applied to the fluid to be measured flowing in the pipeline 1. In an electromagnetic flow meter that detects the flow rate through 2b and processes the signal by the signal processing means 5 to measure the flow rate
Forward / reverse determining means 10 for determining whether the fluid to be measured flowing in the pipeline 1 is a forward flow or a backward flow;
Exciting means 11 for switching the direction of the exciting current flowing through the exciting coils 9a and 9b depending on whether the determination result of 0 is a positive flow or a reverse flow.

【0007】このように、管路1内を流れる被測定流体
が正流である場合と逆流である場合とで、励磁コイル9
a・9bに流れる励磁電流の向きを切り換えると、被測
定流体に対しその流れの方向に対応した磁界が印加され
るので、一対の電極2a・2bのうちの一方の電極2a
の電位が他方の電極2bの電位よりも常に高電位にな
り、被測定流体が正流または逆流のいずれの場合にも、
同じ信号処理および同じ演算処理で済む。
[0007] As described above, the excitation coil 9 differs depending on whether the fluid to be measured flowing in the pipe 1 is a normal flow or a reverse flow.
When the direction of the exciting current flowing through the electrodes a and 9b is switched, a magnetic field corresponding to the direction of the flow is applied to the fluid to be measured, so that one electrode 2a of the pair of electrodes 2a and 2b
Is always higher than the potential of the other electrode 2b, so that the fluid to be measured is either a normal flow or a reverse flow,
The same signal processing and the same arithmetic processing are required.

【0008】請求項2に係る発明は、請求項1の発明を
基本として、正逆判定手段10が、一対の電極2a・2
bを介して検出された流量信号の変化から正流であるか
逆流であるかを判定することを特徴とする。
According to a second aspect of the present invention, based on the first aspect of the present invention, the forward / reverse determining means 10 includes a pair of electrodes 2a and 2a.
It is characterized in that it is determined from the change of the flow signal detected via the line b whether the flow is the normal flow or the reverse flow.

【0009】このような正流/逆流の判定にすると、被
測定流体の正流と逆流を検知するための流れ方向検知手
段を別に用意することなく、励磁コイル9a・9bに流
れる励磁電流の向きをフィードバック系により自動的に
切り換えることができる。
In such a case, the direction of the exciting current flowing through the exciting coils 9a and 9b can be determined without separately providing flow direction detecting means for detecting the forward flow and the reverse flow of the fluid to be measured. Can be automatically switched by a feedback system.

【0010】請求項3に係る発明は、請求項1の発明を
基本として、管路1の軸線に対する磁束の集中性および
指向性を良くして安定した流量信号の検出を行うため、
一対の励磁コイル9a・9bを管路1外において対向配
置し、これら励磁コイル9a・9bに励磁手段11によ
り励磁電流を同時に流すことを特徴とする。
According to a third aspect of the present invention, based on the first aspect of the present invention, the flow rate signal is detected stably by improving the concentration and directivity of the magnetic flux with respect to the axis of the pipeline 1.
It is characterized in that a pair of exciting coils 9a and 9b are arranged to face each other outside the pipeline 1, and an exciting current is supplied to these exciting coils 9a and 9b by the exciting means 11 at the same time.

【0011】請求項4に係る発明は、請求項3に係る発
明よりも消費電流を低減するため、励磁手段11が、一
対の励磁コイル9a・9bの1個のみ独立して励磁電流
を流すことができるようになっていることを特徴とす
る。
According to a fourth aspect of the present invention, in order to reduce current consumption as compared with the third aspect of the invention, the exciting means 11 allows the exciting current to flow independently of only one of the pair of exciting coils 9a and 9b. It is characterized by being able to do.

【0012】請求項5に係る発明は、請求項1の発明を
基本として、コストの低減や加工の容易性や小型化を図
るため、励磁コイル9aを管路1外の片側のみに設置し
たことを特徴とする。
According to a fifth aspect of the present invention, based on the first aspect of the present invention, the exciting coil 9a is provided only on one side outside the conduit 1 in order to reduce costs, facilitate processing, and reduce size. It is characterized by.

【0013】請求項6に係る発明は、励磁コイル9aを
請求項5の発明のように管路1外の片側のみに設置した
だけでは、磁束の集中性および指向性が悪いという不利
があるので、これを補償して安定した流量信号の検出を
行うため、1個の励磁コイル9aのコア12aから管路
1を挟んでその反対側までの間の管路1外で磁気回路を
形成して、管路1内を通り抜ける磁束を環流させる磁気
回路体13を設けたことを特徴とする。
The invention according to claim 6 has the disadvantage that the magnetic flux concentration and directivity are poor if the excitation coil 9a is installed only on one side outside the pipeline 1 as in the invention of claim 5. In order to compensate for this and detect a stable flow signal, a magnetic circuit is formed outside the pipe 1 between the core 12a of one excitation coil 9a and the opposite side with the pipe 1 interposed therebetween. And a magnetic circuit 13 for circulating a magnetic flux passing through the pipe 1.

【0014】請求項7に係る発明は、信号処理精度の向
上を図るため、一対の電極2a・2bの一方2bを信号
処理手段5のグランド電位と等しくしたことを特徴とす
るもので、上記1ないし6の発明に対して適用すること
ができる。
The invention according to claim 7 is characterized in that one of the pair of electrodes 2a and 2b is made equal to the ground potential of the signal processing means 5 in order to improve the accuracy of signal processing. The present invention can be applied to the inventions of (6) to (6).

【0015】[0015]

【発明の実施の形態】次に、この発明の実施の形態を図
面に基づき説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は、この発明の後述する実施形態のい
ずれについても共通な構成を示す。同図において、管路
1内には、一対の電極2a・2bが、管路1の軸線を挟
んでそれと直交する線上に対向配置されている。これら
電極2a・2bにて検出された流量信号は、増幅回路3
とA/Dコンバータ4とによる信号処理手段5により信
号処理、つまり増幅およびデジタル変換されてから、演
算手段6にて演算され、その演算結果が出力手段7から
出力される。信号処理手段5、演算手段6および出力手
段7は単電源8にて動作する。
FIG. 1 shows a configuration common to all of the embodiments described later of the present invention. In FIG. 1, a pair of electrodes 2 a and 2 b are arranged in a conduit 1 so as to face each other on a line orthogonal to the axis of the conduit 1. The flow rate signals detected by these electrodes 2a and 2b
After signal processing, that is, amplification and digital conversion by the signal processing means 5 and the A / D converter 4, calculation is performed by the calculation means 6, and the calculation result is output from the output means 7. The signal processing means 5, the arithmetic means 6, and the output means 7 operate on a single power supply 8.

【0017】図2は、この発明の第1の実施形態を示
す。この電磁流量計では、管路1外に一対の励磁コイル
9a・9bが管路1の軸線を挟んで対向されている。ま
た、図1に示した手段の他に、正逆判定手段10と励磁
手段11とが備わっている。
FIG. 2 shows a first embodiment of the present invention. In this electromagnetic flow meter, a pair of exciting coils 9 a and 9 b are opposed to the outside of the pipe 1 with the axis of the pipe 1 interposed therebetween. In addition to the means shown in FIG. 1, a forward / reverse determining means 10 and an exciting means 11 are provided.

【0018】一対の励磁コイル9a・9bのコア12a
・12bは、一対の電極2a・2bを結ぶ線と直交する
線上において対向しており、両励磁コイル9a・9b
は、一対の電極2a・2bを結ぶ線にそれぞれ直交する
方向に磁界を発生する。
Core 12a of a pair of exciting coils 9a and 9b
12b is opposed on a line orthogonal to a line connecting the pair of electrodes 2a and 2b, and the two exciting coils 9a and 9b
Generates a magnetic field in a direction orthogonal to a line connecting the pair of electrodes 2a and 2b.

【0019】正逆判定手段10は、一対の電極2a・2
bにて検出され、信号処理手段5にて信号処理された流
量信号の変化から、管路1の被測定流体の流れが正流で
あるか逆流であるかを判定し、その判定結果を演算手段
6および励磁手段11に通知する。
The forward / reverse determining means 10 includes a pair of electrodes 2a and 2
b, it is determined whether the flow of the fluid to be measured in the pipeline 1 is a normal flow or a reverse flow from the change in the flow rate signal processed by the signal processing means 5 and the result of the determination is calculated. The means 6 and the exciting means 11 are notified.

【0020】励磁手段11は、正逆判定手段10の判定
結果が正流の場合と逆流の場合とで励磁コイル9a・9
bに流れる励磁電流の向きを切り換える。
The exciting means 11 is provided with an exciting coil 9a, 9 when the determination result of the forward / reverse determining means 10 is a forward flow or a reverse flow.
The direction of the exciting current flowing through b is switched.

【0021】図2に示した電磁流量計において、管路1
内を紙面の表から裏方向に被測定流体が流れる場合を正
流、逆に紙面の裏から表方向に被測定流体が流れる場合
を逆流とする。いま、正流の場合に、励磁コイル9a・
9bに励磁手段11から無励磁期間を有する励磁電流が
同時に供給され、コア12aからコア12bの方向に磁
束が流れる磁界が被測定流体に印加されたとすると、フ
ァラディーの電磁誘導の法則により電極2a・2bに被
測定流体の流速に比例した流量信号電圧が発生する。こ
の場合、電極2aの電位の方が電極2bの電位よりも高
電位となる。
In the electromagnetic flow meter shown in FIG.
A case where the fluid to be measured flows in the inside from the front to the back of the paper is defined as a normal flow, and a case where the fluid to be measured flows from the back of the paper to the front in the reverse direction is a reverse flow. Now, in the case of a positive flow, the excitation coil 9a
Assuming that an exciting current having a non-excitation period is simultaneously supplied to the fluid to be measured from the core 12a to the core 12b in the direction of the core 12a, the electrode 2a is applied to the electrode 2a according to Faraday's law of electromagnetic induction. A flow signal voltage proportional to the flow rate of the fluid to be measured is generated at 2b. In this case, the potential of the electrode 2a is higher than the potential of the electrode 2b.

【0022】また、管路1内の被測定流体の流れが正流
から逆流に変化し、そのことが正逆判定手段10にて判
定されると、励磁手段11は、励磁コイル9a・9bに
流れる電流を正流時とは逆方向に切り換える。したがっ
て、この場合には、コア12bからコア12aの方向に
磁束が流れる磁界が被測定流体に印加され、ファラディ
ーの電磁誘導の法則により電極2a・2b間に被測定流
体の流速に比例した流量信号電圧が発生する。この場合
も、電極2aの電位の方が電極2bの電位よりも高電位
となる。
When the flow of the fluid to be measured in the pipe line 1 changes from a forward flow to a backward flow, and this is determined by the forward / reverse determining means 10, the exciting means 11 connects the exciting coils 9a and 9b to the exciting coils 9a and 9b. The flowing current is switched in the direction opposite to that in the normal flow. Therefore, in this case, a magnetic field in which a magnetic flux flows from the core 12b to the core 12a is applied to the fluid to be measured, and the flow rate between the electrodes 2a and 2b is proportional to the flow rate of the fluid to be measured according to Faraday's law of electromagnetic induction. A signal voltage is generated. Also in this case, the potential of the electrode 2a is higher than the potential of the electrode 2b.

【0023】このように、管路1内の被測定流体の流れ
が正流または逆流のいずれの場合も、電極2a・2b間
に発生する流量信号電圧は、電極2aの電位の方が電極
2bの電位よりも高電位となるため、両電極2a・2b
で検出された流量信号を信号処理する信号処理手段5お
よび演算する演算手段6は、正負両方の信号を処理する
必要はなく、正の信号だけの処理で済む単一の構成で良
いので、正電源のみの単電源で動作させることができ
る。
As described above, regardless of whether the flow of the fluid to be measured in the pipe line 1 is a forward flow or a reverse flow, the flow signal voltage generated between the electrodes 2a and 2b is equal to the potential of the electrode 2a. Of the two electrodes 2a and 2b
The signal processing means 5 for performing signal processing on the flow rate signal detected in step 1 and the calculating means 6 for performing calculation do not need to process both positive and negative signals, and may have a single configuration that only requires processing of positive signals. It can be operated with a single power supply consisting only of a power supply.

【0024】図3は管路1の片側のみに励磁コイル9a
を設置し、この1個の励磁コイル9aに流れる電流を、
被測定流体の正流時と逆流時とで図2の例の場合と同様
に切り換える実施形態を示す。このようにしても、電極
2a・2b間に発生する流量信号電圧は、正流または逆
流のいずれの場合も、電極2aの電位の方が電極2bの
電位よりも高電位となる。
FIG. 3 shows that the exciting coil 9a is provided only on one side of the conduit 1.
Is installed, and the current flowing through this one exciting coil 9a is
An embodiment is shown in which switching is performed between the forward flow and the reverse flow of the fluid to be measured in the same manner as in the example of FIG. Even in such a case, the flow signal voltage generated between the electrodes 2a and 2b is higher in the potential of the electrode 2a than the potential of the electrode 2b in either the forward flow or the reverse flow.

【0025】図3のように、管路1の片側のみに励磁コ
イル9aを設置すると、構成は簡素になるが、コア12
aからの磁束が発散して磁束の集中性および指向性が悪
いという不利がある。これを補償するため、図4の実施
形態は、励磁コイル9aのコア12aから管路1を挟ん
でその反対側までの間の管路1外で磁気回路を形成し
て、管路1内を通り抜ける磁束を環流させる磁気回路体
13を設けている。この磁気回路体13は、管路1の回
りを巡るように設置され、管路1とは反対側のコア12
aの端面でコア12aと磁気的に接続されているととも
に、コア12aと管路1を挟んで対向する反対側に突出
部14を設けている。
As shown in FIG. 3, when the exciting coil 9a is provided only on one side of the pipe 1, the structure becomes simple, but the core 12
There is a disadvantage that the magnetic flux from a diverges and the concentration and directivity of the magnetic flux are poor. In order to compensate for this, the embodiment of FIG. 4 forms a magnetic circuit outside the pipe 1 between the core 12a of the exciting coil 9a and the opposite side of the pipe 1 with the pipe 1 interposed therebetween. A magnetic circuit 13 is provided for circulating the magnetic flux passing therethrough. The magnetic circuit body 13 is installed so as to go around the pipeline 1, and the core 12 on the opposite side to the pipeline 1 is provided.
An end face a is magnetically connected to the core 12a, and a protruding portion 14 is provided on the opposite side to the core 12a with the pipe 1 interposed therebetween.

【0026】いま、図4において、管路1内の被測定流
体の流れが正流であるとき、励磁コイル9aに励磁電流
が流れ、磁界がコア12aから突出部14の方向に発生
したとすると、管路1を横切った磁束は、突出部14か
ら磁気回路体13を通って実線の矢印方向に循環する。
管路1内の磁束は、図3の場合ではコア12aから離れ
ると発散してしまうが、コア12aと対向する反対側に
突出部14があると、これに磁束が収束するため、図3
の場合と比べ安定した流量信号電圧が検出できる。
In FIG. 4, when the flow of the fluid to be measured in the pipeline 1 is a positive flow, an exciting current flows through the exciting coil 9a, and a magnetic field is generated from the core 12a in the direction of the protrusion 14. The magnetic flux traversing the pipeline 1 circulates from the protrusion 14 through the magnetic circuit 13 in the direction of the solid arrow.
In the case of FIG. 3, the magnetic flux in the conduit 1 diverges away from the core 12a. However, if the projecting portion 14 is provided on the opposite side to the core 12a, the magnetic flux converges on this.
A stable flow signal voltage can be detected as compared with the case of.

【0027】図4において、管路1内の被測定流体の流
れが逆流であるとき、励磁コイル9aに正流時とは逆方
向に励磁電流が流れ、磁界が突出部14からコア12a
の方向に発生すると、管路1を横切った磁束は、磁気回
路体13を点線の矢印方向に通って循環する。
In FIG. 4, when the flow of the fluid to be measured in the conduit 1 is reverse, an exciting current flows through the exciting coil 9a in a direction opposite to that in the forward flow, and a magnetic field is generated from the protrusion 14 to the core 12a.
, The magnetic flux traversing the pipeline 1 circulates through the magnetic circuit 13 in the direction of the dotted arrow.

【0028】したがって、電極2a・2b間に発生する
流量信号電圧は、正流または逆流のいずれの場合も、電
極2aの電位の方が電極2bの電位よりも高電位となる
ので、図2の場合と同様に、信号処理手段5および演算
手段6は、正負両方の信号を処理する必要はなく、正の
信号だけの処理で済む単一の構成で良いので、正電源の
みの単電源で動作させることができる。
Therefore, in the flow signal voltage generated between the electrodes 2a and 2b, the potential of the electrode 2a is higher than the potential of the electrode 2b in either the forward flow or the reverse flow. Similarly to the case, the signal processing unit 5 and the arithmetic unit 6 do not need to process both positive and negative signals, and may have a single configuration in which only the positive signal is processed. Can be done.

【0029】図5は、一対の電極2a・2bの一方2b
を信号処理手段5のグランド電位と等しくし、図1の場
合と同様に動作させる例である。このようにすると、常
に低電位となる電極2bが信号処理手段5の基準値と同
電位となるので、信号処理が容易になるとともに、その
精度も向上する。なお、一対の励磁コイル9a・9bの
1個のみ独立して励磁電流を流すと、消費電流を低減で
きる。
FIG. 5 shows one of the pair of electrodes 2a and 2b 2b.
Is equal to the ground potential of the signal processing means 5 and the operation is performed in the same manner as in the case of FIG. In this way, the electrode 2b, which is always at a low potential, has the same potential as the reference value of the signal processing means 5, so that signal processing is facilitated and the accuracy is improved. When only one of the pair of exciting coils 9a and 9b is supplied with an exciting current independently, current consumption can be reduced.

【0030】[0030]

【発明の効果】請求項1に係る発明によれば、管路内を
流れる被測定流体が正流である場合と逆流である場合と
で、励磁コイルに流れる励磁電流の向きを切り換え、被
測定流体に対しその流れの方向に対応した磁界が印加さ
れるようにしたので、一対の電極のうちの一方の電極か
ら電位が、正流または逆流のいずれの場合も、他方の電
極の電位よりも高電位になり、被測定流体が正流または
逆流のいずれの場合にも、同じ信号処理および同じ演算
処理で済み、単電源の信号処理で動作させることができ
る。
According to the first aspect of the present invention, the direction of the exciting current flowing through the exciting coil is switched between a case where the fluid to be measured flowing in the pipeline is a normal flow and a case where the fluid to be measured flows in the reverse direction. Since a magnetic field corresponding to the direction of the flow is applied to the fluid, the potential from one of the pair of electrodes is higher than the potential of the other electrode in either a positive or reverse flow. When the potential becomes high and the fluid to be measured flows forward or backward, the same signal processing and the same arithmetic processing can be performed, and the operation can be performed by a single power supply signal processing.

【0031】請求項2に係る発明によれば、一対の電極
を介して検出された流量信号の変化から正流であるか逆
流であるかを判定するので、請求項1に係る発明による
効果に加え、被測定流体の正流と逆流を検知するための
流れ方向検知手段を別に用意することなく、励磁コイル
に流れる励磁電流の向きをフィードバック系により自動
的に切り換えることができる、という効果がある。
According to the second aspect of the present invention, it is determined whether the flow is a normal flow or a reverse flow based on a change in the flow signal detected through the pair of electrodes. In addition, there is an effect that the direction of the exciting current flowing through the exciting coil can be automatically switched by the feedback system without separately preparing a flow direction detecting means for detecting the normal flow and the reverse flow of the fluid to be measured. .

【0032】請求項3に係る発明によれば、一対の励磁
コイルを管路外において対向配置し、これら励磁コイル
に励磁手段により励磁電流を同時に流すので、請求項1
に係る発明による効果に加え、管路の軸線に対する磁束
の集中性および指向性を良くして安定した流量信号が検
出できる、という効果がある。
According to the third aspect of the present invention, a pair of exciting coils are arranged opposite to each other outside the pipeline, and an exciting current is simultaneously supplied to these exciting coils by exciting means.
In addition to the effects of the invention according to the above, there is an effect that the concentration and the directivity of the magnetic flux with respect to the axis of the pipeline are improved and a stable flow signal can be detected.

【0033】請求項4に係る発明によれば、一対の励磁
コイルの1個のみ独立して励磁電流を流すので、請求項
1に係る発明による効果に加え、消費電流を低減でき
る、という効果がある。
According to the fourth aspect of the present invention, since only one of the pair of exciting coils allows the exciting current to flow independently, the effect of reducing the current consumption can be obtained in addition to the effect of the first aspect of the present invention. is there.

【0034】請求項5に係る発明によれば、励磁コイル
を管路外の片側のみに設置したので、請求項1に係る発
明による効果に加え、コストの低減や加工の容易性や小
型化が図れる、という効果がある。
According to the fifth aspect of the present invention, since the exciting coil is installed only on one side outside the pipeline, in addition to the effects of the first aspect of the present invention, cost reduction, ease of processing and miniaturization can be achieved. There is an effect that can be achieved.

【0035】請求項6に係る発明によれば、1個の励磁
コイルのコアから管路を挟んでその反対側までの間の管
路外で磁気回路を形成して、管路内を通り抜ける磁束を
環流させる磁気回路体を設けたので、請求項5の発明の
ように管路外の片側のみに設置しただけでは、磁束の集
中性および指向性が悪いという不利があるが、これを補
償して安定した流量信号が検出できる、という効果があ
る。
According to the invention of claim 6, a magnetic circuit is formed outside the conduit between the core of one excitation coil and the opposite side of the conduit with the magnetic flux passing through the conduit. However, if the magnetic circuit body is provided on only one side outside the pipeline as in the invention of claim 5, there is a disadvantage that the concentration and the directivity of the magnetic flux are poor. This has the effect that a stable flow signal can be detected.

【0036】請求項7に係る発明によれば、一対の電極
の一方を信号処理手段のグランド電位と等しくしたの
で、請求項1に係る発明による効果に加え、信号処理が
容易になるとともに、その精度が向上する、という効果
がある。
According to the seventh aspect of the present invention, one of the pair of electrodes is made equal to the ground potential of the signal processing means. In addition to the effect of the first aspect of the present invention, the signal processing is facilitated. There is an effect that accuracy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のいずれの実施形態にも共通な構成を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration common to all embodiments of the present invention.

【図2】一対の励磁コイルを用いたこの発明の実施形態
を示すブロック図である。
FIG. 2 is a block diagram showing an embodiment of the present invention using a pair of excitation coils.

【図3】1個の励磁コイルを用いたこの発明の実施形態
の要部の概要構成図である。
FIG. 3 is a schematic configuration diagram of a main part of an embodiment of the present invention using one excitation coil.

【図4】磁気回路体を用いたこの発明の実施形態の要部
の概要構成図である。
FIG. 4 is a schematic configuration diagram of a main part of an embodiment of the present invention using a magnetic circuit.

【図5】一対の電極の一方を信号処理手段のグランド電
位と等しくした、この発明の実施形態の要部の概要構成
図である。
FIG. 5 is a schematic configuration diagram of a main part of an embodiment of the present invention in which one of a pair of electrodes is equal to a ground potential of a signal processing unit.

【図6】従来例を示すブロック図である。FIG. 6 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 管路 2a・2b 電極 3 増幅回路 4 A/Dコンバータ 5 信号処理手段 6 演算手段 7 出力手段 8 単電源 9a・9b 励磁コイル 10 正逆判定手段 11 励磁手段 12a・12b コア 13 磁気回路体 14 突出部 DESCRIPTION OF SYMBOLS 1 Pipeline 2a ・ 2b Electrode 3 Amplification circuit 4 A / D converter 5 Signal processing means 6 Calculation means 7 Output means 8 Single power supply 9a ・ 9b Excitation coil 10 Forward / reverse determination means 11 Excitation means 12a ・ 12b Core 13 Magnetic circuit 14 Protrusion

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 無励磁期間を有する励磁電流を励磁コイ
ルに流し、それによる磁界が管路内を流れる被測定流体
に印加され、その被測定流体に発生する流速に比例した
流量信号を一対の電極を介して検出し、信号処理手段で
信号処理して流量計測する電磁流量計において、前記管
路内を流れる被測定流体が正流であるか逆流であるかを
判定する正逆判定手段と、この正逆判定手段の判定結果
が正流の場合と逆流の場合とで前記励磁コイルに流れる
励磁電流の向きを切り換える励磁手段とを備えたことを
特徴とする、電磁流量計。
An exciting current having a non-excitation period is applied to an exciting coil, and a magnetic field due to the exciting current is applied to a fluid to be measured flowing in a pipeline. In an electromagnetic flowmeter that detects through an electrode and measures a flow rate by processing a signal with a signal processing unit, a forward / reverse determination unit that determines whether a fluid to be measured flowing in the pipeline is a forward flow or a backward flow. And an exciting means for switching the direction of the exciting current flowing through the exciting coil depending on whether the determination result of the forward / reverse determining means is a forward flow or a reverse flow.
【請求項2】 前記正逆判定手段は、前記一対の電極を
介して検出された流量信号の変化から正流であるか逆流
であるかを判定することを特徴とする、請求項1に記載
の電磁流量計。
2. The apparatus according to claim 1, wherein the forward / reverse determining unit determines whether the flow is normal or reverse based on a change in the flow signal detected via the pair of electrodes. Electromagnetic flowmeter.
【請求項3】 一対の励磁コイルを管路外において対向
配置し、前記励磁手段はこれら励磁コイルに励磁電流を
同時に流すことを特徴とする、請求項1、または2に記
載の電磁流量計。
3. The electromagnetic flowmeter according to claim 1, wherein a pair of exciting coils are arranged outside the conduit so as to face each other, and said exciting means simultaneously supplies an exciting current to these exciting coils.
【請求項4】 一対の励磁コイルを管路外において対向
配置し、前記励磁手段は、これら一対の励磁コイルの1
個のみ独立して励磁電流を流すことができることを特徴
とする、請求項1、または2に記載の電磁流量計。
4. A pair of exciting coils are arranged opposite to each other outside the pipeline, and said exciting means includes one of said pair of exciting coils.
The electromagnetic flowmeter according to claim 1, wherein the excitation current can flow independently of only the number of pieces.
【請求項5】 励磁コイルを管路外の片側のみに設置し
たことを特徴とする、請求項1、または2に記載の電磁
流量計。
5. The electromagnetic flowmeter according to claim 1, wherein the exciting coil is provided only on one side outside the pipeline.
【請求項6】 前記励磁コイルのコアから管路を挟んで
その反対側までの間の管路外で磁気回路を形成して、管
路内を通り抜ける磁束を環流させる磁気回路体を設けた
ことを特徴とする、請求項5に記載の電磁流量計。
6. A magnetic circuit is formed outside the conduit between the core of the exciting coil and the opposite side of the conduit with the conduit interposed therebetween, and a magnetic circuit body for circulating magnetic flux passing through the conduit is provided. The electromagnetic flowmeter according to claim 5, characterized in that:
【請求項7】 一対の電極の一方を信号処理手段のグラ
ンド電位と等しくしたことを特徴とする、請求項1、
2、3、4、5、または6に記載の電磁流量計。
7. The method according to claim 1, wherein one of the pair of electrodes is made equal to the ground potential of the signal processing means.
The electromagnetic flowmeter according to 2, 3, 4, 5, or 6.
JP15373998A 1998-05-19 1998-05-19 Electromagnetic flow meter Expired - Fee Related JP4052532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15373998A JP4052532B2 (en) 1998-05-19 1998-05-19 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15373998A JP4052532B2 (en) 1998-05-19 1998-05-19 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPH11325991A true JPH11325991A (en) 1999-11-26
JP4052532B2 JP4052532B2 (en) 2008-02-27

Family

ID=15569055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15373998A Expired - Fee Related JP4052532B2 (en) 1998-05-19 1998-05-19 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP4052532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200415A (en) * 2015-04-07 2016-12-01 横河電機株式会社 Electromagnetic flowmeter and method for measuring flow rate of electromagnetic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200415A (en) * 2015-04-07 2016-12-01 横河電機株式会社 Electromagnetic flowmeter and method for measuring flow rate of electromagnetic flowmeter

Also Published As

Publication number Publication date
JP4052532B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
JPH0712607A (en) Electromagnetic flowmeter
US6094992A (en) Method for electromagnetic flow measurement and a corresponding flowmeter
JP3054124B2 (en) Magnetic induction type flow measurement method and magnetic induction type flow meter
JP2004108975A (en) Electromagnetic flowmeter
US8571816B2 (en) Electromagnetic flow meter
JPH11325991A (en) Electromagnetic flowmeter
US20050125168A1 (en) Magnetoinductive flowmeter and measuring method for a magnetoinductive flowmeter
US20200309577A1 (en) Magnetic Flowmeter with Enhanced Signal/Noise Ratio
JP2005321230A (en) Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JPH0450503Y2 (en)
JPH085422A (en) Electromagnetic flow meter
JP3057410B2 (en) Electromagnetic flow meter
JP3130729B2 (en) Electromagnetic flow meter
JPS6383614A (en) Electromagnetic flow meter
JP2004219372A (en) Electromagnetic flowmeter
JP4180702B2 (en) Non-full water electromagnetic flow meter
JPH06258113A (en) Electromagnetic flowmeter
JP3244341B2 (en) Electromagnetic flow meter
JPH07209050A (en) Two wire system electromagnetic flow meter
JP3392405B2 (en) Electromagnetic conductivity meter
JPH0541379Y2 (en)
JP2851178B2 (en) Electromagnetic flow meter
JP2016200415A (en) Electromagnetic flowmeter and method for measuring flow rate of electromagnetic flowmeter
JP2751152B2 (en) Electromagnetic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Effective date: 20070903

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071130

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees