JP2016196860A - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
JP2016196860A
JP2016196860A JP2015077346A JP2015077346A JP2016196860A JP 2016196860 A JP2016196860 A JP 2016196860A JP 2015077346 A JP2015077346 A JP 2015077346A JP 2015077346 A JP2015077346 A JP 2015077346A JP 2016196860 A JP2016196860 A JP 2016196860A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
power generation
dry ice
rotating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015077346A
Other languages
Japanese (ja)
Other versions
JP6407089B2 (en
Inventor
健児 廣瀬
Kenji Hirose
健児 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015077346A priority Critical patent/JP6407089B2/en
Publication of JP2016196860A publication Critical patent/JP2016196860A/en
Application granted granted Critical
Publication of JP6407089B2 publication Critical patent/JP6407089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat stirling engine power generation device capable of securing a stable power generation amount even in reduction of solar heat.SOLUTION: A power generation device utilizing solar heat and dry ice, has a cylindrical heat exchange portion having a rotary plate including a plurality of fins disposed on a peripheral surface at a specific angle to an axial direction, a heat input portion positioned at an upper half portion of the heat exchange potion to collect the solar heat, a cooling chamber accommodating a lower half portion of the heat exchange portion to receive water and dry ice, and a power generating portion having a rotor driven by the rotary plate of the heat exchange portion. The rotary plate including the fins, is rotated by movement of air caused by expansion/contraction of air at the upper portion in the heat exchange portion heated by solar heat and waste heat by power generation and the air of the lower portion in the heat exchange portion cooled by water and dry ice, and movement of the air generated in a process of expanding and discharging carbon dioxide generated by vaporization of dry ice into the heat exchange portion, and electric power is produced by rotation of the rotor of the power generating portion.SELECTED DRAWING: Figure 3

Description

本発明は、スターリングエンジンの原理を利用した再生可能エネルギーの発電装置に関する。   The present invention relates to a power generator for renewable energy using the principle of a Stirling engine.

近年、地球温暖化現象や原子力発電に対する警戒感から、太陽光発電、風力発電、地熱発電等の再生可能エネルギー関係の発電が注目されている。   In recent years, renewable energy-related power generation such as solar power generation, wind power generation, and geothermal power generation has attracted attention due to a sense of caution against global warming and nuclear power generation.

一方で、19世紀前半に発明されたスターリングエンジンは、ガソリンエンジン等その後開発された手軽な内燃機関の普及に押され、動力としての利用は進んでいないが、近年、外燃機関として熱源を選ばないクリーンな発電装置として見直されつつあり、研究が行われている。   On the other hand, the Stirling engine, which was invented in the first half of the 19th century, was pushed by the popularization of easy-developed internal combustion engines such as gasoline engines, and its use as power has not progressed. It is being reviewed as a clean power generator, and research is being conducted.

特開2004−332672号公報JP 2004-332672 A 特開2014−206120号公報JP2014-206120A

現在、日本のエネルギー自給率は4パーセントで他国に比べて極端に低い(資源エネルギー庁 エネルギー白書2011)。また、火力発電等化石燃料を使用した発電の割合については、震災前の2010年12月で61パーセント、震災後の2012年12月で90パーセントである(資源エネルギー庁「我が国のエネルギー情勢1」)。このままでは、化石燃料の輸入がストップした場合、日本の経済活動、日常生活に悪影響が発生するばかりか、地球温暖化問題の解決にも逆行する。   Currently, Japan's energy self-sufficiency rate is 4%, which is extremely low compared to other countries (Resources and Energy Agency, Energy White Paper 2011). In addition, the proportion of power generation using fossil fuels such as thermal power generation was 61% in December 2010 before the earthquake and 90% in December 2012 after the earthquake (Resources and Energy Agency “Energy situation in Japan”). 1 "). In this situation, if import of fossil fuels stops, it will not only adversely affect Japanese economic activities and daily life, but it will also go against solving global warming problems.

上述の現状を踏まえ、現在、火力発電等に頼っている電力源を、水力、風力、太陽光、地熱発電等の再生可能エネルギーに分散すべく、種々の研究がおこなわれている。その一つとして、熱源を選ばないクリーンな発電装置として、太陽熱、排熱等を利用したスターリングエンジンによる発電装置の開発・研究が行われている。   Based on the above-mentioned present situation, various researches are currently being conducted to disperse power sources that rely on thermal power generation and the like into renewable energies such as hydropower, wind power, solar power, and geothermal power generation. As one of them, as a clean power generation device that does not select a heat source, development and research of a power generation device using a Stirling engine using solar heat, exhaust heat, etc. is being carried out.

しかしながら、温度差から生ずる閉鎖空間における気体体積の変化を運動エネルギーに変換するスターリングエンジンにおいては、以下の問題があった。第一に、発電機を効果的に作動させるためには空気の熱冷を迅速に素早く行う必要があるところ、太陽熱等による気体の膨脹だけでは十分な出力を得ることが難しく、また、内部気体の熱交換サイクルのスピードもそれほど速くすることはできない。第二に、熱源とする太陽熱や廃熱は天候や工場の稼働により供給が一定しない場合が多く、発電機を安定的に稼働させることが難しい。   However, a Stirling engine that converts a change in gas volume in a closed space resulting from a temperature difference into kinetic energy has the following problems. First, in order to operate the generator effectively, it is necessary to quickly and quickly cool the air. However, it is difficult to obtain sufficient output only by gas expansion due to solar heat, etc. The speed of the heat exchange cycle cannot be so fast. Secondly, the supply of solar heat or waste heat as a heat source is often not constant due to weather or factory operation, and it is difficult to operate the generator stably.

これらの問題を踏まえて、特許文献1には、太陽光熱を集光熱するフレネルレンズと、集光熱した熱源を所定の場所に導く石英ガラス製の光導ファイバーを備えるスターリングエンジン発電装置が提案されている。しかし、この装置は太陽光からの集光熱力を高めることにより上述第一の問題には対処しているが、天候によって稼働が制約されるという第二の問題は全く解決されていない。   In view of these problems, Patent Document 1 proposes a Stirling engine power generation device that includes a Fresnel lens that condenses and heats solar heat, and an optical fiber made of quartz glass that guides the condensed heat source to a predetermined place. . However, this device addresses the first problem described above by increasing the concentrated heat power from sunlight, but the second problem that operation is restricted by the weather has not been solved at all.

特許文献2には、エンジン内の作動ガスとして高圧のヘリウムガスを使用した太陽熱スターリングエンジンにおいて、エンジン回転軸に設置され、始動用と発電用を兼務した回転子の慣性質量を軽くすることにより、太陽の入射熱が変化した場合に、エンジン回転数を迅速に変化させて発電量を調整するスターリングエンジン発電機の発明が開示されている。しかしながら、この種のスターリングエンジン発電機においては、エンジン内の作動気体に高圧の特殊なガスを封入して使用するため、ガスの圧力やピストンのストロークを制御するための機構が必要となるほか、太陽光熱量が変化したときには自ら発電した電力をエンジンの回転のために再使用することになるので、全体の発電量の減少をカバーすることはできない。   In Patent Document 2, in a solar thermal Stirling engine that uses high-pressure helium gas as the working gas in the engine, the inertial mass of the rotor that is installed on the engine rotation shaft and serves both for starting and for power generation is reduced. An invention of a Stirling engine generator that adjusts the power generation amount by rapidly changing the engine speed when the incident heat of the sun changes is disclosed. However, in this type of Stirling engine generator, since a high-pressure special gas is enclosed in the working gas in the engine, a mechanism for controlling the gas pressure and piston stroke is required. When the amount of solar heat changes, the power generated by itself is reused for engine rotation, so it is not possible to cover the decrease in the total amount of power generation.

本発明は上記課題を解決し、作動気体として特殊なガスを使用したり、そのための複雑な機構を必要とせず、太陽光熱が減少したときでも安定した発電量を確保できる太陽熱スターリングエンジン発電装置を提供することを課題とする。   The present invention solves the above-mentioned problem, and does not require a special gas as a working gas or a complicated mechanism therefor, and a solar heat Stirling engine power generator that can secure a stable power generation amount even when solar heat is reduced. The issue is to provide.

上記課題を解決するために、請求項1の発電装置は、太陽光熱とドライアイスとを利用する再生可能エネルギーの発電装置であって、軸方向に対して一定の角度を持って周面に設置された複数のフィンを備える回転板を有する円筒形の熱交換部と、該熱交換部の上半部に位置し太陽光熱を採取する入熱部と、熱交換部の下半部を収容し水及びドライアイスを受け入れる冷却室と、熱交換部の前記回転板に従動する回転子を有する発電部と、から成り、入熱部を通して採取された太陽光熱により加熱される熱交換部内上部の空気と冷却室内の水及びドライアイスによって冷却される熱交換部内下部の空気の膨張・収縮によって生ずる空気の移動がフィンを備える回転板を回転させ、さらに、フィンを備える前記回転板の回転により熱交換部内の空気の移動及び熱交換が行われる。このように空気の移動及び熱交換が繰り返されることにより熱交換部内の空気が一定の方向に回転を続け、前記回転板が回転を持続し、回転板に従動して発電部の回転子が回転することにより発電部が電力を生成することを特徴とする。   In order to solve the above problems, the power generator according to claim 1 is a renewable energy power generator that uses solar heat and dry ice, and is installed on the circumferential surface at a certain angle with respect to the axial direction. A cylindrical heat exchange part having a rotating plate with a plurality of fins, a heat input part that is located in the upper half part of the heat exchange part and collects solar heat, and a lower half part of the heat exchange part A cooling chamber for receiving water and dry ice, and a power generation unit having a rotor driven by the rotating plate of the heat exchange unit, and air in the upper part of the heat exchange unit heated by solar heat collected through the heat input unit The movement of the air generated by the expansion and contraction of the air in the lower part of the heat exchange section cooled by water and dry ice in the cooling chamber rotates the rotating plate provided with fins, and further heat exchange by the rotation of the rotating plate provided with fins Internal Transfer and heat exchange of the gas is carried out. As the air movement and heat exchange are repeated in this way, the air in the heat exchange unit continues to rotate in a certain direction, the rotating plate continues to rotate, and the rotor of the power generation unit rotates following the rotating plate. Thus, the power generation unit generates electric power.

請求項2の発電装置は、前記冷却室は密閉されており、冷却室内に収容されている熱交換部の下半部には二酸化炭素受入口と二酸化炭素放出口とが互いに離隔して設置され、冷却室内に投入されたドライアイスが気化することにより発生する二酸化炭素が二酸化炭素受入口より熱交換部内に膨入し二酸化炭素放出口より排出される過程において、複数のフィンを備える前記回転板を回転させることを特徴とする。   According to a second aspect of the present invention, the cooling chamber is hermetically sealed, and a carbon dioxide inlet and a carbon dioxide outlet are spaced apart from each other in the lower half of the heat exchange unit accommodated in the cooling chamber. The rotating plate having a plurality of fins in a process in which carbon dioxide generated by vaporization of dry ice put into the cooling chamber is inflated into the heat exchange section from the carbon dioxide inlet and discharged from the carbon dioxide outlet. It is characterized by rotating.

請求項3の発電装置は、前記熱交換部はその内壁に、回転板の周面に設置された各々のフィンに対応する複数の固定フィンを有し、回転板の複数のフィンと熱交換部内壁の複数の固定フィンとが協応して前記熱交換部内に生ずる空気の流動方向を決定することを特徴とする。   The power generation device according to claim 3, wherein the heat exchanging unit has a plurality of fixed fins corresponding to each fin installed on a peripheral surface of the rotating plate on an inner wall thereof, and the heat exchanging unit and the plurality of fins of the rotating plate A plurality of fixed fins on the inner wall cooperate to determine a flow direction of air generated in the heat exchange unit.

請求項4の発電装置は、発電部が熱交換部上半部の入熱部と熱伝達部を介して互いに接続しており、熱伝達部は発電によって生じた廃熱を入熱部に伝達し熱源として利用することが可能であることを特徴とする。   In the power generation device according to claim 4, the power generation unit is connected to each other via the heat input unit and the heat transfer unit in the upper half of the heat exchange unit, and the heat transfer unit transmits waste heat generated by the power generation to the heat input unit. However, it can be used as a heat source.

請求項5の発電装置は、前記熱交換部の二酸化炭素放出口の延長上にドライアイスの再精製加工機を有し、発電装置から排出される二酸化炭素からドライアイスを製造し再利用することができることを特徴とする。   The power generator according to claim 5 has a dry ice repurification machine on the extension of the carbon dioxide discharge port of the heat exchange unit, and produces and reuses dry ice from carbon dioxide discharged from the power generator. It is characterized by being able to.

低温熱源としてドライアイスを用いるため、太陽光熱のみ利用のスターリングエンジン発電と比較して、安定した発電を行うことができる。また、請求項4の発電装置では、発電部の廃熱も再利用することができるため、運転の安定度はさらに高まる。   Since dry ice is used as a low-temperature heat source, stable power generation can be performed as compared to Stirling engine power generation using only solar heat. Further, in the power generation device according to the fourth aspect, since the waste heat of the power generation unit can be reused, the operational stability is further increased.

太陽光熱とドライアイスという高低差の大きい両熱源を利用するため、高温部と低温部の温度差が大きくなり、これが素早い空気移動を起こし、スムースな回転運動を得ることができる。また、回転板のフィンの動きが更なる空気移動と熱交換を促し、切れ目のない再生エネルギー発電を行うことができる。   Since both heat sources of solar heat and dry ice, which have a large difference in elevation, are used, the temperature difference between the high temperature part and the low temperature part becomes large, which causes a quick air movement and a smooth rotational motion can be obtained. In addition, the movement of the fins of the rotating plate facilitates further air movement and heat exchange, and it is possible to perform regenerative energy power generation without interruption.

多くのスターリングエンジンが採用しているピストン運動から回転運動への変換ではなく、熱交換部内で直接回転運動を得ることができるため、発電に至るまでのエネルギーロスが少ない。   Not a conversion from piston motion to rotational motion, which is adopted by many Stirling engines, but direct rotational motion can be obtained in the heat exchange section, so there is little energy loss until power generation.

請求項2の発電装置においては、熱交換部内に膨入する二酸化炭素の流れにより、強制的な回転力を得ることができる。また、当該強制的な回転が熱交換部内の空気移動と熱交換の効率をさらに高め、これが回転板の回転力を高めるという好循環を生む。   According to the second aspect of the present invention, a forcible rotational force can be obtained by the flow of carbon dioxide swelled into the heat exchange section. In addition, the forced rotation further increases the efficiency of air movement and heat exchange in the heat exchanging section, which creates a virtuous cycle in which the rotational force of the rotating plate is increased.

ドライアイスの再精製加工機を有する請求項5の発電装置においては、運転の過程で発生する二酸化炭素を再利用できるため、環境に優しく、また、省コスト性の高い発電を行うことができる。   In the power generation device of claim 5 having a dry ice repurification processing machine, carbon dioxide generated in the course of operation can be reused, so that it is possible to perform power generation that is environmentally friendly and cost-effective.

本実施形態の発電装置の正面右方向からの斜視図である(熱交換部と発電部の前蓋は省略)。It is a perspective view from the front right direction of the electric power generating apparatus of this embodiment (The heat exchanger and the front cover of an electric power generation part are abbreviate | omitted). 本実施形態の発電装置の正面左方向からの斜視図である(熱交換部と発電部の前蓋は省略)。It is a perspective view from the front left direction of the electric power generating apparatus of this embodiment (The heat exchanger and the front cover of an electric power generation part are abbreviate | omitted). 本実施形態の発電装置の正面縦断面図である。It is a front longitudinal cross-sectional view of the electric power generating apparatus of this embodiment. 本実施形態の発電装置の側面縦断面図である(発電部内の構造は省略)。It is a side longitudinal cross-sectional view of the electric power generating apparatus of this embodiment (The structure in an electric power generation part is abbreviate | omitted).

以下に、本発明の実施形態について図を用いて説明する。
まず、本実施形態の構成について説明する。
本実施形態の発電装置は熱交換によって動力を得るスターリングエンジンの原理を利用した発電装置であって、図1〜図4に示すように、装置の鉛直方向中央に配設された円筒形の熱交換部1と、熱交換部1の上半部15に位置し太陽光熱を採取・保存する入熱部2と、熱交換部1の下半部16を収容し水33及びドライアイス32を受け入れる冷却室3と、入熱部2に上接して配設された発電部4によって構成される。
Embodiments of the present invention will be described below with reference to the drawings.
First, the configuration of the present embodiment will be described.
The power generation device of this embodiment is a power generation device that uses the principle of a Stirling engine that obtains power by heat exchange, and as shown in FIGS. 1 to 4, a cylindrical heat disposed in the center in the vertical direction of the device. The exchange part 1, the heat input part 2 which is located in the upper half part 15 of the heat exchange part 1 and collects and stores solar heat, and the lower half part 16 of the heat exchange part 1 are accommodated to receive water 33 and dry ice 32. A cooling chamber 3 and a power generation unit 4 disposed above the heat input unit 2 are configured.

熱交換部1は内部に軸回転する円筒形の回転板12を有し、回転板12の周面には軸方向に対して一定の角度を持って複数のフィン13が設置されている。また、熱交換部1はその内壁に、回転板12の表面に設置された各々のフィン13に対応する複数の固定フィン11を有し、軸方向に対して一定の共通角度を有するフィン13と固定フィン11とが協応して熱交換部1内の空気の流動方向を決定する構造となっている。   The heat exchanging unit 1 has a cylindrical rotating plate 12 that rotates axially inside, and a plurality of fins 13 are installed on the peripheral surface of the rotating plate 12 with a certain angle with respect to the axial direction. The heat exchanging unit 1 has a plurality of fixed fins 11 corresponding to the fins 13 installed on the surface of the rotating plate 12 on its inner wall, and fins 13 having a certain common angle with respect to the axial direction. The fixed fin 11 cooperates to determine the air flow direction in the heat exchange unit 1.

図3に示すように、冷却室3内に収容されている熱交換部1の下半部16には二酸化炭素受入口17と二酸化炭素放出口18とが互いに離隔して設置され、冷却室3から膨入する二酸化炭素(炭酸ガス)34を一方から受け入れ、他方から放出する(図3矢印)。   As shown in FIG. 3, a carbon dioxide receiving port 17 and a carbon dioxide discharging port 18 are installed in the lower half 16 of the heat exchange unit 1 accommodated in the cooling chamber 3 so as to be separated from each other. The carbon dioxide (carbon dioxide gas) 34 inflating from is received from one side and released from the other side (arrow in FIG. 3).

冷却室3は膨張する二酸化炭素34が熱交換部1内に膨入するように密閉されており、側面に設置されたドライアイス投入口31は気密性を保つ観点から二重口となっている(不図示)。   The cooling chamber 3 is sealed so that the expanding carbon dioxide 34 is inflated into the heat exchanging unit 1, and the dry ice inlet 31 installed on the side surface is a double port from the viewpoint of maintaining airtightness. (Not shown).

熱交換部1の上半部15に位置する入熱部2は、熱交換部1の上半部15を構成する円弧壁と壁内部に設置されたオイルパン21によって構成され、外表面は太陽熱を吸収しやすい艶消し黒塗装が施され、オイルパン21には保温油22が注入されている。また、入熱部2と発電部4とは熱伝達部43を介して接続され、発電部4に生じた廃熱が入熱部2に伝導する構成となっている。また、熱交換部1の下半部16を収容する冷却室3の外側塗装は、太陽光熱を反射しやすいように白色系の塗装とする。   The heat input part 2 located in the upper half part 15 of the heat exchange part 1 is comprised by the circular arc wall which comprises the upper half part 15 of the heat exchange part 1, and the oil pan 21 installed in the wall inside, and an outer surface is solar heat. A matte black coating that absorbs water easily is applied, and heat retaining oil 22 is injected into the oil pan 21. In addition, the heat input unit 2 and the power generation unit 4 are connected via a heat transfer unit 43, and waste heat generated in the power generation unit 4 is transmitted to the heat input unit 2. Moreover, the outer side coating of the cooling chamber 3 which accommodates the lower half part 16 of the heat exchange part 1 is made into a white-type coating so that sunlight heat may be reflected easily.

発電部4の外側軸先には歯車42が軸付けされており、回転ベルト5によって回転板12の軸回転運動が歯車42に伝動される。   A gear 42 is attached to the outer shaft tip of the power generation unit 4, and the rotational movement of the rotating plate 12 is transmitted to the gear 42 by the rotating belt 5.

次に、本実施形態の機能について説明する。
本実施形態の発電装置は、熱交換部1内の回転板12の回転が発電部4の回転子41を従動させることにより発電機能を発揮するものであるが、回転子41の回転は熱交換部1内の空気の流れによって生じる。すなわち、入熱部2において採取された太陽光熱によって上半部(高温部)15内の空気が固定フィン11に導かれて一定方向に膨張、移動し、一定の角度を持って設置されたフィンに当たり回転子41を動かすことによって回転が生じる。さらに、下半部(低温部)16に流入した高温の空気がドライアイス32及び水33によって冷却され、回転板14のフィン11によって再び上半部(高温部)15に運ばれることにより、熱交換と空気移動のサイクルが生まれる。また、運転中においては、発電装置によって生じる廃熱も熱伝達部43を通して入熱部2に伝えられ、熱源として再利用され上半部(高温部)15の熱交換を補助する構造となっている。
Next, functions of the present embodiment will be described.
In the power generation apparatus of the present embodiment, the rotation of the rotating plate 12 in the heat exchanging unit 1 exhibits the power generation function by causing the rotor 41 of the power generating unit 4 to follow, but the rotation of the rotor 41 is heat exchange. It is generated by the air flow in the part 1. That is, the fins installed at a certain angle by the air in the upper half part (high temperature part) 15 being guided to the fixed fins 11 by the solar heat collected in the heat input part 2 and expanding and moving in a certain direction. Rotation occurs by moving the rotator 41 at the moment. Further, the hot air flowing into the lower half (low temperature part) 16 is cooled by the dry ice 32 and water 33 and transported again to the upper half (high temperature part) 15 by the fins 11 of the rotating plate 14. A cycle of exchange and air movement is born. Further, during operation, waste heat generated by the power generation device is also transmitted to the heat input unit 2 through the heat transfer unit 43 and reused as a heat source to assist heat exchange in the upper half (high temperature unit) 15. Yes.

上述したように、本発電装置は、太陽光熱、発電装置の廃熱及びドライアイスを熱源として十分稼働可能であるが、本発明においては、ドライアイスが熱源だけではなく、物理的な動力を生じさせる源材となっていることに大きな特徴がある。すなわち、密閉された冷却室3に投入されたドライアイス32は水に接して気化し、固体時の約800倍の体積に膨張しつつ熱交換器1の二酸化炭素受入口17から下半部(低温部)16に膨入し、二酸化炭素放出口18から放出される。この過程で、熱交換部1内に強力な空気の流れが発生し回転板12の回転を補助する。また、回転板の回転力の強化は低温部16・高温部15間の空気及び熱の交換を促し、これが更に回転板の回転力を高めるという好循環を生み出す。   As described above, the power generation apparatus can operate sufficiently using solar heat, waste heat of the power generation apparatus and dry ice as heat sources. However, in the present invention, dry ice generates not only a heat source but also physical power. The main feature is that it is a source material. That is, the dry ice 32 introduced into the sealed cooling chamber 3 is vaporized in contact with water, and expands to a volume approximately 800 times that of the solid state while expanding from the carbon dioxide receiving port 17 of the heat exchanger 1 to the lower half ( It is inflated into the low temperature portion 16 and discharged from the carbon dioxide outlet 18. In this process, a powerful air flow is generated in the heat exchange unit 1 to assist the rotation of the rotating plate 12. Further, the strengthening of the rotational force of the rotating plate promotes the exchange of air and heat between the low temperature part 16 and the high temperature part 15, which creates a virtuous cycle in which the rotational force of the rotating plate is further increased.

運転開始時に十分な太陽光熱を得ることができない環境下では、ドライアイスの投入が直ちに始動力となりうることも本発明の特徴である。   It is also a feature of the present invention that in an environment where sufficient solar heat cannot be obtained at the start of operation, the introduction of dry ice can immediately become a starting force.

また、本発電装置は、ピストン運動から回転運動への変換ではなく、ロータリーエンジンのように直接回転運動を得ることができるため、発電に至るまでのエネルギーロスが少ないことも特徴である。   Moreover, since this power generation device can obtain a rotational motion directly like a rotary engine rather than converting from a piston motion to a rotational motion, it is also characterized in that there is little energy loss until power generation.

さらに、本発電装置は、二酸化炭素放出口18の延長上にドライアイスの再精製加工機(不図示)を有し、排出される二酸化炭素からドライアイスを製造し再利用することができるほか、二酸化炭素を消火器メーカーや野菜工場等に安価に提供することも大きな特徴である。   Furthermore, this power generation apparatus has a dry ice repurification processing machine (not shown) on the extension of the carbon dioxide discharge port 18, and can produce and reuse dry ice from the discharged carbon dioxide. Another major feature is the provision of carbon dioxide at low cost to fire extinguisher manufacturers and vegetable factories.

1 熱交換部
11 固定フィン
12 回転板
13 回転板フィン
14 回転軸
15 上半部(高温部)
16 下半部(低温部)
17 二酸化炭素受入口
18 二酸化炭素放出口
2 入熱部
21 オイルパン
22 保温油
3 冷却室
31 ドライアイス投入口
32 ドライアイス
33 水
4 発電部
41 回転子
42 歯車
43 熱伝達部
44 電線
5 回転ベルト
DESCRIPTION OF SYMBOLS 1 Heat exchange part 11 Fixed fin 12 Rotating plate 13 Rotating plate fin 14 Rotating shaft 15 Upper half part (high temperature part)
16 Lower half (low temperature part)
17 Carbon dioxide receiving port 18 Carbon dioxide discharge port 2 Heat input unit 21 Oil pan 22 Thermal insulation oil 3 Cooling chamber 31 Dry ice inlet 32 Dry ice 33 Water 4 Power generation unit 41 Rotor 42 Gear 43 Heat transfer unit 44 Electric wire 5 Rotating belt

Claims (5)

太陽光熱とドライアイスとを利用する発電装置であって、
軸方向に対して一定の角度を持って周面に設置された複数のフィンを備える回転板を有する円筒形の熱交換部と、
前記円筒形の熱交換部の上半部に位置し太陽光熱を採取する入熱部と、
前記円筒形の熱交換部の下半部を収容し水及びドライアイスを受け入れる冷却室と、
前記熱交換部の前記回転板に従動する回転子を有する発電部と、
から成り、
上記入熱部を通して採取された太陽光熱により加熱される前記熱交換部内上部の空気と上記冷却室内の水及びドライアイスによって冷却される前記熱交換部内下部の空気の膨張・収縮によって生ずる前記空気の移動が前記複数のフィンを備える前記回転板を回転させ、
前記複数のフィンを備える前記回転板の回転により前記熱交換部内の前記空気の移動及び熱交換が行われ、
前記熱交換及び前記空気の移動が繰り返されることにより前記熱交換部内の空気が一定の方向に回転を続けることにより前記回転板が回転を持続し、
前記回転板に従動して前記発電部の前記回転子が回転することにより前記発電部が電力を生成することを特徴とする発電装置。
A power generation device that uses solar heat and dry ice,
A cylindrical heat exchange section having a rotating plate with a plurality of fins installed on the circumferential surface at a constant angle with respect to the axial direction;
A heat input part for collecting solar heat located in the upper half of the cylindrical heat exchange part;
A cooling chamber that houses the lower half of the cylindrical heat exchange section and receives water and dry ice;
A power generation unit having a rotor driven by the rotating plate of the heat exchange unit;
Consisting of
The air generated by expansion / contraction of the air in the upper part of the heat exchange part heated by solar heat collected through the heat input part and the air in the lower part of the heat exchange part cooled by water and dry ice in the cooling chamber Moving the rotating plate comprising the plurality of fins;
The movement and heat exchange of the air in the heat exchange unit are performed by the rotation of the rotating plate including the plurality of fins,
By repeating the heat exchange and the movement of the air, the air in the heat exchange unit continues to rotate in a certain direction, so that the rotating plate continues to rotate,
The power generation device generates electric power when the rotor of the power generation unit rotates following the rotating plate.
前記冷却室は密閉されており、前記冷却室内に収容されている前記熱交換部の前記下半部には二酸化炭素受入口と二酸化炭素放出口とが互いに離隔して設置され、前記密閉された冷却室内に投入された前記ドライアイスが気化することにより発生する二酸化炭素が前記二酸化炭素受入口より前記熱交換部内に膨入し前記二酸化炭素放出口より排出される過程において、前記複数のフィンを備える前記回転板を回転させることを特徴とする、請求項1に記載の発電装置。   The cooling chamber is hermetically sealed, and a carbon dioxide receiving port and a carbon dioxide discharging port are spaced apart from each other in the lower half of the heat exchange unit housed in the cooling chamber, and are sealed In the process in which carbon dioxide generated by vaporization of the dry ice introduced into the cooling chamber is inflated into the heat exchange section from the carbon dioxide inlet and discharged from the carbon dioxide outlet, the plurality of fins are The power generator according to claim 1, wherein the rotating plate provided is rotated. 前記熱交換部はその内壁に、前記回転板の表面に設置された各々の前記フィンに対応する複数の固定フィンを有し、前記回転板の前記複数のフィンと前記熱交換部内壁の前記複数の固定フィンとが協応して前記熱交換部内に生ずる空気の流動方向を決定することを特徴とする請求項1又は2記載の発電装置。   The heat exchange part has a plurality of fixed fins corresponding to the fins installed on the surface of the rotating plate on the inner wall, and the plurality of fins of the rotating plate and the plurality of heat exchange part inner walls. The power generation apparatus according to claim 1, wherein a flow direction of air generated in the heat exchange unit is determined in cooperation with the fixed fins. 前記発電部は前記熱交換部上半部の前記入熱部と熱伝達部を介して互いに接続しており、前記熱伝達部は発電によって前記発電部に生じた廃熱を前記入熱部に伝達し熱源として利用することが可能であることを特徴とする請求項1乃至3のいずれかに記載の発電装置。   The power generation unit is connected to each other via the heat input unit and the heat transfer unit in the upper half of the heat exchange unit, and the heat transfer unit transfers waste heat generated in the power generation unit by power generation to the heat input unit. The power generation device according to any one of claims 1 to 3, wherein the power generation device can be used as a heat source for transmission. 前記発電装置は前記熱交換部の前記二酸化炭素放出口の延長上にドライアイスの再精製加工機を有し、前記発電装置から排出される二酸化炭素からドライアイスを製造し再利用することができることを特徴とする請求項1乃至4のいずれかに記載の発電装置。
The power generator has a dry ice repurification machine on the extension of the carbon dioxide outlet of the heat exchanging section, and can produce and reuse dry ice from carbon dioxide discharged from the power generator. The power generator according to any one of claims 1 to 4.
JP2015077346A 2015-04-06 2015-04-06 Power generator Active JP6407089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015077346A JP6407089B2 (en) 2015-04-06 2015-04-06 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015077346A JP6407089B2 (en) 2015-04-06 2015-04-06 Power generator

Publications (2)

Publication Number Publication Date
JP2016196860A true JP2016196860A (en) 2016-11-24
JP6407089B2 JP6407089B2 (en) 2018-10-17

Family

ID=57358131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015077346A Active JP6407089B2 (en) 2015-04-06 2015-04-06 Power generator

Country Status (1)

Country Link
JP (1) JP6407089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744065A (en) * 2019-11-04 2020-02-04 江苏威拉里新材料科技有限公司 Emergency cooling system for induction coil after power failure of atomizer
CN111039391A (en) * 2019-11-14 2020-04-21 梁政 Aeration and oxygenation sewage treatment system and use method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343961A (en) * 1998-05-28 1999-12-14 Honda Seiki Kk Rotary type solar thermal engine system
JP2003126681A (en) * 2001-10-24 2003-05-07 Yoshisuke Takiguchi Carbon dioxide as energy carrier and use of the same
CN101251093A (en) * 2008-03-20 2008-08-27 杨青 Cold type thruster
JP2015178827A (en) * 2014-03-18 2015-10-08 幸一 坂本 Dry ice power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343961A (en) * 1998-05-28 1999-12-14 Honda Seiki Kk Rotary type solar thermal engine system
JP2003126681A (en) * 2001-10-24 2003-05-07 Yoshisuke Takiguchi Carbon dioxide as energy carrier and use of the same
CN101251093A (en) * 2008-03-20 2008-08-27 杨青 Cold type thruster
JP2015178827A (en) * 2014-03-18 2015-10-08 幸一 坂本 Dry ice power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744065A (en) * 2019-11-04 2020-02-04 江苏威拉里新材料科技有限公司 Emergency cooling system for induction coil after power failure of atomizer
CN110744065B (en) * 2019-11-04 2024-01-26 江苏威拉里新材料科技有限公司 Induction coil emergency cooling system after atomizer outage
CN111039391A (en) * 2019-11-14 2020-04-21 梁政 Aeration and oxygenation sewage treatment system and use method thereof
CN111039391B (en) * 2019-11-14 2020-12-25 梁政 Aeration and oxygenation sewage treatment system and use method thereof

Also Published As

Publication number Publication date
JP6407089B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP4779513B2 (en) Rotary positive displacement steam engine
US20130147196A1 (en) Solar Tower With Integrated Gas Turbine
US9726046B2 (en) Rotor high-and-low pressure power apparatus and working method thereof
JP2007107490A (en) External combustion engine and structure thereof
JP6407089B2 (en) Power generator
US10208735B1 (en) Wind turbine with thermal battery using noncombustible fuels for storing regenerating energy
CN105114266B (en) Power device using heat pump technology
CN102062016A (en) High-temperature sodium heat pipe heat collector for solar disc type thermal power generation system
US20130269331A1 (en) Compressed gas energy storage system
KR20160133762A (en) Steam storing and steam compressing device for waste heat boiler
US20110311347A1 (en) Flash Steam Turbine
KR101017891B1 (en) A cogeneration equipment using solar energy
KR101623418B1 (en) stirling engine
KR101713596B1 (en) Power generation device using waste heat
KR20130119162A (en) Direct organic rankine cycle power generation system using solar power
CN204806706U (en) Solar thermal energy generating set
Elshamy Performance of Thermosyphon Rankine Engine as Low Temperature Heat Engine
KR102050556B1 (en) Geerator system for driving orc turbine genetor from hot water using wind and solar
CN203394603U (en) Steam turbine used for low-temperature electricity generation of organic working medium
RU2382956C2 (en) Heat generator
JP2011256854A (en) Heat-accumulation type power generation system and power generation method
JP2003013805A (en) Stiring engine power plant using waste heat and natural heat
KR20110104587A (en) The cogeneration system by using biomass briquette fuel
CN103821679A (en) Solar disc-type air turbine power generation system
TWM633011U (en) Hydraulic energy conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R150 Certificate of patent or registration of utility model

Ref document number: 6407089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250